当前位置:文档之家› 化工原理蒸发的课程设计说明书(27页)

化工原理蒸发的课程设计说明书(27页)

化工原理蒸发的课程设计说明书(27页)
化工原理蒸发的课程设计说明书(27页)

目 录

第1章 设计方案的确定 .................................................. 1 1.1 加热蒸汽压强的确定 ................................................. 1 1.2 冷凝器操作压强的确定 ............................................... 1 1.3 进料状况 ........................................................... 1 1.4 蒸发器的形式 ....................................................... 2 1.5 效数的选择 ......................................................... 3 1.6 流程的选择 ......................................................... 3 第2章 主要工艺过程及设备的设计计算 .................................... 5 2.1 多效蒸发的工艺计算 . (5)

2.1.1 各效蒸发量和完成液浓度的估算 .................................. 5 2.1.2 估算各效二次蒸汽温度'i T ........................................ 6 2.1.3 计算各效传热温度差i t ......................................... 7 2.1.4 计算各效蒸发量i W 和传热量i Q ................................... 9 2.1.5 计算蒸发器的传热面积i S ....................................... 10 2.2 蒸发器主要结构工艺尺寸的设计 .. (13)

2.2.1 加热管的选择和管束的初步估计 ................................. 14 2.2.2 循环管直径的选择 ............................................. 14 2.2.3 加热室直径及加热管数目的确定 ................................. 14 2.2.4 分离室直径与高度的确定 ....................................... 15 2.2.5 接管尺寸的确定 ............................................... 16 第3章 蒸发器装置的辅助设备的设计 ..................................... 18 3.1 汽液分离器 ........................................................ 18 3.2 蒸汽冷凝器 .. (19)

3.2.1 冷凝器主要类型 ............................................... 19 3.2.2 工作水量的计算 ............................................... 20 3.2.3 喷射器结构尺寸计算 ........................................... 21 3.2.4 射流长度的决定 ............................................... 22 第4章 设计结果汇总 ................................................... 23 4.1 操作条件设计 ...................................................... 23 4.2 蒸发器类型 .. (23)

4.3 效数的选取 (23)

4.4 流程的选择 (23)

4.5 工艺计算结果汇总 (23)

第5章对本设计的评述 (25)

参考文献 (26)

附录 (27)

第1章设计方案的确定

蒸发操作条件的确定主要指蒸发器加热蒸汽的压强(或温度),冷凝器的操作压强(或温度)的确定,正确选择蒸发的操作条件,对保证产品质量和降低能耗极为重要。

1.1 加热蒸汽压强的确定

通常被蒸发的溶液有一个允许的最高温度,若超过了此温度物料就会变质,破坏或分解,这是确定加热蒸汽压强的一个依据。应使操作在低于最大温度范围内进行,可以采用加压蒸发,常压蒸发或真空蒸发。

蒸发是一个消耗大量加热蒸汽而又产生大量二次蒸汽的过程。从节能的观点出发,应充分利用二次蒸汽作为其它加热用的热源,即要求蒸发装置能够提供温度较高的二次蒸汽。这样既可减少锅炉产生蒸汽的消耗量,又可以减少末效进入冷凝器的二次蒸汽量,提高了蒸汽利用率。因此,能够采用较高温度的饱和蒸汽作为加热蒸汽是有利的,但通常所用饱和蒸汽的温度不超过180℃,超过时相应的压强就很高,这样增加加热的设备费和操作费,一般的加热蒸汽压强在300-800 kPa范围之内。针对本次设计任务,加热蒸气设计压强为600 kPa。

1.2 冷凝器操作压强的确定

若一效采用较高压强的加热蒸汽,则末效可采用常压或加压蒸汽,此时末效产生的二次蒸汽具有较高的温度,可以全部利用。而且各效操作温度高时,溶液粘度低,传热好。若一效加热蒸汽压强低,末效应采用真空操作,此时各效二次蒸汽温度低,进入冷凝器冷凝需消耗大量冷却水,而且溶液粘度大,传热差。但对于那些热敏性物料的蒸发,为充分利用热源还是经常采用的。对混合式冷凝器,其最大的真空度取决于冷凝器内的水温和真空装置的性能。通常冷凝器的最大真空度为70-80kPa。本次设计中,冷凝器设计压强真空度76kPa,即20 kPa(绝压)。

1.3 进料状况

根据经验和实验得出沸点进料有利于蒸发和传质过程的进行,减少蒸发过程的

热损失,增大蒸发过程的处理量,所以选择沸点进料。

1.4 蒸发器的形式

在化工生产中,大多数蒸发器都是利用饱和水蒸汽作为加热介质,因而蒸发器中热交换的一方是饱和水蒸汽冷凝,另一方是溶液的沸腾,所以,传热的关键在于料液沸腾一侧。为了适应各种不同物性物料的蒸发浓缩,出现了各种不同结构形式的蒸发器,而且随着生产,技术的发展,其结构在不断改进。工业中常用的间壁式传热蒸发器,按溶液在蒸发器中的流动特点,可分为循环型(中央循环管式、悬筐式、外加热式、列文式、强制循环式等)和单程型(升膜式、降膜式、升-降膜式、刮板式等)两大类型。

由于单程型蒸发器适用于处理热敏性物料,本次设计任务中料液为NaOH水溶液,不是热敏性物料,故选用循环型蒸发器,常见循环型蒸发器比较见表1-1。

表1-1 常见循环型蒸发器比较[1]

面对种类繁多的蒸发器,在结构上必须有利于过程的进行,为此在选用时应考虑以下原则:

(1)尽量保证较大的传热系数,满足生产工艺的要求。

(2)生产能力大,能更好地进行分离液沫,尽量减慢传热面上的垢层的生成。(3)结构简单,操作维修和清洗方便,造价低,使用寿命长。

(4)能适应所蒸发物料的一些工艺特性(如粘性、起泡性、热敏性、结垢性、腐蚀性等)。

综上各条件考虑,选用中央循环管式蒸发器。

1.5 效数的选择

在流程设计时首先应考虑采用单效还是多效蒸发,为充分利用热能,生产中一般采用多效蒸发。因在多效蒸发中,将前一效的二次蒸汽作为后一效的加热蒸汽,可节省生蒸汽耗量。但不是效数愈多愈好,效数受经济上和技术上的因素所限制。

经济上的限制是指效数超过一定时经济上不合算。多效蒸发中,随效数的增加,总蒸发量相同时所需生蒸汽量减少,使操作费用降低。但随效数增加,设备费成倍增长,而所节省的生蒸汽量愈来愈少,所以无限制增加效数已无实际意义,最适宜的效数应使设备费和操作费二者之和为最小。

技术上的限制是指效数过多,蒸发操作难于进行。一般工业生产中加热蒸汽压强和冷凝器操作压强都有一定限制,因此在一定操作下,蒸发器的理论总温差为一定值。在效数增加时,由于各效温差损失之和的增加,使总有效温差减小,分配到各效的有效温差小到无法保证各效发生正常的沸腾状态时,蒸发操作将无法进行下去。

基于上述理由,实际的多效蒸发过程效数并不多。为了保证传热的正常进行,每一效有效温差不能小于5~7℃。通常对于电解质溶液,如NaOH水溶液,由于其沸点升高较大,采用2~3效,对于非电解质溶液,有机溶液等,其沸点升高较小,可取为4~6效。其真正适宜的效数,需通过最优化的方法加以确定。

通过选择,本次设计采用三效蒸发器。

1.6 流程的选择

多效蒸发的操作流程根据加热蒸汽与料液的流向不同,可分为并流、逆流、平流及错流四种。

并流法亦称为顺流法,其料液和蒸汽呈并流。因各效间有较大压差,料液能自动从前效进入后效,可省去输料泵;前效的温度高于后效,料液从前效进入后效时呈过热状态,可以产生自蒸发;结构紧凑,操作简便,应用广泛。但由于后效较前效的温度低、浓度大,因而逐效料液的粘度增加,传热系数下降。因而并流法操作只适用于粘度不大的料液蒸发。

逆流法即料液于蒸汽呈逆流操作。随着料液浓度的提高,其温度相应提高,使料液粘度增加较小,各效的传热系数相差不大,故可生产较高浓度的浓缩液。因而逆流

法操作适用于粘度较大的料液蒸发,但由于逆流操作需设置效间料液输送泵,动力消耗较大,操作也较复杂。此外对浓缩液在高温时易分解的料液,不宜采用此流程。

平流法即各效都加入料液,又都引出浓缩液。此法除可用于有结晶析出的料液外,还可用于同时浓缩两种以上的不同水溶液。

错流法亦称混流法,它是并、逆流的结合。其特点是兼有并,逆流的优点而避免其缺点,但操作复杂,控制困难,应用不多。

采用多效蒸发装置是节能的途径之一。此外为了回收系统中的热量,应尽量利用低温热源,如蒸汽冷凝液的利用及二次蒸汽的压缩再利用等,可参考有关蒸发专著。

基于上述各种蒸发流程的比较,选择并流流程。

第2章 主要工艺过程及设备的设计计算

2.1 多效蒸发的工艺计算

多效蒸发工艺计算的主要项目有:加热蒸汽(生蒸汽)消耗量,各效水分(或溶剂)蒸发量及各效蒸发器的传热面积。计算的已知参数为:溶液的流量40kt/a 、温度30℃、原料液浓度12%、完成液浓度34%,加热蒸汽压强选为600kPa,冷凝器中的压强选为20kPa 。有多种方法进行计算,常用的有三种:试差法、牛顿迭代法求解非线性方程组、最优化-拉格朗日乘子法。本次设计采用试差法。

2.1.1 各效蒸发量和完成液浓度的估算

过程总蒸发量 0

(1)n

x W F x =- (2-1)

式中:

数;

完成液中溶质的质量分数;原料液中溶质的质量分;

