当前位置:文档之家› 必修四平面向量常考知识点整理和复习、典型高考例题分析

必修四平面向量常考知识点整理和复习、典型高考例题分析

必修四平面向量常考知识点整理和复习、典型高考例题分析
必修四平面向量常考知识点整理和复习、典型高考例题分析

向量复习

知识点1:

两个不为零的向量a ,b 平行,?①)0(≠=λλb a

?②如果b a ,可以用直角坐标系的坐标表示,那么设 ),(),,(q p b n m a ==,那么np mq = ?③如果b a ,可以用两个不共线的基向量d c ,表示,比 如说d n c m a +=,d q c p b +=,那么基向量前面 的系数成比例,也就是np mq =

在这里强调其实后面两点是一样的,因为向量的坐标表示法引进前身是用直角坐标系的两个垂直的单位向量j i ,,比如),(n m a =,也即是j n i m a +=,为了方便,我们写成坐标形式,而③这点其实是②的一般形式,就是③讲两个基向量推广到了不垂直的情况。

用这个知识点的例题比如说:

【例一】设a 与b 是两个不共线的向量,且向量λ+a b 与(2)--b a 共线,则λ的值为 .

【解析】要求的两个向量就是用a 与b 作为基底的,那么这两个向量共线可以得到前面的系数成比例,也即是

1

21-=λ,也即21-=λ

【例二】在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长

线与CD 交于点F ,若AC a = ,BD b = ,则AF =( ) A .1142a b + B . 2133a b + C . 1124a b + D .1233

a b + 【解析】比如说运用这个知识点首先本题的难点在于F 点的位置,其在DC 中的位置比例,所以首先要确定其位置在哪里,所以,我们设DC DF λ=

那么我们就可以用一个F E A ,,共线来确定λ的值 所以我们可以用AF AE ,用相同基向量表示这两个向量,然后用系数比例的关系求出这个λ的值

AB AD AD AB AD AD AC AD AO AE 4

14321)(4121412121+=++=+=+= AB AD DC AD DF AD AF λλ+=+=+= 则3

141

143=?=λλ b a BD AC OC BO OB AO OC BO AB AD AF 313231323432)(3

1)(31+=+=+=+++=+

=

【例三】如图,在△ABC 中,点M 为BC 的中点,A 、

B 、

C 三点坐标分别为(2,﹣2)、(5,2)、(﹣3,0),点N 在AC 上,且NC AN 2=,AM 与BN 的交点为P ,求:

(1)点P 分向量AM 所成的比μ的值;

(2)P 点坐标.

【解析】这题例题也是同样的道理,(1)主要求P 点,假设AM AP λ=,

因为N P B ,,三点共线,所以BN BP ,用基向量BC BA ,表示,再用待定系数法求得λ的值。

AB BC AB BC AB BC AB AC BC AM BC MP BM BP )1(2

))(1(2121))(1(2121)1(21λλλλλ--=++--=+--=--=

+= AB BC BC AB BC AC BC CN BC BN 3132)(3131-=+-=-

=+= 所以54)1(2231

)1(32

2=?-=?---=λλλλλ,所以分向量AM 所成的比μ的值为41 (2)用比例的方法可以得到P )5

2,56(

(★★总结方法:在图中有未知线段的比例不知道,就可以先设其线段比例为λ,然后利用一个三点共线的两向量平行来求解λ的值。)

知识点2:

★重要定理(此定理在2013年高考中多省份考到这个知识点):假设平面上有三点C Q P ,,,且这三点共线,另外有不在这条直线上的点O 点,可以得到

1,=++=μλμλOQ OP OC

证明这个定理:

证明:可以由C Q P ,,三点共线可以假设

PQ t PC =,

)

(OQ PO t OP PQ t OP PC OP OC ++=+=+= OQ t OP t +-=)1(

也即1,1=+?=-=μλμλt t

不难得出:①如果C 在PQ 线段之间是可以得到1,10,10=+≤≤≤≤μλμλ ②如果C 在PQ 延长线上时,1,0,1=+<>μλλμ

③如果C 在QP 延长线上时,1,0,1=+<>μλμλ

例题讲解

【例四】如下图所示,两射线OA 与OB 交于点O ,下列5个向量中,

①OB OA -2,②

OB OA 3143+,③OB OA 5143+,④OB OA 3121+, ⑤OB OA

5

143-若以O 为起点,终点落在阴影区域内(含边界)的向量有( )个.

A .1

B .2

C .3

D .4

【解析】可得①在BA 的延长线上,如何运用上面的定理主要靠转化成定理的形式,比如说

OB OB OA OB OA 12

1)4143(3143++=+,那么OB OA 4

143+的终点在AB 线段上,如图1,那

么OB OB OA 12

1)4143(++

就会在如图的阴影部分内。 同理可以 将③

OB OA 3143+转化为OB OB OA OB OA 20

141435143-+=+ 将④OB OA 3121+转化为OB OB OA OB OA 6

121213121-+=+ 将⑤OB OA 5143-转化为OB OB OA OB OA 20941435143-+=-

【例五】(2013安徽卷理9)在平面直角坐标系中,O 是坐标原点,两定点A,B 满2||||=?==OB OA OB OA ,则点集},,1||||,|{R OB OA OP P ∈≤++=μλμλμλ所表示的区域面积是 (A)22

(B)32 (C)24 (D)34

【解析】2||||=?==OB OA OB OA ,可以得到2||||==OB OA ,且两个向量的夹角为60°,如图可以将两个向量放到半径为2的圆内,如图2。

且由1||||≤+μλ,可得10,1||0≤≤≤≤μλ,

那么当10,10≤≤≤≤μλ时,可知P 点形成的

区域为图中灰色区域

当10,10≤≤≤-≤μλ,将问题转化为 OB AO OB OA OP μλμλ+-=+=,那么P 点

形成的区域则是紫色的区域

当10,10≤-≤≤-≤μλ,将问题转化为

BO AO OB OA OP μλμλ--=+=

那么P 点形成的区域是红色的区域

当10,10≤-≤≤≤μλ,将问题转化为

BO OA OB OA OP μλμλ-=+=

那么P 点形成的区域是黄色的区域

所以,综上所述可得P 点形成的区域为一个长为32,宽为2的矩形区域,即面积为34,所以答案选D 。

知识点3:

向量的基本要素求解:一般求解向量的基本要素,主要分为求解向量之间的夹角和向量的模长。

那么要求这几个要素必须要明白其可求解的途径:

①求解模长

1)如果向量a 的坐标),(y x 已知(前提是在直角坐标系下的坐标),那么就可 以直接选用勾股定理求解22y x a +=

2)如果向量a 的坐标不知道,但是a 用两个已知的基向量表示出来,并且已 知基向量的模长,基向量之间的夹角,那么可以通过对模长平方来求解, 比如:已知,,n d m c ==且r d

c =?,如果

d q c p a +=,则 222222222)(2)(n q pqr m p d q d c pq c p d q c p a ++=+?+=+=

一般在不知道坐标的情况下都可以进行平方求解。

3)可以用公式求解n m n m ??=

θcos ②夹角求解

1)可以用公式求解n m n

m ??=θcos

2)★★两向量夹角的范围πθ≤≤0,两向量的夹角与三角形中角的类型的 判断有着密切的联系:

若20πθ<

≤,则该角为锐角1cos 0≤?b a 若2πθ=

,则该角为直角 0cos =?θ? 当0,0≠≠b a 时,0=?b a 若

πθπ≤<2,则该角为钝角0cos 1<≤-?θ?当0,0≠≠b a ,0>?b a

知识点4:

1)向量的点积θcos ??=?b a b a ,如果向量有坐标,),(),,(2211y x b y x a ==,则2121y y x x b a +=?。 2)向量a 在向量b 上的投影为θcos a (投影可以是负的),向量在基向量上分解,平行四边形原则。

【例六】如图,设P 、Q 为△ABC 内的两点,且,2155

AP AB AC =+ ,AQ =23AB +14AC ,则△ABP 的面积与△ABQ 的面积之比为 .

【解析】本题考查的是向量的平行四边形法则分解,已知2155

AP AB AC =+ ,AQ =23AB +14AC ,如下图,设25AM AB = ,15AN AC = ,则AP AM AN =+ ,由平行四边形法则,知NP ∥AB , 所以ABP ABC S AN S AC

??= =15,同理可得14ABQ ABC S S ??=, 故

45

ABP ABQ S S ??=. 【例七】(2013浙江卷理7)设0,P ABC ?是边AB 上一定点,满足AB B P 4

10=,且对于边AB 上任一点P ,恒有C P B P PC PB 00?≥?。则( )

A. 090=∠ABC

B. 090=∠BAC

C. AC AB =

D.BC AC =

【解析】本题考查向量的几何意义,也就是投影。过C 点

作AB CH ⊥,并且此处记HB PH PB +=,且若P 点在HB

之间时,记PH 为负,P 点在AH 之间时,PH 为正,所以

PH PB PC PB ?=?,此处的PH 与上述的PH 相同,所以

222)2()2()(HB HB PH PH

HB PH PH HB PH PH PB PC PB -+=?+=?+=?=?

当三角形确定以后,HB 就为常数可以定下来,而PH 为一个变量,所有把它看成一个函数,可知,当2

HB PH -=时,PC PB ?最小,即此时P 点在HB 线段的中点,而由条件可知C P B P PC PB 00?≥?,也即此时P 点与0P 点重合,并且AB B P 410=

,可得到0P 为HB 线段的中点,则AB HB 2

1=,即H 为AB 的中点,那么CH 为AB 的中垂线,那么AC=AB 。

★★向量的几何意义考查一般要数形结合,考察起来题目一般难度会比较大,关键在于是否能够转化为几何问题上。 N M Q P C B A

平面向量经典例题讲解

平面向量经典例题讲解 讲课时间:___________姓名:___________课时:___________讲课教师:___________ 一、选择题(题型注释) 1. 空间四边形OABC 中,OA a =u u u r r ,OB b =u u u r r , OC c =u u u r r ,点M 在OA 上,且MA OM 2=,N 为BC 的 中点,则MN u u u u r =( ) A C 【答案】B 【解析】 试 题 分 析 : 因 为 N 为 BC 的中点,则 , ,选 B 考点:向量加法、减法、数乘的几何意义; 2.已知平面向量a ,b 满足||1= a ,||2= b ,且()+⊥a b a ,则a 与b 的夹角是( ) (A (B (C (D 【答案】D 【解析】 试题分析:2()()00a b a a b a a a b +⊥∴+?=∴+?=r r r r r r r r r Q ,||1=a ,||2=b ,设夹角为θ,则 考点:本题考查向量数量积的运算 点评:两向量垂直的充要条件是点乘积得0,用向量运算得到cos θ的值,求出角 3.若OA u u r 、 OB u u u r 、OC uuu r 三个单位向量两两之间夹角为60u u r 【答案】D 【解析】 试题分析 :ΘOA u u r 、OB u u u r 、OC uuu r 三个单位向量两两之间夹角为 60° 6= r 考点:向量的数量积. 4.在平行四边形ABCD 中,AC 与BD 交于点O E ,是线段OD 的中点,AE 的延长线与CD 交于点F , 若AC a =u u u r r ,BD b =u u u r r ,则AF =u u u r ( ) A.1142a b +r r B.1233a b +r r C.1124a b +r r D.2133 a b +r r 【答案】D 【解析】 试题分析:由题意可知,AEB ?与FED ?相似,且相似比为3:1,所以由向量加减法 的平行四边形法则可知,,AB AD a AD AB b +=-=u u u r u u u r r u u u r u u u r r ,解得,故D 正确。 考点:平面向量的加减法 5.在边长为1的等边ABC ?中,,D E 分别在边BC 与AC 上,且BD DC =u u u r u u u r ,2 AE EC =u u u r u u u r 则AD BE ?=u u u r u u u r ( ) A .【答案】A 【解析】 试题分析:由已知,D E 分别在边BC 与AC 上,且BD DC =u u u r u u u r , 2AE EC =u u u r u u u r 则D 是BC 的中轴点,E 为AC 的三等分点,以D 为坐标原点,DA 所在直线为y 轴,BC 边所在直线为x 轴,建立平面直角坐标系, ,设),(y x E ,由EC AE =2可得:

高中数学必修4平面向量知识点总结与典型例题归纳

平面向量 【基本概念与公式】 【任何时候写向量时都要带箭头】 1.向量:既有大小又有方向的量。记作:AB 或a 。 2.向量的模:向量的大小(或长度),记作:||AB 或||a 。 3.单位向量:长度为1的向量。若e 是单位向量,则||1e =。 4.零向量:长度为0的向量。记作:0。【0方向是任意的,且与任意向量平行】 5.平行向量(共线向量):方向相同或相反的向量。 6.相等向量:长度和方向都相同的向量。 7.相反向量:长度相等,方向相反的向量。AB BA =-。 8.三角形法则: AB BC AC +=;AB BC CD DE AE +++=;AB AC CB -=(指向被减数) 9.平行四边形法则: 以,a b 为临边的平行四边形的两条对角线分别为a b +,a b -。 10.共线定理://a b a b λ=?。当0λ>时,a b 与同向;当0λ<时,a b 与反向。 11.基底:任意不共线的两个向量称为一组基底。 12.向量的模:若(,)a x y =,则2||a x y =+,22||a a =,2||()a b a b +=+ 13.数量积与夹角公式:||||cos a b a b θ?=?; cos ||||a b a b θ?= ? 14.平行与垂直:1221//a b a b x y x y λ?=?=;121200a b a b x x y y ⊥??=?+= 题型1.基本概念判断正误: (1)共线向量就是在同一条直线上的向量。 (2)若两个向量不相等,则它们的终点不可能是同一点。 (3)与已知向量共线的单位向量是唯一的。 (4)四边形ABCD 是平行四边形的条件是AB CD =。 (5)若AB CD =,则A 、B 、C 、D 四点构成平行四边形。 (6)若a 与b 共线, b 与c 共线,则a 与c 共线。 (7)若ma mb =,则a b =。

数学必修4平面向量综合练习题答案

一、选择题【共12道小题】 1、下列说法中正确的是( ) A.两个单位向量的数量积为1 B.若a··c且a≠0,则 C. D.若b⊥c,则()··b 参考答案与解析:解析:A中两向量的夹角不确定中若a⊥⊥与c反方向则不成立中应为中b⊥·0,所以()····b. 答案:D 主要考察知识点:向量、向量的运算 2、设e是单位向量222,则四边形是( ) A.梯形 B.菱形 C.矩形 D.正方形参考答案与解析:解析:,所以,且∥,所以四边形是平行四边形.又因为2,所以四边形是菱形. 答案:B 主要考察知识点:向量、向量的运算 3、已知1,a与b的夹角为90°,且2a3b,4b,若c⊥d,则实数k的值为( ) A.6 6 C.3 3 参考答案与解析:解析:∵c⊥d,∴c·(23b)·(4b)=0,即212=0,∴6. 答案:A 主要考察知识点:向量、向量的运算 4、设0≤θ<2π,已知两个向量=(θ,θ)(2θ,2θ),则向量长度的最大值是( )

A. B. C. D. 参考答案与解析:解析:=(2θθ,2θθ), 所以≤=. 答案:C 主要考察知识点:向量与向量运算的坐标表示 5、设向量(13),(-2,4),(-12),若表示向量4a、4b-2c、2()、d的有向线段首尾相接能构成四边形,则向量d为( ) A.(2,6) B.(-2,6) C.(26) D.(-26) 参考答案与解析:解析:依题意,4422()0,所以644(-2,-6). 答案:D 主要考察知识点:向量与向量运算的坐标表示 6、已知向量(3,4),(-3,1),a与b的夹角为θ,则θ等于( ) A. C.3 3 参考答案与解析:解析:由已知得a·3×(-3)+4×15,5,, 所以θ=. 由于θ∈[0,π], 所以θ=. 所以θ 3. 答案:D 主要考察知识点:向量与向量运算的坐标表示

高一数学平面向量知识点及典型例题解析

高一数学 第八章 平面向量 第一讲 向量的概念与线性运算 一.【要点精讲】 1.向量的概念 ①向量:既有大小又有方向的量。几何表示法AB u u u r ,a ;坐标表示法),(y x j y i x a 。 向量的模(长度),记作|AB u u u r |.即向量的大小,记作|a |。向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的,规定0r 平行于任何向量。(与0的区别) ③单位向量| a |=1。④平行向量(共线向量)方向相同或相反的非零向量,记作a ∥b ⑤相等向量记为b a 。大小相等,方向相同 ),(),(2211y x y x 2121y y x x 2.向量的运算(1)向量加法:求两个向量和的运算叫做向量的加法.如图,已知向量a ,b ,在平面内任 取一点A ,作AB u u u r a ,BC u u u r b ,则向量AC 叫做a 与b 的和,记作a+b ,即 a+b AB BC AC u u u r u u u r u u u r 特殊情况: a b a b a+b b a a+b (1) 平行四边形法则三角形法则C B D C B A A 向量加法的三角形法则可推广至多个向量相加: AB BC CD PQ QR AR u u u r u u u r u u u r u u u r u u u r u u u r L ,但这时必须“首尾相连”。②向量减法: 同一个图中画出 a b a b r r r r 、 要点:向量加法的“三角形法则”与“平行四边形法则”(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量。(2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点.(3)实数与向量的积 3.两个向量共线定理:向量b 与非零向量a 共线 有且只有一个实数 ,使得b =a 。 二.【典例解 析】 题型一: 向量及与向量相关的基本概念概念 例1判断下列各命题是否正确 (1)零向量没有方向 (2)b a 则, (3)单位向量都相等 (4) 向量就是有向线段

高中数学必修四平面向量知识归纳典型题型(经典)

一,向量重要结论 (1)、向量的数量积定义:||||cos a b a b θ?= 规定00a ?=, 22||a a a a ?== (2)、向量夹角公式:a 与b 的夹角为θ,则cos |||| a b a b θ?= (3)、向量共线的充要条件:b 与非零向量a 共线?存在惟一的R λ∈,使b a λ=。 (4)、两向量平行的充要条件:向量11(,)a x y =,22(,)b x y =平行?12210x y x y -= (5)、两向量垂直的充要条件:向量a b ⊥0a b ??=?12120x x y y += (6)、向量不等式:||||||a b a b +≥+,||||||a b a b ≥? (7)、向量的坐标运算:向量11(,)a x y =,22(,)b x y =,则a b ?=1212x x y y + (8)、向量的投影:︱b ︱cos θ=||a b a ?∈R ,称为向量b 在a 方向上的投影投影的绝对值称为射影 (9)、向量:既有大小又有方向的量。 向量不能比较大小,但向量的模可以比较大小。相等 向量:长度相等且方向相同的向量。 (10)、零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向量a = 0 ?|a |=0 由于0的方向是任意的, 且规定0平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件.(注意与0的区别) (11)、单位向量:模为1个单位长度的向量 向量0a 为单位向量?| 0a |=1 (12)、平行向量(共线向量):方向相同或相反的非零向量任意一组平行向量都可以移到同一直线上方向相同或相反的向量,称为平行向量记作a ∥b (即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量 注:解析几何与向量综合时可能出现的向量内容: (1) 给出直线的方向向量()k u ,1= 或()n m u ,= ,要会求出直线的斜率; (2)给出+与AB 相交,等于已知+过AB 的中点; (3)给出0 =+,等于已知P 是MN 的中点; (4)给出()+=+λ,等于已知Q P ,与AB 的中点三点共线; (5)给出以下情形之一:①AC AB //;②存在实数,AB AC λλ=使;③若存在实数,,1,O C O A O B αβαβαβ+==+且使,等于已知C B A ,,三点共线. (6) 给出λλ++=1OP ,等于已知P 是AB 的定比分点,λ为定比,即λ= (7) 给出0=?,等于已知MB MA ⊥,即AMB ∠是直角,给出0<=?m ,等于已知AMB ∠是钝角, 给出0>=?m ,等于已知 AMB ∠是锐角。 ( 8)给出=??λ,等于已知MP 是AMB ∠的平分线/ (9)在平行四边形ABCD 中,给出0)()(=-?+,等于已知ABCD 是菱形;

