当前位置:文档之家› 海洋学1

海洋学1

海洋学1
海洋学1

第一章

1、海洋是地球系统的重要组成部分,海洋科学属于地球科学体系。

2、第一个国际海洋科学组织:国际海洋考察理事会(ICES)成立于1902年。

3、海洋国际合作:国际地球物理年(IGY,1957-1958)

4、海洋研究里程碑

●板块构造学说,被誉为地质学的革命。

●海底热泉的发现,使海洋生物学和海洋地球化学获得新的启示。

●海洋中尺度涡漩和热盐细微结构的发现与研究,促进物理海洋学的新发

展。

●大洋环流理论、海浪谱理论、海洋生态系、热带大洋和全球大气变化等领

域的突出进展与成果。

●代表性的科研论著:海尔主编的海洋,莫宁主编的海洋学。

5、1998年订为国际海洋年

6、海洋科学研究对象是世界海洋及与之密切相关联的大气圈、岩石圈、生物圈。

7、海洋科学概念:是研究地球上海洋的自然现象、性质及其变化规律,以及和开发与利用海洋有关的知识体系。(PPT上有要求重点掌握)

8、海洋科学的发展史

依现今较通行的观点,海洋科学的发展史可分为三大阶段:

1)海洋知识的积累与早期的观测、研究(18世纪以前)

古代人类在生产活动中不断积累有关海洋的知识,得出了不少出色的见解。这一时期的科技成就,直接推动了航海探险,为海洋科学分支奠定了基础。

2)海洋科学的祭奠与形成(19—20世纪中叶)

这一时期的特点,既表现在海洋探险逐渐转向为对海洋的综合考察,更重要的标志是海洋洋研究的深化、成果的众多和理论体系的形成。在海洋调查方面,海洋研究方面,专职人员的增多和专门研究机构的建立方面都取得了巨大的成就。

3)现代海洋科学时期(20世纪中叶至今)

这一时期,海洋国际合作调查研究更大规模的展开,各国政府对海洋科学研究的投资大幅度的增加。

4)海洋科学的未来

全世界面临的人口,资源,环境三大问题,几乎都可以从海洋中寻求出路,海洋科学在历经古代、近代和现代的发展之后,必将迎来一个更为辉煌的新时代。

2.2 海与洋—海的定义

海又称为“大海”,是指与“大洋”相连接的大面积咸水区域,即大洋的边缘部分。根据海洋要素特点及形状特征,可将其分为主要部分和附属部分。主要部分为洋,附属部分为海、海湾和海峡。世界大洋通常分为四大部分,即太平洋(世界上面积最大、最深的大洋)、大西洋、印度洋和北冰洋。

海分为边缘海、内海和陆间海。海岸分为海岸带和海岸线。陆间海是指位于大陆之间的海,面积和深度都较大,如地中海和加勒比海。内海是伸入大陆内部的海,面积较小,其水文特征受周围大陆的强烈影响,如渤海和波罗的海。陆间海和内海一般只有狭窄的水道与大洋相同,其物理性质和化学成分与大洋有明显差别。边缘海位于大路边缘,以半岛、岛屿或群岛与大洋分隔,但水流交换通畅,如东海、日本海。

海岸线:指海平面升到最高处和陆地的交线

潮间带:高潮水位和低潮水位间的地带

海岸带:海洋与陆地相互交接、相互作用的地带,其范围由潮间带向海陆两侧扩展到一定的宽度。现代海岸带一般包括海岸、海滩和水下岸坡三部分。图见课本27页。

思考题:1、海岸线是一条线吗? 2、为什么说潮间带是海岸带的主体?

大路边缘:是大陆与海洋之间的过渡带,按构造活动性分为稳定型和活动型两大类。

稳定型大陆边缘由大陆架,大陆坡和大陆隆三部分组成。

活动型大陆边缘与现代板块的汇聚型边界相一致,是全球最强烈的构造活动带,集中分布在太平洋东西两侧,故又称为太平洋型大路边缘。其最大的特征是有强烈的而频繁的地震和火山活动,有环太平洋地震带和太平洋火环之称。可进一步的分为岛弧亚型和安第斯亚型两类。岛弧亚型分布在西太平洋,其组成单元除大陆架和大陆坡外一般缺失大陆隆,以发育海沟——岛弧——边缘海盆地为最大特点。

安第斯亚型大陆边缘分布在太平洋东侧的中美——南美洲陆缘,大陆架和大陆坡都较狭窄,大陆隆被深海沟所取代。

大洋底

大洋中脊又称中央海岭,是指贯穿世界四大洋、成因相同、特征相似的海底山脉系列。

各大洋的展布特点:

1、在大西洋,中脊位居中央,延伸方向与两岸平行,边坡较陡,称为大西洋中脊;

2、印度洋中脊大致位于大洋中部,但分三支,呈“入”字型展布;

3、在太平洋内,因中脊偏居东侧且边坡平缓,故称东太平洋海隆。

大洋中脊的北端在各大洋分别延伸上陆。

大洋盆地:大洋中脊坡麓与大陆边缘之间的广阔洋底,约占世界海洋面积的1/2.

2.4 海底构造与大地构造学说

一、大陆漂移学说——魏格纳(德)

1912年提出;1915年《海陆的起源》。

动力机制与地球自转的两种分力有关﹕向西漂移的潮汐力和指向赤道的离极力。主要依据有海岸线形态、地质构造、古气候和古生物地理分布等。

二、海底扩张学说

沿大洋中部穿透岩石圈的裂缝或裂谷向两侧扩展并导致新生洋壳的学说。它认为地幔物质在这种裂缝带下因软流圈内的物质上涌、侵入和喷出而形成新的洋壳,随着这个作用不断进行,新上涌侵入的地幔物质把原已形成的洋壳向裂谷两侧推移扩张,致使洋底不断新生和更新。

其理论基础:

(1)联合古陆的重建、拼合和越来越多的大陆漂移证据;

(2)大洋中脊体系及其中央裂谷带的形成机制与特征;

(3)海洋沉积物自大洋中脊轴部向两侧依次变厚的事实;(4)海洋地壳的年轻性;

(5)某些大陆边缘沟-弧体系的发现及其突出的地震、火山活动特点;等等。

三、板块构造学说

“板块”由Wilson(1965)在论述转换断层时首先提出,后经不断综合和完善,1968年正式提出“板块构造”学说。

地球上层自上而下分为刚性的岩石圈和塑性的软流圈两个圈层。岩石圈在侧向上被地震带所分割,形成若干大小不一的板块,称为岩石圈板块,简称板块。

全球共可分为六大板块:欧亚板块、太平洋板块、印度-澳大利亚板块、南极洲板块、美洲板块、非洲板块。

①离散型边界:见于洋中脊或洋隆,以浅源地震、火山活动、高热流和引张作用为特征

②汇聚型边界:可分两个亚类:俯冲边界和碰撞边界。

③守恒型边界:相当于转换断层,是二相互剪切滑动的板块边界。地震、岩浆活动、变质作用、构造活动等主要发生在板块边界。

四、海洋盆地的形成与构造演化

威尔逊1974年提出的观点——“威尔逊旋回”:演化分为六个阶段,胚胎期、幼年期、成年期、衰退期、终了期、遗痕期。

1、胚胎期,地幔物质的上升导致岩石圈拱升,形成大致连续的裂谷体系,如东非大裂谷。

2、幼年期,形成与岸线近似平行的狭长海,如红海和亚丁湾。

3、成年期,大洋进一步扩张,形成洋中脊居中的大洋盆地,如大西洋。

洋底变窄,大洋进入衰退期,如太平洋;

4、终了期,发生相向运动的大陆彼此接近,大洋趋于关闭,如地中海;

5、遗痕期,大洋消亡大陆碰撞,在巨大的挤压作用下地面隆升山根沉陷,形成地壳厚度增加的巨大褶皱山系—喜马拉雅。

?大洋盆地是指大洋中脊坡麓与大陆边缘之间的广阔洋底,约占世界海洋面积的1/2。

?大洋盆地的轮廓受洋中脊分布格局的控制。水深一般为(4~6)km,局部可超过6km。

?分割大洋盆地的正向地形主要是一些条带状的(无震)海岭和近于等轴状的海底高原(海台)。洋盆底部相对平坦的区域就是深海平原。

?西北太平洋海盆、中太平洋海盆和西南太平洋海盆是海山、海山群、平顶海山和珊瑚礁岛分布最密集的地区。

如何理解“古老的海水,年轻的海底”?(自己的理解)

海水的年龄为45亿年,而根据海底扩张学说,海底每年都在以几厘米的速度扩展。大洋中脊轴部裂谷带是地幔物质涌生的出口,涌出的地幔物质冷凝形成新洋底,新洋底同时推动先期形成的较老洋底逐渐向两侧扩展推移,这就是海底扩张。洋底处在不断新生、扩展和潜没的过程中,好似一条永不止息的传送带,大约过2亿年洋底可更新一遍。由于洋底周期性的更新,尽管海水古老,但洋底总是年轻的。

2.5 海洋沉积

1、滨海或称近岸带环境是指特大高潮线至深度为浅水波半波长的区域,是海洋与非海洋过程相互作用的地带。

2、三角洲沉积作用:三角洲是河流携带的泥沙等物质在滨海(湖)地带形成的堆积体,有陆上和水下两部分构成,水下部分是陆上部分的延续,陆上部分是水下部分发展的必然结果。三角洲发育和沉积物分布的主导因素是河口流水,自然因素还有径流量和输沙量、潮汐和潮流、波浪等。根据水动力条件对三角洲发育的影响程度,可将其分为河控、潮控、浪控以及河流与潮汐综合控制四种类型。

3、大陆架沉积:大陆架为浅海环境,其沉淀作用和沉淀相受各种物理、化学、生物及地质作用的过程的控制。陆架泥沙的搬运、沉积以物理过程为主,主要作用营力是潮汐、风暴及风海流,另外还有因温、盐梯度和柯氏力造成的密度流、地转流以及有大洋进入陆架区的洋流。内陆架以潮流及风暴浪的作用为主,外陆架以洋流作用为主。