原料液的流量,------n x x h kg F 0/

40/5555.56/F kt a kg h ==

原料液中溶质的质量分数00.12x = 完成液中溶质的质量分数34.03=x

0.12

5555.56(1)3594.77/0.34

W kg h =-

= 假设各效蒸发量相等,则第i 效蒸发量为:

W

Wi n

= (2-2)

1233594.77

1198.26/33

W W W W kg h =====

因而初估各效完成液的浓度为:0

12i i

Fx x F W W W =

---???- (2-3)

式中:

效的蒸发量,第数;

原料液中溶质的质量分;

原料液的流量,),,2,1(/i /0n i h kg W x h kg F i =------

15.026

.119856.555512

.056.5555101=-?=-=

W F Fx x

212

0.21Fx x F W W =

=--

3123

0.34Fx x F W W W =

=---

2.1.2 估算各效二次蒸汽温度'i T

为求各效溶液沸点,需假定各效操作压强。加热蒸汽压强1p =600kPa ,冷凝器中

的操作压强kPa p n 20'

=,其它各效二次蒸汽压强可按各效间蒸汽压强降相等的假设来确定。 即各效加热蒸汽压强与二次蒸汽压强之差p ?为:'

1n

p p p n

-?= (2-4)

kPa p 33.1933

20

600=-=

? 故第i 效二次蒸气压强'i p 为:'1i p p i p =-? (2-5)

kPa p 67.40633.193600'1=-= kPa p 34.21333.1932600'

2=?-= kPa p 00.20'3=

由'i p 可查得或计算得到对应的温度'i T 和汽化潜热'i r ,如表2-1,同时前一效的二次蒸汽即为后一效的加热蒸汽。

表2-1 二次蒸汽温度和相应的汽化潜热[2]

对于饱和水蒸汽,已知压强(或者温度)时可通过饱和水蒸汽表查取对应的温度(或者压强)、汽化潜热。

2.1.3 计算各效传热温度差i t ?

各效传热温度差计算式:i i i t T t -=?-'

1 (2-6) 式中:'1-i T 为前一效二次蒸汽温度(即第i 效加热蒸汽温度)

,i t 为第i 效溶液沸点; i i i T t ?+=' (2-7)

式中:'i T 为第i 效二次蒸汽温度,i ?为第i 效的温度差损失。

各效总的温度差损失为:'"'''

i i i i ?=?+?+? (2-8)

1'01t T t -=?1'1'0?--=T T ℃T kPa p 70

.15860001==时,。 =?1t 158.70-144.01-1? ''''''

1111=++????

同理,=?2t 144.01-122.60-2? '''2''2'22?+?+?=? 3310.6060.122?--=?t '''3''3'33?+?+?=?

① 由于溶液蒸气压下降引起的温度差损失'? 对于NaOH 水溶液可采用杜林经验式计算:

''

A w t kt m =+ (2-9) '''A w t t ?=- (2-10)

上两式中:℃t A 沸点,指一定压强下水溶液的--';

'

w t ;对应压强下水的沸点,℃--

k 和m 为常数,其值为:--

10.142k x =+ 2150.75 2.71m x x =-

。为溶液浓度,质量分率--x

=?'1144.01(0.142×0.15)+150.75×0.152

-2.71×0.15=6.05℃

同理,'2?=9.73℃ '3?=17.47℃

② 由于蒸发器中溶液静压强引起的温度差损失"?

某些蒸发器操作时,蒸发器内需维持一定的液位,因而溶液内部压强大于液面上方的压强,致使实际沸腾温度较液面为高,两者之差即为因溶液静压强引起的温度差损失''?。为简便计溶液内部沸点升高按液面于底部的平均压强m p 下水的沸点和二次蒸汽压强'p 下水的沸点差估算。平均压强按静力学方程式计算:

'2

m gL

p p ρ=+ (2-11)

则: ''

'

m p p t t ?=- (2-12)

式中:;平均压强,蒸发器中液面与底部的Pa p m -- ℃p t m p m 下水的沸点,对应--; ;的压强,二次蒸汽(即液面处)Pa '--p ;下水的沸点,对应℃p t p ''-- ;溶液的平均密度,3/m kg --ρ 。蒸发器內液面高度,m --L

2

1'11gL

p p m ρ+

=

选蒸发器內液面高度L =1.5m

根据网上查得的20℃时NaOH 浓度与密度的关系 (附录),31/1147.44m kg =ρ

kPa p m 1.415102

5

.181.944.114767.40631=???+

=-

查得[2] =1pm t 144.79℃, =?'

'1

144.79-144.01=0.78℃ 同理,''2?=1.59℃(2ρ=1197.203/m kg ),℃6.13''3=?(33/98.1300m kg =ρ) ③ 由于管道流动阻力产生的压强降所引起的温度差损失'''?

在多数蒸发中,各效二次蒸汽从上一效的蒸发室流到下一效加热室时,由于管道阻力使其压强降低,致使蒸汽的饱和温度相应降低,由此引起的温度差即为'''?。根据经验,一般取'''?℃1=。 由①、②、③得:

=?1 6.05+0.78+1=7.83℃ 12.3211.599.732=++=?℃

℃60.24113.647.173=++=?

=?1t 158.70-144.01-1?=158.70-144.01-7.83=6.86℃

=?2t 144.01-122.60-2?=144.01-122.60-12.32=9.09℃ 3310.6060.122?--=?t =122.60-60.10-24.60=37.90℃

2.1.4 计算各效蒸发量i W 和传热量i Q

对第i 效进行焓衡算,并计入溶液的浓缩热及蒸发器的热损失时,第i 效的蒸发量i W 的计算式为:

1

011'

()i i i i p n pw i i n i i

D r FC W C t t W r η--=????+--??

?????

=∑ (2-13) 式中:--i D 第i 效的加热蒸汽量,h kg /;当无额外蒸汽引出时,1i i D W -=;

--',i i r r 分别为第i 效加热蒸汽、二次蒸汽的汽化潜热,/kJ kg ,且'1i i r r -=; 0p C ,--pw C 分别为原料液和水的比热,)

(℃kg kJ ?/; i t ,1-i t --分别为第i 效及第i-1效溶液的沸点,℃;

--i η第i 效的热利用系数,对NaOH 水溶液蒸发,0.980.7x η=-? 另:

12n W W W W =++???+ (2-14) 联立方程式(2-13)、(2-14)可解出生蒸汽加热量及各效水分蒸发量i W 。 因此各效传热量的计算式为:

'11i i i i i Q D r W r --== (2-15)

1x ?=01x x -=0.15-0.12=0.03 122x x x -=?=0.21-0.15=0.06 233x x x -=?=0.34-0.21=0.13

代入上式,得1η=0.959 2η=0.938 3η=0.889

0p C =3.7)(℃kg kJ ?/; pw C =4.174)

(℃kg kJ ?/ 1p =600kPa 时,1r =2091.10kg kJ / ℃T t 84.15183.701.1441'11=+=?+=

同理,℃t 38

.1342= ℃t 70.843= '

1

11

11r r D W η==0.959×11939.066.213610

.2091D D = kg kJ r r /66.2136'12==

()21222101''2

2p pw r t t W W FC W C r r η??

-=+-????

()42.148883.013.219892.13484.151174.47.356.555513.219866

.2136938.0111+=??????--?+=W W W kg kJ r r /13.2198'23==

()323332012''3

3p pw pw r t t W W FC W C W C r r η??-=+--????

()??????---?+=90.235470.8438.134174.4174.47.356.555590

.235413

.2198889.0212W W W 51.385079.0751.012+-=W W

由???????=+=+=+==h

kg D W D W D W D W /77.359439.645317.297.496549.042.148829.0939.0113121

1 得,h kg D /93.12721=,h kg W /28.11951=, h kg W /68.12032=, h kg W /81.11953=

W r D Q 531111039.73600

1010.209193.1272?=??==

同理,W Q 521009.7?= W Q 531035.7?=

2.1.5 计算蒸发器的传热面积i S

由传热速率方程i i i i Q K S t =?得:

i

i i i

Q S K t =

? (2-16) 在多效蒸发中为便于制造和安装,通常采用各效传热面积相等的蒸发器。若计算所得之i S 有明显的差别时,应依据各效面积相等的原则重新分配各效的有效温度差i t ?,使i S 趋于相等。

分配i t ?的方法为:通常i Q 、i K 值不会发生太大的变化,可不予考虑。因而调整后的面积'i S 、有效温度差'i t ?与调整前的面积i S 有效温度差i t ?的关系为:

''i i i i S t S t ?=? (2-17) 令各效'i S 相等,将n 个''i i i i S t S t ?=?相加,得:

''i i i i S t S t ?=?∑∑ (2-18) 但不论如何变化,总传热温度差不变,即'i i t t ?=?∑∑,故由(2-17)、(2-18)方程知:

''i i i

i i i i

i

i

t S t t S t S S t

???=

=??∑∑ (2-19)

'i t ?就是调整后各效的新的温度差,将此值代入方程式(2-6),重复步骤3~5,

直至各效传热面积相近为止。

)(℃m W K ?=21/1500,)

(℃m W K ?=22/1000,)℃m W K ?=23/(600 25

11118.7186

.615001039.7m t K Q S =??=?= 同理,220.78m S = 233.32m S =

误差为%S S 6.580

.783

.321max 1m in =-=-

,误差较大,故应调整各效的有效温度差,重复上述计算步骤。

93.1090

.373.3209.90.7886.68.7190

.3709.986.686.68.71'1=?+?+?++?

