当前位置:文档之家› 水吸收丙酮填料塔的设计

水吸收丙酮填料塔的设计

水吸收丙酮填料塔的设计
水吸收丙酮填料塔的设计

《化工原理》课程设计水吸收丙酮填料塔的设计

学院医药化工学院

专业化学工程与工艺

班级

姓名

学号

指导教师

2012年 1 月 1 日

设计任务

水吸收丙酮填料塔的设计

(一)设计题目

试设计一座填料吸收塔,用于脱除空气中的丙酮蒸汽。混合气体处理量为____1600_____m3/h。进口混合气中含丙酮蒸汽__10%_______(体积百分数);混合气进料温度为35℃。采用清水进行吸收。要求:

②出塔气体中丙酮气流量为入塔丙酮流量的__1/90______。

②丙酮的回收率达到________。

(二)操作条件

(1)操作压力常压

(2)操作温度25℃

(3)吸收剂用量为最小用量的倍数自己确定

(三)填料类型

填料类型与规格自选。

(四)设计内容

(1)设计方案的确定和说明

(2)吸收塔的物料衡算;

(3)吸收塔的工艺尺寸计算;

(4)填料层压降的计算;

(5)液体分布器简要设计;

(6)绘制液体分布器施工图

(7)吸收塔接管尺寸计算;

(8)设计参数一览表;

(9)绘制生产工艺流程图(A3号图纸);

(10)绘制吸收塔设计条件图(A3号图纸);

(11)对设计过程的评述和有关问题的讨论。

设计任务二

目录

1. 设计方案简介 (1)

1.1设计方案的确定 (1)

1.2填料的选择 (3)

2. 工艺计算 (4)

2.1 基础物性数据 (4)

2.1.1液相物性的数据 (4)

2.1.2气相物性的数据 (5)

2.1.3气液相平衡数据 (5)

2.1.4 物料衡算 (5)

2.2 填料塔的工艺尺寸的计算 (6)

2.2.1 塔径的计算 (6)

2.2.2 填料层高度计算 (8)

2.2.3 填料层压降计算 (11)

2.2.4 液体分布器简要设计 (11)

3. 辅助设备的计算及选型 (12)

3.1 填料支承设备 (12)

3.2填料压紧装置 (13)

3.3液体再分布装置 (13)

4. 设计一览表 (14)

5. 后记 (15)

6. 参考文献 (15)

7. 主要符号说明 (16)

8. 附图(工艺流程简图、主体设备设计条件图)

1.设计方案简介

塔设备在化工、石油化工、生物化工、医药、食品等生产过程中广泛应用的汽液传质设备[1]。其作用实现气—液相或液—液相之间的充分接触,从而达到相际间进行传质及传热的过程。根据塔内气液接触部件的结构形式,可将塔设备分为两大类:板式塔和填料塔。

板式塔内沿塔高度装有若干层塔板,液体靠重力作用由顶部逐板流向塔釜,并在各块板面上形成流动的液层,气体靠压强差推动,由塔底向上依次穿过各塔板上的液层而流向塔顶。气液两相在塔内进行逐级接触,两相组成沿塔高呈阶梯式变化。填料塔则在塔体内装填填料,液体由上而下流动中在填料上分布汇合,气体则在填料缝隙中向上流动。填料为气液传质提供了较大的气液接触面积。[2]填料塔的基本特点是结构简单,压力降小,传质效率高,便于采用耐腐蚀材料制造等,对于热敏性及容易发泡的物料,更显出其优越性。过去,填料塔多推荐用于0.6∽0.7m以下的塔径。近年来,随着高效新型填料和其他高性能塔内件的开发,以及人们对填料流体力学、放大效应及传质机理的深入研究,使填料塔技术得到了迅速发展。[3]

1.1设计方案的确定

1.1.1装置流程的确定

吸收装置的流程主要有以下几种。[4]

1.1.1.1逆流操作

气相自塔底进入塔顶排出,液体反向流动,即为逆流操作。逆流操作的特点是,传质平均推动力大,传质速率快,分离程度高,吸收剂利用率高。工业上多采用逆流操作。

1.1.1.2并流操作

气液两相均从塔顶流向塔底,此即并流操作。其特点是系统不受液流限制,可提高操作气速,以提高生产能力。其通常用于以下情况:当吸收过程的平衡曲线较平坦时,流向对吸收推动力影响不大;易溶气体的吸收或处理的去气体不需要吸收很完全;吸收剂用量特别大,逆流操作易引起液泛。

1.1.1.3吸收剂部分再循环操作

在逆流操作系统中,用泵将吸收塔排出液体的一部分冷却后与补充的新鲜吸收剂一同送回塔内,即为部分再循环操作。通常用于已下情况:当吸收剂用量较小,为提高塔的液体喷淋密度;对于非等温吸收过程,为控制塔内的温升,需取出一部分热量。该流程特别适宜于平衡常数m很小的情况,通过吸收液的部分再循环,提高吸收剂的使用效率。其平均推动力要低,接需设置循环泵,操作费用增加。

1.1.1.4多塔串联操作

若设计的填料层高度过大,或由于所处理物料等原因需经常清理填料,为便于维修,可把填料层分装在几个串联的塔内,每个吸收塔通过的吸收剂和气体量都相等,即为多塔串联操作。此种操作因塔内需留较大空间,输液,喷淋,支撑板等辅助装置增加,使设备投资加大。

1.1.1.5串—并联混合操作

若吸收处理的液量很大,如果用通常的流程,则液体在塔内的喷淋密度过大,操作气速势必很小(否则易引起液泛),塔的生产能力很低。实际生产中可采用气相作串联,液相作并联的混合流程;若吸收过程处理的液量不大而气相流量很大时,可采用液相作串联,气相作并联的混合流程。

综上所述,在实际应用中,根据生产任务、工艺特点,该设计选用逆流操作的流程装置。

1.1.2吸收剂的选择

对于吸收操作,选择适宜的吸收剂,具有十分重要的意义。其对吸收操作过程的经济性有着十分重要的影响。一般情况下,选择吸收剂,要着重考虑如下问题:

(1)对溶质的溶解度大。

(2)对溶质有较高的选择性。

(3).挥发度要低。

(4)再生性能好。

(5)吸收剂的黏度小,有利于气液两相接触良好,提高传质速率。

(6)吸收剂应具有良好化学稳定性好,不易燃,无腐蚀性,无毒,易得,廉价等特点。

本设计采用水做吸收剂。

1.2填料的选择

填料塔的基本特点是结构简单,压力降小,传质效率高,便于采用耐腐蚀材料制造等,对于热敏性及容易发泡的物料,更显出其优越性。填料的选择包括填料的种类、规格及材质等。所选的填料既要满足生产工艺的要求,又要使设备投资和操作费用低。

几种典型的散装填料:

(1)拉西环填料

拉西环填料于1914年由拉西(F. Rashching)发明,为外径与高度相等的圆环。拉西环填料的气液分布较差,传质效率低,阻力大,通量小,目前工业上已较少应用。

(2)鲍尔环填料

鲍尔环填料是对拉西环的改进,在拉西环的侧壁上开出两排长方形的窗孔,被切开的环壁的一侧仍与壁面相连,另一侧向环内弯曲,形成内伸的舌叶,诸舌叶的侧边在环中心相搭。鲍尔环由于环壁开孔,大大提高了环内空间及环内表面的利用率,气流阻力小,液体分布均匀。与拉西环相比,鲍尔环的气体通量可增加50%以上,传质效率提高30%左右。鲍尔环是一种应用较广的填料。

(3)矩鞍填料填料

矩鞍填料将弧鞍填料两端的弧形面改为矩形面,且两面大小不等,即成为矩鞍填料。矩鞍填料堆积时不会套叠,液体分布较均匀。矩鞍填料一般采用瓷质材料制成,其性能优于拉西环。目前,国内绝大多数应用瓷拉西环的场合,均已被瓷矩鞍填料所取代。

(4)阶梯环填料

阶梯环填料是对鲍尔环的改进,与鲍尔环相比,阶梯环高度减少了一半并在一端增加了一个锥形翻边。由于高径比减少,使得气体绕填料外壁的平均路径大为缩短,减少了气体通过填料层的阻力。锥形翻边不仅增加了填料的机械强度,而且使填料之间由线接触为主变成以点接触为主,这样不但增加了填料间的空隙,同时成为液体沿填料表面流动的汇集分散点,可以促进液膜的表面更新,有利于传质效率的提高。阶梯环的综合性能优于鲍尔环,成为目前所使用的环形填料中最为优良的一种。

