当前位置:文档之家› 通信原理实验报告(终)

通信原理实验报告(终)

通信原理实验报告(终)
通信原理实验报告(终)

通信原理实验报告

班级: 12050641

姓名:谢昌辉

学号: 1205064135

实验一 抽样定理实验

一、实验目的

1、 了解抽样定理在通信系统中的重要性。

2、 掌握自然抽样及平顶抽样的实现方法。

3、 理解低通采样定理的原理。

4、 理解实际的抽样系统。

5、 理解低通滤波器的幅频特性对抽样信号恢复的影响。

6、 理解低通滤波器的相频特性对抽样信号恢复的影响。

7、 理解带通采样定理的原理。

二、实验器材

1、 主控&信号源、3号模块 各一块

2、 双踪示波器 一台

3、 连接线 若干

三、实验原理

1、实验原理框图

保持电路

S1信号源

A-out

music

抽样电路

被抽样信号

抽样脉冲

平顶抽样自然抽样

抽样输出

抗混叠滤波器

LPF

LPF-IN

LPF-OUT

FPGA 数字滤波

FIR/IIR

译码输出

编码输入

3# 信源编译码模块

图1-1 抽样定理实验框图

2、实验框图说明

抽样信号由抽样电路产生。将输入的被抽样信号与抽样脉冲相乘就可以得到自然抽样信号,自然抽样的信号经过保持电路得到平顶抽样信号。平顶抽样和自然抽样信号是通过开关S1切换输出的。

抽样信号的恢复是将抽样信号经过低通滤波器,即可得到恢复的信号。这里滤波器可以选用抗混叠滤波器(8阶3.4kHz 的巴特沃斯低通滤波器)或FPGA 数字滤波器(有FIR 、IIR 两种)。反sinc 滤波器不是用来恢复抽样信号的,而是用来应对孔径失真现象。

要注意,这里的数字滤波器是借用的信源编译码部分的端口。在做本实验时与信源编译码的内容没有联系。

四、实验步骤

实验项目一抽样信号观测及抽样定理验证

概述:通过不同频率的抽样时钟,从时域和频域两方面观测自然抽样和平顶抽样的输出波形,以及信号恢复的混叠情况,从而了解不同抽样方式的输出差异和联系,验证抽样定理。

1、关电,按表格所示进行连线。

源端口目标端口连线说明信号源:MUSIC 模块3:TH1(被抽样信号) 将被抽样信号送入抽样单元

信号源:A-OUT 模块3:TH2(抽样脉冲) 提供抽样时钟

模块3:TH3(抽样输出) 模块3:TH5(LPF-IN) 送入模拟低通滤波器

2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【抽样定理】。调节主控模块的W1使A-out输出峰峰值为3V。

3、此时实验系统初始状态为:被抽样信号MUSIC为幅度4V、频率3K+1K正弦合成波。抽样脉冲A-OUT为幅度3V、频率9KHz、占空比20%的方波。

4、实验操作及波形观测。

(1)观测并记录自然抽样前后的信号波形:设置开关S13#为“自然抽样”档位,用示波器分别观测MUSIC主控&信号源和抽样输出3#。

(2)观测并记录平顶抽样前后的信号波形:设置开关S13#为“平顶抽样”档位,用示波器分别观测MUSIC主控&信号源和抽样输出3#。

(3)观测并对比抽样恢复后信号与被抽样信号的波形:设置开关S13#为“自然抽样”档位,用示波器观测MUSIC主控&信号源和LPF-OUT3# ,以100Hz的步进减小A-OUT主控&信号源的频率,比较观测并思考在抽样脉冲频率多小的情况下恢复信号有失真。

(4)用频谱的角度验证抽样定理(选做):用示波器频谱功能观测并记录被抽样信号MUSIC和抽样输出频谱。以100Hz的步进减小抽样脉冲的频率,观测抽样输出以及恢复信号的频谱。(注意:示波器需要用250kSa/s采样率(即每秒采样点为250K),FFT缩放调节为×10)。

注:通过观测频谱可以看到当抽样脉冲小于2倍被抽样信号频率时,信号会产生混叠。实验项目二滤波器幅频特性对抽样信号恢复的影响

概述:该项目是通过改变不同抽样时钟频率,分别观测和绘制抗混叠低通滤波和fir数字滤波的幅频特性曲线,并比较抽样信号经这两种滤波器后的恢复效果,从而了解和探讨不同滤波器幅频特性对抽样信号恢复的影响。