?=?t ℃

同理,'

2t ?=15.74℃,'3t ?=27.18℃

15.028

.119556.555512

.056.5555101=-?=-=

W F Fx x 同理,2x =0.21,3x =0.34

因末效完成液浓度和二次蒸汽压强不变,各种温度差损失可视为恒定,故末效溶液的沸点3t 仍为84.70℃

'

33'2t t T ?+==84.70+27.18=111.88℃

2'22?+=T t

'''2''2'22?+?+?=?

℃24.921.071.20.21150.75)0.210.142(111.882'2=?-?+?=? '''222p p t t m -=?=124.19-111.88=12.31℃

2?=9.42+12.31+1=22.73℃

2t =111.88+22.73=134.61℃

'22'1t t T ?+==134.61+15.74=150.35℃

1'11?+=T t

℃19.615.071.215.075.150)15.0142.0(35.1502'1=?-?+?=?

'''121p p t t m -=?=144.79-150.35=-5.56℃

℃63.1156.56.191=+-=?

1t =150.35+1.63=151.98℃

表2-2 二次蒸汽温度和相应的汽化潜热[2]

1η=0.959,2η=0.938,3η=0.889

'

1

11

11r r D W η==0.959×11947.042.211710

.2091D D = ()21222101''2

2p pw r t t W W FC W C r r η??

-=+-????

()89.143863.096.222661.13498.151174.47.356.555596.222642

.2117938.0111+=??????--?+=W W W ()323332012''3

3p pw pw r t t W W FC W C W C r r η??-=+--????

()??????---?+=90.235470.8461.134174.4174.47.356.555590

.235496

.2226889.0212W W W =390.56-0.0791W +0.7622W

由???????=+=+=+-=+=+==h

kg D W D W W W D W W D W /77.359409.644312.220.500548.0762.0079.056.39089.143817.089.143863.0947.0112131121

1得, h kg D /25.12761=,h kg W /61.12081=,h kg W /59.11862=,h kg W /59.11993=

与第一次热量衡算所得结果: 11195.28/W kg h =,h kg W /68.12032=,

h kg W /81.11953=比较,其相对误差为

0032

.059

.119981

.119510144.059.118668

.120310110

.061

.120828

.11951=-

=-=-

相对误差均小于0.04,故计算的各效蒸发量W 结果合理。其各效溶液浓度无明显变化,不必再算。

W r D Q 53

1111041.73600101.209125.1276?=??==

℃t 93.10'1

=? 25

12.4593

.1015001041.7m S =??=

W r W Q 53

'1

121011.73600

1042.211761.1208?=??==

℃t 74.15'2

=? 25

22.4574

.1510001011.7m S =??=

W r W Q 53

'2

231034.73600

1096.222659.1186?=??==

℃t 18.27'3

=? 25

30.4518

.276001034.7m S =??=

误差:04.00044.02

.450

.4511max min <=-=-

S S , 试差结果合理,()%S S S S 1013

3

21+++=

=49.62m 由校核后的'i T 查得[2]蒸发器实际操作压强'1480.48p kPa =,'

2151.75p kPa =,'

320.00p kPa =

2.2 蒸发器主要结构工艺尺寸的设计

中央循环管式蒸发器主体为加热室和分离室,加热室由直立的加热管束组成,管

束中间为一根直径较大的中央循环管;分离室是汽液分离的空间。其主要结构尺寸包括:加热室和分离室的直径和高度,加热管和循环管的规格、长度、数量及在管板上的排列方式等。这些尺寸的确定取决于工艺计算结果,主要是传热面积。

2.2.1 加热管的选择和管束的初步估计

加热管通常选用mm mm 、mm 、 3.5572.5382.525???φφφ等几种规格的无缝钢管,长度一般为2~6m 。管子长度的选择应根据溶液结垢的难易程度、溶液的起泡性和厂房的高度等因素来考虑。易结垢和易起泡沫溶液的蒸发宜采用短管。当加热管的规格与长度确定后,可由下式初估所需管数:'n 0(0.1)

S

n d L π'=

- (2-20)

因加热管固定在管板上,考虑到管板厚度所占据一定的加热管长度,计算'n 时的管长用m L )1.0(-。为完成传热任务所需的最小实际管数n 只有在管板上排列加热管后才能最终确定。

选57 3.5570=?d 即φ 加热管长 3.0L m = '3

49.6

95.5965710 2.9

n π-=

=≈??? 2.2.2 循环管直径的选择

循环管的截面积是根据使循环阻力尽量减少的原则来考虑的。其截面积可取加热管总截面积的40%~100%,若以1D 表示循环管内径,则

2211(0.4~1)4

4

D n d π

π

'

= (2-21)

11D = (2-22)

10.05409.88D ==mm

对加热面积较小的蒸发器,应取较大的百分数。选取管子的规格为

45020φ?mm[3],循环管管长与加热管管长相同均为3.0m 。

2.2.3 加热室直径及加热管数目的确定

加热室的内径取决于加热管和循环管的规格、数目及在管板上的排列方式。加热

管在管板上的排列方式有三角形、正方形、同心圆等,目前以三角形排列居多。管心距t 为相邻两管中心线之间的距离,t 一般为加热管外径的1.25~1.5倍。目前在换热器设计中,管心距的数值已经标准化,只要管子规格确定,相应的管心距则为确定值。

表2-3 三角形排列时加热管直径与管心距的关系[4]

加热室内径和加热管数采用做图法来确定,具体做法是:先计算管束中心线上管束c n ,管子按正三角形排列时:'1.1n n c =;管子按正方形排列时:'9.1n n c =,式中:n 为总加热管数. 初估加热室内径用()()0''5.1121d b b n t D c i -=+-=式中。然后由容器公称直径,试选一内径作为加热室内径,并以此内径和循环管外径作同心圆,在同心圆的环隙中,按加热管的排列方式和管心距作图。作图所得管数n 必须大于初估值,如不满足,应另选一设备内径,重新作图,直至适合为止。壳体内径的标准尺寸列于表2-4中,以供参考。

表2-4 设备壳体内径与壁厚的关系[4]

经过作图,实际管数大于初估值,符合要求。正三角形排列初步估算加热室内径,取057d mm =,70t mm =,'01.2b d =,n=100

即: 11)2 1.257836.8D mm =+??=

通过作图确定加热管数n 为108,加热室内径为1000mm 。

2.2.4 分离室直径与高度的确定

分离室的直径和高度取决于分离室的体积,而分离室的体积又与二次蒸汽流量及蒸发体积的强度有关。 分离室体积的计算:

33600W

V m U

ρ=

(2-23)

式中:量,为某效蒸发的二次蒸汽--W h kg /; 3/g m k 度,某效蒸发的二次蒸汽密--ρ;

3333m /() 1.1 1.5m /()U m s m s --??蒸发体积强度,;一般允许值为~。

1111208.61

0.0993******* 1.4 2.414

W U ρ=

==??1V 3m

32221186.59

0.31736003600 1.20.8675

W m U ρ=

==??2V

33331199.59

1.70136003600 1.50.1306

W m U ρ=

==??3V

所以, 3 1.701V V =取3m 。

取最大分离室体积计算分离室高度与直径,取H=2.1m 。

H D V 24

?=

π

(2-24)

232.1 1.7014

D m π

??=

1.02D m ==mm 1020

通过查得[5]圆整为1100mm ,再校核,

91.11100

2100==D H ,在1~2之间;1.21.14

4

22'??=

=

π

π

H D V =2.00≥V ,所以分离室直径D 圆整为1100mm ,H 取为

2.1m 。 对中央循环管,其分离室高度不小于m 8.1,以保证足够的雾沫分离高度。分离室直径也不能太小,否则二次蒸汽流速过大将导致雾沫夹带现象严重。

2.2.5 接管尺寸的确定

(1)溶液进出口管:对并流三效蒸发,第一效溶液流量最大,若各效设备尺寸一致的话,根据第一效溶液流量确定接管。溶液的适宜流速按强制流动(u=0.8-1.5m/s )考虑,设计上进出口直径可取为一致。

根据进料液的浓度x=0.12查附录得对应密度为

1167.33kg/,适宜流速选

u=1.2m/s 。

35555.563600 1.32101167.33

s F

V ρ-===?3/m s

溶液进出口管:1d =

(2-25)

137.42d mm ===

选择40 1.2φ?的不锈钢无缝钢管。

(2)加热蒸汽与二次蒸汽接管:若各效尺寸一致,则二次蒸汽体积流量应取各效中最大者,饱和蒸汽适宜流速s m ~u /5030=。

31111208.6136000.136/2.467W

V m s ρ===

32221186.5936000.380/0.8675W

V m s ρ===

33331199.593600 2.551/0.1306W

V m s ρ===

33 2.551/V m s =取最大

50/u m s =

,254.87d mm =

= 27312φ?选的不锈钢无缝钢管。

(3)冷凝水出口管:冷凝水的排出属于自然流动(s m ~u /1.88.0=),接管尺寸应由各效加热蒸汽量较大者确定。

选 1.3/u m s =,h kg D /25.12761=,h kg W /61.12081=,h kg W /59.11862=,1D 最大

1431276.25

36003600 3.5610/995.7

s D V m s ρ-===?水

18.67d mm == 200.6φ?选的不锈钢无缝钢管。

第3章 蒸发器装置的辅助设备的设计

蒸发装置的设备主要包括汽液分离器和蒸汽冷凝设备,还需要真空泵,疏水器等辅助设备。

3.1 汽液分离器

蒸发操作时,二次蒸汽中夹带大量液体,虽在分离室得到了初步分离,但是为了防止有用的产品损失或污染冷凝液体,还需设置器液分离设备,以使雾沫中的液体凝聚与二次蒸汽分离,故气液分离器又称除沫器。其类型较多,在分离室顶部设置的有简易式,惯性式及网式除沫器等,在蒸发器外部设置的有折流式,旋流式及离心式除沫器等。

