当前位置:文档之家› 工业大功率激光器的最新进展

工业大功率激光器的最新进展

工业大功率激光器的最新进展
工业大功率激光器的最新进展

工业大功率激光器的最新进展

作者:黄芳

作者单位:

本文链接:https://www.doczj.com/doc/d22410647.html,/Conference_7102651.aspx

大功率半导体激光器的发展介绍

大功率半导体激光器的发展介绍 激光打标机、激光切割机、激光焊接机等等激光设备中激光器起着举足轻重的地位,在激光器的发展历程中,半导体激光器的发展尤为重要,材料加工用激光器主要要满足高功率和高光束质量,所以为了提高大功率半导体激光器的输出功率,可以将十几个或几十个单管激光器芯片集成封装、形成激光器巴条,将多个巴条堆叠起来可形成激光器二维叠阵,激光器叠阵的光功率可以达到千瓦级甚至更高。但是随着半导体激光器条数的增加,其光束质量将会下降。

另外,半导体激光器结构的特殊性决定了其快、慢轴光束质量不一致:快轴的光束质量接近衍射极限,而慢轴的光束质量却比较差,这使得半导体激光器在工业应用中受到了很大的限制。要实现高质量、宽范围的激光加工,激光器必须同时满足高功率和高光束质

量。因此,现在发达国家均将研究开发新型高功率、高光束质量的大功率半导体激光器作为一个重要研究方向,以满足要求更高激光功率密度的激光材料加工应用的需求。 大功率半导体激光器的关键技术包括半导体激光芯片外延生长技术、半导体激光芯片的封装和光学准直、激光光束整形技术和激光器集成技术。 (1)半导体激光芯片外延生长技术 大功率半导体激光器的发展与其外延芯片结构的研究设计紧密相关。近年来,美、德等国家在此方面投入巨大,并取得了重大进展,处于世界领先地位。首先,应变量子阱结构的采用,提高了大功率半导体激光器的光电性能,降低了器件的阈值电流密度,并扩展了GaAs基材料系的发射波长覆盖范围。其次,采用无铝有源区提高了激光芯片端面光学灾变损伤光功率密度,从而提高了器件的输出功率,并增加了器件的使用寿命。再者,采用宽波导大光腔结构增加了光束近场模式的尺寸,减小了输出光功率密度,从而增加了输出功率,并延长了器件寿命。目前,商品化的半导体激光芯片的电光转换效率已达到60%,实验室中的电光转换效率已超过70%,预计在不久的将来,半导体激光器芯片的电光转换效率能达到85%以上。 (2)半导体激光芯片的封装和光学准直 激光芯片的冷却和封装是制造大功率半导体激光器的重要环节,由于大功率半导体激光器的输出功率高、发光面积小,其工作时产生的热量密度很高,这对芯片的封装结构和工艺提出了更高要求。目前,国际上多采用铜热沉、主动冷却方式、硬钎焊技术来实现大功率半导体激光器阵列的封装,根据封装结构的不同,又可分为微通道热沉封装和传导热沉封装。

高功率IPG光纤激光器应用简介

高功率IPG光纤激光器应用简介 一、IPG光纤激光器简介 1.光纤激光器简介 光纤激光器是指用掺稀土元素玻璃光纤作为增益介质的激光器,光纤激光器可在光纤放大器的基础上开发出来:在泵浦光的作用下光纤内极易形成高功率密度,造成激光工作物质的激光能级“粒子数反转”,当适当加入正反馈回路(构成谐振腔)便可形成激光振荡输出。 2.光纤激光器的优势 首先是使用成本低,光纤激光器替代了不稳定或高维修成本的传统激光器。其次,光纤激光的柔性导光系统,非常容易与机器人或多维工作台集成。第三,光纤激光器体积小,重量轻,工作位置可移动。第四,光纤激光器可以达到前所未有的大功率(至五万瓦级)。第五,在工业应用上比传统激光器表现更优越。它有适用于金属加工的最佳波长和最佳的光束质量,而且光纤激光器在每米焊接和切割上的费用最低。第六,一器多机,即一个激光器通过光纤分光成多路多台工作。第七,免维护,使用寿命长。最后,由于其极高的稳定性,大大降低了运行中对激光质量监控的要求。简单来说就是高功率下的极好光束质量,高光束质量下的极好电光效率,高功率高光束质量下的极小体积、可移动性和柔性。 3.IPG简介 全球最大的光纤激光制造商IPG Photonics由Valentin Gapontsev博士于1991年创建,总部设在美国东部麻省。IPG在德国、美国、俄罗斯和意大利设有生产、研发基地,并在全球设有销售和服务网点,覆盖美国、英国、欧洲、印度、日本、韩国、新加坡和中国,并于2006年在美国纳斯达克上市。

十八年来,IPG致力于纵向合成,所有的核心配件均为IPG研发、生产和拥有,同时也是唯一一个能为客户提供高性价比的光纤和半导体激光器的厂家。 高功率是IPG的优势。全世界已有上千台IPG的高功率(>1KW)光纤激光器在汽车制造、船舶制造、海上平台和石油管道、航空航天和技术加工等工业领域中得以应用。在日本,我们向丰田、三菱、住友在内的客户售出了数百台IPG的大功率光纤激光器。这些激光器的成功应用,说明了IPG光纤激光已成熟,且成为制造业的技术工具之一。依近期国内各厂家、院校、集成商对IPG光纤激光器大量的订单来看,光纤激光在中国市场广泛应用的局面会很快到来,尤其是在金属加工(切割、焊接、熔覆、快速成型等)方面。 二、高功率光纤激光应用领域 1.激光焊接领域的应用 光纤激光器的光束质量好,连续功率大,适用于深熔焊和浅表热导焊。连续激光通过调制可提供激光脉冲,从而获得高峰值功率和低平均功率,适用于需要低热输入要求的焊接。由于高功率激光的调制频率高达1万赫兹,因而能够提高脉冲焊接的产能。光纤输送方式使激光能够灵活地集成在传统焊钳、振镜头、机器人和远程焊接系统内。无论采用何种光束输送方式,光纤激光器都具有无可比拟的性能。典型的点焊应用包括依靠振镜头传送光束,从而完成剃须刀片和硬盘挠曲的焊接,从而充分地利用光纤激光器的脉冲功能。光纤激光器的光斑小,焦距长,因而远距离激光焊接的能力大大提高。1-2米的工作间距与传统机器人相比使工作区域提高了数倍,配备光纤激光器的远程焊接工位包括车门焊接、多点焊接和整个车身框架的搭接焊接。光纤激光器焊接的其它例子包括传动部件全熔焊、船用厚钢板深熔焊、电池组密封焊接、高压密封等等。图1展示了光纤激光焊接的效果。