1、测试抗混叠低通滤波器的幅频特性曲线。

(1)关电,按表格所示进行连线。

源端口目标端口连线说明

信号源:A-OUT 模块3:TH5(LPF-IN) 将信号送入模拟滤波器(2)开电,设置主控模块,选择【信号源】→【输出波形】和【输出频率】,通过调节相应旋钮,使A-OUT主控&信号源输出频率5KHz、峰峰值为3V的正弦波。

(3)此时实验系统初始状态为:抗混叠低通滤波器的输入信号为频率5KHz、幅度3V 的正弦波。

(4)实验操作及波形观测。

用示波器观测LPF-OUT3#。以100Hz步进减小A-OUT主控&信号源输出频率,观测并记录LPF-OUT3#的频谱。记入如下表格:

A-OUT频率/Hz 基频幅度/V

5K

4.5K

3.4K

3.0K

2、测试fir数字滤波器的幅频特性曲线。

(1)关电,按表格所示进行连线。

源端口目标端口连线说明

信号源:A-OUT 模块3:TH13(编码输入) 将信号送入数字滤波器(2)开电,设置主控菜单:选择【主菜单】→【通信原理】→【抽样定理】→【FIR 滤波器】。调节【信号源】,使A-out输出频率5KHz、峰峰值为3V的正弦波。

(3)此时实验系统初始状态为:fir滤波器的输入信号为频率5KHz、幅度3V的正弦波。

(4)实验操作及波形观测。

用示波器观测译码输出3#,以100Hz的步进减小A-OUT主控&信号源的频率。观测并记录译码输出3#的频谱。记入如下表格:

A_out的频率/Hz 基频幅度/V

5K

4K

3K

2K

...

由上述表格数据,画出fir低通滤波器幅频特性曲线。

思考:对于3KHz低通滤波器,为了更好的画出幅频特性曲线,我们可以如何调整信号源输入频率的步进值大小?

3、分别利用上述两个滤波器对被抽样信号进行恢复,比较被抽样信号恢复效果。

(1)关电,按表格所示进行连线:

源端口目标端口连线说明信号源:MUSIC 模块3:TH1(被抽样信号) 提供被抽样信号

信号源:A-OUT 模块3:TH2(抽样脉冲) 提供抽样时钟

模块3:TH3(抽样输出) 模块3:TH5(LPF-IN) 送入模拟低通滤波器

模块3:TH3(抽样输出) 模块3:TH13(编码输入) 送入FIR数字低通滤波器

(2)开电,设置主控菜单,选择【主菜单】→【通信原理】→【抽样定理】→【FIR 滤波器】。调节W1主控&信号源使信号A-OUT输出峰峰值为3V左右。

(3)此时实验系统初始状态为:待抽样信号MUSIC为3K+1K正弦合成波,抽样时钟信号A-OUT为频率9KHz、占空比20%的方波。

(4)实验操作及波形观测。对比观测不同滤波器的信号恢复效果:用示波器分别观测

LPF-OUT3#和译码输出3#,以100Hz步进减小抽样时钟A-OUT的输出频率,对比观测模拟滤波器和FIR数字滤波器在不同抽样频率下信号恢复的效果。(频率步进可以根据实验需求自行设置。)思考:不同滤波器的幅频特性对抽样恢复有何影响?

实验项目三滤波器相频特性对抽样信号恢复的影响。

概述:该项目是通过改变不同抽样时钟频率,从时域和频域两方面分别观测抽样信号经fir滤波和iir滤波后的恢复失真情况,从而了解和探讨不同滤波器相频特性对抽样信号恢复的影响。

