当前位置:文档之家› 空间向量和立体几何练习题及答案

空间向量和立体几何练习题及答案

空间向量和立体几何练习题及答案
空间向量和立体几何练习题及答案

1.如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4.

(1)求证:M为PB的中点;

(2)求二面角B﹣PD﹣A的大小;

(3)求直线MC与平面BDP所成角的正弦值.

【分析】(1)设AC∩BD=O,则O为BD的中点,连接OM,利用线面平行的性质证明OM∥PD,再由平行线截线段成比例可得M为PB的中点;

(2)取AD中点G,可得PG⊥AD,再由面面垂直的性质可得PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,再证明OG⊥AD.以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,求出平面PBD与平面PAD的一个法向量,由两法向量所成角的大小可得二面角B﹣PD﹣A的大小;(3)求出的坐标,由与平面PBD的法向量所成角的余弦值的绝对值可得直线MC与平面BDP所成角的正弦值.

【解答】(1)证明:如图,设AC∩BD=O,

∵ABCD为正方形,∴O为BD的中点,连接OM,

∵PD∥平面MAC,PD?平面PBD,平面PBD∩平面AMC=OM,

∴PD∥OM,则,即M为PB的中点;

(2)解:取AD中点G,

∵PA=PD,∴PG⊥AD,

∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,

∴PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,

由G是AD的中点,O是AC的中点,可得OG∥DC,则OG⊥AD.

以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,

由PA=PD=,AB=4,得D(2,0,0),A(﹣2,0,0),P(0,0,),C(2,

4,0),B(﹣2,4,0),M(﹣1,2,),

,.

设平面PBD的一个法向量为,

则由,得,取z=,得.

取平面PAD的一个法向量为.

∴cos<>==.

∴二面角B﹣PD﹣A的大小为60°;

(3)解:,平面BDP的一个法向量为.

∴直线MC与平面BDP所成角的正弦值为|cos<>

|=||=||=.

【点评】本题考查线面角与面面角的求法,训练了利用空间向量求空间角,属中档题.

2.如图,在三棱锥P﹣ABC中,PA⊥底面ABC,∠BAC=90°.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2.

(Ⅰ)求证:MN∥平面BDE;

(Ⅱ)求二面角C﹣EM﹣N的正弦值;

(Ⅲ)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为,求线

段AH的长.

【分析】(Ⅰ)取AB中点F,连接MF、NF,由已知可证MF∥平面BDE,NF∥平面BDE.得到平面MFN∥平面BDE,则MN∥平面BDE;

(Ⅱ)由PA⊥底面ABC,∠BAC=90°.可以A为原点,分别以AB、AC、AP所在直线为x、y、z轴建立空间直角坐标系.求出平面MEN与平面CME的一个法向量,由两法向量所成角的余弦值得二面角C﹣EM﹣N的余弦值,进一步求得正弦值;

(Ⅲ)设AH=t,则H(0,0,t),求出的坐标,结合直线NH与直线BE 所成角的余弦值为列式求得线段AH的长.

【解答】(Ⅰ)证明:取AB中点F,连接MF、NF,

∵M为AD中点,∴MF∥BD,

∵BD?平面BDE,MF?平面BDE,∴MF∥平面BDE.

∵N为BC中点,∴NF∥AC,

又D、E分别为AP、PC的中点,∴DE∥AC,则NF∥DE.

∵DE?平面BDE,NF?平面BDE,∴NF∥平面BDE.

又MF∩NF=F.

∴平面MFN∥平面BDE,则MN∥平面BDE;

(Ⅱ)解:∵PA⊥底面ABC,∠BAC=90°.

∴以A为原点,分别以AB、AC、AP所在直线为x、y、z轴建立空间直角坐标系.∵PA=AC=4,AB=2,

∴A(0,0,0),B(2,0,0),C(0,4,0),M(0,0,1),N(1,2,0),E (0,2,2),

则,,

设平面MEN的一个法向量为,

由,得,取z=2,得.

由图可得平面CME的一个法向量为.

∴cos<>=.

∴二面角C﹣EM﹣N的余弦值为,则正弦值为;

(Ⅲ)解:设AH=t,则H(0,0,t),,.

∵直线NH与直线BE所成角的余弦值为,

∴|cos<>|=||=||=.

解得:t=或t=.

∴当H与P重合时直线NH与直线BE所成角的余弦值为,此时线段AH的长为或.

【点评】本题考查直线与平面平行的判定,考查了利用空间向量求解空间角,考查计算能力,是中档题.

3.如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是的中点.

(Ⅰ)设P是上的一点,且AP⊥BE,求∠CBP的大小;

(Ⅱ)当AB=3,AD=2时,求二面角E﹣AG﹣C的大小.

【分析】(Ⅰ)由已知利用线面垂直的判定可得BE⊥平面ABP,得到BE⊥BP,结合∠EBC=120°求得∠CBP=30°;

(Ⅱ)法一、取的中点H,连接EH,GH,CH,可得四边形BEGH为菱形,取AG中点M,连接EM,CM,EC,得到EM⊥AG,CM⊥AG,说明∠EMC为所求二面角的平面角.求解三角形得二面角E﹣AG﹣C的大小.

法二、以B为坐标原点,分别以BE,BP,BA所在直线为x,y,z轴建立空间直角坐标系.求出A,E,G,C的坐标,进一步求出平面AEG与平面ACG的一个法向量,由两法向量所成角的余弦值可得二面角E﹣AG﹣C的大小.

【解答】解:(Ⅰ)∵AP⊥BE,AB⊥BE,且AB,AP?平面ABP,AB∩AP=A,

∴BE⊥平面ABP,又BP?平面ABP,

∴BE⊥BP,又∠EBC=120°,

因此∠CBP=30°;

(Ⅱ)解法一、

取的中点H,连接EH,GH,CH,

∵∠EBC=120°,∴四边形BECH为菱形,

∴AE=GE=AC=GC=.

取AG中点M,连接EM,CM,EC,

则EM⊥AG,CM⊥AG,

∴∠EMC为所求二面角的平面角.

又AM=1,∴EM=CM=.

在△BEC中,由于∠EBC=120°,

由余弦定理得:EC2=22+22﹣2×2×2×cos120°=12,

∴,因此△EMC为等边三角形,

故所求的角为60°.

解法二、以B为坐标原点,分别以BE,BP,BA所在直线为x,y,z轴建立空间直角坐标系.

由题意得:A(0,0,3),E(2,0,0),G(1,,3),C(﹣1,,0),故,,.

设为平面AEG的一个法向量,

由,得,取z 1=2,得;

设为平面ACG的一个法向量,

由,可得,取z 2=﹣2,得.

∴cos<>=.

∴二面角E﹣AG﹣C的大小为60°.

【点评】本题考查空间角的求法,考查空间想象能力和思维能力,训练了线面角的求法及利用空间向量求二面角的大小,是中档题.

4.如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,

∠AFD=90°,且二面角D﹣AF﹣E与二面角C﹣BE﹣F都是60°.

(Ⅰ)证明平面ABEF⊥平面EFDC;

(Ⅱ)求二面角E﹣BC﹣A的余弦值.

【分析】(Ⅰ)证明AF⊥平面EFDC,利用平面与平面垂直的判定定理证明平面ABEF⊥平面EFDC;

(Ⅱ)证明四边形EFDC为等腰梯形,以E为原点,建立如图所示的坐标系,求出平面BEC、平面ABC的法向量,代入向量夹角公式可得二面角E﹣BC﹣A的余弦值.

【解答】(Ⅰ)证明:∵ABEF为正方形,∴AF⊥EF.

∵∠AFD=90°,∴AF⊥DF,

∵DF∩EF=F,

∴AF⊥平面EFDC,

∵AF?平面ABEF,

∴平面ABEF⊥平面EFDC;

(Ⅱ)解:由AF⊥DF,AF⊥EF,

可得∠DFE为二面角D﹣AF﹣E的平面角;

由ABEF为正方形,AF⊥平面EFDC,

∵BE⊥EF,

∴BE⊥平面EFDC

即有CE⊥BE,

可得∠CEF为二面角C﹣BE﹣F的平面角.

