当前位置:文档之家› 常见递推数列的通项教学设计

常见递推数列的通项教学设计

常见递推数列的通项教学设计
常见递推数列的通项教学设计

常见递推数列的通项教学设计

授课教师:成都十二中数学组 刘子丽 授课班级:高2012级9班(理科) 授课时间:2011年10月10日 【教材分析】

数列是中学数学的重要内容,作为特殊的函数,数列既可以用函数的方法来研究,又因其特殊的定义域有其特殊的性质。数列的递推公式是数列特有的表示方法,也是表示数列的一种重要方法。生活中的一些实际问题,比如,裴波拉契免子繁殖问题,汉诺塔问题,九连环问题等,运用数学建模的方法,可以很容易地得到相关数列的递推公式,高考试题中也常常用数列的递推公式来表达数列的特征。数列的递推公式虽然可以揭示数列的特性,但它不像数列的通项公式那样能简单、清楚地表达数列的本质特征,因此,根据数列的递推公式求数列的通项公式是数列研究的最重要的基本问题,是解决实际生活问题的关键,也是高考考查的重点问题。在众多常见递推数列中,一阶线性递推数列:1n n a qa d +=+是最基本的递推数列之一,从方法上看,“1n n n ka a qa d

+=

+”型、“1q

n n a ra +=”型等递推数列都可以转化

为一阶线性递推数列,而一阶线性递推数列又可以转化为等比数列再求通项,所以一阶线性递推数列起着一个“中转站”的作用。从数学思想上看,求一阶线性递推数列的通项所蕴藏的转化思想、从特殊到一般,再由一般到特殊的思想也是求常见递推数列通项的重要思想,因此研究一阶线性递推数列,对研究其它类型的递推数列有着重要的意义。 【学情分析】

1.本节课是高三复习课,在前一阶段,已经复习了等差数列、等比数列这两类基本数列的相关知识,学生对递推数列也有一定的了解,但对几种常见递推数列的内在关联模糊不清。因此,本节课设计了三个特殊的递推数列,并将三种递推数列的内在关联显性化,通过学生的自主探究来领会递推数列之间内在的关联。

2.学生能将简单的递推数列转化为特殊的等差或等比数列,但数学的变形能力较弱,对转化思想的理解还停留在表层,要将复杂的递推数列通过变形转化为简单数列比较困难。因此,本节课先让学生从特殊入手,归纳提升为一般结论,然后再将结论与方法迁移到具体的特殊问题,让学生在自主探究、合作交流、反思总结中体会等价转化的思想及其重要性。 【教学目标】

1. 能积极主动地参与探求常见递推数列通项的活动,能从特殊出发,归纳出同类型递推数

列求通项的方法。

2. 能用一般递推数列求通项的方法求特殊递推数列的通项。

3. 通过探究与交流,能体会三类递推数列内在的关联,能体验等价转化思想及“特殊与一

般”的关联。

4. 能在递推数列变形的过程中,体验“整式、分式、指数、对数”与“等比数列”、“递推

公式”与“通项公式”、“数列”与“函数”的知识关联。 【重难点分析】

教学重点:几种常见递推数列求通项的方法;三类递推数列内在的关联及转化思想。 教学难点:如何将递推数列转化为简单数列。 【教学媒体】幻灯片,投影仪

【核心问题】解决下列问题,探求常见递推数列的通项

【设计思想】

本课以高中数学新课程基本理念中的“倡导积极主动、勇于探索的学习方式”为指导思想,应用我校的校本教研成果“基于缄默知识的核心问题教学模式”,结合数学组习题探究的方法,将教学的各环节设计如下:

环节一:提出问题

数学源于生活,又为生活服务。现实生活中蕴涵着大量的数学元素,现实生活中也无时无处不在应用着数学。源于生活中的数学往往更能唤起学生的好奇心、亲切感、更有利于激活学生的参与意识。因此通过例举生活中具有递推关系的数列,分析数列在高考中的地位来引入课题,可激发学生学习数学的兴趣并提高教学的有效性。在此基础上,提出本节课的核心问题:解决下列问题,探求常见递推数列的通项。

环节二:解决问题

数学家波利亚曾经说过:“学习任何知识的最佳途径即是由自己去发现,因为这种发现理解最深刻,也最容易掌握其中的内在规律、性质和联系。”因此本环节的探索活动全部交由学生,充分的发挥学生的主体性。

1.先让学生独立探索,寻求各自的解题方案,再通过小组讨论完善自己的探究成果。

2.小组推荐代表展示探究成果,由学生的“说”和生生、师生间的“评”展开活动。

通过自主探索与合作交流,学生会不断地比较自己的理解与他人理解的差异,不断的纠正自己的认识,从而建构知识和方法的正确认识,促进知识和方法的内化。

环节三:归纳提升

通过对探究活动的反思,学生自主归纳不同类型的递推数列求通项的方法,在教师的点评与补充下,让学生充分的体验递推数列之间的内在关联,及其中蕴藏的“特殊与一般”的辩证关系和转化的数学思想,促使学生形成较为系统的认识和较为完善的方法结构,从而完成本节课的教学目标。

环节四:运用反馈

学生的数学学习只有凭借已有的知识经验并通过自身的操作活动和主动参与的“做”才可能变得更为有效。因此设计一个用本节课总结的方法及转化思想来解决的变式问题,检测教学目标的达成度。

总之,本节课不仅仅是单纯的知识教学,而更重视对数学思想方法的渗透。本课从生活实例入手,从特殊的递推数列出发,学生在自主探索、合作交流中经历递推数列通项的探求,这样既激发了学生的学习兴趣,又分化突破了难点。教学过程中,通过不断设问,不断变式,给每个学生提供思考、创造、表现的机会,逐步渗透从特殊到一般、转化的数学思想,从而培养学生的数学探究实践能力。

【教学过程】

通过课后专家、同事的评议,这节课呈现出了以下的优点与不足: 成功之处:

1. 核心问题确立恰当,体验性目标明确

本节课开门见山的提出核心问题“解决下列问题,探求常见递推数列的通项”,并在核心问题的激发下,学生从三个特殊递推数列出发,归纳总结三类递推数列的求法,在自主探究、合作交流、反思总结中体验三类递推数列内在的关联,体验等价转化思想及“特殊与一般”的关联。

2. 学生活动充分,教师点评及时到位。

学生先独立探索特殊递推数列的通项,然后通过小组讨论完善自己的探究成果,再通过说题、讲题对三类题目进行了深入的体验,充分发挥了学生的主体性;教师在学生展示过程中给予了及时的评价,并通过追问的方式加深学生对题型的理解,从而发现三类递推数列内在的关联,充分发挥了教师的主导性。 3.例题环环相扣,层层深入。

本课的例题设计注重“一题多变,多题化一”, “1n n a qa d +=+”型递推数列贯穿于整堂课始终。本课涉及的题目共有5道,第一道是最基本,最重要的递推数列,同时它也为求后面不同类型递推数列问题作了铺垫的;前三个特殊递推数列问题又为归纳三类递推数列的求法埋下了伏笔;运用反馈中的例1不仅是三类递推数列通项求法的应用,也为例2的变形作了铺垫,而例2最终变形结果仍然是第一类型的递推数列,因此本课的例题环环相扣,层层深入。这样的设计既让学生体验了不同类型递推数列之间的关联,同时也培养了学生注重基础题型的学习习惯。 改进之处:

1. 结果性目标不明确,本节课只是对探索过程中学生能达到的知识性目标和体验性目标进 行阐述,忽视了对结果性目标的陈述,因此通过本节课学生能达到哪种程度还需要进一步的说明。

2.本课的核心问题是“解决下列问题,探求常见递推数列的通项”,在探究的过程中,只注重了对问题的解决,而忽略了对常见递推数列通项的探求,在归纳提升的过程中,虽然有学生的归纳,但更多的是老师的讲解,从而限制了学生的思维。

3.对数学思想方法的渗透不深。在归纳提升的过程中,学生归纳了本节课用到的数学思想和方法,但在运用反馈中,并没有用这些数学思想和方法来进行指导,导致学生对数学思想方法的认识不足,不能很好的应用这些思想与方法来解题。

4.在课堂上,更多的关注了解题技能的训练,而忽略了题目解法的多样性,如:第一小问,既可以用待定系数法,也可以用迭代法,但在展示的过程中,只选择了最常用的待定系数法。

本节课是一堂高三习题课,在接到这个课题时,我希望能上一堂新颖的高三复习课,在查阅了大量的书籍后,发现汉诺塔问题很适合“常见递推数列的通项”这个课题,我试图从汉诺塔问题出发,来求常见递推数列的通项,但在具体实施的过程中,汉诺塔问题的解决非常困难,同时需要在课堂上花大量时间进行数学建模,教学重点也有所偏离。在我最困惑的时候,陈老师和数学组的老师共同指导我及时的修改了方案,重新确定了本节课的核心问题。在这里,我非常的感谢陈老师对我的关心和指导,感谢数学组的老师们给我提出的宝贵意见。这次的公开课让我对高三习题课又有了新的认识,在今后的教学过程中,我会带着这次尝试积累的经验与教训,不断学习,争取更进一步。

课堂反馈及作业反馈统计表

注:例1完成情况有以下二类:

①能将n a 的递推关系式变形,顺利求出n b . ②能将n a 的递推关系式变形,但计算出错.

例2完成情况有以下三类:

①能将题目条件转化为第三类型的递推数列,并通过取对数,将之转化为第一类型递推数列,顺利求出n a

②能将题目条件转化为第三类型的递推数列,但取对数时没有考虑真数大于零,而导致计算出错

③不能将题目条件转化为第三类型的递推数列,没有找到解题思路。 作业1完成情况有以下二类:

① 能用第一类型递推数列求通项的方法完成此题 ② 能做,但计算出错。

作业2完成情况有以下三类:

①能将题目条件转化为第二类型的递推数列,并通过取倒数,将之转化为第一类型递推数列,顺利求出n b

②能将n a 的递推关系式变形,但不能转化为第二类型的递推数列 ③不能将n a 的递推关系式变形,没有找到解题思路。

求递推数列的通项公式的十一种方法

求递推数列的通项公式的十一种方法 利用递推数列求通项公式,在理论上和实践中均有较高的价值.自从二十世纪八十年代以来,这一直是全国高考和高中数学联赛的热点之一. 一、作差求和法例1 在数列{n a }中,31=a ,) 1(1 1++=+n n a a n n ,求通项公式n a . 解:原递推式可化为:1111+- + =+n n a a n n 则,211112-+=a a 3 1 2123-+=a a 413134-+=a a ,……,n n a a n n 1111--+=-逐项相加得:n a a n 111-+=.故n a n 1 4-=. 二、作商求和法 例2 设数列{n a }是首项为1的正项数列,且0)1(12 2 1=+-+++n n n n a a na a n (n=1,2,3…),则它的通项公式是n a =▁▁▁(2000年高考15题) 解:原递推式可化为: )]()1[(11n n n n a a na a n +-+++=0 ∵ n n a a ++1>0, 1 1+=+n n a a n n 则 ,43,32,21342312===a a a a a a ……,n n a a n n 11-=- 逐项相乘得:n a a n 11=,即n a =n 1 . 三、换元法 例3 已知数列{n a },其中913,3421== a a ,且当n ≥3时,)(3 1 211----=-n n n n a a a a ,求通项公式n a (1986年高考文科第八题改编). 解:设11---=n n n a a b ,原递推式可化为: }{,3121n n n b b b --=是一个等比数列,9134913121=-=-=a a b ,公比为31 .故 n n n n b b )31()31(91)31(2211==?=---.故n n n a a )31(1=--.由逐差法可得:n n a )3 1 (2123-=. 例4已知数列{n a },其中2,121==a a ,且当n ≥3时,1221=+---n n n a a a ,求通项公式n a 。解 由1221=+---n n n a a a 得:1)()(211=------n n n n a a a a ,令11---=n n n a a b ,则上式为 121=---n n b b ,因此}{n b 是一个等差数列,1121=-=a a b ,公差为1.故n b n =.。 由于112312121-=-++-+-=+++--n n n n a a a a a a a b b b 又2 ) 1(121-=+++-n n b b b n 所以)1(211-= -n n a n ,即)2(2 1 2+-=n n a n