光纤激光器哪家的好,激光器品牌哪个好

光纤激光器哪家好,激光器品牌哪个好 随着激光技术的不断发展,激光应用已经渗透到科研、产业的各个方面,在汽车制造、航空航天、钢铁、金属加工、冶金、太阳能以及医疗设备等领域都起到重要作用。激光设备的核心就是激光器,我国各大激光设备企业不断地加大技术开发投入,虽然已经取得了一定的成就,各种激光设备实现国产化,达到国际领先水平,但是在主力激光器,超大功率激光器依然依赖进口,以致激光设备价格大幅度上涨,制约了我国激光加工产业的发展,另一方面,国外不少的激光加工企业看准中国激光加工的广大市场前景,纷纷入驻我国的沿海城市,冲击我国激光加工产业,国际竞争国内化。 光纤激光器哪家的最好下面总结目前市场上应用于工业制造领域的激光器主要企业,光纤激光器品牌:国内的是锐科、创鑫,国外的有美国相干,IPG,SPI,通快,JK laser (GSI的品牌子公司)等等,从质量上看,进口的光纤激光器比国产的要好些,而价格方面也贵些,主要看你们公司的预算在什么范围,对光纤激光器的出光率和耐用度有什么要求,需要根据自身设备来选择,适用就好!以供想采购激光焊接、激光切割、激光打标等企业提供相应的参考.排名不分先后。 美国 光纤激光器哪家的好——相干(Coherent)公司 相干公司成立于1966年,是世界第一大激光器及相关光电子产品生产

商,产品服务于科研、医疗、工业加工等多个行业;秉承40年的激光制造经验和创新精神,致力于提供一流的商业化激光器,促进科学研究不断进步、生产制造行业生产力和加工精度的不断提高;其全球化的销售、客户服务和技术支持网络更为客户提供全球范围内的合作和服务。相干公司能够提供更全面的激光器和激光参数测量产品,包括:氩/氪离子激光器、CO2激光器(10.6μm、9.4μm、调Q、可调谐、单频、THz源)、半导体激光器(375nm、405nm、635nm、780-980nm)、钛宝石连续可调谐激光器、准分子激光器、脉冲染料激光器、钛宝石超快激光器及放大器、半导体泵浦固体激光器(1064nm、532nm、355nm、266nm)、功率计、能量计、光束质量分析仪和波长计等。相干公司现在是最全面的超快激光器系统供应商,提供从振荡级、放大器、OPA、泵浦源到特殊制造的TW激光器等一系列超快激光器产品,脉冲宽度最窄到20fs;峰值功率最高可达100TW;单脉冲能量最高可达到5J。 光纤激光器哪家的好——IPG激光 全球最大的光纤激光制造商,其生产的高效 光纤激光器、光纤放大器以及拉曼激光的技术均走在世界的前端。IPGPHOTONICSCORPORATION始创于1990年,是全球最大的光纤激光制造商,总部 设在美国东部麻省,拥有国际领先水平的光纤激光研发中心,主要生产基地分布在德国、美国、俄罗斯、意大利;销售及服务机构分布在中国、