1、观察被抽样信号经过fir低通滤波器与iir低通滤波器后,所恢复信号的频谱。

(1)关电,按表格所示进行连线。

源端口目标端口连线说明信号源:MUSIC 模块3:TH1(被抽样信号) 提供被抽样信号

信号源:A-OUT 模块3:TH2(抽样脉冲) 提供抽样时钟

模块3:TH3(抽样输出) 模块3:TH13(编码输入) 将信号送入数字滤波器

(2)开电,设置主控菜单,选择【主菜单】→【通信原理】→【抽样定理】。调节W1主控&信号源使信号A-OUT输出峰峰值为3V左右。

(3)此时实验系统初始状态为:待抽样信号MUSIC为3K+1K正弦合成波,抽样时钟信号A-OUT为频率9KHz、占空比20%的方波。

(4)实验操作及波形观测。

a、观测信号经fir滤波后波形恢复效果:设置主控模块菜单,选择【抽样定理】→【FIR 滤波器】;设置【信号源】使A-OUT输出的抽样时钟频率为7.5KHz;用示波器观测恢复信号译码输出3#的波形和频谱。

b、观测信号经iir滤波后波形恢复效果:设置主控模块菜单,选择【抽样定理】→【IIR 滤波器】;设置【信号源】使A-OUT输出的抽样时钟频率为7.5KHz;用示波器观测恢复信号译码输出3#的波形和频谱。

c、探讨被抽样信号经不同滤波器恢复的频谱和时域波形:

被抽样信号与经过滤波器后恢复的信号之间的频谱是否一致?如果一致,是否就是说原始信号能够不失真的恢复出来?用示波器分别观测fir滤波恢复和iir滤波恢复情况下,译码输出3#的时域波形是否完全一致,如果波形不一致,是失真呢?还是有相位的平移呢?如果相位有平移,观测并计算相位移动时间。

2、观测相频特性

(1)关电,按表格所示进行连线。

源端口目标端口连线说明

信号源:A-OUT 模块3:TH13(编码输入) 使源信号进入数字滤波器(2)开电,设置主控菜单,选择【主菜单】→【通信原理】→【抽样定理】→【FIR 滤波器】。

(3)此时系统初始实验状态为:A-OUT为频率9KHz、占空比20%的方波。

(4)实验操作及波形观测。

对比观测信号经fir滤波后的相频特性:设置【信号源】使A-OUT输出频率为5KHz、峰峰值为3V的正弦波;以100Hz步进减小A-OUT输出频率,用示波器对比观测A-OUT主控&信号源和译码输出3#的时域波形。相频特性测量就是改变信号的频率,测输出信号的延时(时域上观测)。记入如下表格:

A-OUT的频率/Hz 被抽样信号与恢复信号的相位延时/ms

3.5K

3.4K

3.3K

...

五、实验报告

1、分析电路的工作原理,叙述其工作过程。

2、绘出所做实验的电路、仪表连接调测图。并列出所测各点的波形、频率、电压等有关数据,对所测数据做简要分析说明。必要时借助于计算公式及推导。

3、分析以下问题:滤波器的幅频特性是如何影响抽样恢复信号的?简述平顶抽样和自然抽样的原理及实现方法。

答:滤波器的截止频率等于源信号谱中最高频率fn的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器输出端可以得到恢复后的原新号。当抽样频率小于2倍的原新号的最高频率即滤波器的截止频率时,抽样信号的频谱会发生混叠现象,从发生混叠后的频谱中无法用低通滤波器获得信号频谱的全部内容,从而导致失真。

平顶抽样原理:抽样脉冲具有一定持续时间,在脉宽期间其幅度不变,每个抽样脉冲顶

部不随信号变化。实际应用中是采用抽样保持电路来实现的。

自然抽样原理:抽样脉冲具有一定持续时间,在脉宽期间其幅度不变,每个抽样脉冲顶部随信号幅度变化。用周期性脉冲序列与信号相乘就可以实现。

4、思考一下,实验步骤中采用3K+1K正弦合成波作为被抽样信号,而不是单一频率的正弦波,在实验过程中波形变化的观测上有什么区别?对抽样定理理论和实际的研究有什么意义?