可得∠DFE=∠CEF=60°.

∵AB∥EF,AB?平面EFDC,EF?平面EFDC,

∴AB∥平面EFDC,

∵平面EFDC∩平面ABCD=CD,AB?平面ABCD,

∴AB∥CD,

∴CD∥EF,

∴四边形EFDC为等腰梯形.

以E为原点,建立如图所示的坐标系,设FD=a,

则E(0,0,0),B(0,2a,0),C(,0,a),A(2a,2a,0),

∴=(0,2a,0),=(,﹣2a,a),=(﹣2a,0,0)

设平面BEC的法向量为=(x1,y1,z1),则,

则,取=(,0,﹣1).

设平面ABC的法向量为=(x2,y2,z2),则,

则,取=(0,,4).

设二面角E﹣BC﹣A的大小为θ,则cosθ=

==﹣,

则二面角E﹣BC﹣A的余弦值为﹣.

【点评】本题考查平面与平面垂直的证明,考查用空间向量求平面间的夹角,建立空间坐标系将二面角问题转化为向量夹角问题是解答的关键.

5.如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分

别在AD,CD上,AE=CF=,EF交于BD于点H,将△DEF沿EF折到△D′EF的位

置,OD′=.

(Ⅰ)证明:D′H⊥平面ABCD;

(Ⅱ)求二面角B﹣D′A﹣C的正弦值.

【分析】(Ⅰ)由底面ABCD为菱形,可得AD=CD,结合AE=CF可得EF∥AC,再由ABCD是菱形,得AC⊥BD,进一步得到EF⊥BD,由EF⊥DH,可得EF⊥D′H,然后求解直角三角形得D′H⊥OH,再由线面垂直的判定得D′H⊥平面ABCD;(Ⅱ)以H为坐标原点,建立如图所示空间直角坐标系,由已知求得所用点的坐标,得到的坐标,分别求出平面ABD′与平面AD′C的一个法向量,设二面角二面角B﹣D′A﹣C的平面角为θ,求出|cosθ|.则二面角B ﹣D′A﹣C的正弦值可求.

【解答】(Ⅰ)证明:∵ABCD是菱形,

∴AD=DC,又AE=CF=,

∴,则EF∥AC,

又由ABCD是菱形,得AC⊥BD,则EF⊥BD,

∴EF⊥DH,则EF⊥D′H,

∵AC=6,

∴AO=3,

又AB=5,AO⊥OB,

∴OB=4,

∴OH==1,则DH=D′H=3,

∴|OD′|2=|OH|2+|D′H|2,则D′H⊥OH,

又OH∩EF=H,

∴D′H⊥平面ABCD;

(Ⅱ)解:以H为坐标原点,建立如图所示空间直角坐标系,

∵AB=5,AC=6,

∴B(5,0,0),C(1,3,0),D′(0,0,3),A(1,﹣3,0),

,,

设平面ABD′的一个法向量为,

由,得,取x=3,得y=﹣4,z=5.

∴.

同理可求得平面AD′C的一个法向量,

设二面角二面角B﹣D′A﹣C的平面角为θ,

则|cosθ|=.

∴二面角B﹣D′A﹣C的正弦值为sinθ=.

【点评】本题考查线面垂直的判定,考查了二面角的平面角的求法,训练了利用平面的法向量求解二面角问题,体现了数学转化思想方法,是中档题.

6.在三棱柱ABC﹣A1B1C1中,CA=CB,侧面ABB1A1是边长为2的正方形,点E,F分别在线段AA1、A1B1上,且AE=,A1F=,CE⊥EF.

(Ⅰ)证明:平面ABB1A1⊥平面ABC;

(Ⅱ)若CA⊥CB,求直线AC1与平面CEF所成角的正弦值.

【分析】(I)取AB的中点D,连结CD,DF,DE.计算DE,EF,DF,利用勾股定理的逆定理得出DE⊥EF,由三线合一得CD⊥AB,故而CD⊥平面ABB1A1,从而平面ABB1A1⊥平面ABC;

(II)以C为原点建立空间直角坐标系,求出和平面CEF的法向量,则直线AC1与平面CEF所成角的正弦值等于|cos<>|.

【解答】证明:(I)取AB的中点D,连结CD,DF,DE.

∵AC=BC,D是AB的中点,∴CD⊥AB.

∵侧面ABB1A1是边长为2的正方形,AE=,A1F=.

∴A1E=,EF==,DE==,

DF==,

∴EF2+DE2=DF2,∴DE⊥EF,

又CE⊥EF,CE∩DE=E,CE?平面CDE,DE?平面CDE,

∴EF⊥平面CDE,又CD?平面CDE,

∴CD⊥EF,

又CD⊥AB,AB?平面ABB1A1,EF?平面ABB1A1,AB,EF为相交直线,

∴CD⊥平面ABB1A1,又CD?ABC,

∴平面ABB1A1⊥平面ABC.

(II)∵平面ABB1A1⊥平面ABC,

∴三棱柱ABC﹣A1B1C1是直三棱柱,∴CC1⊥平面ABC.

∵CA⊥CB,AB=2,∴AC=BC=.

以C为原点,以CA,CB,CC1为坐标轴建立空间直角坐标系,如图所示:

则A(,0,0),C(0,0,0),C1(0,0,2),E(,0,),F(,,2).

∴=(﹣,0,2),=(,0,),=(,,2).

设平面CEF的法向量为=(x,y,z),则,

∴,令z=4,得=(﹣,﹣9,4).

∴=10,||=6,||=.

∴sin<>==.

∴直线AC1与平面CEF所成角的正弦值为.

【点评】本题考查了面面垂直的判定,线面角的计算,空间向量的应用,属于中档题.

7.如图,在四棱锥中P﹣ABCD,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=2,BC=4,PA=2.

(1)求证:AB⊥PC;

(2)在线段PD上,是否存在一点M,使得二面角M﹣AC﹣D的大小为45°,如果存在,求BM与平面MAC所成角的正弦值,如果不存在,请说明理由.

【分析】(1)利用直角梯形的性质求出AB,AC的长,根据勾股定理的逆定理得出AB⊥AC,由PA⊥平面ABCD得出AB⊥PA,故AB⊥平面PAC,于是AB⊥PC;(2)假设存在点M,做出二面角的平面角,根据勾股定理求出M到平面ABCD 的距离从而确定M的位置,利用棱锥的体积求出B到平面MAC的距离h,根据勾股定理计算BM,则即为所求角的正弦值.

【解答】解:(1)证明:∵四边形ABCD是直角梯形,

AD=CD=2,BC=4,

∴AC=4,AB===4,

∴△ABC是等腰直角三角形,即AB⊥AC,

∵PA⊥平面ABCD,AB?平面ABCD,

∴PA⊥AB,

∴AB⊥平面PAC,又PC?平面PAC,

∴AB⊥PC.

(2)假设存在符合条件的点M,过点M作MN⊥AD于N,则MN∥PA,

∴MN⊥平面ABCD,∴MN⊥AC.

过点M作MG⊥AC于G,连接NG,则AC⊥平面MNG,

∴AC⊥NG,即∠MGN是二面角M﹣AC﹣D的平面角.

若∠MGN=45°,则NG=MN,又AN=NG=MN,

∴MN=1,即M是线段PD的中点.

∴存在点M使得二面角M﹣AC﹣D的大小为45°.

=S△ABC?MN==,

在三棱锥M﹣ABC中,V M

﹣ABC

=,

设点B到平面MAC的距离是h,则V B

﹣MAC

===2,

∵MG=MN=,∴S

△MAC

∴=,解得h=2.

在△ABN中,AB=4,AN=,∠BAN=135°,∴BN==,∴BM==3,

∴BM与平面MAC所成角的正弦值为=.

【点评】本题考查了项目垂直的判定与性质,空间角与空间距离的计算,属于中档题.