大功率半导体激光器件最新发展现状分析

大功率半导体激光器件最新发展现状分析 1 引言 半导体激光器由于具有体积小、重量轻、效率高等众多优点,诞生伊始一直是激光领域的关注焦点,广泛应用于工业、军事、医疗、通信等众多领域。但是由于自身量子阱波导结构的限制,半导体激光器的输出光束质量与固体激光器、CO2激光器等传统激光器相比较差,阻碍了其应用领域的拓展。近年来,随着半导体材料外延生长技术、半导体激光波导结构优化技术、腔面钝化技术、高稳定性封装技术、高效散热技术的飞速发展,特别是在直接半导体激光工业加工应用以及大功率光纤激光器抽运需求的推动下,具有大功率、高光束质量的半导体激光器飞速发展,为获得高质量、高性能的直接半导体激光加工设备以及高性能大功率光纤激光抽运源提供了光源基础。 2 大功率半导体激光器件最新进展 作为半导体激光系统集成的基本单元,不同结构与种类的半导体激光器件的性能提升直接推动了半导体激光器系统的发展,其中最为主要的是半导体激光器件输出光束发散角的降低以及输出功率的不断增加。 2.1 大功率半导体激光器件远场发散角控制 根据光束质量的定义,以激光光束的光参数乘积(BPP)作为光束质量的衡量指标,激光光束的远场发散角与BPP成正比,因此半导体激光器高功率输出条件下远场发散角控制直接决定器件的光束质量。从整体上看,半导体激光器波导结构导致其远场光束严重不对称。快轴方向可认为是基模输出,光束质量好,但发散角大,快轴发散角的压缩可有效降低快轴准直镜的孔径要求。慢轴方向为多模输出,光束质量差,该方向发散角的减小直接提高器件光束质量,是高光束半导体激光器研究领域关注的焦点。 在快轴发散角控制方面,如何兼顾快轴发散角和电光效率的问题一直是该领域研究热点,尽管多家研究机构相续获得快轴发散角仅为3o,甚至1o的器件,但是基于功率、光电效率及制备成本考虑,短期内难以推广实用。2010年初,德国费迪南德-伯恩研究所(Ferdinand-Braun-Inst itu te)的P. Crump等通过采用大光腔、低限制因子的方法获得了30o快轴发散角(95%能量范围),光电转换效率为55%,基本达到实用化器件标准。而目前商用高功率半导体激光器件的快轴发散角也由原来的80o左右(95%能量范围)降低到50o以下,大幅度降低了对快轴准直镜的数值孔径要求。 在慢轴发散角控制方面,最近研究表明,除器件自身结构外,驱动电流密度与热效应共同影响半导体激光器慢轴发散角的大小,即长腔长单元器件的慢轴发散角最易控制,而在阵列器件中,随着填充因子的增大,发光单元之间热串扰的加剧会导致慢轴发散角的增大。2009年,瑞士Bookham公司制备获得的5 mm腔长,9XX nm波段10 W商用器件,成功将慢轴发散角(95%能量范围)由原来的10o~12o降低到7o左右;同年,德国Osram公司、美国相干公司制备阵列器件慢轴发散角(95%能量范围)也达7o水平。 2.2 半导体激光标准厘米阵列发展现状 标准厘米阵列是为了获得高功率输出而在慢轴方向尺度为1 cm的衬底上横向并联集成多个半导体激光单元器件而获得的半导体激光器件,长期以来一直是大功率半导体激光器中最常用的高功率器件形式。伴随着高质量、低缺陷半导体材料外延生长技术及腔面钝化技术的提高,现有CM Bar的腔长由原来的0.6~1.0 mm增大到2.0~5.0mm,使得CM Bar输出功率大幅度提高。2008年初,美国光谱物理公司Hanxuan Li等制备的5 mm腔长,填充因子为83%的半导体激光阵列,利用双面微通道热沉冷却,在中心波长分别为808 nm,940 nm,980 nm处获得800 W/bar,1010W/bar,950 W/bar的当前实验室最高CM Bar连续功率输出水平。此外,德国的JENOPTIK公司、瑞士的Oclaro公司等多家半导体激光供应商也相续制备获得千瓦级半导体激光阵列,其中Oclaro公司的J. Müller等更是明确指出,在现有技术

工业用的大功率激光器

工业用的大功率激光器(点.一字线.十字线)可广泛用于电脑绣花机的起始定位,作效率成衣激光定位、服装钉钮点光源定位、裁布机裁布辅助标线、服装折边激光标线定位、缝纫机/裁剪机/钉钮机/自动手动断布机辅助标线定位各种。可用于钉扣机、铆钉机、开袋机、裁床、套结机、拉布机等等。方便快捷、直观实用。能较大幅度的提高工作效率。 工业用的大功率激光器用于工业和工艺待业的校正与定位。它们取代 了标尺、三角板、挡块等设备。激光能够帮助您在无法采用机械导向或在需 要双手同时工作的地方工作。直线、十字线、点、圆形或这些形状的组合并 不是您都能划出的!二维激光定位灯可以显示各种形状和尺寸的轮廓、外形 或位置。可以调节颜色和亮度,使之适合于材料表面和您所在位置的环境光 线。 工业用的大功率激光器的安装机使用简单方便,可安装在使用机械的垂直或水平面上,提供一条可见的激光标线,使得在整个生产过程中有一条可见的、非接触的定位线指导操作过程。具有方便生产操作和提高生产效率的优点。激光线可在三维空间任意微调,已达到最佳使用效果。 参数 光斑形状:一字线型 波长:532nm 635nm 650nm(可定制) 管芯功率:0~200mw(按要求定制) 工作电流:0~2000mA(可定制) 工作电压:5V 12V 24V 36V 外形尺寸:Φ16×55mm Φ16×80mm Φ22×85mm Φ26×110mm(可选择) 光束发散度:0.3~1.5mrad 出光张角:10 o~135o 光线直径:≤0.5mm @0.5m;≤1.0mm @3.0m;≤1.5mm @6.0m; 直线度:≤1.0mm @3.0m 光学透镜:光学镀膜玻璃或塑胶透镜 工作温度:-10~75℃ 储存温度:-40~85℃ 工作介质:半导体 等级:Ⅲb 可选配:专用支架、电源

浅析高功率光纤激光器

浅析高功率光纤激光器 高功率光纤激光器,是相对于光纤通讯中作为载波的低功率光纤激光器而言(功率为mW级),是定位于机械加工、激光医疗、汽车制造和军事等行业的高强度光源。高功率光纤激光器巧妙地把光纤技术与激光原理有机地融为一体,铸造了21世纪最先进和最犀利的激光器。即使是在激光技术发达的国家,光纤激光器也是尖端、神秘和充满诱惑的代名词。2002年6月,光纤激光器空降中国,震撼了中国激光学术和产业界,引起了尊至院士的深情关注! 一、光纤技术 光纤激光器的最大特点就是一根光纤穿到底,整台机器高度实现光纤一体化。而那些只在外部导光部分采用光纤传输或者LD泵浦源采用尾纤来耦合的激光器都不是真正意义上的光纤激光器。 光纤是以SiO2为基质材料拉成的玻璃实体纤维,主要广泛应用于光纤通讯,其导光原理就是光的全反射机理。普通裸光纤一般由中心高折射率玻璃芯(芯径一般为9-62.5μm)、中间低折射率硅玻璃包层(芯径一般为125μm)和最外部的加强树脂涂层组成。〈见图一〉光纤可分为单模光纤和多模光纤。单模光纤:中心玻璃芯较细(直径9μm+0.5μm),只能传一种模式的光,其模间色散很小,具有自选模和限模的功能。多模光纤:中心玻璃芯较粗(50μm+1μm),可传多种模式的光,但其模间色散较大,传输的光不纯。 用于高功率光纤激光器中的光纤不是普通的通讯光纤,而是掺杂了多种稀有离子、结构更为复杂、耐高辐射的特种光纤---双包层光纤。