惯性式除沫器是利用带有液滴的二次蒸汽在突然改变方向时,液滴因惯性作用而与蒸汽分离,它的结构比较简单。因此,本次设计采用惯性式除沫器。 惯性式除沫器主要尺寸的计算:

2:5.1:1::3210

1=≈D D D D D

3H D = 1(0.4~0.5)h D =

式中:;为二次蒸汽的管径,m D --0

为除沫器内管的直径,m D --1 ;除沫器外罩管的直径,m D --2 ;除沫器外壳直径,m D --3

;除沫器的总高度,m H --

。的距离,除沫器内管顶部与器顶m h -- 01273212249D D mm ≈=-?=

123::1:1.5:2249:373.5:498D D D ==

3500H D mm ==

1(0.4~0.5)0.45249112h D ==?=mm

所以,以上除沫器内管选用mm 12273?φ的不锈钢无缝钢管,除沫器外罩管选用

mm 9402?φ的不锈钢无缝钢管,除沫器外壳直径选16530?φ的不锈钢无缝钢管。

化工原理课程设计任务书 zong (修复的)共32页

2012年 06月 工业背景及工艺流程 乙醛是无色、有刺激性气味的液体,密度比水小,沸点20.8℃,易挥

发、易燃烧且能和水、乙醇、乙醚、氯仿等互溶,因其分子中具有羰基,反应能力很强,容易发生氧化,缩合,环化,聚合及许多类型加成反应。乙醛也是一种重要的烃类衍生物在合成工业有机化工产品上也是一种重要的中间体。其本身几乎没有直接的用途,完全取决于市场对它的下游产品的需求及下游产品对生产路线的选择,主要用于醋酸、醋酐、醋酸乙烯等重要的基本有机化工产品,也用于制备丁醇、异丁醇、季戊四醇等产品。这些产品广泛应用于纺织、医药、塑料、化纤、染料、香料和食品等工业。 国内乙醛生产方法有乙烯氧化法、乙醇氧化法和乙炔氧化法三种技术路线。工业上生产乙醛的原料最初采用乙炔,以后又先后发展了乙醇和乙烯路线。乙炔水化法成本高,因其催化剂——汞盐的污染难以处理等致命缺点,现以基本被淘汰。乙醇氧化或脱氢法制乙醛虽有技术成熟,不需要特殊设备,投资省,上马快等优点,但成本高于乙烯直接氧化法。乙烯直接氧化法制乙醛。由于其原料乙烯来源丰富而价廉,加之反应条件温和,选择性好,收率高,工艺流程简单及“三废”处理容易等突出优点,深受世界各国重视,发展非常迅速,现以成为许多国家生产乙醛的主要方法。 精馏方案的确定: 精馏塔流程的确定; 塔型的选择; 操作压力的选定; 进料状态选定; 加热方式等

所选方案必须: (1)满足工艺要求; (2)操作平稳、易于调节; (3)经济合理; (4)生产安全。 包括:流程的确定;塔型的选择;操作压力的选定;进料状态选定;加热方式等 操作压力选择 ●精馏可在常压、加压或减压下进行。 ●沸点低、常压下为气态的物料必须选用加压精馏;热敏性、高沸点 物料常用减压精馏。 进料状态的选择 ●一般将料液预热到泡点或接近泡点后送入塔内。这样可使: ● (1)塔的操作比较容易控制; ● (2)精馏段和提馏段的上升蒸汽量相近,塔径相似,设计制造比 较方便。 加热方式: ●(1)间接蒸汽加热 ●(2)直接蒸汽加热 ●适用场合:待分离物系为某轻组分和水的混合物。 ●优点:可省去再沸器;并可利用压力较低的蒸汽进行加热。操作 费用和设备费用均可降低。

化工原理课程设计

绪论 1.1换热器在工业中的应用 换热器在工、农业的各领域应用十分广泛,在日常生活中传热设备也随处可见,是不可或缺的工艺设备之一。因此换热设备的研究备受世界各国政府及研究机构的高度重视,在全世界第一次能源危机爆发以来,各国都在下大力量寻找新的能源及在节约能源上研究新途径。在研究投入大、人力资源配备足的情况下,一批具有代表性的高效换热器和强化元件诞生。随着研究的深入,工业应用取得了令人瞩目的成就,得到了大量的回报,如板翅式换热器、大型板壳式换热器和强化沸腾的表面多孔管、T型翅片管、强化冷凝的螺纹管、锯齿管等都得到了国际传热界专家的首肯,社会效益非常显著,大大缓解了能源的紧张情况。 换热器是一种实现物料之间热量传递的节能设备,是在石油、化工、石油化工、冶金、电力、轻工、食品等行业普遍应用的一种工艺设备。在炼油、化工装置中换热器占总设备数量的40%左右,占总投资的30%-45%。近年来随着节能技术的发展,应用领域不断扩大,利用换热器进行高温和低温热能回收带来了显著的经济效益。 随着环境保护要求的提高,近年来加氢装置的需求越来越多,如加氢裂化,煤油加氢,汽油、柴油加氢和乳化油加氢装置等建设量增加,所需的高温、高压换热器数量随之加大。螺纹锁紧环换热器、Ω密封环换热器、金属垫圈式换热器、蜜蜂盖板式换热器技术发展越来越快,不仅在承温、承压上满足装置运行要求,而且在传热与动力消耗上发展较快,同时亦适用于乙烯裂解、化肥中合成氨、聚合和天然等场合,可满足承压高达35MPa,承温达700℃的使用要求。在这些场合,换热器占有的投资占50%以上。 1.2换热器的研究现状 20世纪80年代以来,换热器技术飞速发展,带来了能源利用率的提高。各种新型、高效换热器的相继开发与应用带来了巨大的社会经济效益,市场经济的发展、私有化比例的加大,降低成本已成为企业追求的最终目标。因而节能设备的研究与开发备受瞩目。能源的日趋紧张、全球环境气温的不断升高、环境保护要求的提高和换热器及空冷式换热器及高温、高压换热器带来了日益广阔的应用前景。在地热、太阳能、核能、余热回收、风能的利用上,各国政府都加大了投入资金力度。 国内各研究机构和高等院校研究成果不断推陈出新,在强化传热元件方面华南理工

化工原理课程设计报告

课程设计任务书 设计题目:水冷却环己酮换热器的设计 一、设计条件 1、处理能力53万吨/年 2、设备型式列管式换热器 3、操作条件 a.环己酮:入口温度120℃,出口温度为43℃ b.冷却介质:自来水,入口温度20℃,出口温度40℃ c.允许压强降:不大于1×105Pa d.每年按330天计,每天24小时连续运行 4、设计项目 a.设计方案简介:对确定的工艺流程及换热器型式进行简要论述。 b.换热器的工艺计算:确定换热器的传热面积。 c.换热器的主要结构尺寸设计。 d.主要辅助设备选型。 e.绘制换热器总装配图。 二、设计说明书的内容 1、目录; 2、设计题目及原始数据(任务书); 3、论述换热器总体结构(换热器型式、主要结构)的选择; 4、换热器加热过程有关计算(物料衡算、热量衡算、传热面积、换热管型号、壳体直 径等); 5、设计结果概要(主要设备尺寸、衡算结果等); 6、主体设备设计计算及说明;

目录 1. 前言 (1) 1.换热器简介 (1) 2. 列管式换热器分类: (2) 2. 设计方案简介 (2) 2.1换热器的选择 (2) 2.2流程的选择 (2) 2.3物性数据 (2) 3. 工艺计算 (3) 3.1试算 (3) 3.1.1计算传热量 (3) 3.1.2计算冷却水流量 (3) 3.1.3计算两流体的平均传热温度 (3) 3.1.4计算P、R值 (3) 3.1.5假设K值 (4) 3.1.6估算面积 (5) 3.1.7拟选管的规格、估算管内流速 (5) 3.1.8计算单程管数 (5) 3.1.9计算总管数 (5) 3.1.10管子的排列 (6) 3.1.11折流板 (6) 3.2核算传热系数 (6) 3.2.1计算管程传热系数 (6) 3.2.2计算壳程传热系数 (7) 3.2.3污垢热阻 (7) 3.2.4计算总传热系数 (7) 3.3核算传热面积 (7) 3.3.1计算估计传热面积 (7) 3.3.2计算实际传热面积 (8) 3.4压降计算 (8) 3.4.1计算管程压降 (8) 3.4.2计算壳程压降 (8) 3.5附件 (9) 3.5.1接管 (9) 3.5.2拉杆 (9) 4. 换热器结果一览总表 (10) 5. 设计结果概要 (11) 1.结果 (11) 6. 致谢 (12)