答:观测波形变化时更稳定。使抽样定理理论的验证结果更可靠。

实验步骤:

(1)观测并记录自然抽样前后的信号波形:设置开关K1为“自然抽样”档位,用示波器观测。

(2)观测并记录平顶抽样前后的信号波形:设置开关K1为“平顶抽样”档位,用示波器观测。

(3)观测并对比抽样恢复后信号与被抽样信号的波形:设置开关K1为“自然抽样”档位,用示波器观测频率,比较观测并思考在抽样脉冲频率多小的情况下恢复信号有失真。

实验二 PCM 编译码实验

一、实验目的

1、 掌握脉冲编码调制与解调的原理。

2、 掌握脉冲编码调制与解调系统的动态范围和频率特性的定义及测量方法。

3、 了解脉冲编码调制信号的频谱特性。

4、 熟悉了解W681512。

二、实验器材

1、 主控&信号源模块、3号、21号模块 各一块

2、 双踪示波器 一台

3、 连接线 若干

三、实验原理

1、实验原理框图

信号源

music/A-out

FS CLK PCM 编码

编码输入

时钟

帧同步编码输出

PCM 译码

时钟

帧同步

译码输入

译码输出

扬声器

音频输入

21# PCM 编译码及语音终端

T1

主时钟

图2-1 21号模块W681512芯片的PCM 编译码实验

信号源

music/A-

out

FS

CLK

抗混叠滤波器

LPF

LPF-IN LPF-OUT

PCM编码

编码输入

A/D

转换

PCM

编码

G.711

变换

时钟

帧同步PCM

量化输出

编码输出

PCM译码

时钟

帧同步

G.711

反变换

IIR

滤波器

D/A

转换

译码输入

译码输出

音频输入

PCM

译码

3# 信源编译码模块

21# PCM编译码及语音终端模块

图2-23号模块的PCM编译码实验

音频输入

信号源

PCM编码

(A律编码)

music/A-out

FS

CLK

A/μ律

编码转换

W681512芯片

PCM译码

(μ律译码)

编码输入

编码帧同步

编码时钟

译码时钟

译码帧同步

主时钟

编码输出

A/μ-In

A/μ-Out

译码输入

21# PCM编译码及语音终端模块

3# 信源编译码模块

编码时钟

编码帧同步

音频输出

T1

抗混叠滤波器

LPF

LPF-IN LPF-OUT

图2-3A/μ律编码转换实验

四、实验步骤

实验项目一测试W681512的幅频特性

概述:该项目是通过改变输入信号频率,观测信号经W681512编译码后的输出幅频特性,了解芯片W681512的相关性能。

1、关电,按表格所示进行连线。

源端口目的端口连线说明信号源:A-OUT 模块21:TH5(音频接口) 提供音频信号

信号源:T1 模块21:TH1(主时钟) 提供芯片工作主时钟信号源:CLK 模块21:TH11(编码时钟) 提供编码时钟信号信号源:CLK 模块21:TH18(译码时钟) 提供译码时钟信号信号源:FS 模块21:TH9(编码帧同步) 提供编码帧同步信号信号源:FS 模块21:TH10(译码帧同步) 提供译码帧同步信号模块21:TH8(PCM编码输出) 模块21:TH7(PCM译码输入) 接入译码输入信号

2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【PCM编码】→【A律编码观测实验】。调节W1主控&信号源使信号A-OUT输出峰峰值为3V左右。将模块21的开关S1拨至“A-Law”,即完成A律PCM编译码。

3、此时实验系统初始状态为:设置音频输入信号为峰峰值3V,频率1KHz正弦波;PCM 编码及译码时钟CLK为64KHz方波;编码及译码帧同步信号FS为8KHz。

4、实验操作及波形观测。

(1)调节模拟信号源输出波形为正弦波,输出频率为50Hz,用示波器观测A-out,设置A-out峰峰值为3V。

(2)将信号源频率从50Hz增加到4000Hz,用示波器接模块21的音频输出,观测信号的幅频特性。

注:频率改变时可根据实验需求自行改变频率步进,例如50Hz~250Hz间以10Hz的频率为步进,超过250Hz后以100Hz的频率为步进。

思考:W681512PCM编解码器输出的PCM数据的速率是多少?在本次实验系统中,为什么要给W681512提供64KHz的时钟,改为其他时钟频率的时候,观察的时序有什么变化?