双包层光纤比普通光纤在纤芯外多了一个内包层,对泵浦光而言是多模的,直径和受光角较大,能大肆吸收高亮度的多模泵浦光,在光纤内聚集大量的光子。实践证明:横截面为D型和矩形的双包层光纤具有95%的耦合效率因而得到广泛应用。对于脉冲光纤激光器而言,一个重大的课题就是如何提高光纤的耐辐射能力。目前世界上光纤激光器的单脉冲能力可以达到20,000W,一根头发丝大小的光纤如何能承受如此高的激光辐射?所以必须考虑在光纤内掺杂某种特殊离子防止光纤被烧坏。比如掺杂了铈离子的光纤就是在核辐射情况下,既不会因染色而失去透光能力,更不会受热变形。 二、传统固体激光器 激光器说白了就是一个波长转换器---波长短的泵浦光激励掺杂离子转换成长波长的光辐射,它一般由3部分组成:工作物质、谐振腔和泵浦系统。由于光纤激光器本质上属于固体激光器,所以在此仅比较一下传统Nd:YAG激光器的特性。 工作物质: 工作物质是固体激光器的心脏,它的物理性质由基质材料决定,光谱性质由激活离子内的能级结构决定。在YAG单晶体中掺入三价的Nd3+,便构成了目前广泛应用的YAG激光晶体。它主要有如下明显的特点: 1、YAG棒生长速度很慢,一般小于1mm/h。目前最大晶体棒的直径为40mm,长180mm,所以激光增益从根本上受到限制,无法实现特高功率激光输出。

激光器市场格局及发展趋势

激光器市场格局及发展趋势 一、激光器产业发展概况 激光加工技术是一种新型的绿色先进制造技术,相比传统机械加工具备明显优势,其加工方式以非接触方式进行,加工过程能耗低、环保效益高、加工速度快、低噪音、热影响小、适应性强,可加工超高硬度、高脆性、高熔点材料,并可实现自动控制,在精密加工、复杂结构加工、批量自动化生产等领域具备明显优势,被公认为“未来制造系统的共同加工手段”。 随着技术不断进步,激光技术应用领域不断拓展,适用于激光加工的材料包括金属及合金、塑料、陶瓷、玻璃、木材、皮革、树脂、橡胶等,在广泛应用于打标、雕刻、切割、焊接、钻孔、熔覆、微加工及表面改性等工业加工领域的同时,还应用于信息通讯数据储存、医疗美容、科研军事、仪器传感、显示、增材制造等新兴领域。 作为激光加工设备的核心部件的激光器,自1960年第一台红宝石激光器明问世以来,随着技术的发展,发生了巨大的变化,极大地推动了其他科学技术的发展,被认为是二十世纪人类最伟大的发明之一。近十几年来,激光器的发展更为迅速,出现了种类繁多的激光器,按照增益介质的不同,可分为光纤、固体、气体、半导体激光器等,特定增益介质输出特定波长的激光,本质决定了激光输出功率和应用领域。 图表1 激光器主要性能参数对

二、全球激光器市场规模 随着激光器技术的发展,市场应用领域不断扩宽,全球市场规模在近两年保持快速增长,到2017年市场规模达到113.3亿美元,同比增长8.9%。2017年激光器市场规模的增长驱动力主要来自于材料加工和通信领域的激光器需求持续释放。 图表 2 2012-2017年全球激光器市场规模及增长率(单位:亿美元)

高功率半导体激光器

光机电信息 Sep.2008 钛蓝宝石激光器反射镜 新加坡EdmoundOptics公司拥有一系列用于超快激光系统的钛蓝宝石激光反射镜。钛蓝宝石激光反射镜可以使激光脉冲保持平坦的群速度色散曲线,中心波长为800nm,在700~900nm范围内曲线都可以保持平坦。 反射镜的直径在12.7~25.4mm之间,厚度为 6.35mm,表面质量为10-5,表面精度为1/10波长。 镜子的强度很高,对于脉冲长度为150fs的激光脉冲或100kW/cm2的连续激光,镜子可以承受高达 0.5J/cm2的激光能量。对于730~900nm波长的偏振 光s和p偏振光,反射镜都可以做到100%的有效反射。 这些反射镜加工精细,平行度优于5arcmin.,通光口径达到85%,直径公差为+0.0/-0.2mm,厚度公差为±0.2mm。入射光角度设计为45°,用于超快激光光束的转向。 www.edmoundoptics.com 高功率半导体激光器 德国LIMO公司发布了一种高功率半导体激光 器-LIMO50-L28x28-DL795-EX473。该激光器可以形成28mm×28mm×80mm的均匀光场,输出功率达到了50W,中心波长为794.8nm±0.2nm,波长稳定性极高,光谱宽度只有0.7nm。 该激光器可靠性高,经济实用。采用热电致冷或自来水冷却的方式。结构紧凑的激光头外形尺寸为445mm×110mm×66mm,非常适用于便携式测量仪器。 www.limo.de 平顶光束生成器 StockerYale公司的平顶光束生成器是一种光束 整形模块,它可以把高斯光束转化为聚焦、准直或发散成平顶能量分布的光束,即使经过较长距离也可以保持光束能量和强度的高度均匀。 StockerYale公司的平顶光束生成器适用于紫 外、可见光以及近红外波段的激光器,易于与 StockerYale公司的Lasiris或其它类型的激光器相集 成。 www.stockeryale.com 485nm皮秒脉冲二极管激光器 德国PicoQuant公司对外发布了其485nm波长的皮秒脉冲二极管激光头。该激光头可应用于生物 名企名品 AdvancedManufacturers&Products 64