化工课程设计小结

化工原理课程设计小结 随着毕业日子的到来,课程设计也接近了尾声。经过几周的奋战我的课程设计终于完成了。在没有做课程设计以前觉得课程设计只是对这几年来所学知识的单纯总结,但是通过这次做课程设计发现自己的看法有点太片面。课程设计不仅是对前面所学知识的一种检验,而且也是对自己能力的一种提高。通过这次课程设计使我明白了自己原来知识还比较欠缺。自己要学习的东西还太多,以前老是觉得自己什么东西都会,什么东西都懂,有点眼高手低。通过这次课程设计,我才明白学习是一个长期积累的过程,在以后的工作、生活中都应该不断的学习,努力提高自己知识和综合素质。 在这次课程设计中也使我们的同学关系更进一步了,同学之间互相帮助,有什么不懂的大家在一起商量,听听不同的看法对我们更好的理解知识,所以在这里非常感谢帮助我的同学。 我的心得也就这么多了,总之,不管学会的还是学不会的的确觉得困难比较多,真是万事开头难,不知道如何入手。最后终于做完了有种如释重负的感觉。此外,还得出一个结论:知识必须通过应用才能实现其价值!有些东西以为学会了,但真正到用的时候才发现是两回事,所以我认为只有到真正会用的时候才是真的学会了。 在此要感谢我们的指导老师罗老师、朱老师和李老师对我们悉心的指导,感谢老师们给我们的帮助。在设计过程中,我通过查阅大量有关资料,与同学交流经验和自学,并向老师请教等方式,使自己学到了不少知识,也经历了不少艰辛,但收获同样巨大。在整个设计中我懂得了许多东西,也培养了我独立工作的能力,树立了对自己工作能力的信心,相信会对今后的学习工作生活有非常重要的影响。而且大大提高了动手的能力,使我充分体会到了在创造过程中探索的艰难和成功时的喜悦。虽然这个设计做的也不太好,但是在设计过程中所学到的东西是这次课程设计的最大收获和财富,使我终身受益。 课程设计报告主要包括以下几个方面. 1.封面(根据自己的个性设计)2.目录3.主界面(介绍这次设计的课题、人员、目标、任务、人员分工)4.主要过程(要告诉别人你的这个作品该怎么用)5.程序流程图(用图来表示主要过程)6.核心源程序(你觉得这个作品它具备的主要功能是什么,就将实现这个功能的代码给COPY下来)7.主要函数(你程序代码里用的函数中你觉得重要的或是难的)8.心得9.附录(你完成这次课程设计参考的书,这个可以多写一点,以示用心认真) 我第一次做课程设计时写报告就是这么写的.你参考参考.希望能对你有些帮助

化工原理课程设计最终版

青岛科技大学 化工课程设计 设计题目:乙醇-正丙醇溶液连续板式精馏塔的设计指导教师: 学生姓名: 化工学院—化学工程与工艺专业135班 日期:

目录一设计任务书 二塔板的工艺设计 (一)设计方案的确定 (二)精馏塔设计模拟 (三)塔板工艺尺寸计算 1)塔径 2)溢流装置 3)塔板分布、浮阀数目与排列 (四)塔板的流体力学计算 1)气相通过浮阀塔板的压强降2)淹塔 3)雾沫夹带 (五)塔板负荷性能图 1)雾沫夹带线 2)液泛线 3)液相负荷上限 4)漏液线 5)液相负荷上限 (六)塔工艺数据汇总表格 三塔的附属设备的设计 (一)换热器的选择 1)预热器 2)再沸器的换热器 3)冷凝器的换热器 (二)泵的选择 四塔的内部工艺结构 (一)塔顶 (二)进口 ①塔顶回流进口 ②中段回流进口 (三)人孔 (四)塔底 ①塔底空间 ②塔底出口 五带控制点工艺流程图 六主体设备图 七附件 (一)带控制点工艺流程图 (二)主体设备图 八符号表 九讨论 十主要参考资料

一设计任务书 【设计任务】设计一板式精馏塔,用以完成乙醇-正丙醇溶液的分离任务 【设计依据】如表一 表一 【设计内容】 1)塔板的选择; 2)流程的选择与叙述; 3)精馏塔塔高、塔径与塔构件设计; 4)预热器、再沸器热负荷及加热蒸汽消耗量,冷凝器热负荷及冷却水用量,泵的选择; 5)带控制点工艺流程图及主体设备图。 二塔板的工艺设计 (一)设计方案的确定 本设计的任务是分离乙醇—正丙醇混合液,对于二元混合物的分离,应采用连续精馏流程,运用Aspen软件做出乙醇—正丙醇的T-x-y 相图,如图一:

图一:乙醇—正丙醇的T-x-y相图 由图一可得乙醇—正丙醇的质量分数比为0.5:0.5时,其泡点温度是84.40o C (二)精馏塔设计模拟 1.初步模拟过程 运用Aspen软件精馏塔Columns模块中DSTWU模型进行初步模拟,并不断进行调试,模拟过程及结果如下:

化工原理课程设计

《化工原理》课程设计报告精馏塔设计 学院 专业 班级 学号 姓名 指导教师

目录 苯-氯苯分离过程板式精馏塔设计任务 (3) 一.设计题目 (3) 二.操作条件 (3) 三.塔设备型式 (3) 四.工作日 (3) 五.厂址 (3) 六.设计内容 (3) 设计方案 (4) 一.工艺流程 (4) 二.操作压力 (4) 三.进料热状态 (4) 四.加热方式 (4) 精馏塔工艺计算书 (5) 一.全塔的物料衡算 (5) 二.理论塔板数的确定 (5) 三.实际塔板数的确定 (7) 四.精馏塔工艺条件及相关物性数据的计算 (8) 五.塔体工艺尺寸设计 (10) 六.塔板工艺尺寸设计 (12) 七.塔板流体力学检验 (14) 八.塔板负荷性能图 (17) 九.接管尺寸计算 (19) 十.附属设备计算 (21) 设计结果一览表 (24) 设计总结 (26) 参考文献 (26)

苯-氯苯精馏塔的工艺设计 苯-氯苯分离过程精馏塔设计任务 一.设计题目 设计一座苯-氯苯连续精馏塔,要求年产纯度为99.6%的氯苯140000t,塔顶馏出液中含氯苯不高于0.1%。原料液中含氯苯为22%(以上均为质量%)。 二.操作条件 1.塔顶压强自选; 2.进料热状况自选; 3.回流比自选; 4.塔底加热蒸汽压强自选; 5.单板压降不大于0.9kPa; 三.塔板类型 板式塔或填料塔。 四.工作日 每年300天,每天24小时连续运行。 五.厂址 厂址为天津地区。 六.设计内容 1.设计方案的确定及流程说明 2. 精馏塔的物料衡算; 3.塔板数的确定; 4.精馏塔的工艺条件及有关物性数据的计算; 5.精馏塔主要工艺尺寸;

2017化工课程设计心得体会范文

2017化工课程设计心得体会范文 2017化工课程设计心得体会范文一 化工原理课程设计是综合运用化工原理及相关基础知识的实践性教学环节。设计过程中指导教师指引学生在设计过程中既要考虑理论上的可行性,还要考虑生产上的安全性和经济合理性。通过课程设计使我们初步掌握化工设计的基础知识、设计原则及方法。 本次化工原理课程设计历时两周,是上大学以来第一次独立的工业化设计。从老师以及学长那里了解到化工原理课程设计是培养我们化工设计能力的重要教学环节,通过课程设计使我们初步掌握化工设计的基础知识、设计原则及方法;学会各种手册的使用方法及物理性质、化学性质的查找方法和技巧;掌握各种结果的校核,能画出工艺流程、塔板结构等图形;在设计过程中不仅要考虑理论上的可行性,还要考虑生产上的安全性和经济合理性。由于第一次接触课程设计,起初心里充满了新鲜感和期待,因为自我认为在大学里学到的东西终于可以加以实践了。可是当老师把任务书发到手里是却是一头雾水,完全不知所措。可是在这短短的三周里,从开始的一无所知,到同学讨论,再进行整个流程的计算,再到对工业材料上的选取论证和后期的程序的编写以及流程图的绘制等过程的培养,我真切感受到了理论与实践相结合中的种种困难,也体会到了利用所学的有限的理论知识去解决实际中各种问题的不易。我的课程设计题目是苯――氯苯筛板式精馏塔设计图。在开始时,我们不知道如何下手,虽然有课程设计书作为参

考,但其书上的计算步骤与我们自己的计算步骤有少许差异,在这些差异面前,我们显得有些不知所措,通过查阅《化工原理》,《化工工艺设计手册》,《物理化学》,《化工原理课程设计》等书籍,以及在网上搜索到的理论和经验数据。我们慢慢地找到了符合自己的实验数据。并逐渐建立了自己的模版和计算过程。在这三周中给我印象最深的是我们这些“非泡点一族”在计算进料热状况参数q时,没有任何参考模板,完全靠自己捉摸思考。起初大家都是不知所措,待冷静下来,我们仔细结合上课老师讲的内容,一步一步的讨论演算,经大家一下午的不懈努力,终于把q算出来了。还有就是我们在设计换热器部分,在试差的过程中,我们大部分人都是经历了几乎一天多的时间才选出了合适的换热器型号,现在还清楚的记得我试差成功后那激动的心情,因为我尝到了自己在付出很多后那种成功的喜悦,因为这些都是我们的“血泪史”的见证哈。 在此感谢我们的杜治平老师.,老师严谨细致、一丝不苟的作风一直是我工作、学习中的榜样;老师循循善诱的教导和不拘一格的思路给予我无尽的启迪;这次课程设计的细节和每个数据,都离不开老师您的细心指导。而您开朗的个性和宽容的态度,帮助我能够很顺利的完成了这次课程设计。同时感谢同组的同学们,谢谢你们对我的帮助和支持,让我感受到同学的友谊。由于本人的设计能力有限,在设计过程中难免出现错误,恳请老师们多多指教,我十分乐意接受你们的批评与指正,本人将万分感谢。 2017化工课程设计心得体会范文二

化工原理课程设计简易步骤

《化工原理》课程设计说明书 设计题目 学生姓名 指导老师 学院 专业班级 完成时间

目录 1.设计任务书……………………………………………() 2.设计方案的确定与工艺流程的说明…………………() 3.精馏塔的物料衡算……………………………………() 4.塔板数的确定………………………………………() 5.精馏段操作工艺条件及相关物性数据的计算………() 6.精馏段的汽液负荷计算………………………………() 7.精馏段塔体主要工艺尺寸的计算…………………() 8.精馏段塔板主要工艺尺寸的计算…………………………() 9.精馏段塔高的计算…………………………………() 10.精馏段塔板的流体力学验算…………………………() 11.精馏段塔板的汽液负荷性能图………………………() 12.精馏段计算结果汇总………………………………() 13.设计评述……………………………………………() 14.参考文献………………………………………………() 15.附件……………………………………………………() 附件1:附图1精馏工艺流程图………………………() 附件2:附图2降液管参数图……………………………()附件3:附图3塔板布孔图………………………………()