高一数学必修四第二章平面向量测试题及答案

一、选择题: (本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.设点P(3,-6),Q(-5,2),R的纵坐标为-9,且P、Q、R三点共线,则R点的横坐标为()。 A、-9 B、-6 C、9 D、6 2.已知=(2,3), b=(-4,7),则在b上的投影为()。 A、B、C、D、 3.设点A(1,2),B(3,5),将向量按向量=(-1,-1)平移后得 向量为()。 A、(2,3) B、(1,2) C、(3,4) D、(4,7)4.若(a+b+c)(b+c-a)=3bc,且sinA=sinBcosC,那么ΔABC是()。 A、直角三角形 B、等边三角形 C、等腰三角形 D、等腰直角三角形5.已知| |=4, |b|=3, 与b的夹角为60°,则| +b|等于()。A、B、C、D、 6.已知O、A、B为平面上三点,点C分有向线段所成的比为2,则()。 A、B、 C、D、 7.O是ΔABC所在平面上一点,且满足条件,则点O是ΔABC的()。 A、重心 B、垂心 C、内心 D、外心8.设、b、均为平面内任意非零向量且互不共线,则下列4个命题:(1)( ·b)2= 2·b2(2)| +b|≥| -b| (3)| +b|2=( +b)2

(4)(b ) -( a )b 与 不一定垂直。其中真命题的个数是( )。 A 、1 B 、2 C 、3 D 、4 9.在ΔABC 中,A=60°,b=1, ,则 等 于( )。 A 、 B 、 C 、 D 、 10.设 、b 不共线,则关于x 的方程 x 2+b x+ =0的解的情况是( )。 A 、至少有一个实数解 B 、至多只有一个实数解 C 、至多有两个实数解 D 、可能有无数个实数解 二、填空题:(本大题共4小题,每小题4分,满分16分.). 11.在等腰直角三角形ABC 中,斜边AC=22,则CA AB =_________ 12.已知ABCDEF 为正六边形,且AC =a ,AD =b ,则用a ,b 表示AB 为______. 13.有一两岸平行的河流,水速为1,速度为 的小船要从河的一边驶 向对岸,为使所行路程最短,小船应朝________方向行驶。 14.如果向量 与b 的夹角为θ,那么我们称 ×b 为向量 与b 的“向量积”, ×b 是一个向量,它的长度| ×b |=| ||b |sin θ,如果| |=3, |b |=2, ·b =-2,则| ×b |=______。 三、解答题:(本大题共4小题,满分44分.) 15.已知向量 = , 求向量b ,使|b |=2| |,并且 与b 的夹角 为 。(10分)

高中数学典型例题解析平面向量与空间向量

高中数学典型例题分析 第八章 平面向量与空间向量 §8.1平面向量及其运算 一、知识导学1.模(长度):向量的大小,记作||。长度为0的向量称为零向量,长度等于1个单位长度的向量,叫做单位向量。 2.平行向量:方向相同或相反的非零向量叫做平行向量,又叫做共线向量。 3.相等向量:长度相等且方向相同的向量。 4.相反向量:我们把与向量a 长度相等,方向相反的向量叫做a 的相反向量。记作-a 。 5.向量的加法:求两个向量和的运算。 已知a ,b 。在平面内任取一点,作AB =a ,BC =b ,则向量AC 叫做a 与b 的和。 记作a +b 。 6. 向量的减法:求两个向量差的运算。 已知a ,b 。在平面内任取一点O ,作OA =a ,OB =b ,则向量BA 叫做a 与b 的差。 记作a -b 。 7.实数与向量的积: (1)定义: 实数λ与向量a 的积是一个向量,记作λa ,并规定: ①λa 的长度|λa |=|λ|·|a |; ②当λ>0时,λa 的方向与a 的方向相同; 当λ<0时,λa 的方向与a 的方向相反; 当λ=0时,λa =0 (2)实数与向量的积的运算律:设λ、μ为实数,则 ①λ(μa )=(λμ) a ②(λ+μ) a =λa +μa ③λ(a +)=λa +λ 8.向量共线的充分条件:向量b 与非零向量a 共线的充要条件是有且只有一个实数λ,使得b =λa 。 另外,设a =(x 1 ,y 1), b = (x 2,y 2),则a //b x 1y 2-x 2y 1=0 9.平面向量基本定理: 如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1、λ 2 使 a =λ11e +λ22e ,其中不共线向量1e 、2e 叫做表示这一

高一数学必修4平面向量练习题及答案(完整版)