(5)金属环矩鞍填料

金属环矩鞍填料环矩鞍填料(国外称为Intalox)是兼顾环形和鞍形结构特点而设计出的一种新型填料,该填料一般以金属材质制成,故又称为金属环矩鞍填料。环矩鞍填料将环形填料和鞍形填料两者的优点集于一体,其综合性能优于鲍尔环和阶梯环。

填料的种类的选择要考虑分离工艺的要求,如传质效率、通量、填料层的压降、填料的操作性能,还要便于安装、拆卸和检修。

填料的规格的选择有散装填料规格和规整填料规格。填料的材质分为陶瓷、金属和塑料三大类。选择填料材质应根据吸收系统的介质,工艺物料的腐蚀性及操作温度而定。对于腐蚀性介质应采用相应的抗腐蚀性材料,如陶瓷,塑料,玻璃,石墨,不锈钢等,对于温度较高的情况,应考虑材料的耐温性能。

综上所述水吸收丙酮适合用散装填料,并选用D N38聚丙烯阶梯环填料

表1塑料阶梯环填料特性数据

2.工艺计算

2.1基础物性数据

空气的分子量:29 ;丙酮的分子量:58;水的分子量:18

常压:101.3 kPa :操作温度:25℃ [ 5 ]

2.1.1液相物性的数据

对低浓度吸收过程,溶液的物性数据[6]可近似取纯水的物性数据。由手册查得,25℃时水的有关物性数据如下:

ρ=997.043 kg/m3

密度为:L

μ=0.8937×10-3 Pa·s =3.217 kg/(㎡?h)

黏度:

L

表面张力:=71.97dy N/cm=932731.2㎏/h2

丙酮在水中的扩散系数:=1.276×10-9 m 2/s=4.594×10-6 m 2

/h

2.1.2 气相物性的数据 混合气体的平均摩尔质量

M M V =∑i i M y =0.10×58+0.90×29= 31.9 g/mol = 31.9 kg/kmol 混合气体的平均密度

M

V ρ=

RT

PM M V =

15

.298314.89

.313.101??=1.304(kg/m 3)

混合气体的黏度可近似取为空气的黏度,查手册得25℃空气的粘度为

V μ=1.835×10-5Pa ?s=0.066 kg/(㎡?h )

丙酮在空气中的扩散系数:h m s cm D V /03924.0/109.022== 2.1.3 气液相平衡数据

查得有机物的亨利系数与温度的关系lgE=9.171-[2040/(t+273)] 当温度为25℃时,亨利系数为:E=211.5kPa 25℃时系统的相平衡常数:

m=E/p=211.5/101.3=2.09 溶解度系数为:

H=

S

L

EM ρ=

18

5.211043

.997?=0.2619(kmol/(kPa ?m 3))

2.1.4 物料衡算 进塔气相摩尔比为:

Y 1=

111y y -=10

.0110

.0- =0.1111 出塔气相摩尔比为:

Y 2=

1

2

21y y

-=

1/90)

×10.0(11/90

×10.0-= 0.00111

进塔惰性气相流量为:

V=

4

.221600×2515.27315.273+×(1-0.10)=58.90(kmol/h ) 该吸收过程属低浓度吸收,平衡关系为直线,最小液气比可按下式计算,即:

V L

)min = 2

121/X m Y Y Y -- 对于纯溶剂吸收过程,进塔液相组成为:

X 2=0 (

V L

)min =0

09.2/1111.000111.01111.0-- =2.069 取操作液气比为: (

V L )=1.5(V

L

)min =1.5×2.069=3.1035 L=3.1035×58.90=182.7961(kmol/h ) V (Y 1-Y 2)=L (X 1-X 2) X 1=

7961

.182)

00111.01111.0(×90.58-=0.0354

2.2 填料塔的工艺尺寸的计算

2.2.1 塔径的计算

通用压降关联图

采用EcKert 通过关联图计算泛点气速W L 气相质量流量为

W V =M V q v =1.304×1600=2086.4 kg/h

液相质量流量可以近似按纯水的流量计算,即 W L =182.7961×18=3290.33kg/h EcKert 通用关系图的横坐标为

Wv W L (L ρρv )0.5= 2086.4

3290.33×(043.997304.1 )0.5=0.057

查通用压降关联图得

18.02

.02

=?ψΦL L V F F g U μρρ 查表1得 1170-=Φm F

s m g U L

V F L F /85.28937.0304.11170043

.99781.918.018.02

.02

.0=?????=

ψΦ=

ρρρ

u=0.7μF=0.7×2.85=1.995m/s D=

u V S π4 = 995

.114.33600

/16004??=0.532m 圆整塔经,取D=0.6m 泛点率校核: u=

2

6.0785.03600

/1600? =1.573m/s

u/μF=1.573/2.85×100%=55.2%(在允许范围内) 填料规格校核:

d D =38

700 =18.42>8 (满足阶梯环的径比要求) 液体喷淋密度校核: 取最小湿润速率

()min W L =0.08(m 3

/m ?h )

查表1得:

t α =132.5(m 2/m 3)

min U = ()min W L =0.08×132.5=10.6(m3/m ?h ) U =

2

6.0785.0043

.997/3290.33? =11.68>10.6

经以上校核可知,填料塔直径选用D=600mm 合理

2.2.2 填料层高度计算

2.2.2.1

传质单元数的计算

*

1Y =1mX =2.09×0.0354=0.07399

*2Y =2mX =0 脱吸因数为: S =

L

mV =182.796190

.5809.2?=0.6734

气相总传质单元数为:

OG N =()??

????+----S Y Y Y Y S S *

22*

211ln 11

=

()??

????+----6734.0000111.00

1111.06734.01ln 6734.011

=10.7393

2.2.2.2 传质单元高度oG H 的计算

气相总传质单元高度采用修正的恩田关联式[7]计算:

??

?????

?

?????

?

?????

?

?????

? ?????

?

??--=-2

.02

05

.022

1

.075

.045.1exp 1t

L L L L

t L L t L L C t w a U g a U a U a a σρρμσσ 查资料得,聚丙烯材质的临界表面张力C σ为:

2/427680/33h kg cm dyn C ==σ

2/2.932731/97.71h kg cm dyn L ==σ; t α=132.5m 2/m 3;

液体质量通量为 U L =

2

D W L ?π=

2

6

.0785.03290.33?=11643.06kg/(m 2

h) =t w αα1-exp{-1.45(2.932731427680)75.0(217.35.13211643.06?)1

.0(8

2210

997.04327.111643.065.132???)05

.0-(5

.1322.932731043.99711643.062

??)2.0}=0.3628

则αw=48.07m 2/m 3

气膜吸收系数由下式计算

G k = ??

? ?????

?

?????

? ??RT D D U V t V y v v t V

αρμμ

α3

/17

.0237.0 气体质量通量为

V U =

2

6.0785.0304.11600??=7382.87kg/(m 2

·h )

G k = ??

? ?????

?

?????

? ??RT

D D U V t V y v v

t V

αρμμ

α3

/17

.0237.0 =0.237×(

066.05.1327382.87?)7.0(03924.0304.1066.0?)3/1(15

.298314.803924

.05.132??)

=0.0605(kmol/(m 2hkPa )) 液膜吸收系数由下式计算:

3

12

13

20095.0???

? ?????

? ?????

?

??=-

L L L L L L w L L g D a U k ρμρμμ =0.0095×

(217.307.4806.11643?)3/2(610

594.4043.997217.3-??)5

.0 (043.9971027.1217.38??)3/1 =0.4747m/h

由1.1?w G G a K K = 查得 45.1=?

αG k =1.1ψαw G k =0.0605×48.07×1.451.1=4.377kmol/(m 3hkpa) αL k =4.0ψαw L k =0.4747×48.07×1.454.0=26.475 1/h 因为

F

u u

=55.2%>50% 所以必须对a k G 和a k l 进行校正,矫正计算如下:

由a k u u a k G F G ???????????? ??-+=4.1'5.05.91 , a k u u a k L F L ???