4、现代大陆架上主要物质分布

(1)残留沉积:是与现代水动力环境不相适应的沉积物,它们形成于更新世末低海面时期,在全新世海侵后基本未被改造,仍保留着原来的岩性、结构、构造、化石以及沉积地形等。残留沉积以砂为主,大都分布在外陆架,现代沉积速率低的内陆架上也有分布。

(2)现代沉积:沉积物的属性与目前所处的沉积环境相一致,处在统一的动态平衡系统之中,主要为陆源碎屑。

(3)准残留沉积:是指受现代陆架物理(主要是海洋动力)、生物和化学过程改造过的残留沉积,也称变余沉积,其性质介于现代沉积和残留沉积之间。

大陆坡-陆隆环境中的沉积作用,除受地质构造环境、海面变化、物质来源及生物活动影响外,主要受块体运动、大洋深层热盐环流及水柱中的沉降等过程的控制。以陆源为主,厚度可达2000~5000m。

陆坡-陆隆的搬运沉积过程可有连续和不连续之分。

5、大洋沉积物分类:

(1)以水深分布为主要依据的分类;

(2)以成分、粒度为主要依据的分类;

(3)以成因为主要依据的分类。

按成因可分为远洋粘土、钙质生物、硅质生物、陆源碎屑和火山碎屑沉积五种主要类型。

大洋沉积物中占绝对优势的钙质软泥、硅质软泥和褐粘土在三大洋分布的面积频率有很大差异。

2.6 海底矿物资源

滨海矿沙

海底石油和天然气

磷钙石和海绿石

锰结核和富钴结壳

海底热液硫化物

天然气水合物

第三章

第一节

一、海水的盐度

1、定义:海水盐度是指海水中全部溶解固体与海水重量之比,是海水中含盐量的一个标度。单位是g/kg,用符号‰表示。

二、海水的主要热性质

海水的热性质一般指海水的热容、比热容、绝热温度、位温、热膨胀及压缩性,热导率与比蒸发潜热等。它们都是海水的固有性质,是温度、盐度、压力的函数。

1、热容和比热容

热容:海水温度升高1K(或1℃)时所吸收的热量称为热容,单位是焦耳每开尔文(记为J/K)或焦耳每摄氏度(记为J/℃)。

比热容:单位质量海水的热容称为比热容,单位为焦耳每千克每摄氏度,记为J2kg-12℃-1。在一定压力下的比热容称为定压比热容,记为Cp;在一定体积下的比热容称为定容比热容,用Cv表示。在低温、低盐时定压比热容随温度的升高而减小,在高温、高盐时,定压比热容随温度的升高而增大。

2、体积热膨胀

热膨胀系数:在海水温度高于最大密度温度时,若再吸收热量,除增加其内能使温度升高外,还会发生体积膨胀,其相对变化率称为海水的热膨胀系数。

海水的热膨胀系数比纯水的大,且随温度、盐度和压力的增大而增大;在大气压力下,低温、低盐海水的热膨胀系数为负值,说明当温度升高时海水收缩。热膨胀系数由正值转为负值时所对应的温度,就是海水最大密度的温度tρ(max),它也是盐度的函数,随海水盐度的增大而降低。海水的热膨胀系数比空气的小得多,因此由海水温度变化而引起海水密度的变化,进而导致海水的运动速度远小于空气。值得注意的是海水的热膨胀系数随压力的增大在低温时更为明显。

3、压缩性:单位体积的海水,当压力增加1Pa时,其体积的负增量称为压缩系数,海水的压缩系数随温度、盐度和压力的增大而减小。

4、蒸发潜热及饱和蒸汽压

比蒸发潜热:是指使单位质量的海水化为同温度的蒸汽所需的热量。

饱和水汽压:指水分子由水面逃出和同时回到水中的过程达到动态平衡时,水面上水汽所具有的压力,但海水由于盐度的存在,单位面积海面上平均的水分子数目较少,减少了海面上水分子的数目,因而饱和水汽压较低。

5、热传导

定义:指相邻海水温度不同时,由于海水分子或海水块体的交换,使热量由高温处向低温处转移。若海水的热传导是由海水块体的随机运动所引起,则称为涡动热传导或湍流热传导。

涡动热传导在海洋的热量传输过程中起主要作用,分子热传导只占次要地位。涡动热传导系数主要和海水的运动状况有关,在不同季节、不同海域中有较大差别,其量级一般为102-103。

三、海水的力学性质

1、海水的粘滞性

当相邻两层海水作相对运动时,在两层海水之间便有动量传递,从而产生切应力。摩擦应力的大小与两层海水之间的速度梯度成比例。动力学粘滞系数随盐度的增大略有增大,随温度的升高却迅速减小。

2、海水的渗透压

低盐时随温度的变化不大,而高盐时随温度的升高增幅较大。

3、海水的表面张力

在液体的自由表面上,由于分子之间的吸引力所形成的合力,使自由表面趋向最小,就是表面张力。

海水的表面张力随温度的增高而减小,随盐度的增大而增大。海水中杂质的增多会使海

水表面张力减小。

四、海水的密度和海水状态方程

1、海水的密度:单位体积海水的质量,用“ρ”表示,单位是千克每立方米,记为kg2m-3。

2、海水状态方程是海水状态参数温度、盐度、压力与密度或比容之间相互关系的数学表达式(因此也称之为p-V-t关系)。

海水状态方程除可直接用于计算海水的密度外,尚可计算海水的热膨胀系数、压缩系数、声速、绝热梯度、位温、比容偏差以及比热容随压力的变化等。

第二节

1.海冰形成的必要条件是,海水温度降至冰点并继续失热、相对冰点稍有过冷却现象并有

凝结核存在。

2.海水最大密度温度随盐度的增大而降低的速率比其冰点随盐度增大而降低的速率快。

3.当盐度低于2

4.695时,结冰情况与淡水相同;当盐度高于24.695时(海水盐度通常如

此),海水冰点高于最大密度温度。

4.海冰形成的过程:

海水的结冰主要是纯水的冻结,会将盐分大部分排出冰外,而增大了冰下海水的盐度,加强了冰下海水的对流和进一步降低了冰点,又兼冰层阻碍了其下海水热量的散失,因而大大地减缓了冰下海水继续冻结的速度。

5.海冰的分类

按结冰过程的发展阶段分:初生冰→尼罗冰→饼状冰→初期冰→一年冰→

老年冰。按海冰的运动状态分为固体冰和流冰。

6.冰界线的平均位置约在58°N。

7.海冰的盐度是指海冰溶化后海水的盐度,一般为3~7左右。海冰是淡水冰晶、卤汁和气

泡的混合物。海冰盐度的高低取决于冻结前海水的盐度、冻结的速度和冰龄等因素。8.海冰的密度:海冰中含有气泡,密度一般比纯水冰低(纯水冰0℃时的密度一般为

917kg.m-3),新冰的密度大致为914~915kg/m3。冰龄越长,密度则越小。夏末时海冰的密度可降至860 kg/m3。

9.海冰的比热容比纯水冰大,且随盐度的增高而增大;海冰的溶解潜热比纯水冰大;海冰

的热传导性比纯水冰小;海冰的热膨胀系数随着海冰的温度和盐度而变化;海冰的抗压强度约为纯水冰的3/4。

10.海冰与海况:(1)海冰对海洋水文要素铅直分布影响;(2)对海洋动力现象的影响;(3)

对海水热状况的影响;(4)极地海区形成大洋底层冰(底层冰为南极冰,次底层冰为北极冰)。

第三节

一、海面热收支:

Qw = Qs – Qb ±Qe ±Qh

其中太阳辐射(Qs)、海面有效回辐射(Qb)、蒸发或凝结潜热(Qe)及海气之间的感热交换(Qh)。Qw为通过海面的热收支余项。

(1)对于整个世界大洋,长期而言,QW=0,但局部海域,短时间上QW不等于0。

(2)蒸发和凝结本是可逆过程,但海洋只有蒸发耗能。

(3)蒸发的速率与近海面空气层中水汽的铅直梯度成比例。因此,海面上部气层中在铅直方向上的水汽压差,是维持海水蒸发的先决条件。

二、海洋内部的热交换

(1)铅直方向上:通过湍流进行,是海面上风、浪和流等引起的涡动混合。

(2)水平方向上:世界大洋的海面热平衡呈纬向带状分布,水温分布亦相似。因此海流在大洋中水平方向的热输送,沿经向最为明显。

三、海洋中的水平衡

1、影响水平衡的因子:蒸发、降水、大陆径流、结冰与融冰

收入主要靠降水、陆地径流和融冰;支出则主要是蒸发和结冰。

2、水量平衡方程

全水量平衡方程:q = P + R + M + Ui - E- F - U0

式中:P为降水,R为陆地径流,M为融冰,Ui为海流及混合获得的水量,E为蒸发,F为结冰,Uo为海流及混合使海洋失去的水量,q为在某时段内水量交换的盈余(q>0)或亏损(q<0)。

(对整个世界大洋而言,结冰与融冰可相互抵消,海流混合带入的水量和带走的水量也应相等。)

太平洋因降水与径流之和大于蒸发,水量有余;大西洋因蒸发大于降水与径流之和,导致水位损失;北冰洋因蒸发少径流多而有水量盈余。

水量盈余将使盐度减小,反之使盐度增大。

第四节世界大洋温、盐、密的分布和水团

宏观上,世界大洋温、盐、密度场的基本特征是:表层,大致沿纬向呈带状分布;在铅直方向上,基本呈层化状态,且随深度的增加其水平差异逐渐缩小,至深层其温、盐、密的分布均匀。

一、海洋温度的分布与变化——海洋温度场

大洋表层水温变化于(-2~30)℃之间,年均值为17.4℃。

三维时空结构分解和分析;等温线的分析

1、海水温度的变化,取决于海水热量平衡的分布与变化(即纬度高低和季节变化),还与沿岸地形(海域封闭程度)、气候、洋流等因素有关。

海水表层温度的分布规律:由低纬向高纬递减。

海水垂直温度的分布规律:由表层向下降低,1000米以下常年保持低温状态。

表层水温的分布特点:

1.等温线的分布沿纬向大致呈带状分布,这与太阳辐射的经向变化密切相关。

2.冬季和夏季最高温度都出现在赤道附近海域。

3.由热赤道向两极水温逐渐降低。南极冰架之下曾有-2.1℃的记录。

4.在两半球的副热带到温带海区,等温线偏离带状分布。这种格局造成大洋西部水温

高于东部。在亚北极海区则恰恰相反。这种分布特点是由大洋环流造成的。

5.在寒、暖流交汇区等温线特别密集,温度水平梯度特别大。另外在大洋暖水区和冷

水区,两种水团的交界处,水温水平梯度也特别大,形成所谓极锋。

6.冬季表层水温的分布特征与夏季相似,但水温经向梯度比夏季大。

主温跃层之上暖水区的表面,由于受动力及热力因素的作用,引起强烈地湍流混合,从而在其上部形成一个温度铅直梯度很小,几近均匀的水层,常称为上均匀层或上混合层。

在混合层的下界,夏季表层增温,可形成很强的跃层,称为季节性跃层。冬季,对流发展,混合层向下扩展,导致季节性跃层的消失。

二、海洋盐度的分布与变化——海洋盐度场

海洋表层的盐度分布比水温更为复杂,特征是:

1.具有纬向带状分布特征,从赤道向两极呈马鞍形双峰分布。

2.在寒暖流交汇区域和径流冲淡海区,盐度梯度特别大。

3.海洋中盐度的最高与最低值多出现在一些大洋边缘的海盆中,高盐海区蒸发很强而

降水与径流很小,并与大洋水的交换不畅通;反之亦真。

4.冬季盐度的分布与夏季相似,只是在季风影响特别显著的海域,盐度有较大差异。海水盐度随深度呈层状分布的根本原因是,大洋表层以下的海水都是从不同海区表层辐聚下沉而来的,由于其源地的盐度性质各异,因而必然将其带入各深层中去,并凭借它们密度的大小,在不同深度上水平散布。

三、海洋密度的分布与变化——海洋密度场

海水密度是温度、盐度和压力的函数。

●赤道区温度最高,盐度较低,因而表层海水密度最小;向两极方向,密度逐渐增大;

●在副热带海域,虽然盐度最大,但因温度下降不大,所以密度并没有相应地出现极

大值;

●随着纬度的增高,盐度剧降,但因水温降低引起的增密效应比降盐减密效应更大,

最大密度出现在寒冷的极地海区。

理解:温度的变化对密度变化的贡献要比盐度大?

水团(water mass)的定义——“源地和形成机制相近,具有相对均匀的物理、化学和生物特征及大体一致的变化趋势,而与周围海水存在明显差异的宏大水体。”

海水混合三种形式:

1、分子混合,通过分子的随机运动与相邻海水进行特性交换,其交换强度小,且只与海水性质有关;

2、涡动混合,它是由海洋湍流引起的,也称湍流混合,是海洋中海水混合的重要形式;

3、对流混合,是热盐作用引起的,主要表现在铅直方向上的水体交换。

海水混合的区域性

1、海-气界面

2、海底混合,主要由潮流、海流等动力因子引起

3、海洋内部混合,由海洋内波引起的混合尤为重要

4、“双扩散”效应引起的海洋内部混合(层结稳定)

海洋混合效应及其分布变化

1、海洋上层的混合效应:动力因子和热盐因子

2、海洋底层的混合效应:潮流和海流

3、由混合形成的跃层对海况的影响

4、混合的分布与变化:

●(1)海水物理性质的差异包括三个方面:温度、盐度、密度,一般从温度和盐度两个

方面作答。

●(2)影响海水温度的因素:①纬度位置(低纬度海水温度高,高纬度海水温度低)。②

洋流(暖流使所流经海区水温增高,反之降低)。③海陆状况(内海水温受陆地影响大,夏季比同纬度其它海区水温高,冬季比同纬度其它海区水温低)。④陆地径流(东西方向的河流流入海洋,由于夏季大陆气温高于海洋,所以陆地径流水温高于海洋,使所注入海区水温变高)。⑤水深(海水温度随深度增加而降低,到1000米以下水温极低,趋于零度)。

●(1)影响海水盐度的因素:①纬度位置或气候(影响降水量及蒸发量,影响降水量与

蒸发量的对比关系)。②淡水汇入量(影响海口地区盐度)。③洋流(寒流使盐度变低,

暖流使盐度变高)。④海湾是否封闭(海湾封闭与外海海水交换不畅,受外海海水盐度影响小)。

洋流与等温线的关系:

①“暖高寒低”即暖流流经海区的等温线凸向高纬海区,寒流流经海区的等温线凸向低纬海区。

②“凸向即流向”即洋流流经海区等温线凸出的方向即为洋流的流向。

③“低来寒、高来暖”即由低温海区流向高温海区的洋流为寒流,由高温海区流向低温海区的洋流为暖流。

洋流与等盐度线的关系:

①“暖小寒大”即暖流流经海区的等盐度线向数值小的方向凸出,寒流流经海区的等盐度线向数值大的方向凸出。

②“低反高同”即在中低纬度海区,洋流的流向与等盐度线凸出的方向相反;在中高纬度海区,洋流的流向与等盐线凸出的方向相同。

等温线与等盐度线的关系:

①在中低纬度海区,等温线与等盐度线凸出的方向相反;在中高纬度海区,等温线与等盐度线凸出的方向相同。

②在中低纬度海区,等温线上的数值变化趋势与等盐度线上的数值变化趋势相反;在中高纬度海区,等温线上的数值变化趋势与等盐度线上的数值变化趋势相同。

6.4

海洋内波:发生在海水密度层结稳定的海洋中。它将大、中尺度运动过程的能量传递给小尺度过程,是引起海水内部混合、形成温、盐细微结构的重要原因。

▲由内波引起的等密面的波动会影响海洋中声速的大小与传播方向。

▲内波能量以群速输送,但内波群速不但在量值上与波速不等,而且其方向与波速垂直,两者在同一个铅直平面上:当波形向斜上(下)方传播时,波动能量则向斜下(上)方输送。▲若以相同的能量激发表面波与界面波,界面波的振幅则约为表面波的30倍。

界面内波中水质点运动界面内波引起上下两层海水方向相反的水平运动,从而在界面处形成强烈的流速剪切。由于在同一层中波峰与波谷处流向相反,导致了水质点运动的辐聚与辐散,在峰前谷后形成辐散区,在谷前峰后形成辐聚区。海面条纹,辐散区呈光滑明亮条带,辐聚区则粗糙暗淡。

▲表面波的恢复力主要为重力,故有表面重力波之称,而内波的恢复力则为科氏力与弱化重力(即重力与浮力之差)。

▲在比较陡峭的海底,入射内波与反射内波可能在铅直方向上构成驻波。驻波可有不同数目的波腹,含有几个波腹就称为内波的第几模态。

6.5

开尔文波:一种长周期重力波,即它同时受重力和科氏力的作用。北半球其基本特性:波峰处波面右高左低,波谷处波面左高右低。故当波动通过水道时,水道两岸的波动振幅不等,右岸大,而左岸小。

罗斯贝波(行星波),是一种远远小于惯性频率的低频波。其恢复力不是重力也不是科氏力,而是科氏力随纬度的变化率,即β效应。罗斯贝波的传播方向始终偏向西方。由于罗斯贝波的波长很大,相比之下在铅直方向上的运动十分微弱,在实际海洋中,可以认为它只是一种水平流系,流向基本与波向垂直。

6.6风浪和涌浪

风浪是指当地风产生,且一直处在风的作用之下的海面波动状态;涌浪则指海面上由其它海区传来的或者当地风力迅速减小、平息,或者风向改变后海面上遗留下来的波动。

风浪的特征,波峰尖削,在海面上分布很不规律,波锋线短,周期小,当风大时常常出现破碎现象,形成浪花。

涌浪的波面比较平坦光滑,波锋线长,周期、波长都比较大,在海上的传播比较规则。 风时,指状态相同的风持续作用在海面上的时间;

风区,是指状态相同的风作用海域的范围。习惯上把从风区的上沿,沿风吹方向到某一点的距离称为风区长度,简称为风区。

最小风时:在定常风的作用下,对应于风区内某点,风浪达到定常状态所用的时间是一定的,这段时间称之。或者说,是对应于某一风区(长度),风浪成长至理论上最大尺度所经历的最短时间。

不同风区,对应于不同的最小风时,当实际风时大于最小风时时,波浪为定常状态,反之为过渡状态。

同理,当实际风时一定时,对应于某一风区(长度)内的波浪达到定常状态,此一风区长度称为最小风区。

因此最小风区的定义为,对应于某一风时,风浪成长至理论上最大尺度所需要的最短距离。

当实际风区小于最小风区时风浪为定常状态,反之为过渡状态。

波浪在成长过程达到一定尺度后,由于内摩擦等原因所消耗的能量比它摄取的能量增加得快,当摄取与消耗的能量达到平衡时,波浪尺寸便不再增大。此时的风浪称为充分成长状态,达到充分成长状态所对应的风时与风区,称为充分成长的风时与风区。

