当前位置:文档之家› 绿色节能PWM功率开关_CR533X

绿色节能PWM功率开关_CR533X

绿色节能PWM功率开关_CR533X
绿色节能PWM功率开关_CR533X

启达科技(香港)有限公司 成都启臣微电子有限公司

https://www.doczj.com/doc/d62062360.html,

CR533X —35/36/37

原边控制原边控制高高精度恒流/恒压PWM 功率开关

主要特点

恒压和恒流控制

全电压输出电压精度可达±5% ±1%的内部基准电压源 内置高压MOSFET

原边控制模式,无需TL431和光耦 非连续模式下的反激拓扑 具有软启动功能 频率抖动

恒流和输出功率可调 内置次级电压采样控制器

可调式线损补偿 欠压锁定 逐周期电流限制 峰值电流限制 过温保护

过压保护和电源箝位 内置前沿消隐

亚微米高压BiCMOS 工艺 DIP-8L 、SOP-8L 绿色封装

应用

AC/DC 电源适配器 DVD/DVB 电源 充电器

ADSL 等无线路由器开关电源 LED 照明电源

概述

CR533X 是一款基于原边控制模式、±5%精度的PWM 功率开关,无需TL431和光耦,能应用于小功率AC /DC 电源适配器、LED 照明电源和充电器,最大功率为12W 。芯片内置了恒流/恒压两种控制方式,其典型的控制曲线如图1所示。

图1 典型的恒流/恒压曲线

在恒流控制时,恒流值和输出功率可以通过CS 引脚的限流电阻R S 设定;在恒压控制时,芯片在INV 脚采样辅助绕组的电压,进而调整输出。在恒压控制时还采用了多种模式的控制方式,既保证了芯片的高性能和高精度,又保证了高转换效率。此外,通过内置的线损补偿电路保证了输出电压的高精度。

CR533X 具有软启动功能,并具有一系列完善的保护措施,包括逐周期电流限制、峰值电流限制、过温保护、过压保护、电源箝位和欠压锁定功能。此外,芯片内部设置的频率抖

动功能和软驱动功能保证了芯片在工作时具有良好的EMI 性能。

引脚排列图(DIP-8L & SOP-8L)

启达科技(香港)有限公司成都启臣微电子有限公司

https://www.doczj.com/doc/d62062360.html,

启达科技(香港)有限公司 成都启臣微电子有限公司

https://www.doczj.com/doc/d62062360.html,

功能框图

极限参数

符号 参数

值 单位 V DD 工作电压

30 V V Drain 高压MOSFET 漏端电压(关闭状态) -0.3 to 650

V I VDD V DD 箝位的连续电流 10 mA V COMP COMP 引脚工作电压 -0.3 to 7V V V CS CS 引脚工作电压 -0.3 to 7V V V INV INV 引脚工作电压 -0.3 to 7V V ESD 能力-人体模式 2500 V ESD ESD 能力-机械模式 250 V 20秒 DIP-8L 260 ℃ T L 焊接温度 20秒 SOP-8L

260 ℃ T STG

储存温度范围 -55 to + 150 ℃ T J

工作结温范围

-20 to + 150

推荐工作推荐工作环境环境

符号

参数

最小~最大

单位 V DD VDD 电源电压 12~23 V T OA 工作环境温度

-20~85 ℃ CR5335最大输出功率(适配器) SOP-8L 5~7 W CR5336最大输出功率(适配器) DIP-8L 6~8 W P O (85-265V AC )

CR5337最大输出功率(适配器) DIP-8L

7~12

W

启达科技(香港)有限公司 成都启臣微电子有限公司

https://www.doczj.com/doc/d62062360.html,

电气特性 (Ta=25°C (除了另作说明), V DD = 16V )

参数 描述

测试条件

最小

典型

最大

单位

供电供电电源部分电源部分 I DD(ST) 启动电流 V DD =13V

5 20 uA I DD(OP) 工作电流

INV=2V ,CS=0V ,V DD =20V 2.5 3.5 mA UVLO(ON) 进入欠压锁定的阈值电压 VDD 下降时 7.5 8.5 10 V UVLO(OFF) 退出欠压锁定的阈值电压 VDD 上升时

13.5 14.5 16.0 V V th(OVP) 过压保护的阈值电压 VDD 上升直至输出关断 27.5 29.5 31.5 V V DD_clamp

电源箝位电压

IDD=10mA

30.5

32.5

34.5

V

电流检测输入部分 T LEB 前沿消隐时间 540 ns V th(OC) 过流保护阈值 870 900 930 mV T d(OC) 过流保护延迟 150 ns R SENSE_IN SENSE 输入阻抗 50 Kohm T SS

软启动时间

10

ms

恒压部分 f Nom 正常工作频率

60 KHz f start

INV=0V ,Comp=5V

14

KHz

误差放大器部分 V ref_EA 误差放大器的输入基准电压 1.98 2 2.02 V G DC 误差放大器的直流增益

60 dB I _COMP_MAX

线损补偿最大电流

INV=2V ,COMP=0V

42

uA

功率MOSFET 部分 BVdss

MOSFET 漏源击穿电压

V GS =0V , I DS =250uA 620 V CR5335 9 11 ? CR5336 8.5 9.0 ? R DS(ON)*

漏源之间静态导通电阻

V GS =10V , I DS =1A

CR5337

4.5

5.0

?

过温保护部分 T OTP

过温保护点

160

频率抖动部分 f △OSC

频率抖动范围

-4

4

%

* 集成化功率MOSFET 的内阻和封装形式、散热、环境温度都有关系,本说明书所给值为室温下分立封装的MOSFET 内阻。

启达科技(香港)有限公司 成都启臣微电子有限公司

https://www.doczj.com/doc/d62062360.html,

工作描述

启动电流和启动控制

CR533X 仅仅需要很低的启动电流就可以迅速的达到启动电压点UVLO(off),从而使芯片开始工作。实际应用时,只需要一个阻值非常大的电阻就能满足芯片的快速启动,从而使得功率损耗到最小。启动电阻提供了从高压端到VDD 旁路电容的直流通路,为芯片提供启动电流,启动电流小于20uA 。一旦VDD 超过UVLO (off ),芯片就进入软启动状态,使CR533X 的峰值电流电压逐渐从0V 增加到0.9V ,用以减轻在启动时对电路元件的冲击。VDD 的旁路电容一直为芯片提供供电直到输出电压足够高以至于能够支撑VDD 通过辅助绕组供电为止。