????????? ??-+=2

.2'

5.06.21得

αG k '=[1+9.5(0.552-0.5)4.1] ×4.377=5.040(kmol/(m 3hkpa))

αL k '=[1+2.6(0.552-0.5)2.2] ×26.475=26.578/h

)

/(919.2475.262619.01

040.511

1

1

13''kPa h m kmol a

Hk a

k a K L G G ??=?+

=

+

=

由H O G =

Ω

αY K V

=

ΩP K V

G α=

2

6

.0785.03.101377.490

.58???=0.4701m 由Z=H O G N O G =0.4701×10.7393=5.049m

取'Z =1.2×5.049=6.059m

设计取填料高度'Z =7m

查得:对于阶梯环填料

m h D

h

6,15~8max ≤= 取D

h

=10, h=10×600=6000 mm

计算得填料高度为7000mm,故不需分段,将塔分两段,每段3.5m,中间设置一个液体再分布器

2.2.3 填料层压降计

采用Ecker 通用关联式计算填料层压降

横坐标 Wv W L (L ρρv )0.5= 2086.43290.33×(043.997304

.1 )0.5=0.057

查得 1116-=m P φ

纵坐标 2

.02L L V P g u μρρψ? =

81.911161.5732??×043.997304.1×0.89372.0=0.0374 查图1得

m Pa Z

P

/215.82=?

填料层压降为 ΔP=215.82×7=1510.74Pa

2.2.4 液体分布器简要设计

液体分布器可分为初始分布器和再分布器,初始分布器设置于填料塔内,用于将塔顶液体均匀的分布在填料表面上,初始分布器的好坏对填料塔效率影

响很大,分布器的设计不当,液体预分布不均,填料层的有效湿面积减小而偏流现象和沟流现象增加,即使填料性能再好也很难得到满意的分离效果。因而液体分布器的设计十分重要。特别对于大直径低填料层的填料塔,特别需要性能良好的液体分布器。

液体分布器的性能主要由分布器的布液点密度(即单位面积上的布液点数),各布液点均匀性,各布液点上液相组成的均匀性决定,设计液体分布器主要是决定这些参数的结构尺寸。对液体分布器的选型和设计,一般要求:液体分布要均匀;自由截面率要大;操作弹性大;不易堵塞,不易引起雾沫夹带及起泡等;可用多种材料制作,且操作安装方便,容易调整水平。

液体分布器的种类较多,有多种不同的分类方法,一般多以液体流动的推动力或按结构形式分。若按流动推动力可分为重力式和压力式,若按结构形式可分为多孔型和溢流型。其中,多孔型液体分布器又可分为:莲蓬式喷洒器、直管式多孔分布器、排管式多孔型分布器和双排管式多孔型分布器等。溢流型液体分布器又可分为:溢流盘式液体分布器和溢流槽式液体分布器。[8] 2.2.4.1

液体分布器的选择

该吸收塔液相负荷较大,而气相负荷相对较小,根据本吸收的要求和物系的性质可选用槽式液体分布器。 2.2.4.2

分布点密度计算

按Eckert 建议值,D=600mm 时,喷淋点密度为200点/m 2。

布氏点数为

n=0.785×0.62×200≈57(个);

2.2.4.3

布液计算

由 204

L d n π

=

取0.60φ=,160H mm ?=

则 d 0=

16

.081.926.057043.997360014.306

.116434???????=0.0083

3. 辅助设备的计算及选型

3.1 填料支承设备

填料支承板分为两类:气液逆流通过平板型支承板,板上有筛孔或栅板式;气体喷射型,分为圆柱升气管式的气体喷射型支承板和梁式气体喷射型支承板。常用的填料支承装置有栅板型和驼峰型及各种具有气升管结构的支承板。

如图:

3.2填料压紧装置

为保证填料塔在工作状态下填料床能够稳定,防止高气相负荷或负荷突然变动时填料层发生松动,破坏填料层结构,甚至造成填料损失,必须在填料层顶部设置填料限定装置。填料限定可分为类:一类是将放置于填料上端,仅靠自身重力将填料压紧的填料限定装置,称为填料压板;一类是将填料限定在塔壁上,称为床层限定板。填料压板常用于陶瓷填料,以免陶瓷填料发生移动撞击,造成填料破碎。床层限定板多用于金属和塑料填料,以防止由于填料层膨胀,改变其初始堆积状态而造成的流体分布不均匀的现象。一般要求压板和限制板自由截面分率大于70%。

3.3液体再分布装置

为使流向塔壁的液体能重新流回塔中心部位,一般在液体流过一定高度的填料层后装置一个液体再分布器。液体再分布器形状如漏斗,在液体再分布器侧壁装有若干短管,使近塔壁的上升气流通过短管与中心气流汇合,以利气流沿塔截面均匀分布。

4.设计一览表

5.后记

通过本次课程设计,让我对水吸收丙酮填料塔的设计方案和填料塔设计的基本过程的设计方法、步骤、思路、有一定的了解与认识。在课程设计过程中,基本能按照《化工原理设计课程》和规定的程序进行设计,先针对填料塔的特点和收集、调查有关资料,然后进入草案阶段,其间与同学进行一些讨论,后逐步了解设计填料塔的基本顺序,最后定案。这次设计的填料塔的一些物性参数未能查到的确切数据,是通过分析计算得到的,这给计算带来了一定的误差。还有许多比较复杂的计算,对小数点的取值造成一定的误差。课程设计可谓是理论联系实际的桥梁,是我们学习化工设计基础的初步尝试。通过课程设计,使我们能综合运用本课程和前修课程的基本知识,进行融会贯通的独立思考。通过课程设计,让我们增强啦一种独立的,思考性的动手方式,提高我们的动手能力。使我们更加深刻的了解了工程设计的基本内容,掌握化工设计的程序和方法,培养了我们分析和解决工程实际问题的能力。

6.参考文献

[1]毕诚敬,《化工原理课程设计》,天津科学出版社,1996年,天津

[2]王树楹,《现代填料塔技术指南》,中国石化出版社,1995年,北京

[3]潘国昌、郭庆丰,《化工过程设备与设计》,化学工业出版社,1996年,

北京

[4]毕诚敬,《化工原理课程设计》,天津科学出版社,1996年,天津

[5] 刘光启、马连湘、刘杰,《化学化工物性数据手册》,化学工业出版社,

《化学化工物性数据手册》,2002年,北京

[6] 杨祖荣,《化学化工原理》,化学工业出版社,2009年6月,北京

[7]陈英南,刘玉兰. 常用化工单元设备的设计.上海:华东理工大学出版

社,2005

[8]董大均,《化工设备机械基础》,化学工业出版社,2002.12,北京

7.主要符号说明

附图:

生产工艺流程图

水吸收丙酮填料塔设计(化工课程设计)[1]

兰州交通大学化工原理课程设计 化工原理课程设计 课程名称: ____填料塔设计____ 设计题目: ____水吸收丙酮____ 院系: ___ 化学学院_____ 学生姓名: _____ 荆卓_______ 学号: ____ 200907134____ 专业班级: ____化艺093班____ 指导教师: ______张玉洁______

化工原理课程设计任务书 (一)设计题目:水吸收空气中的丙酮填料塔的工艺设计(二)设计条件 1.生产能力:每小时处理混合气体9000Nm3 /h 2.设备形式:填料塔 3.操作压力:101.3KPa 4.操作温度:298K 5.进塔混合气体中含丙酮4%(体积比) 6.丙酮的回收率为99% 7.每年按330天计,每天按24小时连续生产 8.建厂地址:兰州地区 9.要求每米填料的压降都不大于103Pa。 (三)设计步骤及要求 1.确定设计方案 (1)流程的选择 (2)初选填料的类型 (3)吸收剂的选择 2.查阅物料的物性数据 (1)溶液的密度、粘度、表面张力、氨在水中的扩散系数(2)气相密度、粘度、表面张力、氨在空气中的扩散系数

(3)丙酮在水中溶解的相平衡数据 3.物料衡算 (1)确定塔顶、塔底的气流量和组成 (2)确定泛点气速和塔径 (3)校核D/d>8~10 (4)液体喷淋密度校核:实际的喷淋密度要大于最小的喷淋密度。4.填料层高度计算 5.填料层压降核算 如果不符合上述要求重新进行以上计算 6.填料塔附件的选择 (1)液体分布装置 (2)液体再分布装置 (3)填料支撑装置 (4)气体的入塔分布. (四)参考资料 1、《化工原理课程设计》贾绍义柴诚敬天津科学技术出版 2、《现代填料塔技术》王树盈中国石油出版 3、《化工原理》夏清天津科学技术出版 (五)计算结果列表(见下页)

化工原理水吸收丙酮的课程设计

吉林化工学院 化工原理课程设计题目水吸收丙酮填料吸收塔的设计 教学院化工与生物技术学院 专业班级生工1101 学生姓名 学生学号 指导教师张卫华 2013年12月 19 日