板式塔设计简易步骤 一、 设计方案的确定及工艺流程的说明 对塔型板型、工艺流程、加料状态、塔顶蒸汽冷凝方式、塔釜加热方式等进行说明,并 绘制工艺流程图。(图可附在后面) 二、 精馏塔物料衡算:见教材P270 计算出F 、D 、W ,单位:kmol/h 三、 塔板数的确定 1. 汽液相平衡数据: 查资料或计算确定相平衡数据,并绘制t-x-y 图。 2. 确定回流比: 先求出最小回流比:P 266。再确定适宜回流比:P 268。 3. 确定理论板数 逐板法或梯级图解法(塔顶采用全凝器)计算理论板层数,并确定加料板位置:P 257-258。(逐板法需先计算相对挥发度) 确定精馏段理论板数N 1、提馏段理论板数N 2 4. 确定实际板数: 估算塔板效率:P 285。(①需知全塔平均温度,可由 t-x-y 图确定塔顶、塔底温度,或通过试差确定塔顶、塔底温度,再取算术平均值。②需知相对挥发度,可由安托因方程求平均温度下的饱和蒸汽压,再按理想溶液计算。) 由塔板效率计算精馏段、提馏段的实际板层数N 1’,N 2’:P 284式6-67。 四、 精馏段操作工艺条件及相关物性数据的计算 1. 操作压力m p :取2 F D m p p p += 2. 精馏段平均温度m t :查t-x-y 图确定塔顶、进料板温度,再取平均值。或由泡点方程试差法确定塔顶、进料板温度。 3. 平均摩尔质量M Vm 、M Lm :由P 8式0-27分别计算塔顶、进料板处的摩尔质量,再分别 取两处的算术平均值。汽相的摩尔分率查t-x-y 图。 4. 平均密度Vm ρ、Lm ρ: Lm ρ:用P 13式1-7分别计算塔顶、进料板处液相密度,再 取算术平均值。m Vm m Vm T R M p ??= ρ 5. 液体表面张力m σ:由B B A A m x x σσσ+=分别计算塔顶mD σ与进料板mF σ,再取 平均值。 6. 液体粘度m μ:与表面张力的计算类似。 五、 精馏段汽液负荷(Vs 、Ls )计算 V=(R+1)D L=RD

化工原理课程设计报告样本

化工原理课程设计报告样本

《化工原理课程设计》报告 48000吨/年乙醇~水精馏装置设计 年级 专业 设计者姓名 设计单位 完成日期年月日 7

目录 一、概述 (4) 1.1 设计依据 (4) 1.2 技术来源 (4) 1.3 设计任务及要求 (5) 二:计算过程 (6) 1. 塔型选择 (6) 2. 操作条件的确定 (6) 2.1 操作压力 (6) 2.2 进料状态 (6) 2.3 加热方式 (7) 2.4 热能利用 (7) 3. 有关的工艺计算 (7) 3.1 最小回流比及操作回流比 的确定 (8) 3.2 塔顶产品产量、釜残液量及 7

加热蒸汽量的计算 (9) 3.3 全凝器冷凝介质的消耗量9 3.4 热能利用 (10) 3.5 理论塔板层数的确定 (10) 3.6 全塔效率的估算 (11) 3.7 实际塔板数P N (12) 4. 精馏塔主题尺寸的计算 (12) 4.1 精馏段与提馏段的体积流 量 (12) 4.1.1 精馏段 (12) 4.1.2 提馏段 (14) 4.2 塔径的计算 (15) 4.3 塔高的计算 (17) 5. 塔板结构尺寸的确定 (17) 5.1 塔板尺寸 (18) 5.2 弓形降液管 (18) 5.2.1 堰高 (18) 5.2.2 降液管底隙高度h019 7

5.2.3 进口堰高和受液盘 19 5.3 浮阀数目及排列 (19) 5.3.1 浮阀数目 (19) 5.3.2 排列 (20) 5.3.3 校核 (20) 6. 流体力学验算 (21) 6.1 气体通过浮阀塔板的压力 降(单板压降) h (21) p 6.1.1 干板阻力 h (21) c 6.1.2 板上充气液层阻力1h (21) 6.1.3 由表面张力引起的阻 (22) 力h 6.2 漏液验算 (22) 6.3 液泛验算 (22) 6.4 雾沫夹带验算 (23) 7. 操作性能负荷图 (23) 7.1 雾沫夹带上限线 (23) 7

化工原理课程设计

安阳工学院课程设计说明书 课程名称:化工原理课程设计 设计题目:列管式换热器 院系:化学与环境工程学院 学生姓名:赵安顺 学号:201005020025 专业班级:应用化学一班 指导教师:路有昌

列 设计一台列管式换热器 一、设计任务及操作条件 (1)处理能力 2.5×105 t/a热水 (2)设备型式列管式换热器 (3)操作条件 ①热水:入口温度80℃,出口温度60℃. ②冷却介质:循环水,入口温度32℃,出口温度40℃. ③允许压降:不大于105Pa. ④每年按300天计算,每天24小时连续运行. 二、设计要求及内容 (1)根据换热任务和有关要求确认设计方案; (2)初步确认换热器的结构和尺寸; (3)核算换热器的传热面积和流体阻力; (4)确认换热器的工艺结构. 摘要:通过对列管式换热器的设计,首先要确定设计的方案,选择合适的计算步骤。查得计算中用到的各种数据,对该换热器的传热系数传热面积工艺结构尺寸等等要进行核算,与要设计的目标进行对照是否能满足要求,最终确定换热器的结构尺寸为设计图纸做好准备和参考,来完成本次课程设计。 关键词:标准方案核算结构尺寸

目录 一.概述 (4) 二.方案的设计与拟定 (4) 三.设计计算 (8) 3.1确定设计方案 (9) 3.1.1选择换热器的类型 (9) 3.1.2流动空间及管子的确定 (9) 3.2确定物性数据 (9) 3.3初选换热器规格 (10) 3.3.1热流量 (10) 3.3.2冷却水用量 (10) 3.3.3平均温度差 (10) 3.3.4换热器规格 (11) 3.4核算总传热系数 (11) 3.4.1计算管程传热系数 (11) 3.4.2 计算壳程传热系数 (12) 3.4.3 确定污垢热阻 (13) 3.3.4 总传热系数 (13) 3.5计算压强降 (14) 3.5.1计算管程压强降 (14) 3.5.2计算壳程压强降 (14)

最新《化工原理课程设计-年产量112000吨NaOH水溶液蒸发装置的设计》

湖南师范大学 《化工原理》课程设计说明书 设计题目年产量112000吨NaOH水溶液蒸发装置的设计学生姓名周鹏 指导老师罗大志 学院树达学院 学号 200721180135 专业班级 07制药工程1班 完成时间2009年10月

《化工原理》课程设计成绩评定栏 评定基元评审要素评审内涵 满 分指导教师 实评分 评阅教师 实评分 设计说明书,40% 格式规范 设计说明书是否符 合规定的格式要求 5 内容完整 设计说明书是否包 含所有规定的内容 5 设计方案 方案是否合理及符 合选定题目的要求 10 工艺计算 过程 工艺计算过程是否 正确、完整和规范 20 设计图纸, 40% 图纸规范图纸是否符合规范 5 标注清晰标注是否清晰明了 5 与设计吻合 图纸是否与设计计 算的结果完全一致 10 图纸质量 设计图纸的整体质 量的全面评价 20 平时成绩, 10% 上课出勤上课出勤考核 5 制图出勤制图出勤考核 5 答辩成绩, 10% 内容表述答辩表述是否清楚 5 回答问题回答问题是否正确 5 100 综合成绩成绩等级

指导教师评阅教师答辩小组负责人 (签名) (签名) (签名) 年月日年月日年月日 说明: 评定成绩分为优秀(90-100),良好(80-89),中等(70-79),及格(60-69)和不及格(<60) 目录 1前言 (1) 2设计任务 (2) 2.1设计任务 (2) 2.2操作条件 (2) 3设计条件及设计方案说明 (3) 4物性数据及相关计算 (3) 4.1估计各效蒸发量和完成液浓度 (3) 4.2估计各效蒸发溶液的沸点和有效总温度差 (4) 4.3加热蒸汽消耗量和各效蒸发水量的初步计算 (7) 4.4蒸发器传热面积的估算 (8) 4.5有效温度的再分配 (8) 4.6重复上述计算步骤 (9) 4.7计算结果列表 (12) 5主体设备计算和说明 (12) 5.1加热管的选择和管数的初步估计 (13) 5.2循环管的选择 (13) 5.3加热管的直径以及加热管数目的确定 (13)

化工原理课程设计报告(换热器)

《化工原理课程设计任务书》(1) 一、设计题目: 设计一台换热器 二、操作条件: 1.苯:入口温度80℃,出口温度40℃。 2.冷却介质:循环水,入口温度35℃。 3.允许压强降:不大于50kPa。 4.每年按300天计,每天24小时连续运行。 三、设备型式: 管壳式换热器 四、处理能力: 1. 99000吨/年苯 五、设计要求: 1.选定管壳式换热器的种类和工艺流程。 2.管壳式换热器的工艺计算和主要工艺尺寸的设计。 3.设计结果概要或设计结果一览表。 4.设备简图。(要求按比例画出主要结构及尺寸) 5.对本设计的评述及有关问题的讨论。 一、选定管壳式换热器的种类和工艺流程 1.选定管壳式换热器的种类 管壳式换热器是目前化工生产中应用最广泛的传热设备。与其他种类的换热器相比,其主要优点是:单位体积具有的传热面积较大以及传热效果较好;此外,结构简单,制造的材料范围较广,操作弹性也较大等。因此在高压高温和大型装置上多采用管壳式换热器。 管壳式换热器中,由于两流体的温度不同,管束和壳体的温度也不相同,因此他们的热膨胀程度也有差别。若两流体的温度差较大(50℃以上)时,就可能由于热应力而引起设备变形,甚至弯曲或破裂,因此必须考虑这种热膨胀的影响。根据热补偿方法的不同,管壳式换热器有下面几种形式。