涌浪在传播过程中的显著特点是波高逐渐降低,波长、周期逐渐变大,从而波速变快。 弥散和角散

实际的海浪可视为是由许多不同波长、不同周期和振幅的分波组成,在传播过程中,波长大的速度快,波长短的速度慢,于是使原来叠加在一起的波动分散开来,这种现象称为弥散。

由于各个分波的传播方向也不尽一致,在传播过程中向不同方向分散开来,这种现象称为角散。

浅海和近岸海浪

水深、地形、岸形与波高、波长、波速、传播方向

波向的折射——趋向于波向线与等深线垂直。

因此,在海底凸出的海岬处,波向线产生辐聚,而在凹进的海岸处,波向线辐散。 波高的变化:取决于能量。

当波浪在近岸破碎时,把相当多的水量带入破碎区,这些海水最终会经过破碎带重新返回到海洋中,从而形成了所谓的离岸流,其特点是时间和距离短,流速大。

对于平直且海底坡度大致相同的海岸,所形成的离岸流大致是等距的。

反射与绕射

化学海洋学答案

课程名称:《化学海洋学》 (考试方式:闭卷,考试时间:,考试要求:) 一,填空( 每空1分,共计20分) 1)海洋有机质按生物化学类别分类可分为_类脂物、碳水化合物、氨基酸 和多肽、腐殖质,烃和氯代烃、维生素类和色素。 2)开阔大洋表层水盐度通常在___亚热带海域____(赤道海域、亚热带海 域、亚极地海域)出现极大值。 3)在现场大气压为101.325 kPa时,一定温度和盐度的海水中,某一气体 的饱和含量称为该温度、盐度下该气体的___溶解度_____。 4)在海-气界面气体交换的薄膜模型中,一般而言,风速约大,薄膜层厚 度越_____薄___,海-气界面气体交换通量越_____大___ 。 5)在海-气界面气体交换的薄膜模型中,气体分子的海-气净扩散通量与该 气体分子的分子扩散系数有关,一般而言,水体温度的增加,分子扩散 系数越__大______;气体分子量越大,分子扩散系数越___小____ 。 6)在全球海水碳储库中,___ DIC _____的储量最多,其下依次是__ DOC _____和_ POC _。(从DIC、DOC、POC、PIC中选择)。 7)假设某海水的pH值完全由其无机碳体系所控制,则温度升高时,pH 值降低;盐度增加时,pH值增加;压力增加时,pH值降 低;Ca(Mg)CO3沉淀形成时,pH值降低。 二,名词解释(每小题5分,共计20分)

1)新生产力 由光合作用区域以外所提供营养盐支持的净初级生产力份额,称为新生产力2)富营养化 海水中营养物质过度增加,并导致生态系统有机质增多、低氧区形成、藻华暴发等一些异常 改变的过程。 3)成岩作用 沉积物在沉积和埋藏时所发生的所有过程的通用术语。它包括沉积物与上覆水接触时所发生 的变化以及沉积物和上覆水脱离接触时所发生的变化。成岩过程改变了沉积物的构造、结构 和矿物学性质,并导致最后形成坚硬的岩石。 4)表观溶解氧 假设海表面水体与大气处于平衡,水体的含氧量达到饱和,水体下沉后,由于有机物等的 分解,氧的含量发生了变化,两者之差称为AOU。 AOU=DO溶解度-DO实测 三,简答(30分) 1)全球而言,高纬度表层海水中的18O贫乏,而低纬度海水中18O富集,主要原因是什么?(6分) 答:1)低纬度的海域蒸发量大于降水量;而高纬度相反。 2)18O与16O比较易凝结不易蒸发 3)借助大气环流,水汽在由低纬度的向高纬度输送的过程中,由于不断凝结,降水中的18O 逐渐变少。 2)为什么溶解态Zn在北太平洋深层水中的浓度高于北大西洋深层水,而溶解态Al则相反。(6分) 答案:溶解态Zn为营养盐型痕量金属元素,它在上层水中被浮游生物所吸收,当生物死亡后,部分生源物质在上层水体再循环,另有部分通过颗粒沉降输送至中深层。当进入中深层水体的颗粒物发生再矿化作用时,它会重新回到水体中,由于深海热盐环流的流动路径为从北大西洋流向北太平洋,北太平洋深层水的年龄要老于北大西洋,故随着年龄的增长,积累的溶解态Zn越多,故北太平洋深层水中溶解态Zn浓度高于北大西洋。Al为清除型元素,它在大西洋表层具有较高的输入通量,且在深海水流动过程中不断地通过颗粒物吸附从水体中清除、迁出,导致其在北太平洋深层水中的浓度低于北大西洋。 3)试分析海水中CaCO3的溶解、颗粒有机物的再矿化这两个过程对海水中的

卫星海洋学复习题

1.太阳同步轨道定义、特点 太阳同步轨道:卫星的轨道平面以地球的公转速率围绕太阳旋转,卫星总在每天同一时间穿过赤道,太阳同步轨道卫星总在相同的当地时间飞越同一纬度地球表面上空,轨道平面与日地连线的交角不变,卫星轨道平面和太阳始终保持相对固定的方向 特点:卫星轨道平面倾角大约97~110度; 相对于地球西向逆行; 多数卫星高度约700~800 km; 轨道周期90~100min; 每天绕地球旋转14~16圈 地球同步轨道定义、特点 地球同步轨道定义:卫星的轨道周期等于地球在惯性空间中的自转周期(23小时56分4秒),且方向亦与之一致,卫星在每天同一时间的星下点轨迹相同,当轨道与赤道平面重合时叫做地球静止轨道,即卫星与地面的位置相对保持不变。 特点:轨道倾角不为0; 轨道可为圆形或椭圆形; 每天在相同时间经过相同地点,相对地球运动; 星下点轨迹是“8”字形封闭曲线。 2.水平极化和垂直极化定义 极化(偏振):电磁波电场振动的空间分布对于传播方向失去对称性(具有偏向性)的现象 极化状态:是根据电场方向和参考平面关系定义的 参考平面:由于电磁波所在波束和探测平面法线确定 水平极化:电磁波电场与参考平面垂直 垂直极化:电磁波电场与参考平面平行 极化方式在微波遥感中的重要作用

3. 标准化雷达后向散射截面的物理意义? 标准化后向散射截面:0100[]10log ()dB σσ= 4. 散射计中,电磁波在粗糙海面的后向散射机制? 电磁波在粗糙海面的散射的组成: 1、镜面反射(镜点散射):当地入射角=0度; 2、海面斜率的概率密度函数; 3、布拉格共振散射; 4、两尺度散射模:当地小面积元毛细重力波的布拉格散射,由于长波倾斜影响,海面斜率概率密度函数对当地小面积元积分 5. 布拉格共振的条件是什么? 如何推导、计算? 条件:雷达入射角:30~60度、 基于两尺度模型、 雷达波束仅与方位角方向上的毛细重力波共 振、 毛细重力波波长与电磁波波长相当 2sin radar water λλθ= 6. 高度计在海洋学中的应用,如大洋环流、厄尔尼诺现象等

海洋声学基础讲义-吴立新

海洋声学基础——水声学原理 绪论 各种能量形式中,声传播性能最好。在海水中,电磁波衰减极大,传播距离有限,无法满足海洋活动中的水下目标探测、通讯、导航等需要。 声传播性能最好,水声声道可以传播上千公里,使其在人类海洋活动中广泛应用,随海洋需求增大,应用会更广。 §0-1节水声学简史 01490年,意大利达芬奇利用插入水中长管而听到航船声记载。 11827年,瑞士物理学家D.colladon法国数学家c.starm于日内瓦湖测声速为1435米每秒。 21840年焦耳发现磁致伸缩效应 1880年居里发现压电效应 31912年泰坦尼克号事件后,L.F.Richardson提出回声探测方案。 4第一次世界大战,郎之万等利用真空管放大,首次实现了回波探测,表示换能器和弱信号放大电子技术是水声学发展成为可能。(200米外装甲板,1500米远潜艇) 5第二次世界大战主被动声呐,水声制导鱼雷,音响水雷,扫描声呐等出现,对目标强度、辐射噪声级、混响级有初步认识。(二战中被击沉潜艇,60%靠的是声呐设备) 6二、三十年代——午后效应,强迫人们对声音在海洋中的传播规律进行了大量研究,并建立起相关理论。对海中声传播机理的认识是二次大战间取得的最大成就。 7二战后随着信息科学发展,声呐设备向低频、大功率、大基阵及综合信号处理方向发展,同时逐步形成了声在海洋中传播规律研究的理论体系。 81、1945年,Ewing发现声道现象,使远程传播成为可能,建立了一些介质 影响声传播的介质模型。 2、1946年,Bergman提出声场求解的射线理论。 3、1948年,Perkeris应用简正波理论解声波导传播问题。

厦门大学2005年级化学海洋学期末考试试题A

厦门大学2005年级化学海洋学期末考试试题A 一、填空题或选择题(15分,判断题每题1分,其它空格0.5分) 1、海水中含量最高的元素是和。 2、开阔大洋表层水盐度通常在(赤道海域、亚热 带海域、亚极地海域)出现极大值。 3、在现场大气压为101.325 kPa时,一定温度和盐度的海水 中,某一气体的饱和含量称为该温度、盐度下该气体 的。 4、在海-气界面气体交换的薄膜模型中,一般而言,风速约大, 薄膜层厚度约,海-气界面气体交换通量越。 5、在海-气界面气体交换的薄膜模型中,气体分子的海-气净 扩散通量与该气体分子的分子扩散系数有关,一般而言, 水体温度的增加,分子扩散系数越;气体分子量越大, 分子扩散系数越。 6、在全球海水碳储库中,的储量最多,其下依次 是、和。(从DIC、DOC、POC、PIC中 选择)。 7、假设某海水的pH值完全由其无机碳体系所控制,则温度 升高时,pH值;盐度增加时,pH值;压力增加时, pH值;Ca(Mg)CO3沉淀形成时,pH值。

8、海洋硝化作用是指;海洋反硝 化作用是指。 9、与陆源腐殖质相比,海源腐殖质的芳香组分浓度一般较, 氮、硫含量比较, 13C比较。 10、分子式通常被用于表征海洋中有机物的平均分子 组成。 11、在不考虑N2的情况下,开阔大洋表层水的氮主要以形 式存在,开阔大洋深层水的氮主要以形式存在。(从 DIN、DON、PIN、PON中选择)。 12、海洋中的蛋白质是由一系列通过结合而成,活体 生物体内的蛋白质含量高低通常可用元素浓度来指示。 13、判断题:利用CTD实测得某海水的盐度为32.02315‰。 () 14、判断题:开阔大洋表层水中不含有难降解的DOM。() 二、问答题(20分) 1、与硝酸盐和活性磷酸盐不同,开阔大洋硅酸盐的垂直分布 并未在1000m左右水深处表现出极大值的特征,为什么? (6分) 2、为什么溶解态Zn在北太平洋深层水中的浓度高于北大西 洋深层水,而溶解态Al则相反。(6分)