课程设计任务书 1、设计题目:水吸收丙酮过程填料吸收塔的设计; 试设计一座填料吸收塔,用于脱除混于空气中的丙酮气体。混合气体的处理量为1550(m3/h),其中含空气为96%,丙酮气为4%(mol分数),要求丙酮回收率为98%(mol分数),采用清水进行吸收,吸收剂的用量为最小用量的倍。(25C°下该系统的平衡关系为y=) 2、工艺操作条件: (1)操作平均压力常压 (2)操作温度t=25℃ (3)填料类型及规格自选。 3、设计任务: 完成吸收工艺设计与计算,有关附属设备的设计和选型,绘制吸收系统的工艺流程图和吸收塔的工艺条件图,编写设计说明书。

目录 摘要........................................................................ III 第1章绪论 (1) 吸收技术概况 (1) 吸收设备的发展 (1) 吸收在工业生产中的应用..................................... 错误!未定义书签。 吸收的应用......................................................... 错误! 未定义书签。 塔设备在化工生产中的作用和地位..................................... 错误! 未定义书签。 化工生产对塔设备的要求.............................................. 错误! 未定义书签。 第2章设计方案............................................................... 错误!未定义书签。 吸收剂的选择............................................................. 错误! 未定义书签。 2. 2吸收工艺流程的确......................................................... 错误!未定义书签。 吸收工艺流.......................................................... 错误! 未定义书签。 吸收工艺流程图及工艺过程说明........................................ 错误! 未定义书签。 吸收塔设备及填料的选择...................................... 错误!未定义书签。 吸收塔的设备选择.................................................... 错误! 未定义书签。 填料的选择.......................................................... 错误! 未定义书签。 操作参数的选择...........................................................错误! 未定义书签。 操作温度的选择..................................................... 错误! 未定义书签。 操作压力的选择..................................................... 错误! 未定义书签。 第3章吸收塔的工艺计算...................................................错误!未定义书签。 基础物性数据................................................ 错误!未定义书签。 液相物性数据....................................................... 错误! 未定义书签。 气相物性数据....................................................... 错误! 未定义书签。 物料衡算.................................................... 错误!未定义书签。 填料塔的工艺尺寸的计算...................................... 错误!未定义书签。 塔径的计算......................................................... 错误!

填料塔吸收实验报告

实验6 填料吸收塔实验报告 第四组成员:王锋,郑义,刘平,吴润杰 一、 实验名称 填料吸收塔实验 二、 实验目的 1、 了解填料吸收塔的构造并实际操作。 2、 了解填料塔的流体力学性能。 3、 学习填料吸收塔传质能力和传质效率的测定方法。 三、实验内容 测定填料层压强降与操作气速的关系曲线,并用ΔP/Z —u 曲线转折点与观察现象相结合的办法,确定填料塔在某液体喷淋量下的液泛气速。 四、实验原理 1.气体通过填料层的压强降 压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。压强降与气液流量有关,不同喷淋量下填料层的压强降ΔP 与空塔气速u 的关系如下图所示: 1 2 3 L 3L 2L 1 L 0 = >>0 图6-1 填料层的ΔP ~u 关系 当无液体喷淋即喷淋量L0=0时,干填料的ΔP ~u 的关系是直线,如图中的直线0。当有一定的喷淋量时,ΔP ~u 的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。这两个转折点将ΔP ~u 关系分为三个区段:恒持液量区、载液区与液泛区。

五、实验装置和流程 图6-2 填料吸收塔实验装置流程图 1-风机、2-空气流量调节阀、3-空气转子流量计、4-空气温度、5-液封管、6-吸收液取样口、7-填料吸收塔、8-氨瓶阀门、9-氨转子流量计、10-氨流量调节阀、11-水转子流量计、12-水流量调节阀、13-U型管压差计、14-吸收瓶、15-量气管、16-水准瓶、17-氨气瓶、18-氨气温度、20-吸收液温度、21-空气进入流量计处压力实验流程示意图见图一,空气由鼓风机1送入空气转子流量计3计量,空气通过流量计处的温度由温度计4测量,空气流量由放空阀2调节,氨气由氨瓶送出,?经过氨瓶总阀8进入氨气转子流量计9计量,?氨气通过转子流量计处温度由实验时大气温度代替。其流量由阀10调节5,然后进入空气管道与空气混合后进入吸收塔7的底部,水由自来水管经水转子流量计11,水的流量由阀12调节,然后进入塔顶。分析塔顶尾气浓度时靠降低水准瓶16的位置,将塔顶尾气吸入吸收瓶14和量气管15。?在吸入塔顶尾气之前,予先在吸收瓶14内放入5mL已知浓度的硫酸作为吸收尾气中氨之用。吸收液的取样可用塔底6取样口进行。填料层压降用∪形管压差计13测定。 六、实验操作方法及步骤 1、测量干填料层(△P/Z)─u关系曲线: 先全开调节阀2,后启动鼓风机,用阀2 调节进塔的空气流量,按空气流量从小到大的顺序读取填料层压降△P,转子流量计读数和流量计处空气温度,测量12~15组数据?然后在双对数坐标纸上以空塔气速u为横坐标,以单位高度的压降△P/Z为纵坐标,标绘干填料层(△P/Z)─u关系曲线。 2、测量某喷淋量下填料层(△P/Z)─u关系曲线: 用水喷淋量为30L/h时,用上面相同方法读取填料层压降△P,?转子流量计读数和流量计处空气温度并注意观察塔内的操作现象, ?一旦看到液泛现象时记下对应的空气转子流量计读数。在对数坐标纸上标出液体喷淋量为30L/h下(△P/z)─u?关系曲线,确定液泛气速并与观察的液泛气速相比较。 3、测量某喷淋量下填料层(△P/Z)─u关系曲线: 用水喷淋量为50L/h时,用上面相同方法读取填料层压降△P,?转子流量计读数和流量计处空气温度并注意观察塔内的操作现象, ?一旦看到液泛现象时记下对应的空气转子流量计读数。在对数坐标纸上标出液体喷淋量为

填料塔吸收实验(环境工程原理)

实验九 填料塔吸收实验 一.实验目的 1.了解填料吸收装置的设备结构及操作。 2.测定填料吸收塔的流体力学特性。 3.测定填料吸收塔的体积吸收总系数K Y α。 4.了解气体空塔流速与压力降的关系。 二.实验原理 1.填料塔流体力学特性 吸收塔中填料的作用主要是增加气液两相的接触面积,而气体在通过填料层时,由于有局部阻力和摩擦阻力而产生压强降。 填料塔的流体力学特性是吸收设备的重要参数,它包括压强降和液泛规律。测定填料塔的流体力学特性是为了计算填料塔所需动力消耗和确定填料塔的适宜操作范围,选择适宜的气液负荷,因此填料塔的流体力学特性是确定最适宜操作气速的依据。 气体通过干填料(L=0)时,其压强降与空塔气速之间的函数关系在双对数坐标上为一直线,如左图中AB 线,其斜率为1.8~2。当有液体喷淋时,在低气速时,压强降和气速间的关联线与气体通过干填料时压强降和气速间的关联线AB 线几乎平行,但压降大于同一气速下干填料的压降,如图中CD 段。随气速的进一步增加出现载点(图中D 点),填料层持液量开始增大,压强降与空塔气速的关联线向上弯曲,斜率变大,如图中DE 段。当气速增大到E 点,填料层 持液量越积越多,气体的压强几乎是垂直上升,气体以泡状通过液体,出现液泛现象,此点E 称为泛点。 2.传质实验 填料塔与板式塔内气液两相的接触情况有着很大的不同。在板式塔中,两相接触在各块塔板上进行,因此接触是不连续的。但在填料塔中,两相接触是连续地在填料表面上进行,需计算的是完成一定吸收任务所需填料的高度。填料层高度计算方法有传质系数法、传质单元法以及等板高度法等。气相体积吸收总系数K Y α是单位填料体积、单位时间吸收的溶质量,它是反映填料吸收塔性能的主要参数,是设计填料高度的重要数据。 本实验是用水吸收空气-氨混合气体中的氨。混合气体中氨的浓度很低。吸收所得的溶液浓度也不高。气液两相的平衡关系可以认为服从亨利定律(即平衡线在x-y 坐标系为直线)。故可用对数平均浓度差法计算填料层传质平均推动力,相应的传质速率方程式为: m p Y A Y V K G ???=α (1) 所以 )/(m p A Y Y V G K ??=α (2) 其中 2 2112211ln ) ()(e e e e m Y Y Y Y Y Y Y Y Y -----= ? (3)