量子阱半导体激光器

量子阱半导体激光器 :本文主要叙述了量子阱半导体激光器发展背景、基本理论、主要应用与发展现状。一、发展背景 1962年后期,美国研制成功GaAs同质结半导体激光器,第一代半导体激光器产生。但 这一代激光器只能在液氮温度下脉冲工作,无实用价值。直到1967年人们使用液相外延的方法制成了单异质结激光器,实现了在室温下脉冲工作的半导体激光器。1970年,贝尔实验室有一举实现了双异质结构的在室温下连续工作的半导体激光器。至此之后,半导体激光 器得到了突飞猛进的发展。半导体激光器具有许多突出的优点:转换效率高、覆盖波段范围 广、使用寿命长、可直接调制、体积小、重量轻、价格便宜、易集成等。其发展速度之快、 应用范围之广、潜力之大是其它激光器所无法比拟的。但是,由于应用的需要,半导体激光 器的性能有待进一步提高。 80年代,量子阱结构的出现使半导体激光器出现了大的飞跃。量子阱结构源于60年代末期贝尔实验室的江崎(Esaki)和朱肇祥提出超薄层晶体的量子尺寸效应。当超薄有源层材料 后小于电子的德布罗意波长时,有源区就变成了势阱区,两侧的宽带系材料成为势垒区,电 子和空穴沿垂直阱壁方向的运动出现量子化特点。从而使半导体能带出现了与块状半导体完

全不同的形状与结构。在此基础上,根据需要,通过改变超薄层的应变量使能带结构发生变 化,发展起来了应变量子阱结构。这种所谓“能带工程”赋予半导体激光器以新的生命力, 其器件性能出现大的飞跃。具有量子阱结构的量子阱半导体激光器与双异质结半导体激光器 (DH)相比,具有阈值电流密度低、量子效应好、温度特性好、输出功率大、动态特性好、 寿命长、激射波长可以更短等等优点。目前,量子阱已成为人们公认的半导体激光器发展的 根本动力。 其发展历程大概为:1976年,人们用GaInAsP/InP实现了长波长激光器。对于激光腔 结构,Kogelnik和Shank提出了分布反馈结构,它能以单片形式形成谐振腔。Nakamura用实验证明了用光泵浦的GaAs材料形成的分布反馈激光器(DBR)。Suematsu提出了用于光通信的动态单模激光概念,并用整体激光器验证了这种想法。1977年,人们提出了所谓的面 发射激光器,并于1979年做出了第一个器件。目前,垂直腔面发射激光器(VECSEL)已用于千兆位以太网的高速网络。自从Nakamura实现了GaInN/GaN蓝光激光器,可见光半导体激 光器在光盘系统中得到了广泛应用,如CD播放器、DVD系统和高密度光存储器。1994年,一种具有全新机理的波长可变、可调谐的量子级联激光器研制成功,且最近,在此又基础上

工业级激光器技术指标

工业级激光器技术指标 相关产品:镭射定位灯、红光定位灯、红光一字定位灯、红光十字定位灯、红光小十字定位灯、服装裁剪定位灯、布料裁剪定位灯、缝纫设备定位灯、红外线对格对条定位灯、印花机专用红光定位灯、绣花机红光定位、拉布机专用红光定位灯、开袋机专用红光定位、红外线标线器、激光划线灯、裁床镭射定位灯、针车专用激光定位灯、缝纫机对位灯、平网印花机定位、鞋机定型机定位灯、后踵定型机定位灯、丰字形、七横一竖定位灯、钉珠机、钉钮机、铆钉机专用红光定位灯 产品应用:可广泛用于服装裁床、缝纫机、裁剪机、印花机、绣花机、钉钮机、钉珠机、铆钉机、拉布机、开袋机、针车、毛巾印花机、枕巾印花机、平网印花机、以及鞋机定型机、后踵定型机等工业设备的标线定位。 产品特点: 特点1.产生的红色光线清晰明亮,产品直观实用体积小巧适用于各种服装,能起辅助标线与定位作用,提高裁剪的精度,大大提高工作效率。配套的支架和电源,使用简单方便。 特点2.红外线划线仪管芯采用日本进口半导体激光二极管,内置电路板经改良,特别适于恶劣的工作环境,能有效保证产品的稳定性和使用寿命。 特点3:现代激光定位工艺与传统定位方式相比具有无可替代的优势 a.传统定位过程繁琐;激光使用简易,通电即有断电即无。 b.传统定位模糊且不准,生产过程中耗损严重;激光效果清晰定位准确。。 c.传统定位生产工艺落后、耗时、人工成本高;激光定位工艺先进,节省成本。 d.安装方便(若另配我厂生产万向转动支架,能使使用更简便);拆卸简单。 特点4:产品光斑清晰,准直性好,体积小,工业适用性强,在工业和工艺待业的校正与定位中,取代了标尺、三角板、挡块等设备。并且能够帮助您在零贰玖陆捌伍捌壹柒零捌无法采用机械导向或在需要双手同时工作的地方工作。可以调节亮度,使之适合于材料表面和您所在位置的环境光线。对人眼起到有效的保护。 特点5:专用红外线激光定位器光斑清晰、小巧、易于安装,使用简单方便。从根本解决了传统的红外线激光标线器的主要问题,如使用寿命较短、光线强度低等。激光标线器管芯采用日本进口半导体激光二极管,内置电路板经改良,具有高抗干扰性、高稳定性、抑制浪涌电流及缓启动等特点,特别适于恶劣的工作环境,能有效保证产品的稳定性和使用寿命。 产品参数: 光斑形状:圆点、一字线、十字线(大十字线、小十字线)、丰字形 光线颜色:红色绿色(可选) 输出波长: 532nm 635nm 650nm 管芯功率:10~300mW 规格:Φ10×35mm Φ12×36mm Φ12×60mm Φ16×80mm Φ22×85mm Φ26×110mm(可定制) 光学透镜:光学镀膜玻璃透镜G3 出光张角:10°~120° 直线度:≥1/5000 线宽:3米处线宽≤1.0mm 工作电压:直流 5V 使用寿命:连续使用大于8000小时 工作温度:-10℃~75℃ 储藏温度:-40℃~85℃ 附件:专用电源工业用固定支架、万向旋转支架 1、专用电源(配套专用电源,具有很强的抗干扰性、高稳定性、抑制浪涌电流及缓启动等特点,特别适于