认真分析W681512主时钟与8KHz帧收、发同步时钟的相位关系。

实验项目二PCM编码规则验证

概述:该项目是通过改变输入信号幅度或编码时钟,对比观测A律PCM编译码和μ律PCM编译码输入输出波形,从而了解PCM编码规则。

1、关电,按表格所示进行连线。

源端口目的端口连线说明信号源:A-OUT 模块3:TH5(LPF-IN) 信号送入前置滤波器模块3:TH6(LPF-OUT) 模块3:TH13(编码-编码输入) 提供音频信号

信号源:CLK 模块3:TH9(编码-时钟) 提供编码时钟信号

信号源:FS 模块3:TH10(编码-帧同步) 提供编码帧同步信号模块3:TH14(编码-编码输出) 模块3:TH19(译码-输入) 接入译码输入信号信号源:CLK 模块3:TH15(译码-时钟) 提供译码时钟信号信号源:FS 模块3:TH16(译码-帧同步) 提供译码帧同步信号

2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【PCM编码】→【A律编码观测实验】。调节W1主控&信号源使信号A-OUT输出峰峰值为3V左右。

3、此时实验系统初始状态为:设置音频输入信号为峰峰值3V,频率1KHz正弦波;PCM 编码及译码时钟CLK为64KHz;编码及译码帧同步信号FS为8KHz。

4、实验操作及波形观测。

(1)以FS为触发,观测编码输入波形。示波器的DIV(扫描时间)档调节为100us。将正弦波幅度最大处调节到示波器的正中间,记录波形。

注意,记录波形后不要调节示波器,因为正弦波的位置需要和编码输出的位置对应。

(2)在保持示波器设置不变的情况下,以FS为触发观察PCM量化输出,记录波形。

(3)再以FS为触发,观察并记录PCM编码的A律编码输出波形,填入下表中。整个过程中,保持示波器设置不变。

(4)再通过主控中的模块设置,把3号模块设置为【PCM编译码】→【μ律编码观测实验】,重复步骤(1)(2)(3)。将记录μ律编码相关波形,填入下表中。

A律波形μ律波形

帧同步信号

编码输入信号

PCM量化输出信号

PCM编码输出信号

(5)对比观测编码输入信号和译码输出信号。

思考1:改变基带信号幅度时,波形是否变化?改变时钟信号频率时,波形是否发生变化?

答:改变基带信号幅度时,波形不发生变化。改变时钟信号频率时,波形会发生变化。思考2:当编码输入信号的频率大于3400Hz或小于300Hz时,分析脉冲编码调制和解调波形。

答:当编码输入信号的频率大于3400Hz 或小于300Hz 时,脉冲编码调制和解调波形的幅度会急剧减小。

实验项目三 PCM 编码时序观测

概述:该项目是从时序角度观测PCM 编码输出波形。 1、连线和主菜单设置同实验项目二。

2、用示波器观测FS 信号与编码输出信号,并记录二者对应的波形。

思考:为什么实验时观察到的PCM 编码信号码型总是变化的?

实验项目四 PCM 编码A/μ律转换实验

概述:该项目是对比观测A 律PCM 编码和μ律PCM 编码的波形,从而了解二者区别与联系。

1、关电,按表格所示进行连线。 源端口 目的端口

连线说明

信号源:A-out

模块3:TH5(LPF-IN)

信号送入前置滤波器

模块3:TH6(LPF-OUT) 模块3:TH13(编码-编码输入) 送入PCM 编码 信号源:CLK 模块3:编码-时钟 提供编码时钟信号 信号源:FS 模块3:编码-帧同步 提供编码帧同步信号 模块3:编码输出 模块3:A/μ律--in 接入编码输出信号

模块3:A/μ--out 模块21:PCM 译码输入 将转换后的信号送入译码单元 信号源:CLK 模块21:译码时钟 提供译码时钟信号 信号源:FS 模块21:译码帧同步 提供译码帧同步信号 信号源:CLK 模块21:编码时钟 提供W681512芯片 PCM 编译码功能 所需的其他工作时钟

信号源:FS 模块21:编码帧同步 信号源:T1

模块21:主时钟

2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【PCM 编码】→【A 转μ律转换实验】。调节W1主控&信号源使信号A-OUT 输出峰峰值为3V 左右。将21号模块的开关S1拨至μ-LAW ,即此时完成μ律译码。