恒流工作

CR533X 的恒压/恒流特征曲线如图1所示。CR533X 被设计应用于工作在非连续模式下的反激式系统中。在正常工作时,当INV 电压低于内部2.0V 的基准电压好时,系统工作在恒流模式,否则系统工作在恒压模式。 当次级输出电流达到了系统设定的最大电流时,系统就进入恒流模式,并且会引起输出电压的下降。随着输出电压的下降,反馈电压也跟着下降,芯片内部的VCO 将会调整开关的频率,以使输出功率保持和输出电压成正比,其结果就是使输出电流保持恒定。这就是恒流

的原理。在恒流模式下,无论输出电压如何变化,输出电流为一常数。

在作为充电器应用时,先是恒流充电直到接近电池充饱的状态,随后再进行恒压充电。 在CR533X 中, 恒流值和最大输出功率可以通过外部的限流电阻RS 来设定。输出功率的大小随着恒流值的变化而变化。系统功率大小,主要决定于原边电感量的大小;在系统功率范围内RS 越大,恒流值就越小,输出功率也越小;在系统功率范围内RS 越小,恒流值就越大,输出功率也越大。具体参照图2所示。

图2 输出功率随Rs 的变化曲线

恒压工作

在恒压控制时,CR533X 利用辅助绕组通过电阻分压器从INV 采样输出电压,并将采样的输出电压与芯片内部的基准电压通过误差放大器进行比较放大,从而调整输出电压。当采样电压高于内部基准电压,误差放大器的输出电压COMP 减小,从而减小开关占空比;当采样电压低于内部基准电压时,误差放大器

启达科技(香港)有限公司

成都启臣微电子有限公司

https://www.doczj.com/doc/d62062360.html,

的输出电压COMP 增加,从而增大开关占空比,通过这种方式稳定输出电压。

在作为AC/DC 电源应用时,正常工作时芯片处于恒压状态。在恒压模式下,系统输出电压通过原边进行控制。

为了实现CR533X 的恒流/恒压控制,系

统必须工作在反激式系统的非连续模式。(参照典型应用电路)在非连续模式的反激式转换器中,输出电压能够通过辅助绕组来设定。当功率MOSFET 导通时,负载电流由输出滤波电容CO 提供,原边电流呈斜坡上升,系统将能量存储在变压器的磁芯中,当功率MOSFET 关断时,存储在变压器磁芯中的能量传递到输出。

此时辅助绕组反射输出电压,具体如图3所示,计算公式如下:

()AUX AUX

O S

N

V V V N =?+? (1)

其中?V 是指整流二极管上的压降。

图3. 辅助绕组电压波形

通过一个电阻分压器连接到辅助绕组和INV 之间,这样,通过芯片内部的控制算法,辅助绕组上的电压在去磁结束时被采样并保

持,直至下一次采样。采样到的电压和内部2.0V 的基准电压比较,将其误差放大。误差放大器的输出COMP 反映负载的状况,控制脉宽调制开关的占空比,进而调整输出电压,这样就实现了恒压控制。

线损补偿

随着负载电流的增加,导线上的电压降也会增加,导致输出电压的减小。CR533X 内置的线损补偿电路能够补偿导线的损耗压降,从而稳定输出电压。当引入了导线损耗压降以后,辅助绕组反射输出电压的计算公式(1)将会被修正为

()AUX

AUX O cable S

N V V V V N =

?+?+ (2) 其中Cable V 为导线上的损耗压降。为了补偿导线上的损耗压降,一个电压偏移量被叠加到INV 上。这个电压偏移量是由一个内部电流

C I 流入电阻分压器产生的,具体的控制电路

如图4所示。

图4 线损补偿电路

线损补偿电流C I 与误差放大器的输出COMP 电压成反比,因此,也与输出负载电

启达科技(香港)有限公司 成都启臣微电子有限公司

https://www.doczj.com/doc/d62062360.html,

流成反比。基于以上原理,线损补偿得以实现,具体的计算公式如下:

1(1)1()2AUX ref C O cable S

N R V I R V V V R N +?=?+?+(3)

当系统从满载变到空载的过程中,叠加到INV 的电压偏移量将会增加。在应用时可以通过调节电阻分压器中电阻的大小来调整补偿的多少。在恒压模式下,引入线损补偿提高了输出电压的精度和负载调整率。

开关的工作频率

CR533X 的开关频率受控于负载状况和工作模式。内部电路设定最大开关频率为60KHz 。

在反激模式的断续工作时,最大输出功率通过以下公式计算:

2

12

MAX P SW P

Po L F I =

(4) 其中 L P 是变压器原边电感值,I P 是原边峰值电流。

为了系统能够安全的工作,原边采样电路必须工作在非连续模式。为了防止系统进入连续工作模式,开关频率被内部环路锁定,此时的开关频率为:

12SW Demag

F T =

(5)

由于T Demag 与电感的大小成反比,因此,电感L P 和F SW 的乘积为一定值,从而限制了最大的输出功率,避免了系统进入连续工作模式。

电流检测和前沿消隐

CR533X 采样功率MOSFET 上的电流是通过CS 来实现的。CR533X 不仅设计了逐周期的电流限制,而且设计了峰值电流限制,最大的峰值电流电压为0.9V 。因此,MOSFET 上最大的峰值电流为:

(max)0.9peak S

V

I R =

(6) CR533X 在CS 端设计了一个约为540ns 的前沿消隐时间用来防止在开关导通时刻错误的过流保护被触发。因此,不需要在CS 端在增加额外的RC 滤波电路。采样电流的输入信号CS 和误差放大器的输出COMP 共同决定开关的占空比,稳定输出。

频率抖动和软驱动

为了改善CR533X 系统的EMI 特性,芯片内部采用了两种方式。其中一种方式是采用频率抖动,即在CR533X 正常工作频率的基础上叠加一个微小的扰动。也即是说,内部振荡器的频率被调制用来分散谐波干扰能量,分散的能量能够最小化EMI 带宽。另一种方式是软驱动,即逐渐打开功率MOSFET 。当提