大功率宽面808nm GaAsPAlGaAs量子阱激光器分别限制结构设计

第26卷 第12期2005年12月 半 导 体 学 报 CHIN ESE J OURNAL OF SEMICONDUCTORS Vol.26 No.12 Dec.,2005 2005206216收到,2005207221定稿 Ζ2005中国电子学会 大功率宽面808nm G aAsP/Al G aAs 量子阱激光器 分别限制结构设计 王 俊 马骁宇 林 涛 郑 凯 冯小明 (中国科学院半导体研究所光电子器件国家工程中心,北京 100083) 摘要:本文对有源区条宽100 μm 的GaAsP/Al G aAs 808nm 量子阱激光器分别限制结构进行了理论分析和设计.选取了三种情况的波导层和限制层的铝组分,分别计算和分析了波导层厚度与激光器光限制因子、最大出光功率、垂直发散角和阈值电流密度的函数关系.根据计算结果可知:当波导层和限制层铝组分为014和015时,采用窄波导结构可以获得器件的最大输出功率为1112W ,发散角为19°,阈值电流密度为266A/cm 2;采用宽波导结构可以得到器件的最大输出功率为914W ,发散角为32°,阈值电流密度为239A/cm 2. 关键词:大功率808nm 半导体激光器;G aAsP/Al GaAs 量子阱激光器;分别限制异质结构 PACC :4255P ;4260B EEACC :4320J 中图分类号:TN248.4 文献标识码:A 文章编号:025324177(2005)1222449206 1 引言 大功率808nm 半导体量子阱激光器被广泛应用于泵浦固体激光器、激光加工和激光医疗等领域.由于实际应用要求激光器的功率越来越大,人们采用各种材料和结构来提高激光器的功率.从外延片的材料和结构上看,有匹配量子阱和应变量子阱结构,含铝结构和无铝结构以及大光腔结构等[1,2].一般对808nm 半导体量子阱激光器而言,限制其输出光功率的主要因素有:高输出光功率密度引起的腔面光学灾变损伤;各种载流子非辐射复合和漏电流引起的有源区和腔面温升[3]. 由于Al GaAs 和GaAs 材料的外延技术成熟,Al GaAs/GaAs 量子阱结构是大功率808nm 半导体 量子阱激光器常用的结构.但是,由于含铝有源区容易氧化和产生暗线缺陷,腔面光学灾变功率密度不高,从而限制了激光器的功率和寿命 [4] .与含铝材料 相比,无铝材料具有高的腔面光学灾变功率密度、热导率和电导率,且不易氧化,因而有利于提高器件功率和可靠性[5].对于全无铝材料结构,虽然具有上述优点,但是由于量子阱层与垒和上限制层形成异质结的导带带阶较小,会造成较强的载流子泄漏,从而 导致阈值电流密度增加,外量子效率下降,温度特性 变差[6].因此,人们提出采用无铝材料作为有源区,而波导层和限制层采用导带带阶较大的含铝材料,如GaAsP/Al GaAs 结构.这种量子阱有源区结构具有无铝材料的优点,且量子阱层与波导层和上限制层的较大导带带阶能够有效减小漏电流,降低阈值电流密度,改善激光器温度特性.另外,GaAsP/Al 2GaAs 张应变量子阱在端面的驰豫形成非吸收窗 口,能够减少端面对光子的吸收[7]. Erbert [8]研究了GaAsP/Al GaAs 大光腔结构 量子阱激光器.在激射波长715nm 至840nm 范围内,他们获得了高的输出功率和转换效率.Sebas 2tian [9]研究了大光腔结构810nm GaAsP/Al GaAs 激光器,也得到了高的输出功率和良好的光束特性.但是到目前为止,还没有研究人员从理论上对GaAsP/Al GaAs 量子阱激光器进行分析和设计.本 文从理论上对GaAsP/Al GaAs 分别限制结构量子阱激光器进行了分析.对一定的波导层和限制层铝 组分,采用窄波导结构可以获得条宽100 μm 器件的最大输出功率为1112W ,发散角为19°,阈值电流密度为266A/cm 2;采用宽波导结构可以得到器件的最大输出功率为914W ,发散角为32°,阈值电流密度为239A/cm 2.

半导体激光器工作原理及主要参数

半导体激光器工作原理及主要参数 OFweek激光网讯:半导体激光器又称为激光二极管(LD,Laser Diode),是采用半导体材料作为工作物质而产生受激发射的一类激光器。常用材料有砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)。激励方式有电注入、电子束激励和光泵浦激励三种形式。半导体激光器件,一般可分为同质结、单异质结、双异质结。同质结激光器和单异质结激光器室温时多为脉冲器件,而双异质结激光器室温时可实现连续工作。半导体激光器的优点在于体积小、重量轻、运转可靠、能耗低、效率高、寿命长、高速调制,因此半导体激光器在激光通信、光存储、光陀螺、激光打印、激光医疗、激光测距、激光雷达、自动控制、检测仪器等领域得到了广泛的应用。 半导体激光器工作原理是:通过一定的激励方式,在半导体物质的能带(导带与价带)之间,或者半导体物质的能带与杂质(受主或施主)能级之间,实现非平衡载流子的粒子数反转,当处于粒子数反转状态的大量电子与空穴复合时便产生受激发射作用。半导体激光器的激励方式主要有三种:电注入式、电子束激励式和光泵浦激励式。电注入式半导体激光器一般是由GaAS(砷化镓)、InAS(砷化铟)、Insb(锑化铟)等材料制成的半导体面结型二极管,沿正向偏压注入电流进行激励,在结平面区域产生受激发射。电子束激励式半导体激光器一般用N型或者P型半导体单晶(PbS、CdS、ZhO等)作为工作物质,通过由外 部注入高能电子束进行激励。光泵浦激励式半导体激光器一般用N型或P型半导体单晶(GaAS、InAs、InSb等)作为工作物质,以其它激光器发出的激光作光泵激励。 目前在半导体激光器件中,性能较好、应用较广的是:具有双异质结构的电注入式GaAs 二极管半导体激光器。 半导体光电器件的工作波长与半导体材料的种类有关。半导体材料中存在着导带和价带,导带上面可以让电子自由运动,而价带下面可以让空穴自由运动,导带和价带之间隔着一条禁带,当电子吸收了光的能量从价带跳跃到导带中去时就把光的能量变成了电,而带有电能的电子从导带跳回价带,又可以把电的能量变成光,这时材料禁带的宽度就决定了光电器件的工作波长。 小功率半导体激光器(信息型激光器),主要用于信息技术领域,例如用于光纤通信及光交换系统的分布反馈和动态单模激光器(DFB-LD)、窄线宽可调谐激光器、用于光盘等信息处理领域的可见光波长激光器(405nm、532nm、635nm、650nm、670nm)。这些 器件的特征是:单频窄线宽、高速率、可调谐、短波长、光电单片集成化等。 大功率半导体激光器(功率型激光器),主要用于泵浦源、激光加工系统、印刷行业、生物医疗等领域。 半导体激光器主要参数: 波长nm:激光器工作波长,例如405nm、532nm、635nm、650nm、670nm、690nm、780nm、810nm、860nm、980nm。 阈值电流Ith:激光二极管开始产生激光振荡的电流,对小功率激光器而言其值约在数 十毫安。