卫星海洋学-考试复习资料整理

§1 §1.1 卫星海洋遥感的应用 p1 卫星海洋学涉及的详细内容有: ①海洋遥感的远离和方法:包括遥感信息形成的机理、各种波段的电磁波(可见光、红外光、微波)在大气和海洋介质中传输的规律以及海洋的波谱特征; ②海洋信息的提取:包括与海洋参数相关的物理模型、从遥感数据到海洋参数的反演算法、遥感图像处理和海洋学解释、卫星遥感数据与常规海洋数据在各类海洋模式中的同化和融合。 ③满足海洋学研究和应用的传感器的最佳设计和工作模式:包括光谱波段和微波频率的选择、光谱分辨率和空间分辨率的要求、观测周期和扫描方式的研究以及传感器噪声水平的要求。 ④反演的海洋参数在海洋学各领域中的应用。 卫星遥感所获得的海洋数据特点: 1.观测区域大 2.时空同步 3.连续 *卫星遥感资料和卫星海洋学的研究成果在海洋天气和海况预报、海洋环境监测和保护、海洋资源的开发和利用、海岸带绘测、海洋工程建设、全牛气候变化以及厄尔尼诺现象检测等科学问题上有着广泛的应用。(有问答题时加上) §1.2中国气象卫星的发展p6 我国气象卫星包括两个主要系统: 1.极轨卫星系统;2.地球静止卫星系统。 【了解】第一代极轨气象卫星“风云一号”,第一代静止气象卫星“风云二号”,第二代太阳同步轨道气象卫星“风云三号”,第二代静止气象卫星“风云四号”。(风云单号极轨,双号静止) §1.3中国海洋遥感的进步p8 2002年5月15日,我国第一颗海洋探测卫星“海洋一号A”与“风云一号”D气象卫星作为一箭双星同时发射升空; 2007年4月11日,“海洋一号”B卫星发射。 发射海洋一号卫星的主要目的是:观测海水光学特征、叶绿素浓度、海表面温度、悬浮泥沙含量、可溶有机物和海洋污染物质,并兼顾观测浅海地形、海流特征、海面上空气溶胶等要素,掌握海洋初级生产力分布、海洋渔业及养殖业资源状况和环境质量,了解重点河口港湾的悬浮泥沙分布规律,为海洋生物资源合理开发利用、沿岸海洋工程、河口港湾治理、海洋环境监测、环境保护和执法管理等提供科学依据和基础数据。 我国计划发展3个系列的海洋卫星: 1.以可见光、红外波段遥感探测海洋水色和水温为主的“海洋一号”系列卫星; 2.以微波遥感探测可全天候获取海面风场、海面高度和海表面温度场为主的“海洋二号”系列卫星; 3.同时配备光学传感器和微波传感器的可对海洋环境进行综合监测的“海洋三号”系列卫星。 §2 气象卫星与水色卫星 §2.1 遥感和遥感技术p30

天津科技大学化学海洋学复习资料(DOC)

第一章:海水的化学组成 1. 海水中化学成分分成哪几类?如何理解这种分类方式? (1) 海水的元素构成:常量元素:含量大于1mg/kg的元素,共15种。分别是O、H、Cl、Na、mg、S、Ca、K、Br、C、N、Sr、B、Si、F。微量元素:含量小于1mg/kg的元素。 (2) 海水中的化学物质组成: 主要成分:在海水中浓度大于1mg/kg的成分。包括Na+、K+、Ca2+、Mg2+、Sr2+、Cl-、SO42-、Br-、HCO3-(CO32)、F-、H3BO3共11种成分。 营养元素:非保守成分(生原要素或营养盐)N、P、和Si;微量营养元素As、Co、Cu、Fe、Mn、Mo等。 微量元素:在海水中的含量小于1mg/kg的元素。 溶解气体:海水中溶有大量的气体,它们主要来源于大气。如氧、二氧化碳、氮及惰性气体等。 海水中的有机物质:海水中的有机物质,包括有生命的生物体、生物残体、生物的代谢物、排泄物和溶解有机物。 悬浮颗粒:可以在海水中悬浮数天的固体颗粒。 2. 海水中的常量元素、主要成分都是哪几种?(参看第1题) 3. 什么是海水组成的恒定性?是谁首先提出的? 1819年,Marcet提出“全世界所有的海水水样都含有同样种类的成分,这些成分之间具有非常接近恒定的比例关系,而这些水样之间只有含盐量总值不同的区别”。1884年Dittmar仔细地分析和研究了“挑战者”号调查船在环球海洋调查航行期间从世界各大洋中不同深度所采集的77个海水水样,结果证实海水中主要溶解成分的恒比关系,即“尽管各大海各海区海

水的含盐量可能不同,但海水主要溶解成分的含量间有恒定的比值。 4. 什么是海水中的溶解气体? 海水中的溶解气体主要指溶存形式的气体分子,而不是指“气泡”,前者分布在海水的各个深度,后者集中出现在表层。 海水中的溶解气体种类 (1)活性气体和非活性气体。参与海水中生物和化学反应的气体称为活性气体,又称非保守气体;例如CO2、O2;不参与生物和化学反应,仅受物理过程影响的气体称为非活性气体,又称保守气体;例如惰性气体和氮气。 (2)微量气体。以空气中的含量为区分标准,除N2、O2、Ar、CO2外的气体,例如:甲烷和一氧化碳。 (3)放射性气体。例如;3H、222Rn、3He。 5. 海水是怎样形成的?海水物质的来源? (1) 最初的海水是伴随地球本身的形成,较轻物质从接近地核的中心向地表迁移形成大气和海水雏形;(2) 在地球地质结构成熟(15亿年)以前,原生火成岩中易溶物质和频繁的火山喷发带来的酸性挥发物质溶于地表水中,汇成海水;(3) 在地球地质状况进入稳定期后,陆地岩石风化后淋滤水携带溶解物质通过径流入海是海水物质的主要来源。 海洋中大部分的阳离子和一小部分阴离子看来似乎是来源于火成硅酸盐的风化和火山的排出物,并由河流带入海洋。也有一部分来自海底的水热作用产物。多数主要阴离子是来源于挥发性物质。 6. 理解表1.2与Goldschmidt模型的关系。

卫星海洋学

97—98年热带太平洋地区海表面温度(SST)变化 与厄尔尼诺现象 姓名 单位 摘要: 1997-1998年全球发生大规模的El Ni?o现象,海表面温度(Sea Surface Temperature,缩写为SST)异常升高,全球气候系统随之改变,极具研究价值。本文通过对如何从相关网站上获取和分析SST数据以及根据所获数据绘制图像等问题的介绍,简要分析97-98年SST 所反映出的El Ni?o现象。本次课下作业拓展了我们的视野,提高了我们的实践能力,对以后的学习和工作益处良多。 关键字:AVHRR、SST、海表面温度厄尔尼诺 1、NOAA/TIROS卫星及A VHRR传感器简介 从六十年代后期开始,美国国家海洋大气局(NOAA)发射的泰洛思(TIROS)系列气象卫星使用可见光和红外波段的传感器直接为气象学急攻了大量有重大价值的图像.到70年代中期,海洋工作者开始从气象卫星的遥感数据中提取包括海表面温度和海水混浊度等有用信息,由此解开了卫星遥感技术在海洋学研究中应用的序幕. NOAA/TIROS是太阳同步极轨气象卫星,也被称为诺阿/极轨环境卫星,该卫星系列可为全球各国提供免费的当地数据接受服务。我国国家气象局自80年代初期以来已开展了20余年的NOAA/TIROS卫星的信号接受和资料分发工作。NOAA/TIROS卫星系统每天可输出全球范围的16000的大气探测数据,20000—40000个点的海表面温度数据。这些资料被广泛应用于天气预报以及海洋、渔业、水文、交通和地质等领域的研究,取得了越来越显著的社会经济效益。 NOAA/TIROS系列卫星装载有改进型甚高分辨率辐射计A VHRR,还有用于探测大气层垂直空气柱的剖面温度和湿度等物理量的泰罗斯垂直探测装置TOVS。 改进型甚高分辨率辐射计A VHRR(Advanced Very High Resolution Radiometer)是NOAA/TIROS卫星载有的可用于海洋研究的传感器.A VHRR属于可见光和红外波段辐射计;它可以用来遥感云量和表面温度,这里“表面”可以是地球表面、云层上表面或水体包括海洋表面,第一部四波段辐射计A VHRR最初在1978年发射的TIROS-N上使用;随后发展的五波段辐射计A VHRR/2开始在1981年发射的NOAA-7上使用.最新发展的六波段A VHRR/3开始在1998年5月发射的NOAA-15上使用。。 2、数据下载 首先可使用匿名FTP(anonymous File Transfer Protocol)进入美国宇航局JPL实验室物理海洋学现有档案分发中心:ftp://https://www.doczj.com/doc/dd3199988.html,/pub/data_collections/monthly_mean_atlas/,该中心包括1987--2001年几个主要卫星或传感器(如:avhrr,ers1,topex等)所观测的数据资料和解读这些数据的各种程序(如:fortran程序,c语言程序等)。具体操作详见下面一系列图示。我选取的年份是1997年和1998年,将文件夹内的所有文件下载到本地硬盘上:(保存路径为:\sat,下载完毕再将文件夹重命名为avhrrsst97和avhrrsst98)