数列通项公式的求法教案

课 题:数列通项公式的求法 课题类型:高三第一轮复习课 授课教师:孙海明 1、知识目标:使学生掌握数列通项公式的基本求法:(1)利用公式求通项(2)累加法 求通项(3)累乘法求通项,并能灵活地运用。 2、能力目标:通过例题总结归纳数列通项公式基本求法,培养学生观察、辨析、运用的 综合思维能力,掌握由特殊到一般、无限化有限的化归转化的数学思想, 提高学生数学素质。 3、情感目标:通过本节的学习,进一步培养学生的“实践—认识—再实践”的辨证唯物 主义观点。 教学重点、难点: 重 点:数列通项公式的基本求法 难 点:复杂问题的化归转化 教学方法与教学手段: 教学方法:引导发现法(注重知识的发生过程,培养学生创新精神和实践能力) 教学手段:多媒体辅助教学 教学过程: 一、创设情境,引出课题: 1、数列在历年的高考中都占有非常重要的地位。以近三年的高考为例:每年都出一道选择或填空、一道解答题,总分值为17分,占高考总成绩的百分之十。所以,希望同学们认真总结归纳基本方法,灵活运用解题。请同学们思考解决数列问题的关键是什么?(同学们一起回答:通项公式),那么这节课我们就来总结一下数列通项公式的基本求法。 《板书标题:数列通项公式的求法》 [设计意图] 使学生掌握数列在高考中的地位,从而使学生对数列的学习引起足够的 重视,提高学习的积极性。 二、启发诱导、总结方法 1、利用公式求通项 《先给出例题,分析总结方法》 师生互动: 请同学分析叙述解题过程,老师板书。 {}{}{}{}的通项公式求且数列是各项都为正数的等比 为等差数列设高考卷一例、n n n n b a b a b a b a b a ,,13,21,1,,)07(355311=+=+=={}{}1 2223545322)1(212,202 74,1341,21210,,-==-+===>-===++=+=++=+>n n n n n b n n a d q q q q q d b a q d b a q q b d a ,,则所以所以(舍)因为或解得依题得的公比为等比数列的公差为解:设等差数列

求数列通项专题高三数学复习教学设计

假如单以金钱来算,我在香港第六、七名还排不上,我这样说是有事实根据的.但我认为,富有的人要看他是怎么做.照我现在的做法我为自己内心感到富足,这是肯定的. 求数列通项专题高三数学复习教学设计 海南华侨中学邓建书 课题名称 求数列通项(高三数学第二阶段复习总第1课时) 科目 高三数学 年级 高三(5)班 教学时间 2009年4月10日 学习者分析 数列通项是高考的重点内容 必须调动学生的积极让他们掌握! 教学目标 一、情感态度与价值观 1. 培养化归思想、应用意识. 2.通过对数列通项公式的研究 体会从特殊到一般 又到特殊的认识事物规律 培养学生主动探索 勇于发现的求知精神 二、过程与方法 1. 问题教学法------用递推关系法求数列通项公式 2. 讲练结合-----从函数、方程的观点看通项公式 三、知识与技能 1. 培养学生观察分析、猜想归纳、应用公式的能力; 2. 在领会函数与数列关系的前提下 渗透函数、方程的思想 教学重点、难点 1.重点:用递推关系法求数列通项公式 2.难点:(1)递推关系法求数列通项公式(2)由前n项和求数列通项公式时注意检验第一项(首项)是否满足 若不满足必须写成分段函数形式;若满足

则应统一成一个式子. 教学资源 多媒体幻灯 教学过程 教学活动1 复习导入 第一组问题: 数列满足下列条件 求数列的通项公式 (1);(2) 由递推关系知道已知数列是等差或等比数列即可用公式求出通项 第二组问题:[学生讨论变式] 数列满足下列条件 求数列的通项公式 (1);(2); 解题方法:观察递推关系的结构特征 可以利用"累加法"或"累乘法"求出通项 (3) 解题方法:观察递推关系的结构特征 联想到"?=?)" 可以构造一个新的等比数列 从而间接求出通项 教学活动2 变式探究 变式1:数列中 求 思路:设 由待定系数法解出常数

九类常见递推数列求通项公式方法

递推数列通项求解方法举隅 类型一:1n n a pa q +=+(1p ≠) 思路1(递推法):()123()n n n n a pa q p pa q q p p pa q q q ---??=+=++=+++=?? ……121(1n p a q p p -=++++…211)11n n q q p a p p p --??+=+ ?+ ? --??。 思路2(构造法):设()1n n a p a μμ++=+,即()1p q μ-=得1 q p μ= -,数列{}n a μ+是以1a μ+为首项、p 为公比的等比数列,则1 111n n q q a a p p p -??+ =+ ?--?? ,即1111n n q q a a p p p -??=++ ? --?? 。 例1 已知数列{}n a 满足123n n a a -=+且11a =,求数列{}n a 的通项公式。 解:方法1(递推法): ()123232(23)3222333n n n n a a a a ---??=+=++=+++=??…… 1223(122n -=++++ (211) 332)12232112n n n --+??+=+?+=- ? --?? 。 方法2(构造法):设()12n n a a μμ++=+,即3μ=,∴数列{}3n a +是以134a +=为首项、2为公比的等比数列,则1 1342 2n n n a -++=?=,即123n n a +=-。 类型二:1()n n a a f n +=+ 思路1(递推法): 123(1)(2)(1)(3)(2)(1)n n n n a a f n a f n f n a f n f n f n ---=+-=+-+-=+-+-+-= …1 11 ()n i a f n -==+ ∑。