供给功率MOSFET 的栅驱动太强时,EMI 特性会变差;当提供给功率MOSFET 的栅驱动太弱时,开关损耗又会加大,因此需要在EMI 特性和开关损耗之间寻求折衷来提供合适的栅驱动。CR533X 采用了软驱动和图腾柱输出结构,既获得了很好的EMI 特性,又降低了开关损耗。频率抖动和软驱动的综合应用使系

启达科技(香港)有限公司 成都启臣微电子有限公司

https://www.doczj.com/doc/d62062360.html,

统的EMI 特性获得了很大的改善。

保护控制

CR533X 为了确保系统的正常工作内置了多重保护措施。当这些保护措施一旦被触发,将会关断MOSFET 。这些保护措施包括逐周期的电流限制、峰值电流限制、过温保护、电源箝位、软启动、欠压锁定等。芯片的供电

电源VDD 由辅助绕组提供。当VDD 低于进入欠压锁定的阈值电压时,开关将会被关断,随后系统自动进入重启状态。CR533X 每次的重启都具有软启动功能。

启达科技(香港)有限公司 成都启臣微电子有限公司

https://www.doczj.com/doc/d62062360.html,

封装尺寸 DIP-8L

尺寸描述

毫米

英寸

符号

最小

典型

最大

最小

典型

最大

A

5.334

0.210

A1 0.381

0.015

A2 3.175

3.302 3.429

0.125

0.130 0.135

b 1.524 0.060 b1

0.457

0.018

D 9.017

9.271 10.160

0.355

0.365 0.400

E

7.620

0.300

E1 6.223

6.350 6.477

0.245

0.250 0.255

e

2.540

0.100

L 2.921 3.302 3.810 0.115 0.130 0.150 eB 8.509 9.017 9.525 0.335 0.355 0.375 θ?

0?

7?

15?

0?

7?

15?

启达科技(香港)有限公司 成都启臣微电子有限公司

https://www.doczj.com/doc/d62062360.html,

SOP-8L

尺寸描述

毫米

英寸 符号

最小

典型

最大

最小

典型

最大

A 1.346 1.752 0.053 0.069 A1 0.101

0.254

0.004

0.010

b 0.406 0.016 c

0.203

0.008

D 4.648 4.978 0.183 0.196

E 3.810

3.987 0.150

0.157 e 1.016

1.270 1.524 0.040 0.050 0.060

F

0.381X45°

0.015X45°

H 5.791 6.197 0.228

0.244 L 0.406 1.270 0.016 0.050 θ?

PWM功率放大电路

PWM功率放大电路 ——卢浩天 LC梦创电子制作工作室 一、PWM功率放大原理 PWM功放电路有单极性和双极性之分。双极性指在一个PWM周期内,电机电枢电压正、负极性改变一次;单极性指PWM功放管工作时,有一个PWM信号端和一个方向控制端,在电机正转或反转时,仅有对应的一对功放管通电,而另一对功放管截止。因此,电机电枢在正转或反转时,正、负极性是固定的,即是单极性的。 若忽略晶体管的管压降,可以认为PWM功率放大管的输出电平等于电源电压,即||=。图1描绘了电枢的电压波形和电流波形。在图中,为PWM UU T CAB脉冲周期,为正脉冲宽度,为负脉冲宽度。电枢两端的电流是一个脉动的连TT hP续电流,从图可看出,电枢两端的电流是一个脉动的连续电流,加快PWM的切换频率,电流的脉动就变小,结果近似于直流信号的效果,使电机均匀旋转。同时,如果改变PWM 的脉冲的宽度,电枢中的平均电流也将变化,电机的转速便将随之改变,这就是PWM调速的原理。 在图中,PWM脉冲频率决定了电枢电流的连续性,从而也决定了电机运行的平稳性。如果脉冲频率切换频率选择不当,电机的低速性能有可能不理想,容易烧坏晶体管,而且由于电流不连续,电机有可能产生剧烈震荡,甚至出现啸叫现象,这些都是不允许的。因此,在设

计PWM功率放大器时,要慎重选择切换频率。为了克服静摩擦,改善运行特性,切换频率应能使电机轴产生微振,即: 式中,为转矩系数,(为电机电磁常数、为励磁磁通),U?KC?KC?CTMMT.为功放电源,为电枢电感,为电机静摩擦力矩。TL SA另外,选择切换频率具体还应考虑以下几个方面: (1)微振的最大角位移应小于允许的位置误差。在伺服系统中,假设要求位置误差小于,则要求切换频率满足下式:?式中,为电机及负载的转动惯量。J(2)应尽量减小电机内产生的高频功耗。PWM 脉冲信号的谐波分量将引起电机内部的功耗,降低效率。为此切换频率应足够高,使电机电枢感抗大大超过电枢内阻,即要求 式中,是电机电枢电阻。R A(3)应当远远大于系统的固有频率,防止系统固有振荡。 实际设计时应综合考虑上述条件,在1000Hz至数万Hz的范围内选取PWM切换频率。特别需要强调的是,由于伺服电机的电枢电感较小,如果频率不够高,交流分量过大,很容易烧毁功放管。不过功放管的开关频率总有一个限度,对大功率功放管来说,开关频率越高,制造工艺难度越大,成本也越高。因此,用户要根据自己的实际需要确定有关参数,使自己构建的功率放大器有较高的性能价格比。 二、标准的PWM功率放大器 图2举出了一个实际的标准双极性PWM功率放大器。它是一个典型的H型功放,四个功放管分别采用NPN型达林顿管TIP122和PNP 型达林顿管TIP127。PWM脉冲信号通过光电耦合器件4N35加到晶