《化学海洋学》题库

一填空题(每空1分,共20分) 1.在海水中,浓度大于0.05 mmol/kg的元素为常量元素,海水中的11中 常量元素是: 阳离子:Na+、K+、Ca2+、Mg2+、Sr2+ 阴离子:Cl-、SO42-、Br-、HCO3-(CO32-)、F- 分子:HBO3 2.海水中,与海洋生物生长密切相关的元素称为营养盐: 主要营养盐:N、P、Si 微量营养盐:Mn、Fe、Cu、Zn 3.实用碱度(PA)是碳酸碱度,硼酸碱度,水碱度之和. 4. 盐度的原始定义: 一千克海水中,所有碳酸盐转化为氧化物,溴、碘以氯置换,所有的有机物被氧化之后所含全部固体物质的总克数。单位为克/ 千克,符号为S‰ 5. 浮游植物光合作用中被吸收,与碳、氧等为构成生物体基本元素。有较为恒定的吸收比(C:N:P:O=106:16:1:-276)。 6. 总氮(TN),颗粒氮(PN),溶解氮(DTN),溶解无机氮(DIN),溶解有机氮(DON) 7. 总磷(TP),颗粒磷(PP),溶解磷(DTP),溶解无机磷(DIP),溶解有机磷(DOP)8.海水中无机配位体重要有: 9.海水中有机配位体大部分含有羧基,氨基,羟基官能团. 10.影响海洋初级生产力的主要因素是光照(温度),营养盐,微量元素等二简答题(每题8分,共40分) 1.盐度 答:在1 kg海水中,将所有的碳酸盐转变为氧化物,所有的溴和碘为等摩尔的氯所取代,且所有有机物被氧化以后,所含全部固体物质的总克数。单位:g/kg,以符号S‰表示。 2. 氯度 答:在1 kg海水中,当溴和碘为等摩尔的氯所取代, 所含氯的克数。单位:g/kg,以符号Cl‰表示。 3. CaCO3和MgCO3沉淀的形成与溶解对海水pH值的影响? 答:

海洋科学导论试题(1-10)

试题一 一、填空题(2×10=20分) 1、理论上初一、十五为()潮。 2、风海流的副效应是指()和下降流。 3、海水运动方程,实际上就是()在海洋中的具体应用。 4、海水混合过程就是海水各种特性逐渐趋于()的过程。 5、海面海压为0,每下降10米,压力增加()。 6、我们平日所见的“蔚蓝的大海”,蔚蓝指的是大海的()色。 7、引起洋流西向强化的原因是()。 8、开尔文波的恢复力为重力和()。 9、风浪的成长与消衰主要取决于海面对()摄取消耗的平衡关系。 10、根据潮汐涨落的周期和潮差情况,舟山属于()潮。 二、名词解释(2×10=20分) 1、月球引潮力 2、波形传播的麦浪效应 3、黄道 4、浅水波 5、最小风时 6、回归潮 7、南极辐聚带 8、倾斜流 9、波群 10、海水透明度 三、判断题(对——T,错——F)(1×10=10分) 1、大洋深层水因为发源地影响而具有贫氧性质。 2、无限深海漂流的体积运输方向与风矢量垂直,在南半球指向风矢量的左方。 3、浅水波水质点运动轨迹随着深度增加,长轴保持不变。 4、埃克曼无限深海漂流理论中,海面风海流的流向右偏于风矢量方向45度。 5、以相同能量激发表面波与界面波,界面波的振幅比表面波大。 6、小振幅重力波所受的唯一恢复力是重力。 7、风浪的定常状态只与风时有关。 8、当波浪传到近岸海湾时,波向线会产生辐聚。 9、驻波波节处水质点没有运动所以被叫做驻波。 10、水下声道产生的原因是声线会向温度高的水层弯曲。 四、简答题(10×5=50分) 1、试从天文地理两方面解释钱塘潮成因。 2、试描述世界大洋表层水环流的主要特征。 3、有人说“无风不起浪”,可又有人反对说明明是“无风三尺浪”,你说呢?

国科大化学海洋学期末复习重点

海水的化学组成 盐度:在1kg海水中,将所有的碳酸盐转变为氧化物,所有的溴和碘为等摩尔的氯所取代,且所有有机物被氧化以后,所含全部固体物质的总克数。单位g/kg,符号S‰ 氯度: 在1kg海水中,当所有的溴和碘为等摩尔的氯所取代,所含氯的克数。单位g/kg,符号Cl‰ 海洋盐度的分布: 沿岸海域,受河流径流和地下水输入的影响,盐度变化大 开阔大洋,表层水盐度主要受控于蒸发导致的水分损失与降雨导致的水分增加之间的相对平衡 亚热带海域较高盐度赤道和极地附近海域较低盐度 北大西洋盐度高于北太平洋原因在于北大西洋海水蒸发速率约为北太平洋的两倍,而两个大洋的降雨量接近,尽管输入北大西洋的河水量高于北太平洋,但海水蒸发的效应要强于淡水输送的影响。 海水中元素存在形态:1 颗粒物质2胶体物质3气体4真正溶解物质 元素组成:常量元素:在海水中的浓度高于0.05mmol/kg,其中包括Na+K+Ca2+Mg2+ Sr2+5种阳离子Cl- SO42- Br-HCO3-(CO32- ) F- 5种阴离子和H3BO3分子 恒比定律:海水的大部分常量元素,其含量的比值基本上是不变的。 原因:水体在海洋中的迁移速率快于海洋中输入或迁出这些元素的化学过程的速率。因为加入或迁出水并不会改变海洋中盐的总量,仅仅是离子浓度和盐度 的变化而已,对于其中的常量元素,它们之间的比值基本保持恒定 元素的停留时间定义计算

痕量元素 海水中浓度小于50μmol/kg和浓度小于0.05μmol/kg的元素分别称为微量和痕量元素 定义意义分析采样手段 来源、迁出 来源:大陆径流、大气沉降、海底热液作用、海底沉积物间隙水向上覆水体扩散、人类活动迁出:氧化环境下颗粒物表面的吸附与沉淀 结合进入生源颗粒物 还原性环境硫酸盐还原为S2-,S2-和溶解态金属浓度高,可以产生硫化物沉淀(FeS2)热液活动 垂直分布:7类分布特点级形成原因及代表元素 1、保守行为型其垂直分布与温度、盐度变化相一致。仅受控于物理过程,不会富集于生源物质。Rb+ Cs+ MoO42- WO42-

卫星海洋学复习题(1)

1.为什么海洋表面在卫星海洋学中非常重要? 2.概念理解:卫星轨道倾角、星下点、节点、升轨、降轨、升轨 点、降轨点 3.太阳同步轨道定义、特点 4.地球同步轨道和地球静止轨道区别 5.轨道周期、重复周期、传感器重复周期、再访问时间定义 6.光学仪器和微波雷达的角分辨率、空间分辨率 7.水平极化和垂直极化定义 8.立体角详细推导 9.天顶角、观测角 10.辐射通量、辐射强度、辐亮度、辐照度、发射率、菲涅耳反射率、朗伯表面 11.基尔霍夫定律、两介质界面处的基尔霍夫定律 12.黑体定义、瑞利-金斯定律成立条件及公式、维恩位移定律公式 13.太阳辐射和地球辐射特征(图5.5) 14.亮温定义 15.复折射率和复相对电容率关系、菲涅耳反射率和菲涅耳反射系数关系 16.从德拜方程出发如何求解海表温度? 17.复折射率实部和虚部意义 18.皮层深度、穿透深度、吸收深度定义、使用范围 19.卫星遥感海表温度和传统观测海表温度区别 20.衰减系数和光学厚度、太阳倾斜入射的光学厚度

21. 辐射传输方程()()()ab B ab dL z L z k L z k dz +=各项含义 22. 可见光和微波波段在大气中衰减的主要因素 23. 气溶胶定义 24. 大气窗定义 25. 有边界存在时的辐射传输各项推导(P.149-150) 26. 水色定义、水色三要素 27. 一类水体、二类水体 28. 离水辐射率含义 29. 热红外遥感的海洋学应用 30. 影响微波辐射计接收海面辐亮度的因素有哪些? 31. 填空:平静海面的微波亮温T 通过___与海面发射率e 相联系,海面发射率e 通过___与菲涅耳反射率ρ相联系,菲涅耳反射率ρ通过___与相对电容率εr 相联系,相对电容率εr 通过___与海表面温度和盐度相联系。 ①基尔霍夫定律 ②菲涅耳公式 ③德拜方程 ④瑞利-金斯定律 ⑤发射率定义 32. 为什么微波辐射计能够遥感海表面温度和海面风速? 33. 散射计测量的海洋物理参数是什么?为什么可以观测这个参数? 34. 给出雷达后向散射截面定义,什么是标准化雷达后向散射截面?如何用分贝表示? 35. 布拉格共振的条件是什么?如何推导?计算:使用1.4GHz L 波段散射计,当入射角是60度时,与电磁波共振的海表面波的波长是多少?