水吸收丙酮填料塔设计

摘要 空气-丙酮混合气填料吸收塔设计任务为用水吸收丙酮常压填料塔,即在常压下,从含丙酮1.82%、相对湿度70%、温度35℃的混合气体中用25℃的吸收剂清水在填料吸收塔中吸收回收率为90%丙酮的单元操作。设计主要包括设计方案的确定、填料选择、工艺计算等内容,其中整个工艺计算过程包括确定气液平衡关系、确定吸收剂用量及操作线方程、填料的选择、确定塔径及塔的流体力学性能计算、填料层高度计算、附属装置的选型以及管路及辅助设备的计算,在设计计算中采用物料衡算、亨利定律以及一些经验公式,该设计的成果有设计说明书和填料吸收塔的装配图及其附属装置图。

目录 摘要............................................................ I 水吸收丙酮填料塔设计. (1) 第一章任务及操作条件 (1) 第二章设计方案的确定 (2) 2.1 设计方案的内容 (2) 2.1.1 流程方案的确定 (2) 2.1.2 设备方案的确定 (2) 2.2 流程布置 (3) 2.3 收剂的选择 (3) 2.4 操作温度和压力的确定 (3) 第三章填料的选择 (4) 3.1填料的种类和类型 (4) 3.1.1 颗粒填料 (4) 3.1.2 规整填料 (4) 3.2 填料类型的选择 (4) 3.3填料规格的选择 (5) 3.4填料材质的选择 (5) 第四章工艺计算 (6) 4.1 物料计算 (6) 4.1.1 进塔混合气中各组分的量 (6) 4.1.2 混合气进出塔的摩尔组成 (6) 4.1.3 混合气进出塔摩尔比组成 (7) 4.1.4 出塔混合气量 (7) 4.2气液平衡关系 (7) L (7) 4.3 吸收剂(水)的用量s X (8) 4.4 塔底吸收液浓度 1 4.5 操作线 (8) 4.6 塔径计算 (8) 4.6.1采用Eckert通用关联图法计算泛点气速 u (8) F 4.6.2 操作气速的确定 (9) 4.6.3 塔径的计算 (9) 4.6.4 核算操作气速 (10) 4.6.5 核算径比 (10) 4.6.6 喷淋密度校核 (10)

水吸收丙酮吸收塔设计

目录 目录............................................................... I 摘要.............................................................. I II 第1章绪论.. (1) 1.1吸收技术概况 (1) 1.2吸收设备的发展 (1) 1.3吸收在工业生产中的应用 (2) 第2章设计方案 (3) 2.1 吸收剂的选择 (3) 2.2 吸收流程的选择 (3) 2.3吸收塔设备及填料的选择 (4) 2.4 吸收参数的选择 (5) 第3章吸收塔的工艺计算 (6) 3.1 基础物性数据 (6) 3.1.1 液相物性数据 (6) 3.1.2 气相物性数据 (6) 3.1.3 气液相平衡数据 (6) 3.2 物料衡算 (7) 3.3 填料塔的工艺尺寸的计算 (7) 3.3.1 塔径的计算 (7) 3.3.2 填料塔填料层高度的计算 (9) 3.4 塔附属高度的计算 (12) 3.5 液体初始分布器和再分布器的选择与计算 (12) 3.5.1 液体分布器 (12) 3.5.2 液体再分布器 (12) 3.5.3 塔底液体保持管高度 (13) 3.6 其他附属塔内件选择的选择 (13) 3.7 吸收塔的流体力学参数计算 (13) 3.7.1 吸收塔的压力降 (13) 3.7.2 吸收塔的泛点率 (14) 3.7.3 气体动能因子 (14) 3.8 附属设备的计算与选择 (15) 3.8.1 离心泵的选择与计算 (15) 3.8.2 吸收塔的主要接管尺寸的计算 (16) 结论 (18)

水吸收丙酮填料吸收塔课程设计

目录 目录 ............................................................................................................................................ I 第1章概述 (1) 1.1吸收塔的概述 (1) 1.2吸收设备的发展 (1) 1.3吸收过程在工业生产上应用 (2) 第2章设计方案 (3) 2.1设计任务 (3) 2.2吸收剂的选择 (3) 2.3吸收流程的确定 (4) 2.4吸收塔设备的选择 (5) 2.5吸收塔填料的选择 (5) 第3章吸收塔的工艺计算 (9) 3.1基础物性数据 (9) 3.1.1液相物性数据 (9) 3.1.2气相物性数据 (9) 3.1.3气液相平衡数据 (9) 3.2物料衡算 (10) 3.3填料塔的工艺尺寸的计算 (11) 3.3.1塔径的计算 (11) 3.3.2填料层高度计算 (12) 3.4填料层压降的计算zz (14) 第4章塔内件及附属设备的计算 (15) I

4.1液体分布器的计算 (15) 4.2选用DN 2.5 Φ32无缝钢管 (15) 4.2.1填料塔附属高度的计算 (16) 4.3填料支撑板 (16) 4.4填料压紧装置 (17) 4.5气进出管的选择 (17) 4.6液体除雾器 (18) 4.7筒体和封头的设计 (19) 4.8手孔的设计 (20) 4.9法兰的设计 (20) 第5章设计总结 (23) 符号说明 (25) 参考文献: (27) 致谢 (28)

填料塔吸收过程实验

实验4 填料塔吸收过程实验 一、实验目的 (1)了解填料吸收塔的基本结构,熟悉吸收实验装置的基本流程,搞清楚每一个附属设备的作用和设计意图。 (2)掌握产生液泛现象的原因和过程。 (3)明确吸收塔填料层压降ΔP与空塔气速u在双对数坐标中的关系曲线及其意义,了解实际操作气速与泛点气速之间的关系。 (4)掌握测定含氨空气-水系统的体积吸收系数Kya的方法。 (5)熟悉分析尾气浓度的方法。 (6)掌握气液体积转子流量计使用方法和安装要求,湿式流量计的使用方法和连接要求。 二、实验任务 (1)观察在一定液体喷淋密度下,当气速增大到一定程度时产生的液泛现象,测得液泛气速,并根据液泛气速确定操作气速。 (2)根据实际测得的原始数据,在双对 数坐标中画出填料层压降ΔP与空塔气速 u的关系曲线。 (3)测定含氨空气-水系统在一定的操 作条件下的体积吸收系数Kya。 (4)根据改变气相流量和改变液相流 量测得不同的Kya的变化值的大小,判断 此吸收过程是属气膜控制还是液膜控制。 (5)讨论影响吸收操作系统稳定的因 素。 三、实验装置 填料塔吸收操作及体积吸收系数的测 定实验装置流程示意图见图1。 本实验装置的主要设备有填料吸收塔 1、旋涡泵 2、空气转子流量计 3、四个U形管差压计(13、1 4、1 5、16)、氨气钢瓶4、氨气压力表5、氨气减压阀 6、氨气稳压罐 7、氨气转子流量计 8、水转子流量计 9、吸收瓶10、湿式流量计11、三通旋塞12、温度计17、18、19。 本实验物系为水-空气-氨气。由旋涡气泵产生的空气与从液氮钢瓶经过减压阀后的氨气混合后进入填料塔底部。吸收剂水从塔顶喷淋而下,从塔底经液封装置排出。气液在填料层内接触、传质,经吸收后的尾气从塔顶排出。很少量的一小部分尾气通过三通阀引进洗气瓶,洗气瓶内装有已知浓度和一定体积量的稀硫酸,尾气与稀硫酸进行中和反应,经吸收后的尾气通入湿式流量计后放空。从湿式流量计可以测出此小部分尾气经过洗气瓶的空气体积量。 四、实验原理和方法 与空塔气速u的关系 1.填料塔压力降p 填料塔的压力降与泛点气速是填料塔设计与操作的重要流体力学参数。气体通过填料层的压力降将

丙酮吸收塔的设计1

山山东师范大学 课程论文(设计) 题目丙酮与空气的混合气体填料吸收塔设计 课程名称化工设计 二级学院化学化工与材料科学学院 专业化学工程与工艺 班级化工一班 学生姓名 学号 指导教师张其坤 设计起止时间:2016年11月01日至2017年01月01日

设计任务书 设计任务:丙酮与空气的混合气体填料吸收塔设计 设计参数:原料气组成:丙酮—空气二元混合气体,丙酮含量8.5%(体积分数),进塔混合气温度为40℃,要求丙酮回收率95%以 上 年处理量:2000、2500、3000、3500、4000m3/h 操作条件:连续常压操作 年工作日:300天 工作地点:临沂市 吸收剂:软水 设计要求: (1)完成设计说明书一份,字数在6000字以上 (2)完成带控制点的工艺流程图、车间布置图、吸收塔工艺条件图各一张