(1)固定管板式换热器 这类换热器的结构比较简单、紧凑、造价便宜,但管外不能机械清洗。此种换热器管束连接在管板上,管板分别焊在外壳两端,并在其上连接有顶盖,顶盖和壳体装有流体进出口接管。通常在管外装置一些列垂直于管束的挡板。同时管子和管板与外壳的连接都是刚性的,而管内管外是两种不同温度的流体。因此,当管壁与壳壁温差较大时,由于两者的热膨胀不同,产生了很大的温差应力,以致管子扭弯或是管子从管板上松脱,甚至毁坏换热器。 为了克服温差应力必须有温差补偿装置,一般在管壁与壳壁温度相差50℃以上时,为安全起见,换热器应有温差补偿装置。但补偿装置(膨胀节)只能用在壳壁与管壁温差低于60-70℃和壳程流体压强不高的情况下。一般壳程压强超过0.6MPa时,补偿圈过厚,难以伸缩,失去温差补偿作用,就要考虑其他结构。其结果如下图所示: (2)浮头式换热器 换热器的一块管板用法兰与外壳相连接,另一块管板不与外壳连接,以使管子受热或冷却时可以自由伸缩,但在这块管板上连接一个顶盖,称之为“浮头”,所以这种换热器称为浮头式换热器。其优点是:管束可以拉出,以便清洗;管束的膨胀不受壳体约束,因此当两种换热器介质的温差大时,不会因管束与壳体的热膨胀量的不同而产生温差应力。其缺点是结构复杂,造价高。其结构如下: (3) U型管换热器 这类换热器只有一个管板,管程至少为两程,管束可以抽出清洗,管子可以自由膨胀。其缺点是管子内壁清洗困难,管子更换困难,管板上排列的管子少。其结构如下图所示: (4)填料函式换热器 这类换热器管束一端可以自由膨胀,结构比浮头式简单,造价也比浮头式低廉。但壳程内介质有外漏的可能,壳程中不应处理一易挥发、易燃易爆和有毒的介质。其结构如下: 由设计书的要求进行分析: 一般来说,设计时冷却水两端温度差可取为5℃~10℃。缺水地区选用较大的温度差,水资源丰富地区选用较小的温度差。青海是“中华水塔”,水资源 相对丰富,故选择冷却水较小的温度差6℃,即冷却水的出口温度为31℃。T m -t m =80+4025+31 -=32 22 ℃<50℃,且允许压强降不大于50kPa,可选择固定管板式换 热器。 2.工艺流程图 主要说明:由于循环冷却水较易结垢,为便于水垢清洗,所以选定循环水走管程,苯走壳程。如图所示,苯经泵抽上来,经加水器加热后,再经管道从接管C进入换热器壳程;冷却水则由泵抽上来经管道从接管A进入换热器管程。两物质在换热器中进行换热,苯从80℃被冷却至40℃之后,由接管D流出;循环冷却水则从25℃变为31℃,由接管B流出。 二、管壳式换热器的工艺计算和主要工艺尺寸的设计 1.估算传热面积,初选换热器型号 (1)基本物理性质数据的查取

化工原理课程设计——换热器的设计

中南大学《化工原理》课程设计说明书 题目:煤油冷却器的设计 学院:化学化工学院 班级:化工0802 学号: 1505080802 姓名: ****** 指导教师:邱运仁 时间:2010年9月

目录 §一.任务书 (2) 1.1.题目 1.2.任务及操作条件 1.3.列管式换热器的选择与核算 §二.概述 (3) 2.1.换热器概述 2.2.固定管板式换热器 2.3.设计背景及设计要求 §三.热量设计 (5) 3.1.初选换热器的类型 3.2.管程安排(流动空间的选择)及流速确定 3.3.确定物性数据 3.4.计算总传热系数 3.5.计算传热面积 §四. 机械结构设计 (9) 4.1.管径和管内流速 4.2.管程数和传热管数 4.3.平均传热温差校正及壳程数 4.4.壳程内径及换热管选型汇总 4.4.折流板 4.6.接管 4.7.壁厚的确定、封头 4.8.管板 4.9.换热管 4.10.分程隔板 4.11拉杆 4.12.换热管与管板的连接 4.13.防冲板或导流筒的选择、鞍式支座的示意图(BI型) 4.14.膨胀节的设定讨论 §五.换热器核算 (21) 5.1.热量核算 5.2.压力降核算 §六.管束振动 (25) 6.1.换热器的振动 6.2.流体诱发换热器管束振动机理 6.3.换热器管束振动的计算 6.4.振动的防止与有效利用 §七. 设计结果表汇 (28) §八.参考文献 (29) §附:化工原理课程设计之心得体会 (30)

§一.化工原理课程设计任务书 1.1.题目 煤油冷却器的设计 1.2.任务及操作条件 1.2.1处理能力:40t/h 煤油 1.2.2.设备形式:列管式换热器 1.2.3.操作条件 (1).煤油:入口温度160℃,出口温度60℃ (2).冷却介质:循环水,入口温度17℃,出口温度30℃ (3).允许压强降:管程不大于0.1MPa,壳程不大于40KPa (4).煤油定性温度下的物性数据ρ=825kg/m3,黏度7.15×10-4Pa.s,比热容2.2kJ/(kg.℃),导热系数0.14W/(m.℃) 1.3.列管式换热器的选择与核算 1.3.1.传热计算 1.3. 2.管、壳程流体阻力计算 1.3.3.管板厚度计算 1.3.4.膨胀节计算 1.3.5.管束振动 1.3.6.管壳式换热器零部件结构 §二.概述 2.1.换热器概述 换热器是化工、炼油工业中普遍应用的典型的工艺设备。在化工厂,换热器的费用约占总费用的10%~20%,在炼油厂约占总费用35%~40%。换热器在其他部门如动力、原子能、冶金、食品、交通、环保、家电等也有着广泛的应用。因此,设计和选择得到使用、高效的换热器对降低设备的造价和操作费用具有十分重要的作用。 在不同温度的流体间传递热能的装置称为热交换器,即简称换热器,是将热流体的部分热量传递给冷流体的设备。 换热器的类型按传热方式的不同可分为:混合式、蓄热式和间壁式。其中间壁式换热器应用最广泛,如表2-1所示。 表2-1 传热器的结构分类

化工原理课程设计任务书

(封面) XXXXXXX学院 化工原理课程设计任务书 题目: 院(系): 专业班级: 学生姓名: 指导老师: 时间:年月日

目录 1、工艺生产流程线 (4) 2、流程及方案的说明和论证 (4) 3、换热器的设计计算及说明 (5) 4、计算校核 (6) 5、设计结果概要表 (9) 6、设计评价及讨论 (11) 参考文献 (11) 附图:主体设备结构图和花版设计图

化工原理课程设计任务书 一、设计题目:列管式换热器设计。 二、设计任务:将自选物料用河水冷却至生产工艺所要求的温度。 /d; 三、设计条件:1.处理能力:G=29*300 t 物料 2. 冷却器用河水为冷却介质,考虑广州地区可取进口水温度为 20~30℃; 3.允许压降:不大于105 Pa; 4.传热面积安全系数5~15%; 5.每年按330天计,每天24小时连续运行。 四、设计要求:1.对确定的工艺流程进行简要论述; 2.物料衡算、热量衡算; 3.确定列管式换热器的主要结构尺寸; 4.计算阻力; 5.选择适宜的列管式换热器并进行核算; 6.用Autocad绘制列管式冷却器的结构图(3号图纸)、花板布 置图(4号图纸)。 7.编写设计说明书(包括:①封面;②目录;③设计题目(任务 书);④流程示意图;⑤流程及方案的说明和论证;⑥设计计 算及说明(包括校核);⑦主体设备结构图;⑧设计结果概要 表;⑨对设计的评价及问题讨论;⑩参考文献。) 备注:参考文献格式: 期刊格式为:作者姓名.出版年.论文题目.刊物名称.卷号(期号):起止页码 专著格式为:作者姓名.出版年.专著书名.出版社名.起止页码 例:潘继红等.管壳式换热器的分析和计算.北京:科学出版社,1996,70~90 陈之瑞,张志耘.桦木科植物叶表皮的研究.植物分类学报,1991,29(2):127~135 1.工艺生产流程: 物料通过奶泵被送入冷却器后,经管盖进行多次往返方向的流动。冷却后由出料管流出,不合格的物料由回流阀送回冷却器重新冷却,直至符合要求。经过处理的河水由冷却器的进口管流入,由出口管流出,其与牛奶进行逆流交换热量。 牛奶灭菌后温度高达110~115℃,然后进行第一阶段的冷却,冷却到均质温度55~75℃,而后进行均质。无菌均质后,牛奶经过第二阶段的冷却,最终由冷却水冷却至所需的出口温度。本实验所设计的就是第一阶段冷却的列管式换热器。

化工原理课程设计

化工原理课程设计 设计题目:列管式换热器的设计 指导教师 专业班级 学生姓名 学 号 2009 年 1 月 5 日 目录 1.设计任务书及操作条件 2.前言 2.1 设计方案简介 2.2工艺流程草图及说明 3 工艺设计及计算 3.1、铺助设备计算及选型 3.2、设计结果一览表 4.设计的评述 5、主要符号说明

6、参考文献 7.主体设备条件图及生产工艺流程图(附后) 1.设计任务书及操作条件 (1)处理能力:1×104吨/年正己烷。 (2)设备型式:列管式换热器 (3)操作条件 1 正己烷(含水蒸汽20%):入口温度1000C, 出口温度350C。 2 冷却介质:循环水,入口温度250C,出口温 度350C。