高功率激光器的工艺市场前景及应用

高功率半导体激光器的前沿技术、工业应用 及发展前景 摘要 半导体激光器广泛应用在通讯、计算机和消费电子行业。这些激光器主要应用在需要提供毫瓦级能量的系统中。然而,同时高功率半导体激光器已经达到千瓦级。通过特殊的冷却技术和装备,又如组合光束和组成光束技术,高功率半导体激光器得以实现。这样的系统并不是只作为电子管二极管新的高效率和高可靠性的泵源,同样在材料处理中作为直接的能量来源。在这项应用中,高功率半导体激光器进入到了工业制造领域。这篇文章描述了半导体激光器技术和应用。德国国家研究计划“标准的半导体激光器工具”(MDS)在5年里集中研究了高功率半导体激光器,给出了关于未来的应用和新颖的应用的想法。除了改进激光束质量,这个项目的目的还有实现灵活的激光束几何形状来配合不同的积木式组合应用。 1、绪论 早在1962年,就证明了在低温学温度下,在GaAs 或者GaAsP 激光二极管领域的激光效应,而且一些年后发展到在室温环境下实现AlGaAs/GaAs双异质结构。在当时,无论如何可以肯定的是,在他们只能提供短时间的低能量却又价格昂贵时,没有人能预见到这些激光器能够在激光材料处理中发挥如此重要的作用。然而,通过成功的晶体结构研究,详细的分析失效机理和相当多的制造工艺的改进,激光二极管成功的进入通讯、消费电子和计算机市场。并且占据了惊人的份额:在2000年,总共的半导体激光器市场达到了66亿US$;事实上半导体激光器大约占据了整个激光器的2/3市场。然而,在这么高的数字中,只有1.3%(8500万$)是用在固态激光器的泵埔模块中,0.2%(1130万$)是直接用在材料处理。同样的,如今在整个激光材料处理市场中(13.33亿$),半导体泵埔固态激光器占4.5%,半导体激光器直接应用的占0.9%。然而,由于它们的小尺寸和质量轻的特点,使得它们更容易组合;由于它们的高效率和可靠性,使得它们运行成本低;半导体激光器在作为固态激光器的泵埔光源和作为材料处理的一种新的激光源中获得了广泛的关注。

量子阱半导体激光器简述

上海大学2016~2017 学年秋季学期研究生课程考试 (论文) 课程名称:半导体材料(Semiconductor Materials) 课程编号:101101911 论文题目: 量子阱及量子阱半导体激光器简述 研究生姓名: 陈卓学号: 16722180 论文评语: (选题文献综述实验方案结论合理性撰写规范性不足之处) 任课教师: 张兆春评阅日期: 课程考核成绩

量子阱及量子阱半导体激光器简述 陈卓 (上海大学材料科学与工程学院电子信息材料系,上海200444) 摘要: 本文接续课堂所讲的半导体激光二极管进行展开。对量子阱结构及其特性以及量子阱激光器的结构特点进行阐释。最后列举了近些年对量子阱激光器的相关研究,包括阱层设计优化、外部环境的影响(粒子辐射)、电子阻挡层的设计、生长工艺优化等。 关键词:量子阱量子尺寸效应量子阱激光器工艺优化