1203P60 PWM开关电源芯片

NCP1203 PWM Current?Mode Controller for Universal Off?Line Supplies Featuring Standby and Short Circuit Protection Housed in SOIC?8 or PDIP?8 package, the NCP1203 represents a major leap toward ultra?compact Switchmode Power Supplies and represents an excellent candidate to replace the UC384X devices. Due to its proprietary SMARTMOS t Very High V oltage Technology, the circuit allows the implementation of complete off?line AC?DC adapters, battery charger and a high?power SMPS with few external components. With an internal structure operating at a fixed 40 kHz, 60 kHz or 100 kHz switching frequency, the controller features a high?voltage startup FET which ensures a clean and loss?less startup sequence. Its current?mode control naturally provides good audio?susceptibility and inherent pulse?by?pulse control. When the current setpoint falls below a given value, e.g. the output power demand diminishes, the IC automatically enters the so?called skip cycle mode and provides improved efficiency at light loads while offering excellent performance in standby conditions. Because this occurs at a user adjustable low peak current, no acoustic noise takes place. The NCP1203 also includes an efficient protective circuitry which, in presence of an output over load condition, disables the output pulses while the device enters a safe burst mode, trying to restart. Once the default has gone, the device auto?recovers. Finally, a temperature shutdown with hysteresis helps building safe and robust power supplies. Features ?Pb?Free Packages are Available ?High?V oltage Startup Current Source ?Auto?Recovery Internal Output Short?Circuit Protection ?Extremely Low No?Load Standby Power ?Current?Mode with Adjustable Skip?Cycle Capability ?Internal Leading Edge Blanking ?250 mA Peak Current Capability ?Internally Fixed Frequency at 40 kHz, 60 kHz and 100 kHz ?Direct Optocoupler Connection ?Undervoltage Lockout at 7.8 V Typical ?SPICE Models Available for TRANsient and AC Analysis ?Pin to Pin Compatible with NCP1200 Applications ?AC?DC Adapters for Notebooks, etc. ?Offline Battery Chargers ?Auxiliary Power Supplies (USB, Appliances, TVs, etc.) SOIC?8 D1, D2 SUFFIX CASE 751 1 MARKING DIAGRAMS PIN CONNECTIONS PDIP?8 N SUFFIX CASE 626 8 xx= Specific Device Code A= Assembly Location WL, L= Wafer Lot Y, YY= Year W, WW= Work Week Adj HV FB CS GND NC V CC Drv (Top View) xxxxxxxxx AWL YYWW 1 8 See detailed ordering and shipping information in the package dimensions section on page 12 of this data sheet. ORDERING INFORMATION https://www.doczj.com/doc/d62062360.html, 查询1203P60供应商

相关开关电源原理及电路图

相关开关电源原理及电路图 2012-06-03 17:39:37 来源:21IC 关键字:开关电源电路图 什么是开关电源?所谓开关电源,故名思议,就是这里有一扇门,一开门电源就通过,一关门电源就停止通过,那么什么是门呢,开关电源里有的采用可控硅,有的采用开关管,这两个元器件性能差不多,都是靠基极、(开关管)控制极(可控硅)上加上脉冲信号来完成导通和截止的,脉冲信号正半周到来,控制极上电压升高,开关管或可控硅就导通,由220V整流、滤波后输出的300V电压就导通,通过开关变压器传到次级,再通过变压比将电压升高或降低,供各个电路工作。振荡脉冲负半周到来,电源调整管的基极、或可控硅的控制极电压低于原来的设置电压,电源调整管截止,300V电源被关断,开关变压器次级没电压,这时各电路所需的工作电压,就靠次级本路整流后的滤波电容放电来维持。待到下一个脉冲的周期正半周信号到来时,重复上一个过程。这个开关变压器就叫高频变压器,因为他的工作频率高于50HZ低频。那么推动开关管或可控硅的脉冲如何获得呢,这就需要有个振荡电路产生,我们知道,晶体三极管有个特性,就是基极对发射极电压是0.65-0.7V是放大状态,0.7V以上就是饱和导通状态,-0.1V- -0.3V就工作在振荡状态,那么其工作点调好后,就靠较深的负反馈来产生负压,使振荡管起振,振荡管的频率由基极上的电容充放电的时间长短来决定,振荡频率高输出脉冲幅度就大,反之就小,这就决定了电源调整管的输出电压的大小。那么变压器次级输出的工作电压如何稳压呢,一般是在开关变压器上,单绕一组线圈,在其上端获得的电压经过整流滤波后,作为基准电压,然后通过光电耦合器,将这个基准电压返回振荡管的基极,来调整震荡频率的高低,如果变压器次级电压升高,本取样线圈输出的电压也升高,通过光电耦合器获得的正反馈电压也升高,这个电压加到振荡管基极上,就使振荡频率降低,起到了稳定次级输出电压的稳定,太细的工作情况就不必细讲了,也没必要了解的那么细的,这样大功率的电压由开关变压器传递,并与后级隔开,返回的取样电压由光耦传递也与后级隔开,所以前级的市电电压,是与后级分离的,这就叫冷板,是安全的,变压器前的电源是独立的,这就叫开关电源。 图开关电源原理图1

pwm开关型功率放大器

电力电子技术 课程设计报告 题目PWMf关型功率放大器的设计 专业电气工程及其自动化 班级电气 学号 学生姓名 指导教师 2008年春季学期 起止时间:2008年6月23日至2008年6月27日

一、总体设计 1 ?主电路的选型(方案设计)

经过对设计任务要求的总体分析,明确应该使用电力电子组合变流中的间接交流变流的思想进行设计,因为任务要求频率是可变的,故选择交直交变频电路(即VVVF 电源)。交直交变频电路有两种电路:电压型和电流型。在逆变电路中均选用双极性调制方式。 方案一:采用电压型间接交流变流电路。其中整流部分采用单相桥式全控整流电路,逆变部分采用单相桥式PWM e变电路,滤波部分为LC滤波,负载为阻感性。电路原理图如下所示: 方案二:采用电压型间接交流变流电路。其中整流部分采用单相全桥整流电路,逆变部分采用单相桥式PWM K变电路,滤波部分为LC滤波,负载为阻感性。电路原理图如下所示: 方案三:采用电压型间接交流变流电路。其中整流部分采用单相桥式PWM 整流电路,逆变部分采用单相桥式PWM e变电路,滤波部分为LC滤波,负载为阻感

性。电路原理图如下所示: 分析: 方案一中整流电路与逆变电路都采用全控型可以通过控制a角的大小来控制Ud 的大小。 方案二中的整流电路是单相全桥整流电路,属于不可控型。Ud大小不可变。 方案三采用双PWM&路。整流电路和逆变电路的构成可以完全相同,交流电源通过交流电抗器和整流电路联接,通过对整流电路进行PWMI制,可以使输入电流为正弦波并且与电源电压同相位,因而输入功率因数为1,并且中间 直流电路的电压可以调整。但由于控制较复杂,成本也较高,实际应用还不多,故此处没有选用。 经过分析我选用了方案一。其中控制部分采用双极性PWM波控制触发,从而控制负载电流和电压。由于逆变部分采用电压型逆变电路,所以当选用电阻性负载时其电流大致呈正弦波,电压呈矩形波。