等差数列概念及通项公式经典教案

等差数列的概念及通项公式 【学习目标】 1. 准确理解等差数列、等差中项的概念,掌握等差数列通项公式的求解方法,能够熟练应用通项公式解 决等差数列的相关问题 2. 通项对等差数列概念的探究和通项公式的推导,体会数形结合思想、化归思想、归纳思想,培养学生 对数学问题的观察、分析、概括和归纳的能力 3?激情参与、惜时高效,禾U 用数列知识解决具体问题,感受数列的应用价值 【重点】:等差数列的概念及等差数列通项公式的推导和应用 【难点】:对等差数列中“等差”特征的理解、把握和应用 【学法指导】 1.阅读探究课本上的基础知识,初步掌握等差数列通项公式的求法 ; 2.完成教材助读设置的问题,然后结 合课本的基础知识和例题,完成预习自测; 3.将预习中不能解决的问题标出来,并写到后面“我的疑惑” 一、知识温故 1?数列有几种表示方法? 2?数列的项与项数有什么关系? 3函数与数列之间有什么关系? 教材助读 1?一般地,如果一个数列从第 ________ 项起,每一项与它的前一项的差等于 ____________ 常数,那么这个数列 就叫做等差数列,这个常数叫做等差数列的 ___________ ,公差通常用字母 ___________________________ 表示。 2.由三个数a 、A 、b 组成的 ___________ 数列可以看成最简单的等差数列。这时 A 叫做a 与b 的等差数列即 3. 如果数列{a n }是公差为d 的等差数列,则a 2 a 1 a 5 a 1 4.通项公式为a n =an+b (a,b 为常数)的数列都是等差数列吗?反之,成立吗? ,a 3 a 1 a 4 a 1 1. 等差数列a 2d , a ,a 2d ?' A . a n a (n 1)d B. C . a n a 2(n 2)d D. 2.已知数列{, a n } 的通项公式为 a n A . 2 B. 3 C. 2 3. 已知a 1 b - 1 ?的通项公式是( a (n 3)d a 2nd 2n ,则它的公差为( D. 3 ,则a 与b 的等差中项为 【预习自测】 a n a n

高中数学必修五《等差数列的概念、等差数列的通项公式》优秀教学设计

2.2等差数列 2.2.1等差数列的概念、等差数列的通项公式 教学重点理解等差数列的概念,探索并掌握等差数列的通项公式,会用公式解决一些简单的问题 教学难点(1)等差数列的性质,等差数列“等差”特点的理解、把握和应用 (2)概括通项公式推导过程中体现的数学思想方法,以及从函数、方程的观点看通项公式. 三维目标 一、知识与技能 1.了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判断一个数列是等差数列 2.正确认识使用等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项 二、过程与方法 1.通过对等差数列通项公式的推导培养学生的观察力及归纳推理能力; 2.通过等差数列变形公式的教学培养学生思维的深刻性和灵活性 三、情感态度与价值观 通过等差数列概念的归纳概括,培养学生的观察、分析资料的能力,积极思维,追求新 知的创新意识 教学过程 导入新课 师上两节课我们学习了数列的定义以及给出数列和表示数列的几种方法——列举法、通项公式、递推公式、图象法.这些方法从不同的角度反映数列的特点.下面我们看这样一些数列的例子:(课本P41页的4个例子 (1)0,5,10,15,20,25, (2)48,53,58,63, (3)18,15.5,13,10.5,8, (4)10 072,10 144,10 216,10 288,10 366, 请你们来写出上述四个数列的第7项 生第一个数列的第7项为30,第二个数列的第7项为78,第三个数列的第7项为3,第四个数列的第7项为 师我来问一下,你依据什么写出了这四个数列的第7项呢?以第二个数列为例来说一说 生这是由第二个数列的后一项总比前一项多5,依据这个规律性我得到了这个数列的第7项为 师说得很有道理!我再请同学们仔细观察一下,看看以上四个数列有什么共同特征?我说的是共同特征 生1 每相邻两项的差相等,都等于同一个常数 师作差是否有顺序,谁与谁相减? 生1 作差的顺序是后项减前项,不能颠倒 师以上四个数列的共同特征:从第二项起,每一项与它前面一项的差等于同一个常数(即等差);我们给具有这种特征的数列起一个名字叫——等差数列 这就是我们这节课要研究的内容 推进新课 等差数列的定义:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d”表示

(完整版)已知数列递推公式求通项公式的几种方法

求数列通项公式的方法 一、公式法 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以12n +,得 113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2 n n a 是以1222 a 1 1==为首项,以23 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222 n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 11 3 222 n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22 n n a n =+-,进而求出数列{}n a 的通项公式。 二、累加法 例2 已知数列{}n a 满足1121 1n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 11232211 2 ()()()()[2(1)1][2(2)1](221)(211)1 2[(1)(2)21](1)1 (1)2(1)1 2 (1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++?++?++=-+-++++-+-=+-+=-++=L L L 所以数列{}n a 的通项公式为2 n a n =。 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+L ,即得数列{}n a 的通项公式。

常见递推数列通项公式的求法

数列复习课(3)———常见递推数列通项公式的求法 主备人:刘莉苹 组长:李英 时间:2013-9-16 教学目标: 1.通过求出数列前几项,了解递推公式是给出数列的一种方法,并能根据特殊的递推公式求出数列的通项公式. 2.掌握把一些简单的数列变形转化为等差数列、等比数列的方法,体验解决数列问题的基本方法及理解运用的过程. 教学重点:处理递推关系的基本方法. 教学难点:通过变形转化成等差、等比数列的有关问题. 研讨互助 问题生成 引入新课: 由递推公式求数列的通项公式的类型: (1) (2) (3) (4)()n f pa a n n +=+1型数列(p 为常数) (5)n n n qa pa a +=++12(其中p ,q 均为常数)。 (6)递推公式为n S 与n a 的关系式()n n S f a = 即n a 与n s 的关系11(1)(2)n n n s n a s s n -=?=?-≥? (7)r n n pa a =+1)0,0(>>n a p (8)) ()()(1n h a n g a n f a n n n +=+ (9)周期型 思考:各类型通项公式的求法? 合作探究 问题解决 类型1 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例1. 在数列{}n a 中,112,21,.n n n a a a n a +==+-求 1() n n a a f n +=+1() n n a a f n +=?1(0,1) n n a pa q p p +=+≠≠