重要符号说明D——塔径,m; DL——液体扩散系数,㎡/s; Dv——气体扩散系数,㎡/s ; ev——液沫夹带量,kg(液)/kg(气); g——重力加速度,9.81 m/s^2 ; h——填料层分段高度,m; HETP关联式常数; H max——允许的最大填料层高度,m;HB——塔底空间高度,m; HD——塔顶空间高度,m; HOG——气相总传质单元高度,m;kG——气膜吸收系数,kmol/(㎡?s?kPa);kL——液膜吸收系数,m/s; KG——气相总吸收系数,kmol/(?㎡s?kPa);Lb——液体体积流量,m3/h; LS——液体体积流量,m3/s; LW——润湿速率,m3/(m?s); m——相平衡常数,无因次; n——筛孔数目;

清水吸收丙酮填料塔的设计

《化工原理》课程设计清水吸收丙酮填料塔的设计 学院医药化工学院 专业高分子材料与工程 班级高分子材料与工程13(1)班姓名李凯杰 学号13155301xx 指导教师严明芳、龙春霞 年月日

设计书任务 (一)设计题目 试设计一座填料吸收塔,用于脱除空气中的丙酮蒸汽。混合气体处理量为___4000____m3/h。进口混合气中含丙酮蒸汽__6%__(体积百分数);混合气进料温度为35℃。采用25℃清水进行吸收,要求: 丙酮的回收率达到___95%___ (二)操作条件 (1)操作压力101.6 kPa (2)操作温度25℃ (3)吸收剂用量为最小用量的倍数自己确定 (4)塔型与填料自选,物性查阅相关手册。 (三)设计内容 (1)设计方案的确定和说明 (2)吸收塔的物料衡算; (3)吸收塔的工艺尺寸计算; (4)填料层压降的计算; (5)液体分布器简要设计; (6)绘制液体分布器施工图; (7)其他填料塔附件的选择; (8)塔的总高度计算; (9)泵和风机的计算和选型; (10)吸收塔接管尺寸计算; (11)设计参数一览表; (12)绘制生产工艺流程图(A3号图纸); (13)绘制吸收塔设计条件图(A3号图纸); (14)对设计过程的评述和有关问题的讨论。

目录 前言 (1) 第1章填料塔主体设计方案的确定 (2) 1.1 装置流程的确定 (2) 1.2 吸收剂的选择 (2) 1.3 操作温度与压力的确定 (2) 1.4 填料的类型与选择 (2) 第2章基础物性数据与物料衡算 (2) 2.1 基础物性衡算 (3) 2.1.1 液相物性数据 (3) 2.1.2 气相物性数据 (3) 2.1.3 气液相平衡数据 (4) 2.2 物料衡算 (4) 第3章填料塔的工艺尺寸计算 (5) 3.1 塔径的计算 (5) 3.2 泛点率的校核 (6) 3.3 填料规格校核 (7) 3.4 液体喷淋密度校核 (7) 3.5 填料塔填料高度的计算 (7) 3.5.1 传质单元数的计算 (7) 3.5.2 传质单元高度的计算 (8) 3.5.3 填料层高度的计算 (9) 3.6 填料塔附属高度的计算 (10) 3.7 填料层压降的计算 (10) 第4章填料塔附件的选择与计算 (11) 4.1 液体分布器简要设计 (11) 4.1.1 液体分布器的选型 (11) 4.1.2 分布点密度计算 (11) 4.1.3 布液计算 (12) 4.2 液体收集及分布装置 (12) 4.3 气体分布装置 (13) 4.4 除沫装置 (14) 4.5 填料支承及压紧装置 (14) 4.5.1 填料支承装置 (14) 4.5.2 填料限定装置 (14) 4.6 裙座 (14) 4.7 人孔 (15) 第5章填料塔的流体力学参数计算 (15) 5.1 吸收塔主要接管的计算 (15) 5.1.1 液体进料管的计算 (15) 5.1.2 气体进料管的计算 (16) 5.2 离心泵和风机的计算与选型 (16) 5.2.1 离心泵的计算与选型 (16)

实验七填料塔吸收实验

实验七填料吸收塔的操作和吸收系数的测定 一、实验目的 1.了解填料吸收塔的结构、填料特性及吸收装置的基本流程。 2.熟悉填料塔的流体力学性能。 3.掌握总传质系数K Y a测定方法。 4.了解空塔气速和液体喷淋密度对传质系数的影响。 二、实验内容 1.测定干填料及不同液体喷淋密度下填料的阻力降?P与空塔气速u的关系曲线,并确定液泛气速。 2.测量固定液体喷淋量下,不同气体流量时,用水吸收空气—氨混和气体中氨的体积吸收系数K Y a。 三、基本原理 1.填料塔流体力学特性 填料塔是一种重要的气液传质设备,其主体为圆柱形的塔体,底部有一块带孔的支撑板来支承填料,并允许气液顺利通过。支撑板上的填料有整堆和乱堆两种方式,填料分为实体填料和网体填料两大类,如拉西环、鲍尔环、θ网环都属于实体填料。填料层上方有液体分布装置,可以使液体均匀喷洒在填料上。液体在填料中有倾向于塔壁的流动,故当填料层较高时,常将其分段,段与段之间设置液体再分布器,以利液体的重新分布。 吸收塔中填料的作用主要是增加气液两相的接触面积,而气体在通过填料层时,由于克服摩擦阻力和局部阻力而导致了压强降?P的产生。填料塔的流体力学特性是吸收设备的主要参数,它包括压强降和液泛规律。了解填料塔的流体力学特性是为了计算填料塔所需动力消耗,确定填料塔适宜操作范围以及选择适宜的气液负荷。填料塔的流体力学特性的测定主要是确定适宜操作气速。 在填料塔中,当气体自下而上通过干填料(L=0)时,与气体通过其它固体颗粒床层一样,气压降?P与空塔气速u的关系可用式?P=u1.8-2.0表示。在双对数坐标系中为一条直线,斜率为1.8-2.0。在有液体喷淋(L≠0)时,气体通过床层的压降除与气速和填料有关外,还取决于喷淋密度等因素。在一定的喷淋密度下,当气速小时,阻力与空塔速度仍然遵守?P∝u1.8-2.0这一关系。但在同样的空塔速度下,由于填料表面有液膜存在,填料中的空隙减小,填料空隙中的实际速度增大,因此床层阻力降比无喷淋时的值高。当气速增加到某一值时,由于上升气流与下降液体间的摩擦阻力增大,开始阻碍液体的顺利下流,以致于填料层内的气液量随气速的增加而增加,此现象称为拦液现象,此点为载点,开始拦液时的空塔气速称为载点气速。进入载液区后,当空塔气速再进一步增大,则填料层内拦液量不断增高,到达某一气速时,气、液间的摩擦力完全阻止液体向下流动,填料层的压力将急剧升高,在?P∝u n关系式中,n的数值可达10左右,此点称为泛点。在不同的喷淋密度下,在双对数坐标中可得到一系列这样的折线。随着喷淋密度的增加,填料层的载点气速和泛点气速下降。 本实验以水和空气为工作介质,在一定喷淋密度下,逐步增大气速,记录填料层的压降与

填料塔吸收综合实验报告

竭诚为您提供优质文档/双击可除填料塔吸收综合实验报告 篇一:实验七填料塔吸收实验 实验七填料吸收塔的操作和吸收系数的测定 一、实验目的 1.了解填料吸收塔的结构、填料特性及吸收装置的基本流程。2.熟悉填料塔的流体力学性能。3.掌握总传质系数KYa测定方法。4.了解空塔气速和液体喷淋密度对传质系数的影响。 二、实验内容 1.测定干填料及不同液体喷淋密度下填料的阻力降?p 与空塔气速u的关系曲线,并确定液泛气速。 2.测量固定液体喷淋量下,不同气体流量时,用水吸收空气—氨混和气体中氨的体积吸收系数KYa。 三、基本原理 1.填料塔流体力学特性 填料塔是一种重要的气液传质设备,其主体为圆柱形的塔体,底部有一块带孔的支撑板来支承填料,并允许气液顺