常见几种开关电源工作原理及电路图

一、开关式稳压电源的基本工作原理 开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式使用得较多,在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制型。因此下面就主要介绍调宽式开关稳压电源。 调宽式开关稳压电源的基本原理可参见下图。 对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。直流平均电压U。可由公式计算, 即Uo=Um×T1/T 式中Um为矩形脉冲最大电压值;T为矩形脉冲周期;T1为矩形脉冲宽度。 从上式可以看出,当Um 与T 不变时,直流平均电压Uo 将与脉冲宽度T1 成正比。这样,只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可以达到稳定电压的目的。 二、开关式稳压电源的原理电路 1、基本电路

图二开关电源基本电路框图 开关式稳压电源的基本电路框图如图二所示。 交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。 控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。这部分电路目前已集成化,制成了各种开关电源用集成电路。控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。 2.单端反激式开关电源 单端反激式开关电源的典型电路如图三所示。电路中所谓的单端是指高频变换器的磁芯仅工作在磁滞回线的一侧。所谓的反激,是指当开关管VT1 导通时,高频变压器T初级绕组的感应电压为上正下负,整流二极管VD1处于截止状态,在初级绕组中储存能量。当开关管VT1截止时,变压器T初级绕组中存储的能量,通过次级绕组及VD1 整流和电容C滤波后向负载输出。

一种基于pwm的开关功率放大器的设计

一种基于PWM的开关功率放大器的设计 一、前言 振动测试系统是模拟某种产品的实际使用环境,在产品出厂前检验其结构特性和可靠性,这对于新产品开发起着重要作用,因此,被广泛应用于军事,自动化,半导体,汽车,航空航天等行业。 采用开关功率放大器的电动式振动测试系统是目前应用广泛的一种振动 试验系统。通常能提供正弦、随机和冲击试验环境,它的频率范围广,动态范围宽,易于实现自动或手动控制;加速度波形良好,适合产生随机波;可得到很大的加速度。 功率放大器是电动振动试验系统的重要组成部分,其性能和与振动台的匹配状况直接关系着系统的性能。功率放大器发展到现在已经历了3代:电子管功率放大器、晶体管线性功率放大器及开关功率放大器。目前电子管功率放大器已经很少使用,晶体管线性功率放大器效率通常只有50%左右,而其他的能量则转化为热能,不但效率低,而且散热是个很大问题。开关功率放大器如果采用功率场效应管(PMOSFET),则损耗很小,效率可达到90%,发热少,冷却设备简单。由于开关功率放大器输出电压容易调节,且电流的波峰系数较大,这样就可以直接与振动台耦合,而不需要输出变压器。而且PMOSFET的开关频率高,因此放大器体积小,功率密度大,容易实现模块化。 本文应用PWM技术设计并实现了5kW的功率放大器模块。由于采用PMOSFET,开关频率达到50 kHz,体积比较小,效率高。输出电感铁芯采用钻基非晶合金,频率响应范围广。2主电路设计2.1主电路结构 开关式功率放大器主电路结构如图1所示。三相交流电经过工频变压器隔离、降压送入三相全桥滤波器,然后通过电容滤波得到低纹波直流电源V in。

主电路由4只PMOSFET组.成一个全桥变换器。输出的电压波经过常模和共模扼流线圈滤波后输出到振动台。 开关功率放大器输出正弦波(5Hz~5kHz)或随机波形。采用提高开关频率的方法来抑制谐波虽然有效,但是会增加PMOSFET的开关损耗,从而导致变换器的效率下降。本文采用倍频PWM技术,即三角载波的频率为100 kHz,而MOSFET的开关频率为50 kHz,这样不仅能够有效地降低谐波,而且也可以减少开关损耗。变换器工作时,同一个桥臂上的MOSF ET交替导通,当Q1,Q3同时导通时输出为零,只有对角线上的Q1,Q4或Q3,Q2同时导通时才输出电压波形。 二、控制逻辑 由于开关功率放大器是通过输入信号来改变输出结果的,所以是开环控制。其控制逻辑如图2所示,由载波发生,调制信号,比较单.元和延时单元组成。载波是频率为50 kHz三角波,由模拟振荡电路获得。调制信号由振动台控制系统给定,滤波后送到比较器的同相端。载波以及反相的载波分别送到比较器的反相端。调制后的信号通过一个由RC电路和与非门组成的延时单元,防止同一桥臂的MOSFET的直通,最后经过缓冲器到驱动电路。

电气自动化+PWM型开关电源电路设计

1 引言 当今社会,时代在进步,人们的生活水平不断提高,越来越离不开电力电子产品电力电子设备与人们的工作、生活的关系日益密切,当然任何电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。 1.1 什么是开关电源 电子电源是对公用电网或某种电能进行变换和控制,并向各种用电负载提供优质电能的供电设备。它可分为线性电源和开关电源两种。应用大功率半导体器件,在一个电路中运行于“开关状态”,按一定规律控制开关,对电能进行处理变换而构成的电源,被称为“开关电源”。在实际应用中同时具备三个条件的电源可称之为开关电源,这三个条件就是:开关(电路中的电力电子器件工作在开关状态而不是线性状态)、高频(电路中的电力电子器件工作在高频而不是接近工频的低频)和直流(电源输出是 直流而不是交流)。广义地说,凡用半导体功率器件作为开关,将一种电源形态转变成另一形态的主电路都叫做开关变换电路;转变时用自动控制闭环稳定输出并有保护环 节的则称开关电源。 1.2 开关电源基本工作原理 开关电源以半导体开关器件的启闭为基本原理,即通过控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源。开关电源一般由脉冲宽度调制(PWM)或者脉冲频率调制方式(PFM)控制IC和外部电路构成。 开关电源有PWM调制、FWM调制和混合调制,这里选用PWM调制。PWM型开关电源的换能电路是将输入的直流电压转换成脉冲电压,再将脉冲电压转换成直流电压输出。 图1-1 PWM型开关电源原理框图