8.如图,在各棱长均为2的三棱柱ABC﹣A1B1C1中,侧面A1ACC1⊥底面ABC,∠A1AC=60°.

(1)求侧棱AA1与平面AB1C所成角的正弦值的大小;

(2)已知点D满足=+,在直线AA1上是否存在点P,使DP∥平面AB1C?若存在,请确定点P的位置,若不存在,请说明理由.

【分析】(1)推导出A1O⊥平面ABC,BO⊥AC,以O为坐标原点,建立如图所示的空间直角坐标系O﹣xyz,利用向量法能求出侧棱AA1与平面AB1C所成角的正弦值.

(2)假设存在点P符合题意,则点P的坐标可设为P(0,y,z),则

C,其坐标为(0,

.利用向量法能求出存在点P,使DP∥平面AB

0,),即恰好为A1点.

【解答】解:(1)∵侧面A1ACC1⊥底面ABC,作A1O⊥AC于点O,

∴A1O⊥平面ABC.

又∠ABC=∠A1AC=60°,且各棱长都相等,

∴AO=1,OA1=OB=,BO⊥AC.…(2分)

故以O为坐标原点,建立如图所示的空间直角坐标系O﹣xyz,

则A(0,﹣1,0),B(,0,0),A1(0,0,),C(0,1,0),

∴=(0,1,),=(),=(0,2,0).…(4分)

设平面AB 1C的法向量为,

则,取x=1,得=(1,0,1).

设侧棱AA1与平面AB1C所成角的为θ,

则sinθ=|cos<,>|=||=,

∴侧棱AA1与平面AB1C所成角的正弦值为.…(6分)

(2)∵=,而,,

∴=(﹣2,0,0),又∵B(),∴点D(﹣,0,0).

假设存在点P符合题意,则点P的坐标可设为P(0,y,z),∴.∵DP∥平面AB1C,=(﹣1,0,1)为平面AB1C的法向量,

∴由=λ,得,∴y=0.…(10分)

又DP?平面AB1C,故存在点P,使DP∥平面AB1C,其坐标为(0,0,),

即恰好为A1点.…(12分)

【点评】本题考查线面角的正弦值的求法,考查满足条件的点是否存在的判断与求法,是中档题,解题时要认真审题,注意向量法的合理运用.

9.在三棱柱ABC﹣A1B1C1中,侧面ABB1A1为矩形,AB=2,AA1=2,D是AA1的中点,BD与AB1交于点O,且CO⊥平面ABB1A1.

(Ⅰ)证明:平面AB1C⊥平面BCD;

(Ⅱ)若OC=OA,△AB1C的重心为G,求直线GD与平面ABC所成角的正弦值.

【分析】(Ⅰ)通过证明AB1⊥BD,AB1⊥CO,推出AB1⊥平面BCD,然后证明平面AB1C⊥平面BCD.

(Ⅱ)以O为坐标原点,分别以OD,OB1,OC所在直线为x,y,z轴,建立如图所示的空间直角坐标系O﹣xyz.求出平面ABC的法向量,设直线GD与平面ABC所成角α,利用空间向量的数量积求解直线GD与平面ABC所成角的正弦值即可.

【解答】(本小题满分12分)

解:(Ⅰ)∵ABB 1A1为矩形,AB=2,,D是AA1的中点,∴∠BAD=90°,

,,

从而,,∵,

∴∠ABD=∠AB1B,…(2分)

∴,∴,从而AB1⊥BD…(4分)∵CO⊥平面ABB1A1,AB1?平面ABB1A1,∴AB1⊥CO,∵BD∩CO=O,∴AB1⊥平面BCD,

∵AB1?平面AB1C,

∴平面AB1C⊥平面BCD…(6分)

(Ⅱ)如图,以O为坐标原点,

分别以OD,OB1,OC所在直线为x,y,z轴,

建立如图所示的空间直角坐标系O﹣xyz.

在矩形ABB1A1中,由于AD∥BB1,所以△AOD和△B1OB相似,

从而

又,∴,,,

,∴,

,∵G为△AB1C的重心,∴

,…(8分)

设平面ABC的法向量为,

由可得,

令y=1,则z=﹣1,,所以.…(10分)

设直线GD与平面ABC所成角α,则

=

所以直线GD与平面ABC所成角的正弦值为…(12分)

【点评】本题考查平面与平面垂直的判定定理的应用,直线与平面所成角的求法,考查空间想象能力以及计算能力.

10.在矩形ABCD中,AB=4,AD=2,将△ABD沿BD折起,使得点A折起至A′,设二面角A′﹣BD﹣C的大小为θ.

(1)当θ=90°时,求A′C的长;

(2)当cosθ=时,求BC与平面A′BD所成角的正弦值.

【分析】(1)过A作BD的垂线交BD于E,交DC于F,连接CE,利用勾股定理及余弦定理计算AE,CE,由A′E⊥CE得出A′C;

(2)利用余弦定理可得A′F=,从而得出A′F⊥平面ABCD,以F为原点建立坐标系,求出和平面A′BD的法向量,则BC与平面A′BD所成角的正弦值为|cos<>|.

【解答】解:(1)在图1中,过A作BD的垂线交BD于E,交DC于F,连接CE.

∵AB=4,AD=2,∴BD==10.

∴,BE==8,cos∠CBE==.

在△BCE中,由余弦定理得CE==2.

∵θ=90°,∴A′E⊥平面ABCD,∴A′E⊥CE.

∴|A′C|==2.

(2)DE==2.

∵tan∠FDE=,∴EF=1,DF==.

当即cos∠A′EF=时,.

∴A′E2=A′F2+EF2,∴∠A'FE=90°

又BD⊥AE,BD⊥EF,∴BD⊥平面A'EF,∴BD⊥A'F

∴A'F⊥平面ABCD.

以F为原点,以FC为x轴,以过F的AD的平行线为y轴,以FA′为z轴建立空间直角坐标系如图所示:

∴A′(0,0,),D(﹣,0,0),B(3,2,0),C(3,0,0).

∴=(0,2,0),=(4,2,0),=(,0,).

设平面A′BD的法向量为=(x,y,z),则,

∴,令z=1得=(﹣,2,1).

∴cos<>===.

∴BC与平面A'BD所成角的正弦值为.

【点评】本题考查了空间角与空间距离的计算,空间向量的应用,属于中档题.

11.如图,由直三棱柱ABC﹣A1B1C1和四棱锥D﹣BB1C1C构成的几何体中,∠BAC=90°,AB=1,BC=BB1=2,C1D=CD=,平面CC1D⊥平面ACC1A1.

(Ⅰ)求证:AC⊥DC1;

(Ⅱ)若M为DC1的中点,求证:AM∥平面DBB1;

(Ⅲ)在线段BC上是否存在点P,使直线DP与平面BB1D所成的角为?若存在,求的值,若不存在,说明理由.

【分析】(Ⅰ)证明AC⊥CC1,得到AC⊥平面CC1D,即可证明AC⊥DC1.

(Ⅱ)易得∠BAC=90°,建立空间直角坐标系A﹣xyz,

依据已知条件可得A(0,0,0),,,B(0,0,1),

B1(2,0,1),,

利用向量求得AM与平面DBB1所成角为0,即AM∥平面DBB1.