变式: 1. 已知数列{}n a 满足211=a ,112 n n a a +=+,求n a . 2.若数列{}n b 满足11b =,112n n n b b +??-= ???(1)n ≥,求数列{}n b 的通项公式. 3.已知数列{}n a 满足211= a ,n n a a n n ++=+211,求n a 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为 )(1n f a a n n =+,利用累乘法(逐商相乘法)求解。 例2:已知数列{}n a 满足321= a ,n n a n n a 11+=+,求n a 。 变式: 1. 已知31=a ,132n n a a += ,求n a 。 2.已知31=a ,n n a n n a 23131 +-=+ )1(≥n ,求n a 。

九类常见递推数列求通项公式方法

递推数列通项求解方法 类型一:1n n a pa q += +(1p ≠) 思路1(递推法):()123()n n n n a pa q p pa q q p p pa q q q ---??=+=++=+++=?? ......121(1n p a q p p -=++++ (2) 1 1)11n n q q p a p p p --??+=+?+ ? --?? 。 思路2(构造法):设()1n n a p a μμ++=+,即()1p q μ-=得1 q p μ= -,数列 {}n a μ+是以1a μ+为首项、p 为公比的等比数列,则1 111n n q q a a p p p -??+ =+ ?--??,即1111n n q q a a p p p -??=++ ? --?? 。 例1 已知数列{}n a 满足123n n a a -=+且11a =,求数列{}n a 的通项公式。 解:方法1(递推法): ()123232(23)3222333n n n n a a a a ---??=+=++=+++=?? (1) 22 3(122n -=++++ (2) 11 332 )12232112n n n --+??+=+?+=- ? --? ?。 方法2(构造法):设()12n n a a μμ++=+,即3μ=,∴数列{}3n a +是以134 a +=为首项、2为公比的等比数列,则113422n n n a -++=?=,即1 23n n a +=-。

1n n +思路1(递推法): 123(1)(2)(1)(3)(2)(1)n n n n a a f n a f n f n a f n f n f n ---=+-=+-+-=+-+-+-= …1 11 ()n i a f n -==+∑。 思路2(叠加法):1(1)n n a a f n --=-,依次类推有:12(2)n n a a f n ---=-、 23(3)n n a a f n ---=-、…、21(1)a a f -=,将各式叠加并整理得1 11 ()n n i a a f n -=-= ∑ ,即 1 11 ()n n i a a f n -==+ ∑ 。 例2 已知11a =,1n n a a n -=+,求n a 。 解:方法1(递推法):123(1)(2)(1)n n n n a a n a n n a n n n ---=+=+-+=+-+-+= ......1[23a =+++ (1) (1)(2)(1)]2 n i n n n n n n =++-+-+= = ∑ 。 方法2(叠加法):1n n a a n --=,依次类推有:121n n a a n ---=-、232n n a a n ---=-、…、 212a a -=,将各式叠加并整理得12 n n i a a n =-= ∑ ,12 1 (1)2 n n n i i n n a a n n ==+=+ = = ∑ ∑ 。

数列求通项公式教学设计

数列求通项公式教学设计 教学目标: 1、知识目标:使学生掌握数列通项公式的基本求法:(1)利用 公式求通项(2)累加法求通项(3)累乘法求通项, (4)构造法求通项并能灵活地运用。 2、能力目标:通过例题总结归纳数列通项公式基本求法,培养 学生观察、辨析、运用的综合思维能力,掌握由特 殊到一般、无限化有限的化归转化的数学思想,提高 学生数学素质。 3、情感目标:通过本节的学习,进一步培养学生的“实践—认识 —再实践”的辨证唯物主义观点。 教学重点、难点: 重点:数列通项公式的基本求法 $ 难点:复杂问题的化归转化 教学方法与教学手段: 教学方法:引导发现法(注重知识的发生过程,培养学生创新精神和实践能力) 教学手段:多媒体辅助教学 教学过程: 一、创设情境,引出课题: 1、数列在历年的高考中都占有非常重要的地位。以近三年的高考为例:每年都出一道选择或填空、一道解答题,总分值为17分,占高考总成绩的百分之十。所以,希望同学们认真总结归纳基本方法,

灵活运用解题。请同学们思考解决数列问题的关键是什么(同学们一起回答:通项公式),那么这节课我们就来总结一下数列通项公式的基本求法。 《板书标题:数列通项公式的求法》 ( [设计意图] 使学生掌握数列在高考中的地位,从而使学生对数列的学习引起足够的重视,提高学习的积极性。 二、启发诱导、总结方法 1、回顾上节课讲过的公式法,已知n S 求n a ,累加法及其简单应用 给出练习题目,引导学生自主做题,并让一位学生黑板演示 教师引导学生分析例题题干,总结特点:“明确数列是用何种求和方法” 《多媒体》给出同类的练习让学生巩固方法及解题过程。 、 2、累乘法求通项 回忆等比数列定义及通项公式的推导过程,引出“累乘法求通项”,利用类比的方法引导学生自己总结累乘法所适合的结构类型:已知数列相邻两项之比。给出例题让学生分析叙述解题过程。 例:已知数列}{n a ,满足 n n a a n n 11+=+,且21=a ,求该数列的通项公式 引导学生类比累加法,思考解题方法。并逐步给出答案,引导学生怎样分析解决问题。给出练习 练习1.已知数列}{n a 满足n n n a a 2.1=+,且11=a ,求该数列的通项公式 [

专题由递推关系求数列的通项公式(含答案)