PWM功率放大电路

P W M功率放大电路集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

PWM功率放大电路 ——卢浩天 LC梦创电子制作工作室一、PWM功率放大原理 PWM功放电路有单极性和双极性之分。双极性指在一个PWM周期内,电机电枢电压正、负极性改变一次;单极性指PWM功放管工作时,有一个PWM信号端和一个方向控制端,在电机正转或反转时,仅有对应的一对功放管通电,而另一对功放管截止。因此,电机电枢在正转或反转时,正、负极性是固定的,即是单极性的。 若忽略晶体管的管压降,可以认为PWM功率放大管的输出电平等于 电源电压,即| U|=C U。图1描绘了电枢的电压波形和电流波形。在图 AB 中,T为PWM脉冲周期, T为正脉冲宽度,h T为负脉冲宽度。电枢两端 P 的电流是一个脉动的连续电流,从图可看出,电枢两端的电流是一个脉动的连续电流,加快PWM的切换频率,电流的脉动就变小,结果近似于直流信号的效果,使电机均匀旋转。同时,如果改变PWM的脉冲的宽度,电枢中的平均电流也将变化,电机的转速便将随之改变,这就是PWM调速的原理。 在图中,PWM脉冲频率决定了电枢电流的连续性,从而也决定了电机运行的平稳性。如果脉冲频率切换频率选择不当,电机的低速性能有可能不理想,容易烧坏晶体管,而且由于电流不连续,电机有可能产生剧烈震荡,甚至出现啸叫现象,这些都是不允许的。因此,在设计PWM功率放

大器时,要慎重选择切换频率。为了克服静摩擦,改善运行特性,切换频率应能使电机轴产生微振,即: 式中,T K 为转矩系数,Φ=M T C K (M C 为电机电磁常数、Φ为励磁磁 通),C U 为功放电源,A L 为电枢电感,S T 为电机静摩擦力矩。 另外,选择切换频率具体还应考虑以下几个方面: (1)微振的最大角位移应小于允许的位置误差。在伺服系统中,假设要求位置误差小于δ,则要求切换频率满足下式: 式中,J 为电机及负载的转动惯量。 (2)应尽量减小电机内产生的高频功耗。PWM 脉冲信号的谐波分量将引起电机内部的功耗,降低效率。为此切换频率应足够高,使电机电枢感抗大大超过电枢内阻,即要求 式中,A R 是电机电枢电阻。 (3)应当远远大于系统的固有频率,防止系统固有振荡。 实际设计时应综合考虑上述条件,在1000Hz 至数万Hz 的范围内选取PWM 切换频率。特别需要强调的是,由于伺服电机的电枢电感较小,如果频率不够高,交流分量过大,很容易烧毁功放管。不过功放管的开关频率总有一个限度,对大功率功放管来说,开关频率越高,制造工艺难度越大,成本也越高。因此,用户要根据自己的实际需要确定有关参数,使自己构建的功率放大器有较高的性能价格比。 二、标准的PWM 功率放大器 图2举出了一个实际的标准双极性PWM 功率放大器。它是一个典型的H 型功放,四个功放管分别采用NPN 型达林顿管TIP122和PNP 型达

开关电源电路详解图

开关电源电路详解图 一、开关电源的电路组成 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。 开关电源的电路组成方框图如下: 二、输入电路的原理及常见电路 1、AC 输入整流滤波电路原理: ①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1 组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3 会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。

2、DC 输入滤波电路原理: ①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4 为安规电容,L2、L3为差模电感。 ② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路 1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图: 3、工作原理: R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖

PWM型开关电源电路设计

1 引言 当今社会,时代在进步,人们的生活水平不断提高,越来越离不开电力电子产品电力电子设备与人们的工作、生活的关系日益密切,当然任何电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。 1.1 什么是开关电源 电子电源是对公用电网或某种电能进行变换和控制,并向各种用电负载提供优质电能的供电设备。它可分为线性电源和开关电源两种。应用大功率半导体器件,在一个电路中运行于“开关状态”,按一定规律控制开关,对电能进行处理变换而构成的电源,被称为“开关电源”。在实际应用中同时具备三个条件的电源可称之为开关电源,这三个条件就是:开关(电路中的电力电子器件工作在开关状态而不是线性状态)、高频(电路中的电力电子器件工作在高频而不是接近工频的低频)和直流(电源输出是 直流而不是交流)。广义地说,凡用半导体功率器件作为开关,将一种电源形态转变成另一形态的主电路都叫做开关变换电路;转变时用自动控制闭环稳定输出并有保护环 节的则称开关电源。 1.2 开关电源基本工作原理 开关电源以半导体开关器件的启闭为基本原理,即通过控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源。开关电源一般由脉冲宽度调制(PWM)或者脉冲频率调制方式(PFM)控制IC和外部电路构成。 开关电源有PWM调制、FWM调制和混合调制,这里选用PWM调制。PWM型开关电源的换能电路是将输入的直流电压转换成脉冲电压,再将脉冲电压转换成直流电压输出。

开关电源各模块原理实图讲解

开关电源原理 一、开关电源的电路组成: 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值 降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及 杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。 当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪 涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是 负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5 容量变小,输出的交流纹波将增大。

时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增 大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路: 1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导 体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图: 3、工作原理: R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖峰电压和尖峰电流,这些元件组合一起,能很好地吸收尖峰电压和电流。从R3测得的电流峰值信号参与当前工作周波的占空比控制,因此是当前工作周波的电流限制。当R5上的电压达到1V时,UC3842停止工作,开关管Q1立即关断。 R1和Q1中的结电容C GS、C GD一起组成RC网络,电容的充放电直接影响着开关管的开关速度。R1过小,易引起振荡,电磁干扰也会很大;R1过大,会降低开关管的开关速度。Z1通常将MOS管的GS电压限制在18V以下,从而保护了MOS管。 Q1的栅极受控电压为锯形波,当其占空比越大时,Q1导通时间越长,变压器所储存的能量