3、此时实验系统初始状态为:设置音频输入信号为峰峰值3V ,频率1KHz 正弦波;PCM

编码及译码时钟CLK为64KHz;编码及译码帧同步信号FS为8KHz。

4、用示波器对比观测编码输出信号与A/μ律转换之后的信号,观察两者的区别,加以总结。再对比观测原始信号和恢复信号。

5、设置主控菜单,选择【μ转A律转换实验】,并将21号模块对应设置成A律译码。然后按上述步骤观测实验波形情况。

五、实验报告

1、分析实验电路的工作原理,叙述其工作过程。

2、根据实验测试记录,画出各测量点的波形图,并分析实验现象。(注意对应相位关系)

3、对实验思考题加以分析,做出回答。

实验三ADPCM编译码实验

一、实验目的

1、理解自适应差值脉冲编码调制(ADPCM)的工作原理。

2、了解ADPCM编译码电路组成和工作原理。

3、加深对PCM编译码的理解。

二、实验器材

1、主控&信号源、3号模块各一块

2、双踪示波器一台

3、连接线若干

三、实验原理

1、实验原理框图

信号源music/A-out

FS

CLK

抗混叠滤波器

LPF

LPF-IN LPF-OUT

时钟

PCM

编码

编码输入

帧同步

ADPCM

压缩

ADPCM

解压缩

编码输出

译码输入

PCM

译码

时钟

帧同步

译码输出

3# 信源编译码模块

音频输入

图3-1 ADPCM编译码实验原理框图

2、实验框图说明

四、实验步骤

实验项目ADPCM编码实验

概述:该项目是通过改变不同输入信号及频率,对比观测输入信号的ADPCM编码和译码输出,从而了解和验证ADPCM编码规则。

1、关电,按表格所示进行连线。

源端口目的端口连线说明信号源:A-OUT 模块3:TH5(LPF-IN) 信号送入前置滤波器

模块3:TH6(LPF-OUT) 模块3:TH13(编码-编码输入) 编码输入

信号源:FS 模块3:TH10(编码-帧同步) 提供帧同步信号

信号源:CLK 模块3:TH9(编码-时钟) 提供时钟信号

模块3:TH14(编码-编码输出) 模块3:TH19(译码-输入) 提供译码数据

信号源:FS 模块3:TH16(译码-帧同步) 提供译码帧同步

信号源:CLK 模块3:TH15(译码-时钟) 提供译码时钟

2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【ADPCM编码】→【复位电路】。调节W1主控&信号源使信号A-OUT输出峰峰值为3V左右。

3、此时系统初始状态为:设置音频输入信号为峰峰值3V、频率1KHz正弦波。编码时钟为64KHz。

五、实验报告

1、分析ADPCM编译码与PCM编译码的区别。

2、根据实验测试记录,画出各测量点的波形图,并分析实验现象。

实验四△m及CVSD编译码实验

一、实验目的

1、掌握简单增量调制的工作原理。

2、理解量化噪声及过载量化噪声的定义,掌握其测试方法。

3、了解简单增量调制与CVSD工作原理不同之处及性能上的差别。

二、实验器材

1、主控&信号源模块、21号、3号模块各一块

2、双踪示波器一台

3、连接线若干

三、实验原理

1、Δm编译码

(1)实验原理框图

信号源

music/A-out

CLK

抗混叠滤波器

LPF

LPF-IN LPF-OUT

Δm 编码

编码输入

门限

判决

时钟

Δm译码

时钟

译码输入

译码输出

3# 信源编译码模块

比较

量化

延时

极性

变换

量阶

编码输出

延时

本地译码

音频输入

图一Δm编译码框图

(2)实验框图说明

编码输入信号与本地译码的信号相比较,如果大于本地译码信号则输出正的量阶信号,如果小于本地译码则输出负的量阶。然后,量阶会对本地译码的信号进行调整,也就是编码部分“+”运算。编码输出是将正量阶变为1,负量阶变为0。

Δm译码的过程实际上就是编码的本地译码的过程。

2、CVSD编译码

(1)实验原理框图

信号源

music/A-out

CLK

抗混叠滤波器

LPF

LPF-IN LPF-OUT

Δm 编码

编码输入

门限

判决

时钟

Δm译码

时钟

译码输入

译码输出

比较

延时

极性

变换

量阶

调整

编码输出

延时

本地译码

量阶

调整

一致脉冲

量阶3# 信源编译码模块

音频输入

图二 CVSD编译码框图

(2)实验框图说明

与Δm相比,CVSD多了量阶调整的过程。而量阶是根据一致脉冲进行调整的。一致性脉冲是指比较结果连续三个相同就会给出一个脉冲信号,这个脉冲信号就是一致脉冲。其他的编译码过程均与Δm一样。