专题 由递推关系求数列的通项公式 一、目标要求 通过具体的例题,掌握由递推关系求数列通项的常用方法: 二、知识梳理 求递推数列通项公式是数列知识的一个重点,也是一个难点,高考也往往通过考查递推数列来考查学生对知识的探索能力,求递推数列的通项公式一般是将递推公式变形,推得原数列是一种特殊的数列或原数列的项的某种组合是一种特殊数列,把一些较难处理的数列问题化为熟悉的等差或等比数列。 三、典例精析 1、公式法:利用熟知的公式求通项公式的方法称为公式法。常用的公式有???≥???????-=????????????????=-21 11n S S n S a n n n 及 等差数列和等比数列的通项公式。 例1 已知数列{n a }中12a =,2 +2n s n =,求数列{n a }的通项公式 评注 在运用1n n n a s s -=-时要注意条件2n ≥,对n=1要验证。 2、累加法:利用恒等式()()1211+......+n n n a a a a a a -=+--求通项公式的方法叫累加法。它是求型如 ()1+f n n n a a +=的递推数列的方法(其中数列(){}f n 的前n 项和可求)。 例2 已知数列{n a }中112a =,121 ++32 n n a a n n +=+,求数列{n a }的通项公式 评注 此类问题关键累加可消中间项,而(f n )可求和则易得n a 3、.累乘法:利用恒等式3 21121 n n n a a a a a a a a -=? ???????()0n a ≠求通项公式的方法叫累乘法。它是求型如()1n n a g n a +=的递推数列的方法(){}() g n n 数列可求前项积

中职数学(人教版)拓展模块教案:数列的概念和通项公式

数列公式数学学科导学案 教师寄语:做对国家有用的人 课题:数列的概念和通项公式 班级 17级姓名陈兆侠组别二年级 一、学习目标: 1.知识与能力: (1)理解数列及其有关概念; (2)理解数列的通项公式,并会用通项公式写出数列的任意一项; (3)对于比较简单的数列,会根据其前几项写出它的一个通项公式. 2.过程与方法: 理解数列的定义,表示法,分类,初步学会求数列通项公式的方法。 3.情感态度价值观: 提高观察,分析能力,理解从特殊到一般,从一般到特殊思想。 二、学习重、难点: 重点:了解数列的概念及其表示方法,会写出简单数列的通项公式 难点:数列与函数关系的理解,用归纳法写数列的通项 三、学习过程【导、探、议、练】 导 知识点一:数列及其有关概念 思考1:数列1,2,3与数列3,2,1是同一个数列吗? 思考2:数列的记法和集合有些相似,那么数列与集合的区别是什么? 梳理: (1)按照________排列的________称为数列,数列中的每一个数叫做这个数列的_____.数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的__________(通常也叫做______),排在第二位的数称为这个数列的……排在第n位的数称为这个数列的__________. (2) 数列的一般形式可以写成,简记为_________. 知识点二:通项公式 思考1:数列1,2,3,4,…的第100项是多少?你是如何猜的? 思考2 数列的通项公式an=f(n)与函数解析式y=f(x)有什么异同? 知识点三:数列的分类 思考:对数列进行分类,可以用什么样的分类标准? 梳理: (1)按项数分类,项数有限的数列叫做__________数列,项数无限的数列叫做__________数列. (2)按项的大小变化分类,从第2项起,每一项都大于它的前一项的数列叫做___________;从第2项起,每一项都小于它的前一项的数列叫做;各项相等的数列叫做;从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列叫做_____________. 探、议 (一)自主探究 类型一:由数列的前几项写出数列的一个通项公式

等差数列及其通项公式公开课教案

《等差数列及其通项公式》公开课教案教学时间:2009年12月25日上午第四节 授课班级:08商外 授课地点:职三(3) 授课教师:郭玲 一、教学任务及职业背景分析: 商务外语班学生多数数学基础较差,对数学学习也不够重视。但数学作为基础学科,是培养学生分析问题、解决问题的能力及创造能力的载体,特别是本专业学生多数准备出国,更应该加强能力的培养,以适应国外激烈竞争的环境。所以在学习数学过程中,我更强调学习的过程,强调学生探索新知识的经历和获得新知的体验,不能再让教学脱离学生的内心感受。在设计本节课时,我所考虑的不是简单告诉学生等差数列的定义和通项公式,而是通过分组分享法,创造一些数学情境,让学生自己去讨论、去发现,去分享,去体验成功。学生在课堂上的主体地位得到充分发挥,激发学习兴趣,培养团队精神,也提高他们提出问题、解决问题的能力和创造力。等差数列是学生探究特殊数列的开始,它对后续内容的学习,无论在知识上,还是在方法上都具有积极的意义。 二、教学目标: 1.知识目标:理解等差数列定义,掌握等差数列的通项公式,能根据通项公式解决 a n 、a 1 、d、n中的已知三个求另一个的问题。 2.能力目标:培养学生观察、推理、归纳能力,应用数学公式解决实际问题的能力。3.德育目标:体验从特殊到一般,又到特殊的认知规律,培养学生勇于创新的科学精神。 三、教学重点:等差数列的定义理解和对通项公式的熟悉与应用 四、教学难点:对等差数列概念中“等差”特点的理解及通项公式的灵活运用 五、教学方法:分组分享法 六、教学手段:多媒体辅助教学 七、教学过程: 【雅思、托福考试常识】 美国、英国、澳大利亚等国家都要求申请留学人员应具备雅思、托福成绩。如果达不到,就需要在国外就读价格昂贵的语言学校。雅思、托福考试词汇量一般在8000个单词左右。 (1)雅思要求:考试科目为阅读、听力、口语、写作4科,每科满分为9分,成绩一般要求平均分5分以上,费用为1450元。(2)托福要求:考试科目也为是阅读、听力、口语、写作4科,每科满分30分,总分为120,成绩一般要求总分达80分以上,费用为1370元。 (一)复习回顾:数列的定义 引例:(1)莺生原来只会500个单词,她决定从今天起每天背记15个单词,那么从今天起她的单词量逐日依次递增为: 500,515,530,545,560,575,…… (2)靓靓目前会1000个单词,她打算从今天起不再背单词了,结果不知不觉每周忘掉20个单词,那么从今天起她的单词量逐周依次递减为:1000 ,980,960,940,920 ,900,…… 【说明】:通过两个具体的数列,复习数列的定义,为后面学习等差数列的定义和等差数列的通项公式建立基础。 (二)导入新课: 这节课我们将学习这一类有特点的数列: 1000,980,960,940,920 ,900 ……① 500, 515 ,530,545,560,575 ……② 问题1:观察这些数列有什么共同的特征?请同学们思考后作答。 共同特点:从第2项起,后一项与它的前一项的差都等于同一个常数。也就是说,这些数列均具有相邻两项之差“相等”的特点。具有这种特点的数列, 我们把它叫做等差数列。 【说明】:通过例题(1)和(2)引出两个具体的等差数列,初步认识等差数列的特征,为后面的概念学习建立基础,为学习新知识创设问题情境,激发学 生的求知欲。由学生观察两个数列特点,引出等差数列的概念,对问题的 总结又培养学生由具体到抽象、由特殊到一般的认知能力。每相邻两项的 差相等——作差的顺序是后项减前项 问题2:请同学们分别用文字语言和数学语言描述等差数列的定义: 文字语言:一般的,如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么,这个数列就叫等差数列,这个常数叫做等差数列的公 差,用字母d表示。 数学语言:a 2 – a 1 = a 3 - a 2 = a 4 - a 3 = ··· = d 即:a n - a n-1 = d (n∈N+且n≥2) 或a n= a n-1 +d (n∈N+且n≥2) 问题3:分组比赛抢答,观察下列数列是否为等差数列,如果是求出公差d (1)25,20,15,10,5……√d=-5