利通过。支撑板上的填料有整堆和乱堆两种方式,填料分为实体填料和网体填料两大类,如拉西环、鲍尔环、?网环都属于实体填料。填料层上方有液体分布装置,可以使液体均匀喷洒在填料上。液体在填料中有倾向于塔壁的流动,故当填料层较高时,常将其分段,段与段之间设置液体再分布器,以利液体的重新分布。 吸收塔中填料的作用主要是增加气液两相的接触面积,而气体在通过填料层时,由于克服摩擦阻力和局部阻力而导致了压强降?p的产生。填料塔的流体力学特性是吸收设备的主要参数,它包括压强降和液泛规律。了解填料塔的流体力学特性是为了计算填料塔所需动力消耗,确定填料塔适宜操作范围以及选择适宜的气液负荷。填料塔的流体力学特性的测定主要是确定适宜操作气速。 在填料塔中,当气体自下而上通过干填料(L=0)时,与气体通过其它固体颗粒床层一样,气压降?p与空塔气速u的关系可用式?p=u1.8-2.0表示。在双对数坐标系中为一条直线,斜率为1.8-2.0。在有液体喷淋(L?0)时,气体通过床层的压降除与气速和填料有关外,还取决于喷淋密度等因素。在一定的喷淋密度下,当气速小时,阻力与空塔速度仍然遵守?p?u1.8-2.0这一关系。但在同样的空塔速度下,由于填料表面有液膜存在,填料中的空隙减小,填料空隙中的实际 速度增大,因此床层阻力降比无喷淋时的值高。当气速增加

水吸收丙酮填料塔设计

— 摘要 空气-丙酮混合气填料吸收塔设计任务为用水吸收丙酮常压填料塔,即在常压下,从含丙酮%、相对湿度70%、温度35℃的混合气体中用25℃的吸收剂清水在填料吸收塔中吸收回收率为90%丙酮的单元操作。设计主要包括设计方案的确定、填料选择、工艺计算等内容,其中整个工艺计算过程包括确定气液平衡关系、确定吸收剂用量及操作线方程、填料的选择、确定塔径及塔的流体力学性能计算、填料层高度计算、附属装置的选型以及管路及辅助设备的计算,在设计计算中采用物料衡算、亨利定律以及一些经验公式,该设计的成果有设计说明书和填料吸收塔的装配图及其附属装置图。 ! |

目录 摘要............................................................ I ~ 水吸收丙酮填料塔设计 (1) 第一章任务及操作条件 (1) 第二章设计方案的确定 (2) 设计方案的内容 (2) 流程方案的确定 (2) 设备方案的确定 (2) 流程布置 (3) 收剂的选择 (3) ; 操作温度和压力的确定 (3) 第三章填料的选择 (4) 填料的种类和类型 (4) 颗粒填料 (4) 规整填料 (4) 填料类型的选择 (4) 填料规格的选择 (5) 填料材质的选择 (5) - 第四章工艺计算 (6) 物料计算 (6) 进塔混合气中各组分的量 (6) 混合气进出塔的摩尔组成 (6) 混合气进出塔摩尔比组成 (7) 出塔混合气量 (7) 气液平衡关系 (7) L (7) 吸收剂(水)的用量s ,

塔底吸收液浓度 1 X (8) 操作线 (8) 塔径计算 (8) 采用Eckert通用关联图法计算泛点气速 F u (8) 操作气速的确定 (9) 塔径的计算 (9) 核算操作气速 (10) 核算径比 (10) … 喷淋密度校核 (10) 单位填料程压降( p Z )的校核 (10) 填料层高度的确定 (11) 传质单元高度 OG H计算 (11) 计算 Y K a (13) 计算 OG H (13) 传质单元数 OG N计算 (13) 填料层高度z的计算 (14) > 填料塔附属高度的计算 (14) 第五章填料吸收塔的附属设备 (15) 填料支承板 (15) 填料压板和床层限制板 (15) 气体进出口装置和排液装置 (15) 分布点密度及布液孔数的计算 (15) 塔底液体保持管高度的计算 (16) 第六章辅助设备的选型 (18) 。 管径的计算 (18) 参考文献 (19) 附录 (20) 附表 (21) 致谢 (24) `

环境工程原理课程设计 丙酮吸收填料塔要点

环境工程原理课程设计题目水吸收丙酮填料塔设计 学院 专业班级 学生姓名 学生学号 指导教师 2014年6月16日

目录 第一章设计任务书 (3) 1.1 设计题目 (3) 1.2 设计任务及操作条件 (3) 1.3 设计内容 (3) 1.4 设计要求 (3) 第二章设计方案的确定 (4) 2.1 设计方案的内容 (4) 2.1.1 流程方案的确定 (4) 2.1.2 设备方案的确定 (4) 2.2 填料的选择 (5) 第三章吸收塔的工艺计算 (6) 3.1 基础物性数据 (6) 3.1.1 液相物性数据 (6) 3.1.2 气相物性数据 (6) 3.1.3气液平衡相数据 (7) 3.2 物料衡算 (7) 3.3 填料塔塔径的计算 (8) 3.3.1 泛点气速的计算 (8) 3.3.2 塔径的计算及校核 (9) 3.4.1 气相总传质单元数的计算 (10) 3.4.2 气相总传质单元高度的计算 (10) 3.5 填料塔流体力学校核 (13) 3.5.1 气体通过填料塔的压降 (13) 3.5.2 泛点率 (13) 3.5.3 气体动能因子 (13) 第四章塔内辅助设备的选择和计算 (14) 4.1 液体分布器 (14) 4.2 填料塔附属高度 (15) 4.3 填料支承装置 (15) 4.4 填料压紧装置 (15) 4.5 液体进、出口管 (16) 4.6 液体除雾器 (16) 4.7 筒体和封头 (17) 4.8 手孔 (17) 4.9 法兰 (18) 4.10 裙座 (19) 第五章设计计算结果总汇表 (21) 第六章课程设计总结 (24) 参考文献 (25) 附录 (26)

四川大学化工原理气体吸收实验

气体吸收实验 1.实验目的 (1)观测气、液在填料塔内的操作状态,掌握吸收操作方法。 (2)测定在不同喷淋量下,气体通过填料层的压降与气速的关系曲线。 (3)测定在填料塔内用水吸收CO2的液相体积传质系数K X a。 (4)对不同填料的填料塔进行性能测试比较。 2.实验原理 (1)气体吸收是运用混合气体中各种组分在同一溶液中的溶解度的差异,通过气液充分接触,溶解度较大的气体组分进入液相而与其他组分分离的操作。 气体混合物以一定气速通过填料塔内的填料层时,与吸收剂液相想接触,进行物资传递。气,夜两项在吸收塔内除物质传递外,其流动相互影响,还具有自己的流体力学特征。填料塔的流体力学特征是吸收设备的重要参数,他包括了压降和液泛的重要规律。 填料塔的流体力学特征是以气体通过填料层所产生的压降来表示。该压降在填料因子、填料层高度、液体喷淋密度一定的情况下随气体速度变化而变化,与压降与气速的关系如图。 气体通过干填料层时,其压降与空塔时,其压降与空气塔气速的函数关系在双对数坐标上为一条直线,其斜率为 1.8-2.0.当有液体喷淋时,气体低速流过填料层,压降与气速的关系几乎与L=0的关系线平行,随着气速的增加出现载点B 与B’,填料层内持液量增加,压降与气速的关系关联线向上弯曲,斜率变大,当填料层持液越积越多时,气体的压降几乎是垂直上升,气体以泡状通过液体,出现液泛现象,P-U线出现载点C,称此点为泛点。 (2)反应填料塔性能的主要参数之一是传质系数。影响传质系数的因素很多,对不同系统和不同吸收设备,传质系数各不相同,所以不可能有一个通用的计算式计算传质系数。 本实验采用水来吸收空气中的CO2,常压下CO2在水中的溶解度比较小,用水吸收CO2的操作中是液膜控制吸收的过程,所以在低浓度吸收时填料的计算式

填料吸收塔设计示例

填料吸收塔课程设计说明书 专业 班级 姓名 班级序号 指导老师 日期

目录 前言 (2) 水吸收丙酮填料塔设计 (2) 一任务及操作条件 (2) 二吸收工艺流程的确定 (2) 三物料计算 (3) 四热量衡算 (4) 五气液平衡曲线 (5) 六吸收剂(水)的用量Ls (5) 七塔底吸收液浓度X1 (6) 八操作线 (6) 九塔径计算 (6) 十填料层高度计算 (9) 十一填科层压降计算 (13) 十二填料吸收塔的附属设备 (13) 十三课程设计总结 (15) 十四主要符号说明 (16) 十五参考文献 (17) 十六附图 (18)