四、实验步骤

实验项目一ΔM编码规则实验

概述:该项目是通过改变输入信号幅度,观测△M编译码输出波形,从而了解和验证△M增量调制编码规则。

1、关电,按表格所示进行连线。

源端口目标端口连线说明信号源:CLK 模块3:TH9(编码-时钟) 提供编码时钟

信号源:CLK 模块3:TH15(译码-时钟) 提供译码时钟

信号源:A-OUT 模块3:TH5(LPF-IN) 送入低通滤波器

模块3:TH6(LPF-OUT) 模块3:TH13(编码-编码输入) 提供编码信号

模块3:TH14(编码-编码输出) 模块3:TH19(译码-译码输入) 提供译码信号

2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【Δm及CVSD编译码】→【Δm编码规则验证】。调节信号源W1使A-OUT的峰峰值为1V。

3、此时系统初始状态为:模拟信号源为正弦波,幅度为1V,频率为400Hz;编码和译码时钟为32KHz方波。

4、实验操作及波形观测。

对比观测模块3的TP4(信源延时)和TH14(编码输出),然后对比TP4(信源延时)和TP3(本地译码)。

实验项目二量化噪声观测

概述:该项目是通过比较观测输入信号和△M编译码输出信号波形,记录量化噪声波形,从而了解△M编译码性能。

1、实验连线同项目一。

2、开电,设置主控菜单,选择【主菜单】→【Δm及CVSD编译码】→【Δm量化噪声观测(400Hz) 】→【设置量阶1000】。调节信号源W1使A-OUT的峰峰值为1V。

3、此时系统初始状态为:模拟信号源为正弦波,幅度为1V,频率为400Hz;编码和译码时钟为32KHz方波。

4、实验操作及波形观测。

示波器的CH1测试“信源延时”,CH2测试“本地译码”。利用示波器的“减法”功能,所观测到的波形即是量化噪声。记录量化噪声的波形。

实验项目三不同量阶ΔM编译码的性能

概述:该项目是通过改变不同△M编码量阶,对比观测输入信号和△M编译码输出信号的波形,记录量化噪声,从而了解和分析不同量阶情况下△M编译码性能。

1、实验连线和菜单设置同项目二。

2、调节信号源W1使A-OUT的峰峰值为3V。

3、此时系统初始状态为:模拟信号源为正弦波,幅度为3V,频率为400Hz;编码和译码时钟为32KHz方波。

4、实验操作及波形观测。

示波器的CH1测试“信源延时”,CH2测试“本地译码”。利用示波器的“减法”功能,所观测到的波形即是量化噪声。记录量化噪声的波形。

(1)选择“设置量阶3000”,调节正弦波峰峰值为1V,测量并记录量化噪声的波形。

(2)保持“设置量阶3000”,调节正弦波峰峰值为3V,测量并记录量化噪声的波形。

(3)选择“设置量阶6000”,调节正弦波峰峰值为1V,测量并记录量化噪声的波形。

(4)保持“设置量阶6000”,调节正弦波峰峰值为3V,测量并记录量化噪声的波形。

思考:比较分析不同量阶,不同幅度情况下,量化噪声有什么不同。

实验项目四ΔM编译码语音传输系统

概述:该项目是通过改变不同△M编码量阶,直观感受音乐信号的输出效果,从而体会△M编译码语音传输系统的性能。

1、关电,按表格所示进行连线。

源端口目标端口连线说明信号源:CLK 模块3:TH9(编码-时钟) 提供编码时钟

信号源:CLK 模块3:TH15(译码-时钟) 提供译码时钟

信号源:MUSIC 模块3:TH5(LPF-IN) 送入低通滤波器

模块3:TH6(LPF-OUT) 模块3:TH13(编码-编码输入) 提供编码信号

模块3:TH14(编码-编码输出) 模块3:TH19(译码-译码输入) 提供译码信号

模块3:TH20(译码-译码输出) 模块21:TH12(音频输入) 送入扬声器

2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【Δm及CVSD编译码】→【ΔM语音信号传输】→【设置量阶1000】。