高中数学空间向量与立体几何测试题及答案

一、选择题 1.若把空间平行于同一平面且长度相等的所有非零向量的始点放置在同一点,则这些向量的终点构成的图形是( ) A.一个圆 B.一个点 C.半圆 D.平行四边形 答案:A 2.在长方体1111ABCD A B C D -中,下列关于1AC 的表达中错误的一个是( ) A.11111AA A B A D ++ B.111AB DD D C ++ C.111AD CC D C ++ D.11111 ()2 AB CD AC ++ 答案:B 3.若,,a b c 为任意向量,∈R m ,下列等式不一定成立的是( ) A.()()a b c a b c ++=++ B.()a b c a c b c +=+··· C.()a b a b +=+m m m D.()()a b c a b c =···· 答案:D 4.若三点,,A B C 共线,P 为空间任意一点,且PA PB PC αβ+=,则αβ-的值为( ) A.1 B.1- C. 1 2 D.2- 答案:B 5.设(43)(32)a b ==,,,,,x z ,且∥a b ,则xz 等于( ) A.4- B.9 C.9- D. 649 答案:B 6.已知非零向量12e e ,不共线,如果1222122833e e e e e e =+=+=-, ,AB AC AD ,则四点,,,A B C D ( ) A.一定共圆 B.恰是空间四边形的四个顶点心 C.一定共面 D.肯定不共面 答案:C 7.如图1,空间四边形ABCD 的四条边及对 角线长都是a ,点E F G ,,分别是AB AD CD ,,

的中点,则2a 等于( ) A.2BA AC · B.2AD BD · C.2FG CA · D.2EF CB · 答案:B 8.若123123123=++=-+=+-,,a e e e b e e e c e e e ,12323d e e e =++,且x y z =++d a b c ,则,,x y z 的值分别为( ) A.51122--,, B.51122 -,, C.51122 --,, D.51122 ,, 答案:A 9.若向量(12)λ=,,a 与(212)=-, ,b 的夹角的余弦值为8 9,则λ=( ) A.2 B.2- C.2-或 255 D.2或255 - 答案:C 10.已知ABCD 为平行四边形,且(413)(251)(375)A B C --,,,,,,,,,则顶点D 的坐标为( ) A.7412??- ???,, B.(241),, C.(2141)-,, D.(5133)-,, 答案:D 11.在正方体1111ABCD A B C D -中,O 为AC BD ,的交点,则1C O 与1A D 所成角的( ) A.60° B.90° C.3arccos 3 D.3arccos 6 答案:D 12.给出下列命题: ①已知⊥a b ,则()()a b c c b a b c ++-=···; ②,,,A B M N 为空间四点,若BA BM BN ,,不构成空间的一个基底,那么A B M N ,,,共面; ③已知⊥a b ,则,a b 与任何向量都不构成空间的一个基底; ④若,a b 共线,则,a b 所在直线或者平行或者重合. 正确的结论的个数为( ) A.1 B.2 C.3 D.4 答案:C 二、填空题 13.已知(315)(123)==-,,,,,a b ,向量c 与z 轴垂直,且满足94==-,··c a c b ,则c = . 答案:2221055?? - ??? ,,

高一数学立体几何练习题及部分答案大全

立 体几何试题 一.选择题(每题4分,共40分) 1.已知AB 0300300150空间,下列命题正确的个数为( ) (1)有两组对边相等的四边形是平行四边形,(2)四边相等的四边形是菱形 (3)平行于同一条直线的两条直线平行 ;(4)有两边及其夹角对应相等的两个三角形全等 A 1 B 2 C 3 D 4 3.如果一条直线与两个平行平面中的一个平行,那么这条直线与另一个平面的位置关系是( ) A 平行 B 相交 C 在平面内 D 平行或在平面内 4.已知直线m αα过平面α外一点,作与α平行的平面,则这样的平面可作( ) A 1个 或2个 B 0个或1个 C 1个 D 0个 6.如图,如果MC ⊥菱形ABCD 所在平面,那么MA 与BD 的位置关系是( ) A 平行 B 垂直相交 C 异面 D 相交但不垂直 7.经过平面α外一点和平面α内一点与平面α垂直的平面有( ) A 0个 B 1个 C 无数个 D 1个或无数个 8.下列条件中,能判断两个平面平行的是( ) A 一个平面内的一条直线平行于另一个平面; B 一个平面内的两条直线平行于另一个平面 C 一个平面内有无数条直线平行于另一个平面 D 一个平面内任何一条直线都平行于另一个平面 9.对于直线m ,n 和平面,αβ,使αβ⊥成立的一个条件是( ) A //,,m n n m βα⊥? B //,,m n n m βα⊥⊥ C ,,m n m n αβα⊥=?I D ,//,//m n m n αβ⊥ 10 .已知四棱锥,则中,直角三角形最多可以有( ) A 1个 B 2个 C 3个 D 4个 二.填空题(每题4分,共16分) 11.已知?ABC 的两边AC,BC 分别交平面α于点M,N ,设直线AB 与平面α交于点O ,则点O 与直线MN 的位置关系为_________ 12.过直线外一点与该直线平行的平面有___________个,过平面外一点与该平面平行的直线有 _____________条 13.一块西瓜切3刀最多能切_________块

(三)立体几何与空间向量

(三)立体几何与空间向量 1.如图,在四棱锥P-ABCD中,四边形ABCD为正方形,P A⊥平面ABCD,P A=AB,M是PC上一点,且BM⊥PC. (1)求证:PC⊥平面MBD; (2)求直线PB与平面MBD所成角的正弦值. (1)证明连接AC,由P A⊥平面ABCD, BD?平面ABCD,得BD⊥P A, 又BD⊥AC,P A∩AC=A, P A,AC?平面P AC, ∴BD⊥平面P AC,又PC?平面P AC,∴PC⊥BD. 又PC⊥BM,BD∩BM=B, BD,BM?平面MBD, ∴PC⊥平面MBD. (2)解方法一由(1)知PC⊥平面MBD, 即∠PBM是直线PB与平面MBD所成的角. 不妨设P A=1,则BC=1,PC=3,PB= 2. ∴PC2=PB2+BC2,∴PB⊥BC,又BM⊥PC, ∴sin∠PBM=cos∠BPC=PB PC=2 3 = 6 3, 故直线PB与平面MBD所成角的正弦值为 6 3. 方法二以A为原点,AB,AD,AP所在直线分别为x,y,z轴,建立空间直角坐标系A-xyz(如图所示),

不妨设P A =AB =1, 则P (0,0,1),B (1,0,0),C (1,1,0). 由(1)知平面MBD 的一个法向量为PC → =(1,1,-1), 而PB → =(1,0,-1). ∴cos 〈PB →,PC → 〉=(1,0,-1)·(1,1,-1)2×3=63, 故直线PB 与平面MBD 所成角的正弦值为 63 . 2.如图,已知△DEF 与△ABC 分别是边长为1与2的正三角形,AC ∥DF ,四边形BCDE 为直角梯形,且DE ∥BC ,BC ⊥CD ,点G 为△ABC 的重心,N 为AB 的中点,AG ⊥平面BCDE ,M 为线段AF 上靠近点F 的三等分点. (1)求证:GM ∥平面DFN ; (2)若二面角M -BC -D 的余弦值为 7 4 ,试求异面直线MN 与CD 所成角的余弦值. (1)证明 延长AG 交BC 于点O ,连接ON ,OF . 因为点G 为△ABC 的重心, 所以AG AO =2 3,且O 为BC 的中点. 又由题意知,AM →=23AF → , 所以AG AO =AM AF =23, 所以GM ∥OF . 因为点N 为AB 的中点,

空间向量和立体几何

知识清单: 1,空间向量及运算: 空间向量和平面向量的加、减、数乘一样。 1.1 空间向量的定义:空间中既有大小又有方向的向量叫做空间向量,用有向线段表示 空间向量的定义AB u u u v 或a v ,是自由向量,不讲究起点,空间向量的大小叫做空间向 量的长度或者模。记AB u u u v 或者a v 。 1.2 空间向量的夹角:过空间一点O 作OA a =u u u v v ,OB b =u u u v v ,则AOB ∠叫做a v 与b v 的夹 角,记作,a b v v ,0,a b π≤≤v v ,当,a b v v 2 π =时,a v 与b v 垂直,记a b ⊥v v 。当 ,a b v v 0=或π时,//a b v v 。 1.3 特殊空间向量:当a v 0=时,称a v 为零向量,记a v 0=,与任意向量平行和垂直。 当a v 1=,称a v 为单位向量,对任意非零向量a v ,a a v v 叫做a v 的单位向量。当a v =-b v 时, 称a v 与b v 互为相反向量。 1.4 方向向量与法向量:当a v 与l 平行时,称a v (0)≠是l 的方向向量,一直线的方向向