一、引言 半导体激光器自从1962年诞生以来,就以其优越的性能得到了极为广泛的应用[1],它具有许多突出的优点:转换效率高、覆盖波段范围广、使用寿命长、可直接调制、体积小、重量轻、价格便宜、易集成等。随着新材料新结构的不断涌现和制造工艺水平的不断提高,其各方面的性能也进一步得到改善,应用范围也不在再局限于信息传输和信息存储,而是逐渐渗透到材料加工、精密测量、军事、医学和生物等领域,正在迅速占领过去由气体和固体激光器所占据的市场。 20世纪70年代的双异质结激光器、80年代的量子阱激光器和90年代出现的应变量子阱激光器是半导体激光器发展过程中的三个里程碑。[2]制作量子阱结构需要用超薄层的薄膜生长技术,如分子外延术(MBE)、金属有机化合物化学气相淀积(MOCVD)、化学束外延(CBE)和原子束外延等。[3]我国早在1974年就开始设计和制造分子束外延(MBE)设备,而直到1986年才成功的制造出多量子阱激光器,在1992年中科院半导体所(ISCAS)使用国产的MBE设备制成的GRIN-SCH InGaAs/GaAs应变多量子阱激光器室温下阈值电流为1.55mA,连续输出功率大于30mW,输出波长为1026nm。[4] 量子阱特别是应变量子阱材料的引入减少了载流子的一个自由度,改变了K 空间的能带结构,极大的提高了半导体激光器的性能,使垂直腔表面发射激光器成为现实,使近几年取得突破的GaN蓝绿光激光器成为新的研究热点和新的经济增长点,并将使半导体激光器成为光子集成(PIC)和光电子集成(OEIC)的核心器件。 减少载流子一个自由度的量子阱已经使半导体激光器受益匪浅,再减少一个自由度的所谓量子线(QL)以及在三维都使电子受限的所谓量子点(QD)将会使半导体激光器的性能发生更大的改善,这已经受到了许多科学家的关注,成为半导体材料的前沿课题。 二、量子阱的结构与特性 1、态密度、量子尺寸效应与能带 量子阱由交替生长两种半导体材料薄层组成的半导体超晶格产生。超晶格结构源于60年代末期贝尔实验室的江崎(Esaki)和朱肇祥提出超薄层晶体的量子尺寸效应。当超薄有源层材料后小于电子的德布罗意波长时,有源区就变成了势阱区,两侧的宽带系材料成为势垒区,电子和空穴沿垂直阱壁方向的运动出现量子化特点。从而使半导体能带出现了与块状半导体完全不同的形状与结构。1970年首次在GaAs半导体上制成了超晶格结构。江崎(Esaki)等人把超晶格分为两类:成分超晶格和掺杂超晶格。理想超晶格的空间结构及两种材料的能带分布分别如图1和图2。

半导体激光器工作原理

半导体激光器工作原理 半导体激光器工作原理是:通过一定的激励方式,在半导体物质的能带(导带与价带)之间,或者半导体物质的能带与杂质(受主或施主)能级之间,实现非平衡载流子的粒子数反转,当处于粒子数反转状态的大量电子与空穴复合时便产生受激发射作用。半导体激光器的激励方式主要有三种:电注入式、电子束激励式和光泵浦激励式。电注入式半导体激光器一般是由GaAS(砷化镓)、InAS(砷化铟)、Insb (锑化铟)等材料制成的半导体面结型二极管,沿正向偏压注入电流进行激励,在结平面区域产生受激发射。电子束激励式半导体激光器一般用N型或者P型半导体单晶(PbS、CdS、ZhO等)作为工作物质,通过由外部注入高能电子束进行激励。光泵浦激励式半导体激光器一般用N型或P型半导体单晶(GaAS、InAs、InSb等)作为工作物质,以其它激光器发出的激光作光泵激励。

目前在半导体激光器件中,性能较好、应用较广的是:具有双异质结构的电注入式GaAs二极管半导体激光器。 半导体光电器件的工作波长与半导体材料的种类有关。半导体材料中存在着导带和价带,导带上面可以让电子自由运动,而价带下面可以让空穴自由运动,导带和价带之间隔着一条禁带,当电子吸收了光的能量从价带跳跃到导带中去时就把光的能量变成了电,而带有电能的电子从导带跳回价带,又可以把电的能量变成光,这时材料禁带的宽度就决定了光电器件的工作波长。 小功率半导体激光器(信息型激光器),主要用于信息技术领域,例如用于光纤通信及光交换系统的分布反馈和动态单模激光器(DFB-LD)、窄线宽可调谐激光器、用于光盘等信息处理领域的可见光波长激光器(405nm、532nm、635nm、650nm、670nm)。这些器件的特征是:单频窄线宽、高速率、可调谐、短波长、光电单片集成化等。大功率半导体激光器(功率型激光器),主要用于泵浦源、激光加工系统、印刷行业、生物医疗等领域。 半导体激光器主要参数: 1.波长nm:激光器工作波长,例如405nm、532nm、635nm、650nm、670nm、690nm、780nm、810nm、860nm、980nm。 2.阈值电流Ith:激光二极管开始产生激光振荡的电流,对小功率激光器而言其值约在数十毫安。 3.工作电流Iop:激光二极管达到额定输出功率时的驱动电流,此

44瓦超高功率808nm半导体激光器设计和制作

44瓦超高功率808 nm半导体激光器设计与制作 仇伯仓,胡海,何晋国 深圳清华大学研究院 深圳瑞波光电子有限公司 1. 引言 半导体激光器采用III-V化合物为其有源介质,通常通过电注入,在有源区通过电子与空穴复合将注入的电能量转换为光子能量。与固态或气体激光相比,半导体激光具有十分显著的特点:1)能量转换效率高,比如典型的808 nm高功率激光的最高电光转换效率可以高达65%以上 [1],与之成为鲜明对照的是,CO2气体激光的能量转换效率仅有10%,而采用传统灯光泵浦的固态激光的能量转换效率更低, 只有1%左右;2)体积小。一个出射功率超过10 W 的半导体激光芯片尺寸大约为0.3 mm3, 而一台固态激光更有可能占据实验室的整整一张工作台;3)可靠性高,平均寿命估计可以长达数十万小时[2];4)价格低廉。半导体激光也同样遵从集成电路工业中的摩尔定律,即性能指标随时间以指数上升的趋势改善,而价格则随时间以指数形式下降。正是因为半导体激光的上述优点,使其愈来愈广泛地应用到国计民生的各个方面,诸如工业应用、信息技术、激光显示、激光医疗以及科学研究与国防应用。随着激光芯片性能的不断提高与其价格的持续下降,以808 nm 以及9xx nm为代表的高功率激光器件已经成为激光加工系统的最核心的关键部件。高功率激光芯片有若干重要技术指标,包括能量转换效率以及器件运行可靠性等。器件的能量转换效率主要取决于芯片的外延结构与器件结构设计,而运行可靠性主要与芯片的腔面处理工艺有关。本文首先简要综述高功率激光的设计思想以及腔面处理方法,随后展示深圳清华大学研究院和深圳瑞波光电子有限公司在研发808nm高功率单管激光芯片方面所取得的主要进展。 2.高功率激光结构设计 图1. 半导体激光外延结构示意图

相关主题
文本预览
相关文档 最新文档