平面向量练习题 一、选择题 1、若向量a = (1,1), b = (1,-1), c =(-1,2),则 c 等于( ) A 、21-a +23b B 、21a 23-b C 、23a 2 1-b D 、2 3-a + 21b 2、已知,A (2,3),B (-4,5),则与共线的单位向量是 ( ) A 、)10 10 ,10103(- = B 、)10 10 ,10103()1010,10103(-- =或 C 、)2,6(-= D 、)2,6()2,6(或-= 3、已知k 3),2,3(),2,1(-+-==垂直时k 值为 ( ) A 、17 B 、18 C 、19 D 、20 4、已知向量=(2,1), =(1,7), =(5,1),设X 是直线OP 上的一点(O 为坐标原点),那么XB XA ?的最小值是 ( ) A 、-16 B 、-8 C 、0 D 、4 5、若向量)1,2(),2,1(-==分别是直线ax+(b -a)y -a=0和ax+4by+b=0的方向向量,则 a, b 的值分别可以是 ( ) A 、 -1 ,2 B 、 -2 ,1 C 、 1 ,2 D 、 2,1 6、若向量a =(cos α,sin β),b =(cos α ,sin β ),则a 与b 一定满足 ( ) A 、a 与b 的夹角等于α-β B 、(a +b )⊥(a -b ) C 、a ∥b D 、a ⊥b 7、设j i ,分别是x 轴,y 轴正方向上的单位向量,j i θθsin 3cos 3+=,i -=∈),2 ,0(π θ。若用 来表示与的夹角,则 等于 ( ) A 、θ B 、 θπ +2 C 、 θπ -2 D 、θπ- 8、设πθ20<≤,已知两个向量()θθsin ,cos 1=,()θθcos 2,sin 22-+=OP ,则向量21P P 长度的最大值是 ( ) A 、2 B 、3 C 、23 D 、 二、填空题 9、已知点A(2,0),B(4,0),动点P 在抛物线y 2=-4x 运动,则使BP AP ?取得最小值的点P 的坐标

平面向量知识点总结(精华)

必修4 平面向量知识点小结 一、向量的基本概念 1.向量的概念:既有大小又有方向的量,注意向量和数量的区别. 向量常用有向线段来表示 . 注意:不能说向量就是有向线段,为什么?提示:向量可以平移. 举例 1 已知A(1,2),B(4,2),则把向量u A u B ur按向量a r( 1,3)平移后得到的向量是. 结果:(3,0) 2.零向量:长度为 0 的向量叫零向量,记作:0r,规定:零向量的方向是任意的; 3.单位向量:长度为一个单位长度的向量叫做单位 向量(与u A uu B r共线uuur 的单位向量是u A u B ur ); | AB| 4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性; 5.平行向量(也叫共线向量):方向相同或相反的非零向量 a r、 b r叫做平行向量,记作:a r∥b r, 规定:零向量和任何向量平行 . 注:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线,但两条直线平行不包含两条直线重合; ③平行向量无传递性!(因为有r0); ④三点A、B、C 共线u A uu B r、u A u C ur共线. 6.相反向量:长度相等方向相反的向量叫做相反向量 . a r的相反向量记作a r. 举例 2 如下列命题:(1)若|a r | |b r | ,则a r b r. (2)两个向量相 等的充要条件是它们的起点相同,终点相同 . (3)若u A u B ur u D u C u r,则ABCD是平行四边形 . (4)若ABCD是平行四边形,则u A uu B r u D u C uur. (5)若a r b r,b r c r,则a r c r. (6)若a r / /b r,b r / /c r则a r / /c r.其中正确的是. 结果:(4)(5) 二、向量的表示方法

平面向量基本定理及经典例题

平面向量基本定理 一.教学目标: 了解平面向量基本定理,理解平面向量的坐标概念,会用坐标形式进行向量的加法、数乘的运算,掌握向量坐标形式的平行的条件; 教学重点: 用向量的坐标表示向量加法、减法、数乘运算和平行. 二.课前预习 1.已知=(x,2),=(1,x),若//,则x 的值为 ( ) A 、2 B 、 2- C 、 2± D 、 2 2.下列各组向量,共线的是 ( ) ()A (2,3),(4,6)a b =-=r r ()B (2,3),(3,2)a b ==r r ()C (1,2),(7,14)a b =-=r r ()D (3,2),(6,4)a b =-=-r r 3.已知点)4,3(),1,3(),4,2(----C B A ,且?=?=2,3,则=MN ____ 4.已知点(1,5)A -和向量=(2,3),若=3,则点B 的坐标为 三.知识归纳 1. 平面向量基本定理:如果12,e e u r u u r 是同一平面内的两个___________向量,那么对于这一平面内的任意向量a r ,有且只有一对实数12,λλ,使1122a e e λλ=+r u r u u r 成立。其中12,e e u r u u r 叫做这一平面的一组____________,即对基底的要求是向量___________________; 2.坐标表示法:在直角坐标系内,分别取与x 轴,y 轴方向相同的两个单位向量i ?,j ? 作基底, 则对任一向量a ?,有且只有一对实数x ,y ,使j y i x a ???+=、就把_________叫做向量a ? 的坐标,记作____________。 3.向量的坐标计算:O (0,0)为坐标原点,点A 的坐标为(x ,y ),则向量的坐标为=___________,点1P 、2P 的坐标分别为(1x ,1y ),2P (2x ,2y ),则向量21P P 的坐标为

高中数学典型例题解析汇报平面向量与空间向量

实用文档 文案大全高中数学典型例题第八章平面向量与空间向量 §8.1平面向量及其运算 一、、疑难知识导析 1.向量的概念的理解,尤其是特殊向量“零向量” 向量是既有大小,又有方向的量.向量的模是正数或0,是可以进行大小比较的,由于方向不能比较大小,所以向量是不能比大小的.两个向量的模相等,方向相同,我们称这两个向量相等,两个零向量是相等的,零向量与任何向量平行,与任何向量都是共线向量; 2.在运用三角形法则和平行四边形法则求向量的加减法时要注意起点和终点; 3.对于坐标形式给出的两个向量,在运用平行与垂直的充要条件时,一定要区分好两个公式,切不可混淆。因此,建议在记忆时对比记忆; 4.定比分点公式中则要记清哪个点是分点;还有就是此公式中横坐标和纵坐标是分开计算的; 5.平移公式中首先要知道这个公式是点的平移公式,故在使用的过程中须将起始点的坐标给出,同时注意顺序。 二知识导学 1.模(长度):向量AB的大小,记作|AB|。长度为0的向量称为零向量,长度等于1个单位长度的向量,叫做单位向量。 2.平行向量:方向相同或相反的非零向量叫做平行向量,又叫做共线向量。 3.相等向量:长度相等且方向相同的向量。 4.相反向量:我们把与向量a?长度相等,方向相反的向量叫做a?的相反向量。记作-a?。 5.向量的加法:求两个向量和的运算。 已知a?,b?。在平面内任取一点,作AB=a?,BC=b,则向量AC 叫做a与b?的和。记作a?+b?。 6. 向量的减法:求两个向量差的运算。 已知a?,b?。在平面内任取一点O,作OA=a?,OB=b?,则向量BA 叫做a?与b?的差。记作a?-b?。 7.实数与向量的积: (1)定义:实数λ与向量a?的积是一个向量,记作λa?,并规定: ①λa?的长度|λa?|=|λ|·|a?|; ②当λ>0时,λa?的方向与a?的方向相同; 当λ<0时,λa?的方向与a?的方向相反; 当λ=0时,λa?=0? (2)实数与向量的积的运算律:设λ、μ为实数,则 ①λ(μa?)=(λμ) a?