量有无数个。当a v 与平面α垂直时,称a v (0)≠是平面α的法向量,一平面的法向量 有无数个。 1.5 向量的线性运算: 1.5.1 向量的加法符合平行四边形法则,减法符合三角形法则,又满足规律: ()()a b c a b c ++=++v v v v v v ,a b b a +=+v v v v ,若n 个向量相加且首尾相接,则其和向量以 开始起点为起点,以最终的终点为终点一样,即 01122103n n n A A A A A A A A A A -+++???+=u u u u v u u u u v u u u u v u u u u u v u u u u u v 。 1.5.2向量的数乘:a λv 与平面向量意义相同。a λv a λ=v ,0λ>时,a λv 与a v 同向;0λ<时,a λv 与a v 反向;满足a a λλ=v v ;()a b a b λλλ+=+v v v v ;()a a a μλμλ+=+v v v ;()()a a λμλμ=v v 1.5.3 向量的共线定理:b v 0≠时,//a b a b λ?=v v v v 1.6 空间向量的数量积:cos ,a b a b a b ?=?v v v v v v 是一个实数。 满足规律:a b b a ?=?v v v v () a b c a b a c ?+=?+?v v v v v v v ()() a b a b λλ?=?v v v v 不满足结合律,即:()()a b c a b c ??≠??v v v v v v 应用: a =v 0a b a b ⊥??=v v v v cos (0,0)a b a b a b a b ??=≠≠?v v v v v v v v 2,空间向量基本定理及坐标运算: 2.1 空间向量基本定理:若向量123,,e e e u v u u v u v 是空间三个不共面向量,a v 是空间任意向量, 那么存在唯一一组实数123,,λλλ使得112233a e e e λλλ=++v u v u u v u v ,其中空间中不共面的 向量123,,e e e u v u u v u v 叫做这空间的一组基底。

空间向量与立体几何教案(强烈推荐)

空间向量与立体几何 一、知识网络: 二.考纲要求: (1)空间向量及其运算 ① 经历向量及其运算由平面向空间推广的过程; ② 了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示; ③ 掌握空间向量的线性运算及其坐标表示; ④ 掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直。 (2)空间向量的应用 ① 理解直线的方向向量与平面的法向量; ② 能用向量语言表述线线、线面、面面的垂直、平行关系; ③ 能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理); ④ 能用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用。 三、命题走向 本章内容主要涉及空间向量的坐标及运算、空间向量的应用。本章是立体几何的核心内容,高考对本章的考查形式为:以客观题形式考查空间向量的概念和运算,结合主观题借助空间向量求夹角和距离。 预测10年高考对本章内容的考查将侧重于向量的应用,尤其是求夹角、求距离,教材上淡化了利用空间关系找角、找距离这方面的讲解,加大了向量的应用,因此作为立体几何解答题,用向量法处

理角和距离将是主要方法,在复习时应加大这方面的训练力度。 第一课时 空间向量及其运算 一、复习目标:1.理解空间向量的概念;掌握空间向量的加法、减法和数乘; 2.了解空间向量的基本定理; 3.掌握空间向量的数量积的定义及其性质;理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;能用向量的数量积判断向量的共线与垂直。 二、重难点:理解空间向量的概念;掌握空间向量的运算方法 三、教学方法:探析类比归纳,讲练结合 四、教学过程 (一)、谈最新考纲要求及新课标高考命题考查情况,促使积极参与。 学生阅读复资P128页,教师点评,增强目标和参与意识。 (二)、知识梳理,方法定位。(学生完成复资P128页填空题,教师准对问题讲评)。 1.空间向量的概念 向量:在空间,我们把具有大小和方向的量叫做向量。如位移、速度、力等。 相等向量:长度相等且方向相同的向量叫做相等向量。 表示方法:用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量。 说明:①由相等向量的概念可知,一个向量在空间平移到任何位置,仍与原来的向量相等,用同向且等长的有向线段表示;②平面向量仅限于研究同一平面内的平移,而空间向量研究的是空间的平移。 2.向量运算和运算率 说明:①引导学生利用右图验证加法交换率,然后推广到首尾相接的若干向量之和;②向量加法的平行四边形法则在空间仍成立。 3.平行向量(共线向量):如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量 叫做共线向量或平行向量。a 平行于b 记作a ∥b 。 注意:当我们说a 、b 共线时,对应的有向线段所在直线可能是同一直线,也可能是平行直线;当 我们说a 、b 平行时,也具有同样的意义。 共线向量定理:对空间任意两个向量a (a ≠)、b ,a ∥b 的充要条件是存在实数λ使b =λa (1)对于确定的λ和a ,b =λa 表示空间与a 平行或共线,长度为 |λa |,当λ>0时与a 同向, 当λ<0时与a 反向的所有向量。 (3)若直线l ∥a ,l A ∈,P 为l 上任一点,O 为空间任一点,下面根据上述定理来推导的表达式。

高中数学立体几何测试题及答案一)

高中数学必修2立体几何测试题及答案(一)一,选择(共80分,每小题4分) 1,三个平面可将空间分成n个部分,n的取值为() A,4;B,4,6;C,4,6,7 ;D,4,6,7,8。 2,两条不相交的空间直线a、b,必存在平面α,使得() A,a?α、b?α;B,a?α、b∥α;C,a⊥α、b⊥α;D,a?α、b⊥α。 3,若p是两条异面直线a、b外的任意一点,则() A,过点p有且只有一条直线与a、b都平行;B,过点p有且只有一条直线与a、b都垂直;C,过点p有且只有一条直线与a、b都相交;D,过点p有且只有一条直线与a、b都异面。 4,与空间不共面四点距离相等的平面有()个 A,3 ;B,5 ;C,7;D,4。 5,有空间四点共面但不共线,那么这四点中() A,必有三点共线;B,至少有三点共线;C,必有三点不共线;D,不可能有三点共线。 6,过直线外两点,作与该直线平行的平面,这样的平面可有()个 A,0;B,1;C,无数;D,涵盖上三种情况。 7,用一个平面去截一个立方体得到的截面为n边形,则() A,3≤n≤6 ;B,2≤n≤5 ;C,n=4;D,上三种情况都不对。 8,a、b为异面直线,那么() A,必然存在唯一的一个平面同时平行于a、b;B,过直线b 存在唯一的一个平面与a平行;C,必然存在唯一的一个平面同时垂直于a、b;D,过直线b 存在唯一的一个平面与a垂直。 9,a、b为异面直线,p为空间不在a、b上的一点,下列命题正确的个数是() ①过点p总可以作一条直线与a、b都垂直;②过点p总可以作一条直线与a、b都相交;③

过点p 总可以作一条直线与a 、b 都平行;④过点p 总可以作一条直线与一条平行与另一条垂直;⑤过点p 总可以作一个平面与一条平行与另一条垂直。 A ,1; B ,2; C ,3; D ,4。 10,异面直线a 、b 所成的角为80°,p 为空间中的一定点,过点p 作与a 、b 所成角为40° 的直线有( )条 A ,2; B ,3; C ,4; D ,6。 11,P 是△ABC 外的一点,PA 、PB 、PC 两两互相垂直,PA=1、PB=2、PC=3,则△ABC 的 面积为( )平方单位 A ,25; B ,611; C ,27; D ,2 9。 12,空间四个排名两两相交,以其交线的个数为元素构成的集合是( ) A ,{2,3,4}; B ,{1,2,3,}; C ,{1,3,5}; D ,{1,4,6}。 13,空间四边形ABCD 的各边与对角线的长都是1,点P 在AB 上移动 ,点Q 在CD 上移 动,点P 到点Q 的最短距离是( ) A ,21; B ,22; C ,23; D ,4 3。 14,在△ABC 中,AB=AC=5,BC=6,PA ⊥平面ABC ,PA=8,则P 到BC 的距离是( ) A ,45; B ,43; C ,25; D ,23。 15,已知m ,n 是两条直线,α,β是两个平面,下列命题正确的是( ) ①若m 垂直于α内的无数条直线,则m ⊥α;②若m 垂直于梯形的两腰,则m 垂直于梯形所 在的平面;③若n ∥α,m ?α,则n ∥m ;④若α∥β,m ?α,n ⊥β,则n ⊥m 。 A ,①②③; B ,②③④; C ,②④; D ,①③。 16,有一棱长为1的立方体,按任意方向正投影,其投影最大面积为( )