前言 塔设备是炼油、化工、石油化工等生产中广泛应用的气液传质设备。根据塔内气液接触部件的形式,可以分为填料塔和板式塔。板式塔属于逐级接触逆流操作,填料塔属于微分接触操作。工业上对塔设备的主要要求:(1)生产能力大(2)分离效率高(3)操作弹性大(4)气体阻力小结构简单、设备取材面广等。 塔型的合理选择是做好塔设备设计的首要环节,选择时应考虑物料的性质、操作的条件、塔设备的性能以及塔设备的制造、安装、运转和维修等方面的因素。板式塔的研究起步较早,具有结构简单、造价较低、适应性强、易于放大等特点。 填料塔由填料、塔内件及筒体构成。填料分规整填料和散装填料两大类。塔内件有不同形式的液体分布装置、填料固定装置或填料压紧装置、填料支承装置、液体收集再分布装置及气体分布装置等。与板式塔相比,新型的填料塔性能具有如下特点:生产能力大、分离效率高、压力降小、操作弹性大、持液量小等优点。 水吸收丙酮填料塔设计 一任务及操作条件 ①混合气(空气、丙酮蒸汽)处理量:12493/ m h。 ②进塔混合气含丙酮 2.34%(体积分数);相对湿度:70%;温度:35℃; ③进塔吸收剂(清水)的温度25℃; ④丙酮回收率:90%; ⑤操作压力为常压。 二吸收工艺流程的确定 采用常规逆流操作流程.流程如下。

填料塔吸收实验

序号:34 化工原理实验报告 实验名称:填料吸收传质系数测定 学院:化学工程学院 专业:化学工程与工艺 班级:化工09-3班 姓名:曾学礼学号09402010337

同组者姓名:周锃刘翰卿 指导教师:王志强 日期:2011年9月20日 一、实验目的 1.熟悉填料塔的构造与操作。 2.观察填料塔流体力学状况,测定压降与气速的关系曲线。 3.掌握总传质系数Kxa的测定方法并分析影响因素。 4.学习气液连续接触式填料塔,利用传质速率方程处理传质问题的方法。 二、实验原理 本装置先用吸收柱将水吸收纯氧形成富氧水后(并流操作),送入解吸塔顶再用空气进行解吸,实验需测定不同液量和气量下的解吸总传质系数K x a,并进行关联,得到K x a=AL a·V b的关联式,同时对四种不同填料的传质效果及流体力学性能进行比较。本实验引入了计算机在线数据采集技术,加快了数据记录与处理的速度。 1.填料塔流体力学特性 气体通过干填料层时,流体流动引起的压降和湍流流动引起的压 降规律相一致。在双对数坐标系中△P/Z对G'作图得到一条斜率为 1.8~2的直线(图1中的aa线)。而有喷淋量时,在低气速时(c 点以前)压降也比例于气速的1.8~2次幂,但大于同一气速下干填 料的压降(图中bc段)。随气速增加,出现载点(图中c点),持 液量开始增大。图中不难看出载点的位置不是十分明确,说明汽液两 相流动的相互影响开始出现。压降~气速线向上弯曲,斜率变徒(图中cd段)。当气体增至液泛点(图中d点,实验中可以目测出)后在几乎不变的气速下,压降急剧上升。 图1 填料层压降–空塔气速关系示意图 2、传质实验 填料塔与板式塔气液两相接触情况不同。在填料塔中,两相传质主要是在填料有效湿表面上进行,需要计算完成一定吸收任务所需填料高度,其计算方法有:传质系数法、传质单元法和等板高度法。 本实验是对富氧水进行解吸。由于富氧水浓度很小,可认为气液两相的平衡关系服从亨利定律,即平衡线为直线,操作线也是直线,因此可以用对数平均浓度差计算填料层传

清水吸收丙酮填料塔的设计

《化工原理》课程设计 清水吸收丙酮填料塔的设计 学院医药化工学院 专业高分子材料与工程 班级高分子材料与工程13(1)班 姓名李凯杰 学号 xx 指导教师严明芳、龙春霞 年月日 设计书任务 (一)设计题目 试设计一座填料吸收塔,用于脱除空气中的丙酮蒸汽。混合气体处理量为___4000____m3/h。进口混合气中含丙酮蒸汽__6%__(体积百分数);混合气进料温度为35℃。采用25℃清水进行吸收,要求: 丙酮的回收率达到___95%___ (二)操作条件 (1)操作压力101.6 kPa (2)操作温度25℃ (3)吸收剂用量为最小用量的倍数自己确定 (4)塔型与填料自选,物性查阅相关手册。 (三)设计内容 (1)设计方案的确定和说明 (2)吸收塔的物料衡算; (3)吸收塔的工艺尺寸计算; (4)填料层压降的计算; (5)液体分布器简要设计;

(6)绘制液体分布器施工图; (7)其他填料塔附件的选择; (8)塔的总高度计算; (9)泵和风机的计算和选型; (10)吸收塔接管尺寸计算; (11)设计参数一览表; (12)绘制生产工艺流程图(A3号图纸); (13)绘制吸收塔设计条件图(A3号图纸); (14)对设计过程的评述和有关问题的讨论。 目录 前言 (1) 第1章填料塔主体设计方案的确定 (2) 1.1 装置流程的确定 (2) 1.2 吸收剂的选择 (2) 1.3 操作温度与压力的确定 (2) 1.4 填料的类型与选择 (2) 第2章基础物性数据与物料衡算 (2) 2.1 基础物性衡算 (3) 2.1.1 液相物性数据 (3) 2.1.2 气相物性数据 (3) 2.1.3 气液相平衡数据 (4) 2.2 物料衡算 (4) 第3章填料塔的工艺尺寸计算 (5) 3.1 塔径的计算 (5) 3.2 泛点率的校核 (6) 3.3 填料规格校核 (7) 3.4 液体喷淋密度校核 (7) 3.5 填料塔填料高度的计算 (7) 3.5.1 传质单元数的计算 (7) 3.5.2 传质单元高度的计算 (8) 3.5.3 填料层高度的计算 (9) 3.6 填料塔附属高度的计算 (10) 3.7 填料层压降的计算 (10) 第4章填料塔附件的选择与计算 (11) 4.1 液体分布器简要设计 (11) 4.1.1 液体分布器的选型 (11) 4.1.2 分布点密度计算 (11) 4.1.3 布液计算 (12) 4.2 液体收集及分布装置 (12) 4.3 气体分布装置 (13) 4.4 除沫装置 (14)

填料塔课程设计

目录 1.前言 (4) 2.设计任务 (6) 3.设计方案说明 (6) 4.基础物性数据 (6) 5.物料衡算 (6) 6.填料塔的工艺尺寸计算 (8) 7.附属设备的选型及设备 (14) 8.参考文献 (19) 9.后记及其他 (20)

1.前言 填料塔是以塔内的填料作为气液两相间接触构件的传质设备,它是化工类企业中最常用的气液传质设备之一。而塔填料塔内件及工艺流程又是填料塔技术发展的关键。聚丙烯材质填料作为塔填料的重要一类,在化工上应用较为广泛,与其他材质的填料相比,聚丙烯填料具有质轻、价廉、耐蚀、不易破碎及加工方便等优点,但其明显的缺点是表面润湿性能。 1.1填料塔技术 填料塔的塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。填料的上方安装填料压板,以防被上升气流吹动。液体从塔顶经液体分布器喷淋到填料上,并沿填料表面流下。气体从塔底送入,经气体分布装置(小直径塔一般不设气体分布装置)分布后,与液体呈逆流连续通过填料层的空隙,在填料表面上,气液两相密切接触进行传质。填料塔属于连续接触式气液传质设备,两相组成沿塔高连续变化,在正常操作状态下,气相为连续相,液相为分散相。 当液体沿填料层向下流动时,有逐渐向塔壁集中的趋势,使得塔壁附近的液流量逐渐增大,这种现象称为壁流。壁流效应造成气液两相在填料层中分布不均,从而使传质效率下降。因此,当填料层较高时,需要进行分段,中间设置再分布装置。液体再分布装置包括液体收集器和液体再分布器两部分,上层填料流下的液体经液体收集器收集后,送到液体再分布器,经重新分布后喷淋到下层填料上。 填料塔具有生产能力大,分离效率高,压降小,持液量小,操作弹性大等优点。填料塔也有一些不足之处,如填料造价高;当液体负荷较小时不能有效地润湿填料表面,使传质效率降低;不能直接用于有悬浮物或容易聚合的物料;对侧线进料和出料等复杂精馏不太适合等。 1.2 填料的类型 填料的种类很多,根据装填方式的不同,可分为散装填料和规整填料。 散装填料是一个个具有一定几何形状和尺寸的颗粒体,一般以随机的方式堆积在塔内,又称为乱堆填料或颗粒填料。散装填料根据结构特点不同,又可分为环形填料、鞍形填料、环鞍形填料及球形填料等。

相关主题
文本预览
相关文档 最新文档