等差数列的概念、等差数列的通项公式 说课稿 教案

等差数列的概念、等差数列的通项公式 从容说课 本节课先在具体例子的基础上引出等差数列的概念,接着用不完全归纳法归纳出等差数列的通项公式,最后根据这个公式去进行有关计算.可见本课内容的安排旨在培养学生的观察分析、归纳猜想、应用能力.结合本节课特点,宜采用指导自主学习方法,即学生主动观察——分析概括——师生互动,形成概念——启发引导,演绎结论——拓展开放,巩固提高.在学法上,引导学生去联想、探索,同时鼓励学生大胆质疑,学会探究. 在教学过程中,遵循学生的认知规律,充分调动学生的积极性,尽可能让学生经历知识的形成和发展过程,激发他们的学习兴趣,发挥他们的主观能动性及其在教学过程中的主体地位.创设问题情境,引起学生学习兴趣,激发他们的求知欲,培养学生由特殊到一般的认知能力.使学生认识到生活离不开数学,同样数学也是离不开生活的.学会在生活中挖掘数学问题,解决数学问题,使数学生活化,生活数学化. 教学重点理解等差数列的概念,探索并掌握等差数列的通项公式,会用公式解决一些简单的问题. 教学难点(1)等差数列的性质,等差数列“等差”特点的理解、把握和应用; (2)概括通项公式推导过程中体现的数学思想方法,以及从函数、方程的观点看通项公式. 教具准备多媒体课件,投影仪 三维目标 一、知识与技能 1.了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判断一个数列是等差数列; 2.正确认识使用等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项. 二、过程与方法 1.通过对等差数列通项公式的推导培养学生的观察力及归纳推理能力; 2.通过等差数列变形公式的教学培养学生思维的深刻性和灵活性. 三、情感态度与价值观 通过等差数列概念的归纳概括,培养学生的观察、分析资料的能力,积极思维,追求新知的创新意识. 教学过程 导入新课 师上两节课我们学习了数列的定义以及给出数列和表示数列的几种方法——列举法、通项公式、递推公式、图象法.这些方法从不同的角度反映数列的特点.下面我们看这样一些数列的例子:(课本P41页的4个例子) (1)0,5,10,15,20,25,…; (2)48,53,58,63,…; (3)18,15.5,13,10.5,8,5.5…; (4)10 072,10 144,10 216,10 288,10 366,…. 请你们来写出上述四个数列的第7项. 生第一个数列的第7项为30,第二个数列的第7项为78,第三个数列的第7项为3,第四个数列的第7项为10 510. 师我来问一下,你依据什么写出了这四个数列的第7项呢?以第二个数列为例来说一说. 生这是由第二个数列的后一项总比前一项多5,依据这个规律性我得到了这个数列的第7

考点20 递推公式求通项(第2课时)——2021年高考数学专题复习真题练习

考点20 递推公式求通项(第二课时) 【题组一 构造等差数列】 1.在数列中,若,,则 。 {}n a 12a =()*121 n n n a a n a += ∈+N n a = 2.若数列中,,则这个数列的 。 {}n a 11113n n n a a a a ,+== +n a = 3.已知数列满足 ,则数列的通项公式_______. {}n a ()* 112,222,n n n a a a n n N -==+≥ò{}n a n a =

4.在数列中,,且满足,则=________ {}n a 13 2a = 11 3(2)32n n n a a n a --=≥+n a 【题组二 构造等比数列】 1.已知数列中,,则数列通项公式为_____. {}n a () * 111,34,2n n a a a n N n -==+∈≥且{}n a

2.在数列{a n}中,a1=3,且点P n(a n,a n+1)(n∈N*)在直线4x-y+1=0上,则数列{a n}的通项公式为________. 3.在数列{a n}中,a1=3,a n+1=2a n﹣1(n∈N*),则数列{a n}的通项公式为。

4.已知数列满足,,则等于 。 {}n a 1a 1=n 1n a 3a 4+=+n a 【题组三 周期数列】 1.已知数列中,, (),则等于 。 {}n a 12a =11 1n n a a -=- 2n ≥2018a

2.已知数列满足,且 ,则 。 {}n a 1(1)1n n a a +?-=11 2a =- 2020a = 3.设数列满足:,,则______. {}n a 112a = ()1 111n n n a a n a ++=≥-2016a = 4.数列中,,,(),则______. {}n a 11a =25a =21n n n a a a ++=-N n *∈2012a =