海洋化学基础(考试必备)

第一章:1.定义:海洋化学是研究海洋各部分的化学组成、物质分布、化学性质和化学过程,以及海洋化学资源在开发利用中的化学问题的科学。2.资源类型:海洋化学资源、海洋生物资源、海底矿产资源、海洋能源资源3.海水淡化与海水晒盐:海水蒸发(粗盐提纯—主要成分氯化钠)(母液—多种化工产品)4.工业上如何从氯化钠中提取出氯气?(电解饱和食盐水)5.深海锰结核:自生于深海底的矿物。以锰和铁的氧化物和氢氧化物为主要组分,含多种金属元素如铜、镍、钴等,结核状。锰矿球、锰矿瘤、锰团块或多金属结核,是潜在金属资源。来源:一是来自陆地,大陆或岛屿的岩石风化;二是来自火山;三是来自生物,浮游生物体内富集微量金属;四是来自宇宙。6.可燃冰:地球上的甲烷主要存在于陆地的地壳深处和海底的深海沉积物中。海底油气渗漏以及海底微生物厌氧反应会生成甲烷气体,在海底的高压和低温环境下,与水分子结合形成类似冰块的天然气水合物结晶,存在于海底沉积物的空隙之中(甲烷泄漏到空气中,会比二氧化碳造成的温室效应还厉害。甲烷被利用,可缓解能源紧张)7.半岛蓝色经济区:青岛烟台威海日照潍坊东营滨州8.青岛发展海洋科技的优势:海洋自然资源丰富、海洋科研优势突出、承担了国家“863”计划和“973”计划的科研项目。 第二章:1.海水远动形式:波浪【风浪海啸(由海底地震、火山爆发、或风暴引起,破坏力巨大)】潮汐洋流。2.潮汐:海水在月球和太阳引力作用下发生的周期性涨落现象。3.每逢初一、十五,太阳、月亮和地球在一条直线上,太阳和月亮对海水的引力合在一起,海水面凸出更高,形成大潮。每逢农历初八、二十二,太阳、月亮和地球互相垂直成直角,引力被抵消了一部分,海水面凸起较少,形成小潮。4.洋流:海洋中的海水,常年比较稳定的沿着一定的方向作大规模的流动,叫做洋流。(分类:从低纬向高纬流动的洋流为暖流,从高纬向低纬流动的洋流为寒流。作用:洋流是海水的主要运动形式,它促使不同海区间进行大量的水量交换、热量交换、盐分交换和溶解气体交换等。5.洋流形成原因:

环境遥感试卷

试卷一 一、填空题(共10题,每题2分) 1、“遥感”(Remote Sensing),即“遥远的感知”。在一定距离以外感测目标物的信息,通过对信息的分析研究,确定目标物的属性及目标物之间的相互关系。它是一种以_________、__________、___________为基础的综合性应用技术。 2、遥感信息的三个物理属性是:______________、_________________、____________________。 3、近红外波段在植物遥感中的重要作用,这是因为近红外区的反射是受叶内复杂的叶腔结构和腔内对近红外辐射的________控制,以及近红外光对叶片有近50%的____和_____的原因。 4、植物的发射特征主要表现在________和________谱段。植物在热红外谱段的发射特征,遵循__________定律,与植物温度直接相关。 5、土地覆盖是“地球陆地表层和近地面层的_____________,是自然过程和人类活动共同作用的结果”,而土地利用是指人类利用土地的___________和_________不断满足自身需求的行为过程。 6、遥感图像的分类有__________和___________两种。 7、土壤热通量指土壤_____________,与热流方向的土温梯度、土壤热容量、热扩散率成______,对土壤蒸发、地表能量交换均有影响。 8、水的光谱特征主要是由水本身的物质组成决定,同时又受到各种水状态的影响。水体可见光反射包含____________、__________及______________3方面的贡献。 9、海洋的微波辐射取决于2个主要因素:一是海面及一定深度的_____________,二是___________。 10、遥感区域地质调查填图的最大特点是充分利用遥感图像的__________,结合地面调查工作进行多层次的___________,在整体上提高对工作区区域地质特征的全面认识,解决突出的基础地质问题和与成矿有关的关键问题,加快填图速度,提高成图质量。 二、选择题(共10题,每题2分) 1、遥感信息,是指以__________为载体,经介质传输而由航空或航天遥感平台所收集到的反映地球表层系统现象的空间信息。 A 光 B 电磁波 C 光和电磁波 D 光或电磁波 2、遥感信息中最基本的几何单元是像元(pixel),每一个像元所载的信息是_________。 A 灰度 B 反射率 C 辐照度 D 辐亮度 3、____________是叶子健康状况最灵敏的标志,它对植被差异及植物长势反映敏感,指示着植物光合作用能否正常进行;_____________被植被叶绿素强吸收,进行光合作用制造干物质,它是光合作用的代表性波段。这两个波段数值的不同组合,是植被指数的核心。 A 紫外波段、可见光绿波段 B 近红外波段、可见光红波段 C 绿光波段、可见光黄波段 D 黄光波段、可见光红波段 4、作物在不同的生长期具有不同的光谱特征。叶子生长过程中,叶绿素含量_____,叶 肉细胞间隙数增加,可见光反射率_______,而近红外反射率__________。 A 增加、降低、升高 B 降低、增加、升高 C 升高、增加、降低 D 降低、降低、升高 5、可见光——红外力法,主要利用土壤及土壤上覆植被的光谱__________来估算土壤水分。 A 发射特性 B 散射特性 C 反射特性 D 光谱特性 6、水面入射光谱中,仅有____________才透射入水,其他波段的入射光或被大气吸收或被水体表层吸收. A 可见光 B 微波 C 红外C 紫外 7、微波谱段适合于海洋遥感主要是因为__________。 A 微波在水中穿透能力强 B 微波具有穿云破雾的能力 C 微波的辐射分辨率高 D 微波的光谱分辨率高 8、遥感探测范围由大到小依次是__________。 A 飞机、陆地卫星、宇宙飞船 B 宇宙飞船、陆地卫星、飞机 C 陆地卫星、飞机、宇宙飞船 D 陆地卫星、宇宙飞船、飞机 9、遥感探测的范围越大,则__________。 A 获得资料的速度越慢 B 获得资料的周期越长 C 对地物的分辨率越低 D 对地物的分辨率越高 10、在遥感影像上,湖泊、河流呈现的颜色是__________。 A 红色 B 灰白色 C 深蓝色或蓝黑色 D 浅蓝色 三、判断题(共10题,每题2分) 1、遥感反映的土地信息仅仅是地表的综合特征。() 2、在利用遥感方法进行土地利用/覆盖变化研究时,遥感图像的像元是随着地物的成分、纹理、状态、表面特征及所使用的电磁波段的不同而变化。() 3、清水,在近红外、短波红外部分几乎吸收全部的入射能量,反射能量很小。这一持征与植被和土壤光谱形成十分明显的差异,因而在红外波段识别水体较容易。() 4、海水的电学性质是由海水表层物质组成及温度所决定的。() 5、声波可以使海洋遥测水深的范围有所扩大,激光在水中传播性能更好可以克服遥感在深度上的局限。

卫星海洋学试题

问答题 §11.1 复习题(Questions for Review) 第一套复习题 1.请将下列电磁波按频率由小到大排序:C波段、Ku波段、X波段、红光、蓝光、绿光、紫外光、黄光、黄绿光、近红外、远红外、无线电波。 2.什么波长范围的电磁波称为可见光?其对应的频率范围是什么? 3.菲涅耳反射率与发射率有何关系?与吸收率、透射率的关系?推导中用了什么定律?举出两个例子a)在海水可见光红外波段情况下b)在海水微波波段情况下菲涅耳反射系数和反射率的数值。 4.写出德拜方程的表达式。为什么L波段的微波辐射计适于测海表面盐度?相对电容率的变化通过什么公式导致辐射计接收到的亮温etTs也随之变化?5.写出普朗克定律的表达式,解释公式中出现的每一个物理量和常数,并由此推导瑞利—金斯定律。这两个定律分别适用于红外、可见光、微波波段三个波段中哪些波段的辐射度计算? 6.简要阐述米氏散射和瑞利散射的适用条件。大气层空气分子的散射属于那一种?气溶胶散射对可见光、红外和微波(例如5.3GHz)波段各属于那一种?指出气溶胶粒径的主要分布范围和5.3GHz微波波长。 7.分别写出兰伯—比尔定律的微分和积分形式,并指出衰减系数与复折射率的关系。 8.写出水色遥感大气校正的最基本方程,并介绍各项的物理意义。指出在440纳米和清洁水条件下,各项对卫星信号的贡献占多少? 10. 画出典型的一类水体叶绿素的离水辐射的光谱曲线图。以SeaWiFs为例,利用那两个波段(用中心波长表示)的离水辐亮度的比值可以反演叶绿素浓度?该方法通常又叫什么名字? 11. 分别写出镜面反射和布喇格共振理论计算标准化雷达后向散射截面σ0的公式。二者通过什么函数与风速相联系? 12. 解释概念:Range,Geoid,Topography,Dynamic height,Geoid Undulation,Reference Ellipsoid。大地水准面起伏主要是由什么原因引起(回答一个最主要原因)?其变化的范围是什么?海面地形是由什么原因引起(回答三个最主要原因)?其变化的范围是什么? 13. 卫星到海面距离如何测得?Topex/Poseidon测量海平面高度的精度精度可达多少?海面到地心的距离如何计算?海面地形异常可用什么公式计算? 14. 写出合成孔径雷达的纵向距离分辨率。合成孔径雷达的采样距离与卫星速度、采样时间长度有什么关系?与真实孔径雷达有什么关系?与真实孔径雷达分辨率比较,采样距离与孔径有什么关系? 第二套复习题 1.请将下列电磁波按波长由小到大排序:C波段、Ku波段、X波段、红光、蓝光、绿光、紫外线、黄光、黄绿光、近红外、远红外、热红外。 2.计算地球同步轨道卫星的近似高度和太阳同步轨道卫星(卫星绕地球旋转周期是100分钟)的近似高度。列出万有引力定律与牛顿第二定律的公式。并列出角速度与旋转周期的关系式。 3.在可见光和红外波段电磁波于海气界面的传递中,复折射率、菲涅耳反射率和发射率是多少?在10GHz的微波于20?C的海气界面的传递中,相对电容率、