高中数学必背公式——立体几何与空间向量(供参考)

高中数学必背公式——立体几何与空间向量 知识点复习: 1. 空间几何体的三视图“长对正、高平齐、宽相等”的规律。 2. 在计算空间几何体体积时注意割补法的应用。 3. 空间平行与垂直关系的关系的证明要注意转化: 线线平行 线面平行 面面平行,线线垂直 线面垂直 面面垂直。 4.求角:(1)异面直线所成的角: 可平移至同一平面;也可利用空间向量:cos |cos ,|a b θ=<>= 1212122 222 2 2 1 1 1 222 |||||| a b a b x y z x y z ?= ?++?++(其中θ(090θ<≤)为异面直线a b ,所成角,,a b 分别表示异面直线a b ,的方向向量)。 (2)直线与平面所成的角: 在斜线上找到任意一点,过该点向平面作垂线,找到斜线在该平面上的射影,则斜线和射影所成的角便是直线与平面所成的角;也可利用空间向量,直线AB 与平面所成角sin |||| AB m AB m β?= (m 为平面α的法向量). (3)二面角: 方法一:常见的方法有三垂线定理法和垂面法; 方法二:向量法:二面角l αβ--的平面角cos |||| m n arc m n θ?=或cos ||||m n arc m n π?- (m ,n 为平面α,β 的法向量). 5. 求空间距离: (1)点与点的距离、点到直线的距离,一般用三垂线定理“定性”; (2)两条异面直线的距离:|| || AB n d n ?= (n 同时垂直于两直线,A 、B 分别在两直线上); (3)求点面距: || || AB n d n ?= (n 为平面α的法向量,AB 是经过面α的一条斜线,A α∈); (3)线面距、面面距都转化为点面距。 题型一:空间几何体的三视图、体积与表面积 例1:已知一个几何体是由上下两部分构成的组合体,

(完整版)空间向量与立体几何题型归纳

空间向量与立体几何 1, 如图,在四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD (1)证明AB⊥平面VAD; (2)求面VAD与面VDB所成的二面角的大小 2, 如图所示,在四棱锥P—ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,AB=, BC=1,PA=2,E为PD的中点. (1)求直线AC与PB所成角的余弦值; (2)在侧面PAB内找一点N,使NE⊥平面PAC,并求出N点到AB和AP的距离.(易错点,建系后,关于N点的坐标的设法,也是自己的弱项)

3. 如图,在长方体ABCD ―A 1B 1C 1D 1中,AD=AA 1=1,AB=2,点E 在棱AB 上移动. (1)证明:D 1E ⊥A 1D ; (2)当E 为AB 的中点时,求点A 到面ECD 1的距离; (3)AE 等于何值时,二面角 D 1―EC ―D 的大小为(易错点:在找平面DEC 的法向量的时候,本来法向量就己经存在了,就不必要再去找,但是我认为去找应该没有错吧,但法向量找出来了 ,和那个己经存在的法向量有很大的差别,而且,计算结果很得杂,到底问题出在哪里 ?) 4.如图,直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 是等腰梯形,AB ∥CD ,AB =2DC =2,E 为BD 1的中点,F 为AB 的中点,∠DAB =60°. (1)求证:EF ∥平面ADD 1A 1; (2)若2 21BB ,求A 1F 与平面DEF 所成角的正弦值.

N:5题到11题都是运用基底思想解题 5.空间四边形ABCD中,AB=BC=CD,AB⊥BC,BC⊥CD,AB与CD成60度角,求AD与BC所成角的大小。 6.三棱柱ABC-A1B1C1中,底面是边长为2的正三角形,∠A1AB=45°, ∠A1AC=60°,求二面角B-AA1-C的平面角的余弦值。 7.如图,60°的二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内, 且都垂直于AB,已知AB=4,AC=6,BD=8,求CD的长 8.如图,已知空间四边形OABC中,OB=0C, ∠AOB=∠AOC=Θ,求证OA⊥BC。 9.如图,空间四边形OABC各边以及AC,BO的长都是1,点D,E分别是边OA,BC的中点,连接DE。 (1)计算DE的长; (2)求点O到平面ABC的距离。 10.如图,线段AB在平面⊥α,线段AC⊥α,线段BD⊥AB,且AB=7,AC=BD=24,CD=25,求线段BD与平面α所成的角。

空间向量与立体几何知识点归纳总结52783

空间向量与立体几何知识点归纳总结 一.知识要点。 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1 )向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)向量具有平移不变性 2. 空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈ 运算律:⑴加法交换律:a b b a +=+ ⑵加法结合律:)()(c b a c b a ++=++ ⑶数乘分配律:b a b a λλλ+=+)( 运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共 线向量或平行向量,a 平行于b ,记作b a //。 (2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 存在实数λ,使a =λb 。 (3)三点共线:A 、B 、C 三点共线<=>λ= <=>)1(=++=y x OB y OA x OC 其中 (4)与共线的单位向量为a ± 4. 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数 ,x y 使p xa yb =+。 (3)四点共面:若A 、B 、C 、P 四点共面<=>y x AP += <=>)1(=++++=z y x OC z OB y OA x OP 其中 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一 个唯一的有序实数组,,x y z ,使p xa yb zc =++。

立体几何大题练习题答案

立体几何大题专练 1、如图,已知PA ⊥矩形ABCD 所在平面,M 、N 分别为AB 、PC 的中点; (1)求证:MN//平面PAD (2)若∠PDA=45°,求证:MN ⊥平面PCD 2(本小题满分12分) 如图,在三棱锥P ABC -中,,E F 分别为,AC BC 的中点. (1)求证://EF 平面PAB ; (2)若平面PAC ⊥平面ABC ,且PA PC =,90ABC ∠=?, 求证:平面PEF ⊥平面PBC . P A C E B F

(1)证明:连结EF , E 、F 分别为AC 、BC 的中点, //EF AB ∴. ……………………2分 又?EF 平面PAB ,?AB 平面PAB , ∴ EF ∥平面P AB . ……………………5分 (2)PA PC = ,E 为AC 的中点, PE AC ∴⊥ ……………………6分 又 平面PAC ⊥平面ABC PE ∴⊥面ABC ……………………8分 PE BC ∴⊥……………………9分 又因为F 为BC 的中点, //EF AB ∴ 090,BC EF ABC ⊥∠=∴ ……………………10分 EF PE E = BC ∴⊥面PEF ……………………11分 又BC ? 面PBC ∴面PBC ⊥面PEF ……………………12分 3. 如图,在直三棱柱ABC —A 1B 1C 1中,AC=BC ,点D 是AB 的中点。 (1)求证:BC 1//平面CA 1D ; (2)求证:平面CA 1D⊥平面AA 1B 1B 。 4.已知矩形ABCD 所在平面外一点P ,PA ⊥平面ABCD ,E 、F 分别是 AB 、PC 的中点. (1) 求证:EF ∥平面PAD ; (2) 求证:EF ⊥CD ; (3) 若∠PDA =45°,求EF 与平面ABCD 所成的角的大小.