高中数学必修4知识点总结:第二章 平面向量

高中数学必修4知识点总结 第二章平面向量 16、向量:既有大小,又有方向得量、数量:只有大小,没有方向得量、 有向线段得三要素:起点、方向、长度、零向量:长度为得向量、 单位向量:长度等于个单位得向量、 平行向量(共线向量):方向相同或相反得非零向量、零向量与任一向量平行、 相等向量:长度相等且方向相同得向量、 17、向量加法运算: ⑴三角形法则得特点:首尾相连、 ⑵平行四边形法则得特点:共起点、 ⑶三角形不等式:、 ⑷运算性质:①交换律:; ②结合律:;③、 ⑸坐标运算:设,,则、 18、向量减法运算: ⑴三角形法则得特点:共起点,连终点,方向指向被减向量、 ⑵坐标运算:设,,则、 设、两点得坐标分别为,,则、 19、向量数乘运算: ⑴实数与向量得积就就是一个向量得运算叫做向量得数乘,记作、 ①; ②当时,得方向与得方向相同;当时,得方向与得方向相反;当时,、 ⑵运算律:①;②;③、 ⑶坐标运算:设,则、 20、向量共线定理:向量与共线,当且仅当有唯一一个实数,使、 设,,其中,则当且仅当时,向量、共线、 21、平面向量基本定理:如果、就就是同一平面内得两个不共线向量,那么对于这一平面内得任意向量,有且只有一对实数、,使、(不共线得向量、作为这一平面内所有向量得一组基底) 22、分点坐标公式:设点就就是线段上得一点,、得坐标分别就就是,,当时,点得坐标就就是、(当 23、平面向量得数量积: ⑴、零向量与任一向量得数量积为、 ⑵性质:设与都就就是非零向量,则①、②当与同向时,;当与反向时,;或、③、 ⑶运算律:①;②;③、 ⑷坐标运算:设两个非零向量,,则、 若,则,或、设,,则、 设、都就就是非零向量,,,就就是与得夹角,则、 第三章三角恒等变换 24、两角与与差得正弦、余弦与正切公式: ⑴;⑵; ⑶;⑷; ⑸(); ⑹()、 25、二倍角得正弦、余弦与正切公式:

北师大必修4《平面向量》测试题及答案

北师大必修4《平面向量》测试题及答案 一、选择题 1.若三点P (1,1),A (2,-4),B (x,-9)共线,则( ) A.x=-1 B.x=3 C.x= 2 9 D.x=51 2.与向量a=(-5,4)平行的向量是( ) A.(-5k,4k ) B.(- k 5,-k 4) C.(-10,2) D.(5k,4k) 3.若点P 分所成的比为43 ,则A 分所成的比是( ) A. 7 3 B. 37 C.- 37 D.-7 3 4.已知向量a 、b ,a ·a =-40,|a |=10,|b |=8,则向量a 与b 的夹角为 ( ) A.60° B.-60° C.120° D.-120° 5.若|a-b|=32041-,|a |=4,|b |=5,则向量a ·b =( ) A.103 B.-103 C.102 D.10 6.已知a =(3,0),b =(-5,5),则a 与b 的夹角为( ) A. 4 π B. 4 3π C. 3 π D.32π 7.已知向量a =(3,4),b =(2,-1),如果向量a +x ·b 与b 垂直,则x 的值 为( ) A. 3 23 B. 23 3 C.2 D.- 5 2 8.设点P 分有向线段21P P 的比是λ,且点P 在有向线段21P P 的延长线上,则λ的取值范围是( ) A.(-∞,-1) B.(-1,0) C.(-∞,0) D.(-∞,- 2 1) 9.设四边形ABCD 中,有=2 1 ,且||=||,则这个四边形是( ) A.平行四边形 B.矩形 C.等腰梯形 D.菱形

10.将y=x+2的图像C按a=(6,-2)平移后得C′的解析式为() A.y=x+10 B.y=x-6 C.y=x+6 D.y=x-10 11.将函数y=x2+4x+5的图像按向量a经过一次平移后,得到y=x2的图像,则a等于() A.(2,-1) B.(-2,1) C.(-2,-1) D.(2,1) 12.已知平行四边形的3个顶点为A(a,b),B(-b,a),C(0,0),则它的第4个顶点D的坐标是() A.(2a,b) B.(a-b,a+b) C.(a+b,b-a) D.(a-b,b-a) 二、填空题 13.设向量a=(2,-1),向量b与a共线且b与a同向,b的模为25,则b= 。 14.已知:|a|=2,|b|=2,a与b的夹角为45°,要使λb-a垂直,则λ= 。 15.已知|a|=3,|b|=5,如果a∥b,则a·b= 。 16.在菱形ABCD中,(AB+AD)·(AB-AD)= 。 三、解答题 17.如图,ABCD是一个梯形,AB∥CD,且AB=2CD,M、N分别是DC、AB 的中点,已知AB=a,AD=b,试用a、b分别表示DC、BC、MN。

数学必修4_第二章_平面向量知识点word版本

数学必修4第二章 平面向量知识点 2.1 平面向量的实际背景及基本概念 1. 向量:既有大小又有方向的量。 2. 向量的模:向量的大小即向量的模(长度),如,AB a uu r r 的模分别记作|AB u u u r |和||a r 。 注:向量不能比较大小,但向量的模可以比较大小。 3. 几类特殊向量 (1)零向量:长度为0的向量,记为0r ,其方向是任意的,0r 与任意向量平行, 零向量a =0r |a |=0。由于0r 的方向是任意的,且规定0r 平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件。(注意与0的区别) (2)单位向量:模为1个单位长度的向量,向量0a 为单位向量0||1a u u r 。将一个 向量除以它的模即得到单位向量,如a r 的单位向量为: ||a a e a r r r (3)平行向量(共线向量):方向相同或相反的非零向量,称为平行向量.记作a ∥b 。 规定:0r 与任何向量平等, 任意一组平行向量都可以移到同一直线上,由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量。 数学中研究的向量是自由向量,只有大小、方向两个要素,起点可以任意选取,现在必须区分清楚共线向量中的“共线”与几何中的“共线”、的含义,要理解好平行向量中的“平行”与几何中的“平行”是不一样的。 (4)相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量。记作a r 。 关于相反向量有:① 零向量的相反向量仍是零向量, ②)(a =a ; ③ ()0a a v v v ; ④若a 、b 是互为相反向量,则 a = b ,b =a ,a +b =0 。