3 允许压降:不大于105Pa。 4 每年按330天计。 5 建厂地址广西 (三)设计要求 1.选择适宜的列管式换热器并进行核算。 2.要进行工艺计算 3.要进行主体设备的设计(主要设备尺寸、衡算结果等) 4.编写任务设计书 5.进行设备结构图的绘制(用420*594图纸绘制装置图一张) 2.前言

2.1 设计方案简介 固定管板式换热器 换热管束固定在两块管板上,管板又分别焊在外壳的两端,管子、管板和壳体都是刚性连接。当管壁与壳壁的壁温相差大于50℃时,为减小或消除温差产生的热效应力,必须设有温差补偿装置,如膨胀节。 固定管板式换热器结构比较简单,制造简单,制造成本低,管程可用多种结构,规格范围广,在生产中广泛应用。因壳侧不易清洗,故不适宜较脏或有腐蚀性的物流的换热,适用于壳壁与管壁温差小于70℃、壳程压力不高、壳程结垢不严重、并可用化学方法清洗的场合。 本设计任务为正己烷冷却器的设计,两流体在传热过程中无相的变化,且冷、热流体间的温差不是太大或温差较大但壳程压力不高的场合。当换热器传热面积较大,所需管子数目较多时,为提高管流速,常将换热管平均分为若干组,使流体在管内依次往返多次,即为多管程,从而增大了管内对流传热系数。固定管板式换热器的优点是结构简单、紧凑。在相同的壳体直径内,排管数最多,旁路最少;每根换热管都可以进行更换,且管内清洗方便。 2.2工艺流程草图及说明 工艺流程草图附后 流程图说明: 正己烷和循环冷却水经泵以一定的流速(由泵来调控)输入换热器中经换热器进行顺流换热。正己烷由100℃降到35℃,循环冷水由25℃升到35℃,且35℃的冷水回到水槽后,由于冷水的量多,回槽的水少,且流经管路时也有被冷凝,因此不会引起槽中水温太大的变化从而使水温保持25℃左右。 3 工艺设计及计算 (1) 确定设计方案 1. 选择换热器的类型 两流体温度变化情况:热流体进口温度100℃,出口温度35℃;冷

天津大学化工原理课程设计

《化工原理》课程设计报告 真空蒸发制盐系统卤水分效预热器设计 学院天津大学化工学院 专业化学工程与工艺 班级 学号 姓名 指导教师

化工流体传热课程设计任务书 专业化学工程与工艺班级姓名学号(编号) (一)设计题目:真空蒸发制盐系统卤水分效预热器设计 (二)设计任务及条件 1、蒸发系统流程及有关条件见附图。 2、系统生产能力:40 万吨/年。 3、有效生产时间:300天/年。 4、设计内容:Ⅱ效预热器(组)第 3 台预热器的设计。 5、卤水分效预热器采用单管程固定管板式列管换热器,试根据附图中卤水预热的温度要求对预热器(组)进行设计。 6、卤水为易结垢工质,卤水流速不得低于0.5m/s。 7、换热管直径选为Φ38×3mm。 (三)设计项目 1、由物料衡算确定卤水流量。 2、假设K计算传热面积。 3、确定预热器的台数及工艺结构尺寸。 4、核算总传热系数。 5、核算压降。 6、确定预热器附件。 7、设计评述。 (四)设计要求 1、根据设计任务要求编制详细设计说明书。 2、按机械制图标准和规范,绘制预热器的工艺条件图(2#),注意工艺尺寸和结构的清晰表达。

设计说明书的编制 按下列条目编制并装订:(统一采用A4纸,左装订) (1)标题页,参阅文献1附录一。 (2)设计任务书。 (3)目录。 (4)说明书正文 设计简介:设计背景,目的,意义。 由物料衡算确定卤水流量。 假设K计算传热面积。 确定预热器的台数及工艺结构尺寸。 核算总传热系数。 核算压降。 确定预热器附件。 设计结果概要或设计一览表。 设计评述。 (5)主要符号说明。 (6)参考文献。 (7)预热器设计条件图。 主要参考文献 1. 贾绍义,柴诚敬. 化工原理课程设计. 天津: 天津大学出版社, 2002 2. 柴诚敬,张国亮. 化工流体流动和传热. 北京: 化学工业出版社, 2007 3. 黄璐,王保国. 化工设计. 北京: 化学工业出版社, 2001 4. 机械制图 自学内容: 参考文献1,第一章、第三章及附录一、三; 参考文献2,第五~七章; 参考文献3,第1、3、4、5、11部分。

化工设计课程学习总结范文三篇

化工设计课程学习总结范文三篇 化工设计课程学习总结范文三篇 本学期顺利完成了化学工程与工艺专业共100名同学的化工原 理课程设计,总体来看学生的工艺计算、过程设计及绘图等专业能力得到了真正有效的提高,可以较好地把理论学习中的分散知识点和实际生产操作有机结合起来,得到较为合理的设计成果,达到了课程综合训练的目的,提高了学生分析和解决化工实际问题的能力。同时,在设计过程中也存在者一些共性的问题,主要表现在: 一、设计中存在的问题 1.设计过程缺乏工程意识。 学生在做课程设计时所设计的结果没有与生产实际需要作参考,只是为了纯粹计算为设计,缺乏对问题的工程概念的解决方法。 2.学生对单元设备概念不强。 对化工制图、设备元件、材料与标准不熟悉,依葫芦画瓢的不 在少数,没有达到课程设计与实际结合、强化“工程”概念的目的。

绘图能力欠缺,如:带控制点工艺流程图图幅设置、比例及线型选取、文字、尺寸标注以及设备、仪表、管件表示等绘制不规范。 3.物性参数选择以及计算。 在化工原理课程设计工程中首要的问题就是物性参数选择以及 计算,然而学生该开始并不清楚需要计算哪些物性参数以及如何计算。这对这些问题,指导老师应在开课之初给学生讲一下每个单元操作所需的物性参数,每个物性参数查取方法以及混合物系物性参数的计算方法,还有如何确定体系的定性温度。 二、解决措施 1.加强工程意识。 设计过程中鼓励学生多做深层次思考,综合考虑经济性、实用性、安全可靠性和先进性,强化学生综合和创新能力的培养;引导学生积极查阅资料和复习有关教科书,学会正确使用标准和规范,强化学生的工程实践能力。为了增强学生的工程意识提出以下措施:一是在化工原理课程讲述过程中应加强对学生工程意识的培养,让同学明确什么是工程概念,比如:理论上的正确性,技术上的可行性,操作上的安全性,经济上的合理性,了解工程问题的计算方法。比如试差

化工原理课程设计换热器设计

化工原理 课 程 设 计 设计任务:换热器 班级:13级化学工程与工艺(3)班 姓名:魏苗苗 学号:90 目录 化工原理课程设计任务书 (2) 设计概述 (3) 试算并初选换热器规格 (6) 1. 流体流动途径的确定 (6)

2. 物性参数及其选型 (6) 3. 计算热负荷及冷却水流量 (7) 4. 计算两流体的平均温度差 (7) 5. 初选换热器的规格 (7) 工艺计算 (10) 1. 核算总传热系数 (10) 2. 核算压强降 (13) 设计结果一览表 (16) 经验公式 (16) 设备及工艺流程图 (17) 设计评述 (17)

参考文献 (18) 化工原理课程设计任务书 一、设计题目: 设计一台换热器 二、操作条件:1、苯:入口温度80℃,出口温度40℃。 2、冷却介质:循环水,入口温度℃。 3、允许压强降:不大于50kPa。 4、每年按300天计,每天24小时连续运行。 三、设备型式:管壳式换热器 四、处理能力:109000吨/年苯 五、设计要求: 1、选定管壳式换热器的种类和工艺流程。 2、管壳式换热器的工艺计算和主要的工艺尺寸的设计。 3、设计结果概要或设计结果一览表。

4、设备简图。(要求按比例画出主要结构及尺寸) 5、对本设计的评述及有关问题的讨论。 六、附表: 1.设计概述 热量传递的概念与意义 热量传递的概念 热量传Array递是指由于 温度差引起 的能量转移, 简称传热。由 热力学第二 定律可知,在 自然界中凡 是有温差存 在时,热就必 然从高温处 传递到低温 处,因此传热

是自然界和工程技术领域中极普遍的一种传递现象。 化学工业与热传递的关系 化学工业与传热的关系密切。这是因为化工生产中的很多过程和单元操作,多需要进行加热和冷却,例如:化学反应通常要在一定的温度进行,为了达到并保持一定温度,就需要向反应器输入或输出热量;又如在蒸发、蒸馏、干燥等单元操作中,都要向这些设备输入或输出热量。此外,化工设备的保温,生产过程中热能的合理利用以及废热的回收利用等都涉及到传热的问题,由此可见;传热过程普遍的存在于化工生产中,且具有极其重要的作用。总之,无论是在能源,宇航,化工,动力,冶金,机械,建筑等工业部门,还是在农业,环境等部门中都涉及到许多有关传热的问题。 应予指出,热力学和传热学既有区别又有联系。热力学不研究引起传热的机理和传热的快慢,它仅研究物质的平衡状态,确定系统由一个平衡状态变成另一个平衡状态所需的总能量;而传热学研究能量的传递速率,因此可以认为传热学是热力学的扩展。 传热的基本方式 根据载热介质的不同,热传递有三种基本方式: 热传导(又称导热)物体各部分之间不发生相对位移,仅借分子、原子和自由电子等微观粒子的热运动而引起的热量传递称为热传导。热传导的条件是系统两部分之间存在温度差。

相关主题
文本预览
相关文档 最新文档