海洋科学导论-海洋学基础-重点知识

海洋科学导论重点知识 第一章 1.海洋科学:研究地球上海洋的自然现象、性质以及其变化规律,以及和开发与利用海洋有关的知识体系。 研究对象:海洋---海水、海水的组成、海洋生物以及海洋的边界(海洋沉积、海底岩石圈,河口、海岸带,海面上的大气等)。 研究内容:海水的运动规律、海洋中的物理、化学、生物和地质过程及其相互作用的基础理论、海洋资源的开发、利用、海洋军事活动应用研究等。 2. 海洋科学研究的特点是什么 1)明显地依赖于直接的观测。 2)。 3) 4)信息论、控制论、系统论等方法在海洋科学研究中越来越显示其作用。 5)学科分支细化与相互交叉、渗透并重,而综合与整体化研究的趋势日趋明显。 相似问题:海洋科学研究对象的特点 ①海洋科学研究对象具有特殊性和复杂性; ②海洋中水---汽---冰的转化时刻都在进行; ③海洋作为一个自然体系,具有多层次耦合的特点。 ¥ 3. 海洋矿产资源的分布特点是什么有哪些主要类型 ·分布特点: 深海锰结核以锰和铁的氧化物及氢氧化物为主要组分,富含锰、铜、镍、钴等多种元素。主要分布于太平洋,其次是大西洋和印度洋水深超过3000米的深海底部。以太平洋中部北纬6°30′~20°、西经110°~180°海区最为富集。 世界96%的锆石和90%的金红石产自海滨砂矿。复合型砂矿多分布于澳大利亚、印度、斯里兰卡、巴西及美国沿岸。金刚石砂矿主要产于非洲南部纳米比亚、南非和安哥拉沿岸;砂锡矿主要分布于缅甸经泰国、马来西亚至印度尼西亚的沿岸海域。 中国近海水深小于200米的大陆架面积有100多万公里,某中含油气远景的沉积盆地有7个:渤海、南黄海、东海、台湾、珠江口、莺歌海及北部湾盆地,总面积约70万公里,并相继在渤海、北部湾、莺歌海和珠江口等获得工业油流。在辽东半岛、山东半岛、广东和

化学海洋学思考题20141

2014.11.16 化学海洋学思考题 第一章思考题 1. 如何认识化学海洋学的学科体系及特点? 2. 化学海洋学发展历史是怎样的?A.M. Marcet, W. Dittmar, M. Knudsen, L.G. Sillén, E.D. Goldberg, W.S. Broecker 等有哪些重要贡献? 3. 学习和研究化学海洋学的意义是什么,请发表个人观点。 第二章思考题 1. 简要了解海洋的形成过程。海洋中水的来源是什么? 原始海水与现代海水的化学组成有何主要差别?(什么是Sillén 模型)? 2. 海洋中物质的来源和输入途径有哪些? 海水主要溶解成分是否为河水溶解成分的简单浓缩,为什么? 3. 现代大洋海水的平均盐度、平均离子强度是多少? 4. 简述化学海洋学中“稳态”的概念。 5. 什么是元素逗留时间?如何反映了元素在海洋中的性质或行为? 周期表中哪些元素的逗留时间最长、最短?元素分布特点与逗留时间有何关系? 为什么N 、P 、Si 的逗留时间较长,但在海水中的分布却不均匀? 6. 什么是保守元素/要素/成分和非保守元素/要素/成分? 7. 什么是理论稀释线(TDL )?如何利用TDL 讨论海水混合过程中的保守和非保守行为? 8. 海洋中元素/要素分布与海水运动关系式是怎样的?各项名称与物理意义是什么? 9. 什么是海洋中元素/要素分布的平流-扩散方程? 在使用平流-扩散方程解决海洋中元素/要素空间分布问题时,为何可将0=??t S 处理? 10. 如何认识海水混合过程中非保守元素的转移量与涡动扩散系数、流速和逗留时间等因素 的关系? 第三章思考题 1. 海水主要成分有哪些?浓度大于1 mg kg ?1的元素都是主要成分吗? 2. 主要成分阳离子中,哪个成分的含量最高、最低? 主要成分阴离子中,哪个成分的含量最高、最低? 3. 什么是海水主要溶解成分组成的恒定比规律?其原因是什么? 影响海水主要溶解成分恒定比关系的因素有哪些? 4. 海水中Ca 2+/Cl 比值会受到哪些因素影响?为什么海水主要成分中Ca 2+的保守性较差? 5. 海水盐度和氯度定义如何建立与修改? 6. 实用盐度标度(PSS1978)包括哪些内容?PSS78的实用盐度公式是如何建立的? 7. 什么是绝对盐度,能否直接测定? 8. 最近对盐度概念进行了怎样的补充完善?(什么是“参考组成盐度标度”?) 9. 什么是离子对?与络合物比较有何不同? 10. Garrels -Thompson 海水化学模型的基本内容是什么? 根据模型计算结果,试说明阳离子和阴离子的主要存在形式各有何特点?

化学海洋学考试

一、填空题或选择题(15分,判断题每题1分,其它空格0.5分) 1、海水中含量最高的元素是 H 和 O 。 2、开阔大洋表层水盐度通常在亚热带海域(赤道海域、亚热带海域、亚极地海域)出现极 大值。 3、在现场大气压为101.325 kPa时,一定温度和盐度的海水中,某一气体的饱和含量称为该温度、 盐度下该气体的溶解度。 4、在海-气界面气体交换的薄膜模型中,一般而言,风速约大,薄膜层厚度约薄,海-气界面气 体交换通量越大。 5、在海-气界面气体交换的薄膜模型中,气体分子的海-气净扩散通量与该气体分子的分子扩散系数 有关,一般而言,水体温度的增加,分子扩散系数越大;气体分子量越大,分子扩散系数越小。 6、在全球海水碳储库中, DIC 的储量最多,其下依次是 DOC 、和 POC 。(从DIC、 DOC、POC、PIC中选择)。 7、假设某海水的pH值完全由其无机碳体系所控制,则温度升高时,pH值降低;盐度增加时, pH值增加;压力增加时,pH值降低;Ca(Mg)CO3沉淀形成时,pH值降低。 8、海洋硝化作用是指在氧化性海水中,氨通过海洋细菌的作用被氧化成NO2-,并进一步被氧化为 NO3-;海洋反硝化作用是指在溶解氧不饱和的海水中,一些异氧细菌将NO3-作为电子接受体以代谢有机物,从而将部分NO3-还原为NO2-,并进一步还原为N2。 9、在不考虑N2的情况下,开阔大洋表层水的氮主要以 DON 形式存在,开阔大洋深层水的氮主要以 DIN 形式存在。(从DIN、DON、PIN、PON中选择)。 10、判断题:利用CTD实测得某海水的盐度为32.02315‰。(×) 11、判断题:开阔大洋表层水中不含有难降解的DOM。(×) 二、问答题(20分) 1、与硝酸盐和活性磷酸盐不同,开阔大洋硅酸盐的垂直分布并未在1000m左右水深处表现出极大值的特 征,为什么?(6分) 答案:由于蛋白石的溶解相对于有机物的降解是一个比较缓慢的过程,因此溶解态硅酸盐的垂直分布没有像硝酸盐和活性磷酸盐一样在1000m水深附近产生极大值。 12、试分析海水中CaCO3的溶解、颗粒有机物的再矿化这两个过程对海水中的TCO2和Alk将分别产 生什么样的影响。(8分) 答案:CaCO3溶解导致Alk增加,TCO2增加。 颗粒物再矿化时,Alk不变,TCO2增加。 三、分析题(50分) 1、下图为一些气体在海水中溶解度随温度的变化情况,从中您可得到什么信息。(8分) 答案:(1)气体在海水中的溶解度一般随分子量的增加而增加;

卫星海洋学复习题

简介 卫星海洋学(satellite oceanography)是利用卫星遥感技术观测和研究海洋的一门分支学科。卫星海洋学兴起于20世纪70年代,它是卫星技术、遥感技术、光电子技术、信息科学与海洋科学相结合的产物。笼统地讲,它包括两个方面的研究,即卫星遥感的海洋学解释和卫星遥感的海洋学应用。卫星遥感的海洋学解释涉及到对各种海洋环境参量的反演机制和信息提取方法的研究,卫星遥感的海洋学应用涉及到运用卫星遥感资料在海洋学各个领域的研究。 涉猎内容 (l)海洋遥感的原理和方法:包括遥感信息形成的机理、各种波段的电磁波(可见光、红外和微波)在大气和海洋介质中传输的规律、以及海洋的波谱特征。 (2)海洋信息的提取:包括与海洋参数相关的物理模型、从遥感数据到海洋参数的反算法、遥感图像处理和海洋学解释、卫星遥感数据与常规海洋数据在各类海洋模式中的同化和融合。 (3)满足海洋学研究和应用的传感器的最佳设计和工作模式:包括光谱波段和微波频率的选择、光谱分辨率和空间分辨率的要求、观测周期和扫描方式的研究、以及传感器噪音水平的要求。 (4)反演的海洋参数在海洋学各领域中的应用。卫星遥感所获得的海洋数据具有观测区域大、时空同步、连续的特点,可以从整体上研究海洋。这极大地深化了人们对各种海洋过程的认识,引起了海洋学研究的一次深刻变革。卫星遥感资料和卫星海洋学的研究成果在海洋天气和海况预报、海洋环境监测和保护、海洋资源的开发和利用、海岸带测绘、海洋工程建设、全球气候变化、以及厄尔尼诺现象监测等科学问题上有着广泛的应用。 原理 卫星在遥远距离通过放置在某一平台上的传感器对大气或者海洋以电磁波探测方 式获取大气或者海洋的有关信息,这个过程称为遥感。海面反射、散射或自发辐射的各个波段的电磁波携带着海表面温度、海平面高度、海表面粗糙度以及海水所含各种物质浓度的信息。传感器能够测量在各个不同波段的海面反射、散射或自发辐射的电磁波能量,通过对携带信息的电磁波能量的分析,人们可以反演某些海洋物理量。传感器的遥感精度随着卫星遥感技术的发展在不断地提高,目前正在接近、达到甚至超过现场观测数据的精度。 应用 海洋表面是一个非常重要的界面。海洋与大气的能量交换都是通过这个界面进行的;海洋内部的变化也会部分地透过这一表面表现出来。运用计算机三维数值模拟和卫星遥感数据同化技术,人们就可以通过获得的海洋表面遥感信息,了解海洋内部的海洋学特征和物理变化过程。遥感监测海面的空间分辨率与电磁波的波长有关,可见光与红外辐射计获得的遥感图像具有更好的空间分辨率。虽然云的覆盖阻挡了可见光波段电磁波的透过,但是能够穿透云层的微波遥感弥补了不足。总之,可见光和红外遥感满足了人们对较高的空间分辨率监

相关主题
文本预览
相关文档 最新文档