北师版高一数学必修四平面向量测试题及答案

第二章平面向量测试题 一、选择题: (本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.设点P(3,-6),Q(-5,2),R的纵坐标为-9,且P、Q、R三点共线,则R点的横坐标为()。 A、-9 B、-6 C、9 D、6 2.已知=(2,3), b=(-4,7),则在b上的投影为()。 A、 B、C、D、 5.已知| |=4, |b|=3, 与b的夹角为60°,则| +b|等于()。A、 B、 C、 D、 6.已知O、A、B为平面上三点,点C分有向线段所成的比为2,则()。 A、 B、 C、 D、 7.O是ΔABC所在平面上一点,且满足条件,则点O是ΔABC的()。 A、重心 B、垂心 C、内心 D、外心8.设、b、均为平面内任意非零向量且互不共线,则下列4个命题:(1)( ·b)2= 2·b2(2)| +b|≥| -b| (3)| +b|2=( +b)2 (4)(b) -(a)b与不一定垂直。其中真命题的个数是()。 A、1 B、2 C、3 D、4 9.在ΔABC中,A=60°,b=1,,则等于()。

A 、 B 、 C 、 D 、 10.设 、b 不共线,则关于x 的方程 x 2 +b x+ =0的解的情况是( )。 A 、至少有一个实数解 B 、至多只有一个实数解 C 、至多有两个实数解 D 、可能有无数个实数解 二、填空题:(本大题共4小题,每小题4分,满分16分.). 11.在等腰直角三角形ABC 中,斜边AC=22,则CA AB =_________ 12.已知ABCDEF 为正六边形,且AC =a ,AD =b ,则用a ,b 表示AB 为______. 13.有一两岸平行的河流,水速为1,速度为 的小船要从河的一边驶 向对岸,为使所行路程最短,小船应朝________方向行驶。 14.如果向量 与b 的夹角为θ,那么我们称 ×b 为向量 与b 的“向量积”, ×b 是一个向量,它的长度| ×b |=| ||b |sin θ,如果| |=3, |b |=2, ·b =-2,则| ×b |=______。 三、解答题:(本大题共4小题,满分44分.) 15.已知向量 = , 求向量b ,使|b |=2| |,并且 与b 的夹角 为 。(10分) 16、已知平面上3个向量 、b 、 的模均为1,它们相互之间的夹角均为120。 (1) 求证:( -b )⊥ ;

平面向量典型例题

平面向量经典例题: 1.已知向量a=(1,2),b=(2,0),若向量λa+b与向量c=(1,-2)共线,则实数λ等于( ) A.-2 B.-1 3 C.-1 D.-2 3 [答案] C [解析] λa+b=(λ,2λ)+(2,0)=(2+λ,2λ),∵λa+b与c共线,∴-2(2+λ)-2λ=0,∴λ=-1、 2.(文)已知向量a=(3,1),b=(0,1),c=(k,3),若a+2b与c垂直,则k=( ) A.-1 B.- 3 C.-3 D.1 [答案] C [解析] a+2b=(3,1)+(0,2)=(3,3), ∵a+2b与c垂直,∴(a+2b)·c=3k+33=0,∴k=-3、 (理)已知a=(1,2),b=(3,-1),且a+b与a-λb互相垂直,则实数λ的值为( ) A.-6 11 B.- 11 6 C、6 11 D、 11 6 [答案] C [解析] a+b=(4,1),a-λb=(1-3λ,2+λ), ∵a+b与a-λb垂直, ∴(a+b)·(a-λb)=4(1-3λ)+1×(2+λ)=6-11λ=0,∴λ=6 11、 3.设非零向量a、b、c满足|a|=|b|=|c|,a+b=c,则向量a、b间的夹角为( ) A.150° B.120° C.60° D.30° [答案] B [解析] 如图,在?ABCD中, ∵|a|=|b|=|c|,c=a+b,∴△ABD为正三角形,∴∠BAD=60°,∴

〈a ,b 〉=120°,故选B 、 (理)向量a ,b 满足|a |=1,|a -b |=32 ,a 与b 的夹角为60°,则|b |=( ) A 、1 2 B 、1 3 C 、14 D 、15 [答案] A [解析] ∵|a -b |= 32 ,∴|a |2+|b |2-2a ·b = 34 ,∵|a |=1,〈a ,b 〉=60°, 设|b |=x ,则1+x 2-x =34,∵x >0,∴x =1 2、 4. 若AB →·BC →+AB →2 =0,则△ABC 必定就是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰直角三角形 [答案] B [解析] AB →·BC →+AB →2=AB →·(BC →+AB →)=AB →·AC →=0,∴AB →⊥AC →, ∴AB ⊥AC ,∴△ABC 为直角三角形. 5. 若向量a =(1,1),b =(1,-1),c =(-2,4),则用a ,b 表示c 为( ) A.-a +3b B.a -3b C.3a -b D.-3a +b [答案] B [解析] 设c =λa +μb ,则(-2,4)=(λ+μ,λ-μ), ∴?? ? λ+μ=-2λ-μ=4 ,∴?? ? λ=1μ=-3 ,∴c =a -3b ,故选B 、 在平行四边形ABCD 中,AC 与BD 交于O ,E 就是线段OD 的中点,AE 的延长线与CD 交于点F ,若AC → = a ,BD →= b ,则AF → 等于( ) A 、1 4a +1 2b B 、2 3a +1 3b C 、12a +14 b D 、13a +23 b

高中数学必修四平面向量测试题及答案

高中数学必修四平面向量测试题 一、选择题: (本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.设点P(3,-6),Q(-5,2),R的纵坐标为-9,且P、Q、R三点共线,则R点的横坐标为()。 A、-9 B、-6 C、9 D、6 2.已知=(2,3), b=(-4,7),则在b上的投影为()。 A、 B、C、D、 3.设点A(1,2),B(3,5),将向量按向量=(-1,-1)平移后得 向量为()。 A、(2,3) B、(1,2) C、(3,4) D、(4,7)4.若(a+b+c)(b+c-a)=3bc,且sinA=sinBcosC,那么ΔABC是()。 A、直角三角形 B、等边三角形 C、等腰三角形 D、等腰直角三角形5.已知| |=4, |b|=3, 与b的夹角为60°,则| +b|等于()。 A、 B、 C、 D、 6.已知O、A、B为平面上三点,点C分有向线段所成的比为2,则()。 A、 B、 C、 D、 7.O是ΔABC所在平面上一点,且满足条件,则点O是ΔABC的()。 A、重心 B、垂心 C、内心 D、外心 8.设、b、均为平面内任意非零向量且互不共线,则下列4个命题:(1)( ·b)2= 2·b2(2)| +b|≥| -b| (3)| +b|2=( +b)2 (4)(b) -(a)b与不一定垂直。其中真命题的个数是()。 A、1 B、2 C、3 D、4