已知数列递推公式求通项公式的几种方法

已知数列递推公式求通项公式的几种方法 Revised on November 25, 2020

求数列通项公式的方法 一、公式法 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以12n +,得 113222n n n n a a ++=+,则11 3 222 n n n n a a ++-=,故数列{}2n n a 是以1222 a 1 1==为首项,以23 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 11 3 222 n n n n a a ++-=,说明数列{}2 n n a 是等差数列,再直接利用等差数列的通项公式求出3 1(1) 22n n a n =+-,进而求出数列{}n a 的通项公式。 二、累加法 例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 所以数列{}n a 的通项公式为2n a n =。 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为 121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-+ +-+-+, 即得数列{}n a 的通项公式。 例3 已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。 解:由1231n n n a a +=+?+得1231n n n a a +-=?+则 所以3 1.n n a n =+-

【精品】等差数列通项公式教案

等差数列通项公式教案 教学目标 1.明确等差数列的定义. 2.掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题 3.培养学生观察、归纳能力. 教学重点 1.等差数列的概念; 2.等差数列的通项公式 教学难点 等差数列“等差”特点的理解、把握和应用 教学方法 启发式数学 教具准备 投影片1张(内容见下面) 教学过程 (I)复习回顾

师:上两节课我们共同学习了数列的定义及给出数列的两种方法——通项公式和递推公式。这两个公式从不同的角度反映数列的特点,下面看一些例子。(放投影片) (Ⅱ)讲授新课 师:看这些数列有什么共同的特点? 1,2,3,4,5,6;① 10,8,6,4,2,…;② ③ 生:积极思考,找上述数列共同特点。 对于数列①(1≤n≤6);(2≤n≤6) 对于数列②-2n(n≥1) (n≥2) 对于数列③(n≥1) (n≥2) 共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。 师:也就是说,这些数列均具有相邻两项之差“相等”的特点。具有这种特点的数列,我们把它叫做等差数。

一、定义: 等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。 如:上述3个数列都是等差数列,它们的公差依次是1,-2,。 二、等差数列的通项公式 师:等差数列定义是由一数列相邻两项之间关系而得。若一等差数列的首项是,公差是d,则据其定义可得:若将这n-1个等式相加,则可得: 即:即:即:…… 由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。 如数列①(1≤n≤6) 数列②:(n≥1) 数列③:(n≥1) 由上述关系还可得:即:则:=如:三、例题讲解 例1:(1)求等差数列8,5,2…的第20项

递推公式求通项公式的几种方

由递推公式求通项公式的常用方法 由数列的递推公式求通项公式是高中数学的重点问题,也是难点问题,它是历年高考命题的热点题。对于递推公式确定的数列的求解,通常可以通过递推公式的变换,转化为等差数列或等比数列问题,有时也用到一些特殊的转化方法与特殊数列。 方法一:累加法 形如a n +1-a n =f (n )(n =2,3,4,…),且f (1)+f (2)+…+f (n -1)可求,则用累加法求a n 。有时若不能直接用,可变形成这种形式,然后利用这种方法求解。 例1:(07年北京理工农医类)已知数列{a n }中,a 1=2,a n +1=a n +cn (c 是常数,n =1,2,3,…)且a 1,a 2,a 3成公比不为1的等比数列 (1)求c 的值 (2)求{a n }的通项公式 解:(1)a1,a2,a3成公比不为1的等比数列 2 022)2(2)() ,3,2,1(111113 12 2===++?=+∴=+=?=∴+c c a c c a a c a n cn a a a a a n n 因此(舍去)或解得又 (2)由(1)知n a a n a a n n n n 2,211=-+=++即,将n =1,2, …,n -1,分别代入 ) 1(2322 2121342312-=-?=-?=-?=--n a a a a a a a a n n 将上面n -1个式子相加得a n -a 1=2(1+2+3+…+n -1)=n 2 -n 又a 1=2,a n =n 2 -n +2 方法二:累乘法 形如 a n +1 a n =g (n )(n =2,3,4…),且f (1)f(2)…f (n -1)可求,则用累乘法求a n .有时若不能直接用,可变形成这种形式,然后用这种方法求解。

常见递推数列通项公式的求法典型例题及习题

1 【典型例题】 [例 1] a n 1 (1)k (2) k 比较系数: {a n a n [例 2] a n 1 (1)k 例: 已知 解: a n a n a 3 a n 常见递推数列通项公式的求法典型例题及习题 ka n b 型。 1 时,a n 1 1时,设a n km m ka n 1 时, a n } 是等比数列, (a i f (n) 型。 a n 1 a n {a n }满足a i a n a n a n a 2 对这(n b {a n } 是等差数列, a n b n 佝 b) k(a n m) a n 1 ka n km 公比为 1) k ”1 f(n) k ,首项为 a n 1 a n a i a n (a 1 k n1 f (n )可求 和, 则可用累加消项的方 法。 n (n 1)求{a n }的通项公 式。 1 n(n 1 ) a 2 a n 1 a n a 1 1 个式子求和得: a n a 1 a n 2 - n

(2) k1时, 当f(n) an b则可设a n A(n 1) B k(a n An B) a n 1 ka n (k 1)A n (k 1)B A (k (k 1)A 1)B 解得: a 2 (k 1) ,? {a n An B}是 以 a1 B为首项, k为公比的等比数列 a n An (a1 B) k n1 a n (a1 B) k n1An B将A、B代入即可 (3) f(n) 0, 1) 等式两边同时除以 a n 1 1 c n 1 得q a n n q C n 令C n 1 {C n}可归为a n 1 ka n b型 [例3] a n f(n) a n型。 (1)f(n)是常数时, 可归为等比数 列。 f(n)可求积,可用累积约项的方法化简求通项。 例:已知: a1 2n 1 a n 1 2n 1 2)求数列{a n}的通项。 解: a n a n a n 1 a n 1 a n 2 a n a 1 a n 2 a n 3 k m a n 1 m a n 1 型。a3 a2 a2 a1 2n 1 2n 2n 1 2n 3 2n 5 5 3 3 2n 1 2n 3 7 5 2n 1 [例4]

相关主题
文本预览
相关文档 最新文档