立体几何与空间向量

中档大题规范练2 立体几何与空间向量 1.如图,在四棱锥P —ABCD 中,侧面P AD ⊥底面ABCD ,侧棱P A =PD =2,P A ⊥PD ,底面ABCD 为直角梯形,其中BC ∥AD ,AB ⊥AD ,AB =BC =1,O 为AD 的中点. (1)求证:PO ⊥平面ABCD ; (2)求B 点到平面PCD 的距离; (3)线段PD 上是否存在一点Q ,使得二面角Q —AC —D 的余弦值为 63?若存在,求出PQ QD 的值;若不存在,请说明理由. (1)证明 因为P A =PD =2,O 为AD 的中点, 所以PO ⊥AD ,因为侧面P AD ⊥底面ABCD , 所以PO ⊥平面ABCD . (2)解 以O 为原点,OC ,OD ,OP 分别为x 轴,y 轴,z 轴,建立空间直角坐标系O -xyz ,则B (1,-1,0),C (1,0,0),D (0,1,0),P (0,0,1). PB →=(1,-1,-1),设平面PDC 的法向量为u =(x ,y ,z ),CP →=(-1,0,1),PD →=(0,1,- 1). 则????? u · CP →=-x +z =0,u · PD →=y -z =0,取z =1,得u =(1,1,1), B 点到平面PDC 的距离d =|BP →·u ||u |=33 . (3)解 假设存在,则设PQ →=λPD → (0<λ<1), 因为PD →=(0,1,-1),所以Q (0,λ,1-λ), 设平面CAQ 的法向量为m =(a ,b ,c ),

则????? m ·AC →=0,m ·AQ →=0,即????? a + b =0, (λ+1)b +(1-λ)c =0, 所以取m =(1-λ,λ-1,λ+1), 平面CAD 的法向量n =(0,0,1), 因为二面角Q —AC —D 的余弦值为 63 , 所以|m·n||m||n |=63 , 所以3λ2-10λ+3=0, 所以λ=13或λ=3(舍去),所以PQ QD =12 . 2.如图,在长方体ABCD —A 1B 1C 1D 1中,AA 1=AB =2AD =2,E 为AB 的中点,F 为D 1E 上的一点,D 1F =2FE . (1)证明:平面DFC ⊥平面D 1EC ; (2)求二面角A —DF —C 的大小. (1)证明 以D 为原点,分别以DA 、DC 、DD 1所在直线为x 轴、y 轴、z 轴建立如图所示空间直角坐标系, 则A (1,0,0),B (1,2,0),C (0,2,0),D 1(0,0,2). ∵E 为AB 的中点, ∴E 点坐标为(1,1,0), ∵D 1F =2FE , ∴D 1F →=23D 1E →=23 (1,1,-2) =(23,23,-43 ), DF →=DD 1→+D 1F →=(0,0,2)+(23,23,-43 )

空间向量与立体几何练习题

空间向量与立体几何单元检测题 一、选择题: 1、若a r ,b r ,c r 是空间任意三个向量, R λ∈,下列关系式中,不成立的是( ) A 、a b b a +=+r r r r B 、() a b a b λλλ+=+r r r r C 、()() a b c a b c ++=++r r r r r r D 、b a λ=r r 2、已知向量a r =(1,1,0),则与a r 共线的单位向量( ) A 、(1,1,0) B 、(0,1,0) C 、( 22,2 2,0) D 、(1,1,1) 3、若,,a b c 为任意向量,∈R m ,下列等式不一定成立的是( ) A.()()a b c a b c ++=++ B.()a b c a c b c +=+··· C.()a b a b +=+m m m D.()()a b c a b c =···· 4、设(43)(32)a b ==,,,,,x z ,且∥a b ,则xz 等于( ) A.4- B.9 C.9- D. 649 5、若向量(12)λ=,,a 与(212)=-,,b 的夹角的余弦值为8 9 ,则λ=( ) A.2 B.2- C.2-或 2 55 D.2或255 - 6、已知ABCD 为平行四边形,且(413)(251)(375)A B C --,,,,,,,,, 则D 的坐标为( ) A.7412 ?? - ??? , , B.(241),, C.(2141)-,, D.(5133)-,, 7、在正方体1111ABCD A B C D -中,O 为AC BD ,的交点,则1C O 与1A D 所成角的( ) A.60° B.90° C. D. 8、正方体1111ABCD A B C D -的棱长为1,E 是11A B 的中点,则E 到平面11ABC D 的距离是( ) C.12 9、ABCD 为正方形,P 为平面ABCD 外一点,2PD AD PD AD ⊥==,,二面角 P AD C --为60°,则P 到AB 的距离为( )

空间向量与立体几何知识点

立体几何空间向量知识点总结 知识网络: 知识点拨: 1、空间向量的概念及其运算与平面向量类似,向量加、减法的平行四边形法则,三角形法则以及相关的运算律仍然成立.空间向量的数量积运算、共线向量定理、共面向量定理都是平面向量在空间中的推广,空间向量基本定理则是向量由二维到三维的推广. 2、当a 、b 为非零向量时.0a b a b ?=?⊥是数形结合的纽带之一,这是运用空间向量研究线线、线面、面面垂直的关键,通常可以与向量的运算法则、有关运算律联系来解决垂直的论证问题. 3、公式 cos ,a b a b a b ?<>= ?是应用空间向量求空间中各种角的基础,用这个公式可以求 两异面直线所成的角(但要注意两异面直线所成角与两向量的夹角在取值范围上的区别),再结合平面的法向量,可以求直线与平面所成的角和二面角等. 4、直线的方向向量与平面的法向量是用来描述空间中直线和平面的相对位置的重要概念,通过研究方向向量与法向量之间的关系,可以确定直线与直线、直线与平面、平面与平面等的位置关系以及有关的计算问题. 5、用空间向量判断空间中的位置关系的常用方法 (1)线线平行 证明两条直线平行,只需证明两条直线的方向向量是共线向量. (2)线线垂直 证明两条直线垂直,只需证明两条直线的方向向量垂直,即0a b a b ?=?⊥.

(3)线面平行 用向量证明线面平行的方法主要有: ①证明直线的方向向量与平面的法向量垂直; ②证明可在平面内找到一个向量与直线方向向量是共线向量; ③利用共面向量定理,即证明可在平面内找到两不共线向量来线性表示直线的方向向量. (4)线面垂直 用向量证明线面垂直的方法主要有: ①证明直线方向向量与平面法向量平行; ②利用线面垂直的判定定理转化为线线垂直问题. (5)面面平行 ①证明两个平面的法向量平行(即是共线向量); ②转化为线面平行、线线平行问题. (6)面面垂直 ①证明两个平面的法向量互相垂直; ②转化为线面垂直、线线垂直问题. 6、运用空间向量求空间角 (1)求两异面直线所成角 利用公式cos, a b a b a b ? <>= ? , 但务必注意两异面直线所成角θ的范围是 0, 2 π ?? ???, 故实质上应有:cos cos,a b θ=<> . (2)求线面角 求直线与平面所成角时,一种方法是先求出直线及射影直线的方向向量,通过数量积求出直线与平面所成角;另一种方法是借助平面的法向量,先求出直线方向向量与平面法向量的夹角φ,即可求出直线与平面所成的角θ,其关系是sinθ=| cosφ|. (3)求二面角 用向量法求二面角也有两种方法:一种方法是利用平面角的定义,在两个面内先求出与棱垂直的两条直线对应的方向向量,然后求出这两个方向向量的夹角,由此可求出二面角的大小;另一种方法是转化为求二面角的两个面的法向量的夹角,它与二面角的大小相等或互补. 7、运用空间向量求空间距离 空间中的各种距离一般都可以转化为求点与点、点与线、点与面的距离. (1)点与点的距离 点与点之间的距离就是这两点间线段的长度,因此也就是这两点对应向量的模. (2)点与面的距离 点面距离的求解步骤是: ①求出该平面的一个法向量; ②求出从该点出发的平面的任一条斜线段对应的向量; ③求出法向量与斜线段向量的数量积的绝对值再除以法向量的模,即得要求的点面距

空间立体几何练习题(含答案)