9.在ΔABC 中,A=60°,b=1, ,则 等 于( )。 A 、 B 、 C 、 D 、 10.设 、b 不共线,则关于x 的方程 x 2 +b x+ =0的解的情况是( )。 A 、至少有一个实数解 B 、至多只有一个实数解 C 、至多有两个实数解 D 、可能有无数个实数解 二、填空题:(本大题共4小题,每小题4分,满分16分.). 11.在等腰直角三角形ABC 中,斜边AC=22,则CA AB =_________ 12.已知ABCDEF 为正六边形,且AC =a ,AD =b ,则用a ,b 表示AB 为______. 13.有一两岸平行的河流,水速为1,速度为 的小船要从河的一边驶向 对岸,为使所行路程最短,小船应朝________方向行驶。 14.如果向量 与b 的夹角为θ,那么我们称 ×b 为向量 与b 的“向 量积”, ×b 是一个向量,它的长度| ×b |=| ||b |sin θ,如果| |=3, |b |=2, ·b =-2,则| ×b |=______。 三、解答题:(本大题共4小题,满分44分.) 15.已知向量 = , 求向量b ,使|b |=2| |,并且 与b 的夹 角为 。(10分) 16、已知平面上3个向量 、b 、 的模均为1,它们相互之间的夹角均

高中数学平面向量知识点总结

高中 数 学必修4之平面向量 知识点归纳 一.向量的基本概念与基本运算 1向量的概念: ①向量:既有大小又有方向的量向量一般用c b a ,,……来表示,或用有向线段的 起点与终点的大写字母表示,如:AB u u u r 几何表示法 AB u u u r ,a ;坐标表示法 ),(y x yj xi a 向量的大小即向量的模(长度) ,记作|AB u u u r |即向量的大小,记作|a | 向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向 量a =0 |a |=0 由于0r 的方向是任意的,且规定0r 平行于任何向量,故在 有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件.(注意与0的区别) ③单位向量:模为1个单位长度的向量 向量0a 为单位向量 |0a |=1 ④平行向量(共线向量):方向相同或相反的非零向量任意一组平行向量都可以 移到同一直线上方向相同或相反的向量,称为平行向量记作a ∥b 由于向量可 以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量 数学中研究的向量是自由向量,只有大小、方向两个要素,起点可以任意选取,现在必须区分清楚共线向量中的“共线”与几何中的“共线”、的含义,要理解好平行向量中的“平行”与几何中的“平行”是不一样的. ⑤相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记 为b a 大小相等,方向相同 ),(),(2211y x y x 2 12 1y y x x 2向量加法 求两个向量和的运算叫做向量的加法 设,AB a BC b u u u r u u u r r r ,则a +b r =AB BC u u u r u u u r =AC u u u r (1)a a a 00;(2)向量加法满足交换律与结合律; 向量加法有“三角形法则”与“平行四边形法则”: (1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量

高中数学必修平面向量测试试卷典型例题含详细答案

高中数学必修平面向量测试试卷典型例题含详 细答案 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

高中数学平面向量组卷一.选择题(共18小题) 1.已知向量与的夹角为θ,定义×为与的“向量积”,且×是一个向量,它的长度 |×|=||||sinθ,若 =(2,0),﹣=(1,﹣),则|×(+)|=() A.4B.C.6D.2 2.已知,为单位向量,其夹角为60°,则(2﹣) =() A.﹣1 B.0C.1D.2 3.已知向量=(1,),=(3,m),若向量,的夹角为,则实数m=() A.2B.C.0D.﹣ 4.向量,,且∥,则=()A.B.C.D. 5.如图,在△ABC中,BD=2DC.若,,则=() A.B.C.D. 6.若向量=(2cosα,﹣1),=(,tanα),且∥,则sinα=() A.B.C.D. 7.已知点A(3,0),B(0,3),C(cosα,sinα),O(0,0),若 ,则的夹角为() A.B.C.D. 8.设向量=,=不共线,且|+|=1,|﹣|=3,则△OAB的形状是() A.等边三角形B.直角三角形C.锐角三角形D.钝角三角形9.已知点G是△ABC的重心,若A=,=3,则||的最小值为() A.B.C.D.2 10.如图,各棱长都为2的四面体ABCD中,=,=2,则向量=() A.﹣B.C.﹣D.

11.已知函数f(x)=sin(2πx+φ)的部分图象如图所示,点B,C是该图象与x轴的交点,过点C的 直线与该图象交于D,E两点,则() 的值为() A.B.C.1D.2 12.已知P为三角形ABC内部任一点(不包括边界),且满足(﹣)(+﹣2)=0,则 △ABC的形状一定为() A.等边三角形B.直角三角形C.钝三角形D.等腰三角形13.如图所示,设P为△ABC所在平面内的一点,并且=+,则△ABP与△ABC的面积之比 等于() A.B.C.D. 14.在△ABC中,|AB|=3,|AC|=2,=,则直线AD通过△ABC的() A.垂心B.外心C.重心D.内心15.在△ABC中,∠BAC=60°,AB=2,AC=1,E,F为边BC的三等分点,则=()A.B.C.D. 16.已知空间向量满足,且的夹角为,O为空间直角坐标系的原点,点A、B满足,,则△OAB的面积为() A.B.C.D. 17.已知点P为△ABC内一点,且++3=,则△APB,△APC,△BPC的面积之比等于 () A.9:4:1 B.1:4:9 C.3:2:1 D.1:2:3 18.在直角三角形ABC中,点D是斜边AB的中点,点P为线段CD的中点,则= () A.2B.4C.5D.10 二.解答题(共6小题) 19.如图示,在△ABC中,若A,B两点坐标分别为(2,0),(﹣3,4)点C在AB上,且OC平分∠BOA. (1)求∠AOB的余弦值; (2)求点C的坐标.

相关主题
文本预览
相关文档 最新文档