完整word高效率PWM音频功率放大器

高效率PWM 音频功率放大器 本设计主要由功率放大器、信号变换电路、输出功率显示电路和保护电路组成。功率放 大器部分采用D 类功率放大器确保高效,在 5V 供电情况下输出功率大于 1W ,且输出波形 无明显失真,低频输出噪声电压很低 (输出频率为20kHz 以下时,低频噪声电压约 1mV ); 信号变换部分采用差分放大电路,将双端输出信号变为 1 : 1的单端输出信号;输出功率显 1、题目分析及设计方案论证与比较 根据题目要求,整个系统由D 类PWM 功率放大器、信号转换电路及功率测量显示装置 组成。其中核心部分为 D 类PWM 功率放大器。之所以选择此方案是因为 D 类PWM 功放 能够达到更高的效率,且更好地确保波形不失真,加之以合理的滤波网络又进一步克服了高 频干扰, 从而使系统成为高效率、低失真、低干扰的功率放大系统。系统组成框图如图 3.1 所示。下面我们分别论述框图中各部分设计方案。 图3.1系统组成框图 2、总体设计思路 根据题目要求,经过认真分析,决定采用脉宽调制方式实现低频功率放大器 (即D 类功 率放大器)。脉宽调制电路(PWM )的脉宽调制原理 如图3.2所示。 图3.2脉宽调制原理图 一般的D 类放大器电路的工作原理是用 “振荡发生器”输出的三角波与来自外部的模拟 音频信号进行比较,在“脉宽调制比较器”输出端产生一个其脉宽变化与音频信号幅值成正 比例的可变脉宽方波。此方波通过“数字逻辑电路”输出反相的方波。 在音频信号的前半周 (正电压),脉宽调制方波的占空比小于 50%,使高端MOS 管饱和导通,输出瞬间脉冲电压 V ec — 0=V cc 。在音频信号的后半周(负电压),低端MOS 饱和导通,电压 0— V ec = — V cc o 将输 亠 PWM — 高速开关电路 及滤波网络 D 类功率放大器 796D Vin=O,占空比-50%

开关电源原理图精讲.pdf

开关电源原理(希望能帮到同行的你更加深入的了解开关电源,温故而知新吗!!) 一、开关电源的电路组成[/b]:: 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。 开关电源的电路组成方框图如下: 二、输入电路的原理及常见电路[/b]:: 1、AC输入整流滤波电路原理: ①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防

止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。 2、 DC输入滤波电路原理: ①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4为安规电容,L2、L3为差模电感。 ② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路[/b]:: 1、 MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图:

电脑开关电源原理及电路图

2.1、输入整流滤波电路 只要有交流电AC220V输入,ATX开关电源,无论是否开启,其辅助电源就一直在工作,直接为开关电源控制电路提供工作电压。图1中,交流电AC220V经过保险管FUSE、电源互感滤波器L0,经BD1—BD4整流、C5和C6滤波,输出300V左右直流脉动电压。C1为尖峰吸收电容,防止交流电突变瞬间对电路造成不良影响。TH1为负温度系数热敏电阻,起过流保护和防雷击的作用。L0、R1和C2组成Π型滤波器,滤除市电电网中的高频干扰。C3和C4为高频辐射吸收电容,防止交流电窜入后级直流电路造成高频辐射干扰。 2.2、高压尖峰吸收电路 D18、R004和C01组成高压尖峰吸收电路。当开关管Q03截止后,T3将产生一个很大的反极性尖峰电压,其峰值幅度超过Q03的C极电压很多倍,此尖峰电压的功率经D18储存于C01中,然后在电阻R004上消耗掉,从而降低了Q03的C极尖峰电压,使Q03免遭损坏。 2.3、辅助电源电路 整流器输出的300V左右直流脉动电压,一路经T3开关变压器的初级①~②绕组送往辅助电源开关管Q03的c极,另一路经启动电阻R002给Q03的b极提供正向偏置电压和启动电流,使Q03开始导通。Ic流经T3初级①~②绕组,使T3③~④反馈绕组产生感应电动势(上正下负),通过正反馈支路C02、D8、R06送往Q03的b极,使Q03迅速饱和导通,Q03上的Ic电流增至最大,即电流变化率为零,此时D7导通,通过电阻R05送出一个比较电压至IC3(光电耦合器Q817)的③脚,同时T3次级绕组产生的感应电动势经D50整流滤波后一路经R01限流后送至IC3的①脚,另一路经R02送至IC4(精密稳压电路TL431),由于Q03饱和导通时次级绕组产生的感应电动势比较平滑、稳定,经IC4的K端输出至IC3的②脚电压变化率几乎为零,使IC3发光二极管流过的电流几乎为零,此时光敏三极管截止,从而导致Q1截止。反馈电流通过R06、R003、Q03的b、e极等效电阻对电容C02充电,随着C02充电电压增加,流经Q03的b极电流逐渐减小,使③~④反馈绕组上的感应电动势

一种基于PWM的开关功率放大器的设计

一种基于PWM的开关功率放大器的设计 原作者:韩金刚史新乾汤天浩王小明 一、前言 振动测试系统是模拟某种产品的实际使用环境,在产品出厂前检验其结构特性和可靠性,这对于新产品开发起着重要作用,因此,被广泛应用于军事,自动化,半导体,汽车,航空航天等行业。 采用开关功率放大器的电动式振动测试系统是目前应用广泛的一种振动试验系统。通常能提供正弦、随机和冲击试验环境,它的频率范围广,动态范围宽,易于实现自动或手动控制;加速度波形良好,适合产生随机波;可得到很大的加速度。 功率放大器是电动振动试验系统的重要组成部分,其性能和与振动台的匹配状况直接关系着系统的性能。功率放大器发展到现在已经历了3代:电子管功率放大器、晶体管线性功率放大器及开关功率放大器。目前电子管功率放大器已经很少使用,晶体管线性功率放大器效率通常只有50%左右,而其他的能量则转化为热能,不但效率低,而且散热是个很大问题。开关功率放大器如果采用功率场效应管(PMOSFET),则损耗很小,效率可达到90%,发热少,冷却设备简单。由于开关功率放大器输出电压容易调节,且电流的波峰系数较大,这样就可以直接与振动台耦合,而不需要输出变压器。而且PMOSFET的开关频率高,因此放大器体积小,功率密度大,容易实现模块化。 本文应用PWM技术设计并实现了5kW的功率放大器模块。由于采用PMOSFET,开关频率达到50 kHz,体积比较小,效率高。输出电感铁芯采用钻基非晶合金,频率响应范围广。2主电路设计2.1主电路结构