第一章 空间几何体 [基础训练A 组] 一、选择题 1.有一个几何体的三视图如下图所示,这个几何体应是一个( ) A.棱台 B.棱锥 C.棱柱 D.都不对 2.棱长都是1的三棱锥的表面积为( ) 3.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在 同一球面上,则这个球的表面积是( ) A .25π B .50π C .125π D .都不对 4.正方体的内切球和外接球的半径之比为( ) A B 2 C . 5.在△ABC 中,02, 1.5,120AB BC ABC ==∠=,若使绕直线BC 旋转一周, 则所形成的几何体的体积是( ) A. 92π B. 72π C. 52π D. 32 π 6.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长 分别是9和15,则这个棱柱的侧面积是( ) A .130 B .140 C .150 D .160 二、填空题 1.一个棱柱至少有 _____个面,面数最少的一个棱锥有 ________个顶点, 顶点最少的一个棱台有 ________条侧棱。 2.若三个球的表面积之比是1:2:3,则它们的体积之比是_____________。 3.正方体1111ABCD A BC D - 中,O 是上底面ABCD 中心,若正方体的棱长为a , 则三棱锥11O AB D -的体积为_____________。 4.如图,,E F 分别为正方体的面11A ADD 、面11B BCC 的中心,则四边形 E BFD 1在该正方体的面上的射影可能是____________。 5.已知一个长方体共一顶点的三个面的面积分别是2、3、6,这个 长 方体的对角线长是___________;若长方体的共顶点的三个侧面面积分别为3,5,15,则它的体积为___________. 三、解答题 1.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用) ,已建的仓库的 主视图 左视图 俯视图

立体几何与空间向量

10 第七部分 立体几何与空间向量 一、知识梳理 (一)基本知识梳理:见《步步高》文科P123—124 ;理科P135—137 . (二)要点梳理: 1。平面的基本性质是高考中立体几何的重点容.要掌握平面的基本性质,特别注意:不共线的三点确定一个平面.考察点和平面的位置关系时,要注意讨论点在平面的同侧还是两侧,会根据不同的情况作出相应的图形. [例]已知线段AB 长为3,A 、B 两点到平面α的距离分别为1与2,则AB 所在直线与平面α所成角的大小为_____; 解析:要注意到点A 、B 是平面α同侧还是在平面α的两侧的情况.当A 、B 在平面α的同侧时,AB 所在直线与平面α所成角大小为31arcsin ;当A 、B 在平面α的两侧时,AB 所在直线与平面α所成角为 2 π. 2。线面关系中三类平行的共同点是“无公共点”;三类垂直的共同点是“成角90°”.线面平行、面面平行,最终化归为线线平行;线面垂直、面面垂直,最终化归为线线垂直. [例]已知平面βα,,直线b a ,.有下列命题:(1) βαβα////a a ?????;(2)αββα//a a ?? ?? ⊥⊥ (3)βαβα////??????⊥⊥b a b a ;(4)βαβα////??? ? ?? ??b a b a .其中正确的命题序号是______. 解析:立体几何中的符号语言所描述的问题是高考命题中的重点,基本上每年的高考在选择或填空题中都会有涉及,要充分理解符号语言所体现的几何意义.(1)体现的是两平面平行的一个性质:若两平面平行,则一个平面的任一直线与另一平面平行.(2)要注意的是直线a 可能在平面α.(3)注意到直线与平面之间的关系:若两平行直线中的一条与一个平面垂直,则另一条也与这个平面垂直.且垂直于同一直线的两个平面平行.(4)根据两平面平行的判定知,一个平面两相交直线与另一个平面平行,两平面才平行.由此知:正确的命题是(1)与(3). 3。直线与平面所成角的围是]2, 0[π ;两异面直线所成角的围是]2 ,0(π .一般情况下,求二面角往往是指定 的二面角,若是求两平面所成二面角只要求出它们的锐角(直角)情况即可. [例]设A 、B 、C 、D 分别表示下列角的取值围:(1)A 是直线倾斜角的取值围;(2)B 是锐角;(3)C 是直线与平面所成角的取值围;(4)D 是两异面直线所成角的取值围.用“?”把集合A 、B 、C 、D 连接起来得到___. (答案:A C D B ???) 4。立体几何中的计算主要是角、距离、体积、面积的计算.两异面直线所成角、直线与平面所成角的计算是重点.求两异面直线所成角可以利用平移的方法将角转化到三角形中去求解,也可以利用空间向量的方法,特别要注意的是两异面直线所成角的围.当求出的余弦值为a 时,其所成角的大小应为||arccos a . [例]正方体ABCD -A 1B 1C 1D 1中,E 是AB 中点,则异面直线DE 与BD 1所成角的大小为_____. (答案:515 arccos ) 特别需要注意的是:两向量所成的角是两向量方向所成的角,它与两向量所在的异面直线所成角的概念是 不一样的.本题中的向量1BD 与所成的角大小是两异面直线DE 与BD 1所成角的补角. 5。直线与平面所成角的求解过程中,要抓住直线在平面上的射影,转化到直角三角形中去求解.点到平面的距离的求解可以利用垂线法,也可以利用三棱锥的体积转化. C A 1 B 1 C 1 E

空间向量和立体几何练习题及答案.

1.如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4. (1)求证:M为PB的中点; (2)求二面角B﹣PD﹣A的大小; (3)求直线MC与平面BDP所成角的正弦值. 【分析】(1)设AC∩BD=O,则O为BD的中点,连接OM,利用线面平行的性质证明OM∥PD,再由平行线截线段成比例可得M为PB的中点; (2)取AD中点G,可得PG⊥AD,再由面面垂直的性质可得PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,再证明OG⊥AD.以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,求出平面PBD与平面PAD的一个法向量,由两法向量所成角的大小可得二面角B﹣PD﹣A的大小;(3)求出的坐标,由与平面PBD的法向量所成角的余弦值的绝对值可得直线MC与平面BDP所成角的正弦值. 【解答】(1)证明:如图,设AC∩BD=O, ∵ABCD为正方形,∴O为BD的中点,连接OM, ∵PD∥平面MAC,PD?平面PBD,平面PBD∩平面AMC=OM, ∴PD∥OM,则,即M为PB的中点; (2)解:取AD中点G, ∵PA=PD,∴PG⊥AD, ∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD, ∴PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG, 由G是AD的中点,O是AC的中点,可得OG∥DC,则OG⊥AD. 以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系, 由PA=PD=,AB=4,得D(2,0,0),A(﹣2,0,0),P(0,0,),C(2,

立体几何大题训练及答案

1、如图,正方形所在平面与平面四边形所在平面互相垂直,△是等腰直角三角形, (1)线段的中点为,线段的中点为, 求证:; (2)求直线与平面所成角的正切值. 解:(1)取AB 的中点为N ,连MN ,PN ,则//MN EB ,//PN BC ∴ PMN EBC ∴//PM BCE 平面FE ⊥EBC FCE ∴∠ ⊥//AB DE (1)求证:AO ⊥平面CDE ; (2)求直线BD 与平面CBE 所成角的正弦值 3、如图,在△ABC 中,?=∠90C ,a BC AC 3==,点P 在AB 上,BC PE //交AC 于 E ,AC P F //交BC 于F .沿PE 将△APE 翻折成△PE A ',使平面⊥PE A '平面 ABC ;沿PF 将△BPF 翻折成△PF B ',使平面⊥PF B '平面ABC . (1)求证://'C B 平面PE A '; (2)若PB AP 2=,求二面角E PC A --'的平面角的正切值. 解:(1)因为PE FC //,?FC 平面PE A ',所以//FC 平面PE A '. 因为平面⊥PE A '平面PEC ,且PE E A ⊥',所以⊥E A '平面ABC . …2分 同理,⊥F B '平面ABC ,所以E A F B '//',从而//'F B 平面PE A '. …4分 所以平面//'CF B 平面PE A ',从而//'C B 平面PE A '. …6分 (2)因为a BC AC 3==,BP AP 2=, 所以a CE =,a A E 2=',a PE 2=,a PC 5=. …8分 A B C D E F M . . C B F P A F C ' B ' A E

相关主题
文本预览
相关文档 最新文档