开关式功率放大器主电路结构如图1所示。三相交流电经过工频变压器隔离、降压送入三相全桥滤波器,然后通过电容滤波得到低纹波直流电源V in。主电路由4只PMOSFET组.成一个全桥变换器。输出的电压波经过常模和共模扼流线圈滤波后输出到振动台。 开关功率放大器输出正弦波(5Hz~5kHz)或随机波形。采用提高开关频率的方法来抑制谐波虽然有效,但是会增加PMOSFET的开关损耗,从而导致变换器的效率下降。本文采用倍频PWM技术,即三角载波的频率为100 kHz,而MOSFET的开关频率为50 kHz,这样不仅能够有效地降低谐波,而且也可以减少开关损耗。变换器工作时,同一个桥臂上的MOSF ET交替导通,当Q1,Q3同时导通时输出为零,只有对角线上的Q1,Q4或Q3,Q2同时导通时才输出电压波形。 二、控制逻辑 由于开关功率放大器是通过输入信号来改变输出结果的,所以是开环控制。其控制逻辑如图2所示,由载波发生,调制信号,比较单.元和延时单元组成。载波是频率为50 kHz三角波,由模拟振荡电路获得。调制信号由振动台控制系统给定,滤波后送到比较器的同相端。载波以及反相的载波分别送到比较器的反相端。调制后的信号通过一个由RC电路和与非门组成的延时单元,防止同一桥臂的MOSFET的直通,最后经过缓冲器到驱动电路。

超详细的反激式开关电源电路图讲解

反激式开关电源电路图讲解 一,先分类 开关电源的拓扑结构按照功率大小的分类如下: 10W以内常用RCC(自激振荡)拓扑方式 10W-100W以内常用反激式拓扑(75W以上电源有PF值要求) 100W-300W 正激、双管反激、准谐振 300W-500W 准谐振、双管正激、半桥等 500W-2000W 双管正激、半桥、全桥 2000W以上全桥 二,重点 在开关电源市场中,400W以下的电源大约占了市场的70-80%,而其中反激式电源又占大部分,几乎常见的消费类产品全是反激式电源。 优点:成本低,外围元件少,低耗能,适用于宽电压范围输入,可多组输出. 缺点:输出纹波比较大。(输出加低内阻滤波电容或加LC噪声滤波器可以改善) 今天以最常用的反激开关电源的设计流程及元器件的选择方法为例。给大家讲解如何读懂反激开关电源电路图! 三,画框图 一般来说,总的来分按变压器初测部分和次侧部分来说明。开关电源的电路包括以下几个主要组成部分,如图1

图1,反激开关电源框图 四,原理图 图2是反激式开关电源的原理图,就是在图1框图的基础上,对各个部分进行详细的设计,当然,这些设计都是按照一定步骤进行的。下面会根据这个原理图进行各个部分的设计说明。 图2 典型反激开关电源原理图

五,保险管 图3 保险管 先认识一下电源的安规元件—保险管如图3。 作用:安全防护。在电源出现异常时,为了保护核心器件不受到损坏。 技术参数:额定电压 ,额定电流 ,熔断时间。 分类:快断、慢断、常规 计算公式:其中:Po:输出功率 η效率:(设计的评估值) Vinmin :最小的输入电压 2:为经验值,在实际应用中,保险管的取值范围是理论值的1.5~3倍。 0.98: PF值 六,NTC和MOV NTC 热敏电阻的位置如图4。 图4 NTC热敏电阻

PWM功率放大电路

P W M功率放大电路 Modified by JACK on the afternoon of December 26, 2020

PWM功率放大电路 ——卢浩天 LC梦创电子制作工作室一、PWM功率放大原理 PWM功放电路有单极性和双极性之分。双极性指在一个PWM周期内,电机电枢电压正、负极性改变一次;单极性指PWM功放管工作时,有一个PWM信号端和一个方向控制端,在电机正转或反转时,仅有对应的一对功放管通电,而另一对功放管截止。因此,电机电枢在正转或反转时,正、负极性是固定的,即是单极性的。 若忽略晶体管的管压降,可以认为PWM功率放大管的输出电平等于 电源电压,即| U|=C U。图1描绘了电枢的电压波形和电流波形。在图 AB 中,T为PWM脉冲周期, T为正脉冲宽度,h T为负脉冲宽度。电枢两端 P 的电流是一个脉动的连续电流,从图可看出,电枢两端的电流是一个脉动的连续电流,加快PWM的切换频率,电流的脉动就变小,结果近似于直流信号的效果,使电机均匀旋转。同时,如果改变PWM的脉冲的宽度,电枢中的平均电流也将变化,电机的转速便将随之改变,这就是PWM调速的原理。 在图中,PWM脉冲频率决定了电枢电流的连续性,从而也决定了电机运行的平稳性。如果脉冲频率切换频率选择不当,电机的低速性能有可能不理想,容易烧坏晶体管,而且由于电流不连续,电机有可能产生剧烈震荡,甚至出现啸叫现象,这些都是不允许的。因此,在设计PWM功率放

大器时,要慎重选择切换频率。为了克服静摩擦,改善运行特性,切换频率应能使电机轴产生微振,即: 式中,T K 为转矩系数,Φ=M T C K (M C 为电机电磁常数、Φ为励磁磁通),C U 为功放电源,A L 为电枢电感,S T 为电机静摩擦力矩。 另外,选择切换频率具体还应考虑以下几个方面: (1)微振的最大角位移应小于允许的位置误差。在伺服系统中,假设要求位置误差小于δ,则要求切换频率满足下式: 式中,J 为电机及负载的转动惯量。 (2)应尽量减小电机内产生的高频功耗。PWM 脉冲信号的谐波分量将引起电机内部的功耗,降低效率。为此切换频率应足够高,使电机电枢感抗大大超过电枢内阻,即要求 式中,A R 是电机电枢电阻。 (3)应当远远大于系统的固有频率,防止系统固有振荡。 实际设计时应综合考虑上述条件,在1000Hz 至数万Hz 的范围内选取PWM 切换频率。特别需要强调的是,由于伺服电机的电枢电感较小,如果频率不够高,交流分量过大,很容易烧毁功放管。不过功放管的开关频率总有一个限度,对大功率功放管来说,开关频率越高,制造工艺难度越大,成本也越高。因此,用户要根据自己的实际需要确定有关参数,使自己构建的功率放大器有较高的性能价格比。 二、标准的PWM 功率放大器 图2举出了一个实际的标准双极性PWM 功率放大器。它是一个典型的H 型功放,四个功放管分别采用NPN 型达林顿管TIP122和PNP 型达

相关主题
文本预览
相关文档 最新文档