3、此时系统初始状态为:编码输入信号为音乐信号。

4、实验操作及波形观测。

调节21号模块“音量”旋钮,使音乐输出效果最好。分别“设置量阶3000”、“设置量阶6000”,比较3种量阶情况下声音的效果。

实验项目五CVSD量阶观测

概述:该项目是通过改变输入信号的幅度,观测CVSD编码输出信号的量阶变化情况,了解CVSD量阶变化规则。

1、连线同项目一。

2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【Δm及CVSD编译码】→【CVSD量阶观测】。调节信号源W1使A-OUT的峰峰值为1V。

3、此时系统初始状态为:模拟信号源为正弦波,幅度为1V,频率为400Hz。编码时钟频率为32K Hz。

4、实验操作及波形观测。

以“编码输入”为触发,观测“量阶”。调节“A-OUT”的幅度,观测量阶的变化。

实验项目六CVSD一致脉冲观测

无线通信原理实验题目

无线通信原理实验题目之二: 实验报告 2.2:两径模型的仿真实验二(**) 实验工具:Mathworks Matlab 实验目的:了解两径模型中的路径损耗,熟练操作matlab 软件;实现内容: 实验代码: clc; Pt = 1;%发送功率归一化0dB ht = 50; %发送天线的高度 hr = 2; %接收天线的高度 db_ht=10*log10(ht); %运用log10,化为db单位 f = 900000000; %频率 c = 300000000; %波速 lam = c/f; %波长即λ R = -1; Gl = 1; %发射天线增益

Gr =1; %接收天线增益 d = 1:100000; %1m~100km db_d = 10*log10(d); %运用log10,化为db单位 l=sqrt((ht-hr)^2 + d.^2) x=sqrt((ht+hr)^2 + d.^2) deltax = x - l; %即时延△x deltafai = 2*pi*deltax/lam; %即△φ Pr = Pt*((lam/(4*pi))^2)*((abs(sqrt(Gl)./l + R*sqrt(Gr)*exp(-j*deltafai)./x)).^2); %接收功率 dc = 4*ht*hr/lam; %临界距离 db_Pr = 10*log10(Pr)-10*log10(Pr(1)); %运用10log10,化为db单位,并归一化起点 plot(db_d,db_Pr,'r'); %Gr=1时,接收功率与距离的关系,红色 hold on; grid on; %网格 plot([db_ht db_ht],[-100 40],'--g'); %绘制临界距离dc,用虚线 plot([10*log10(dc) 10*log10(dc)],[-100 40],'--b'); %绘制临界距离dc,用虚线 legend('两径模型的功率下降','发射天线高度ht','临界距离dc');%对各关系曲线的备注xlabel('10log10(d)'); ylabel('接收功率Pr(dB)'); title('两径模型,接收信号功率'); hold on; plot([0,db_ht],[0,0],'k'); hold on; b1=2*db_ht; x1=10*log10(dc); y1=-2*x1+b1; plot([db_ht,x1],[0,y1],'k'); hold on; b2=y1+4*x1; x2=(-100-b2)/(-4); plot([x1,x2],[y1,-100],'k'); 运行结果:

通信原理实验报告

通信原理实验报告

作者: 日期:

通信原理实验报告 实验名称:实验一—数字基带传输系统的—MATLAB方真 实验二模拟信号幅度调制仿真实验班级:10通信工程三班_________ 学号:2010550920 ________________ 姓名:彭龙龙______________

指导老师:王仕果______________

实验一数字基带传输系统的MATLA仿真 一、实验目的 1、熟悉和掌握常用的用于通信原理时域仿真分析的MATLAB函数; 2、掌握连续时间和离散时间信号的MATLAB产生; 3、牢固掌握冲激函数和阶跃函数等函数的概念,掌握卷积表达式及其物理意义,掌握卷积的计算方法、卷积的基本性质; 4、掌握利用MATLAB计算卷积的编程方法,并利用所编写的MATLAB程序验证卷积的常用基本性质; 5、掌握MATLAB描述通信系统中不同波形的常用方法及有关函数,并学会利用MATLAB求解系统功率谱,绘制相应曲线。 基本要求:掌握用MATLAB描述连续时间信号和离散时间信号的方法,能够编写 MATLAB程序,实现各种常用信号的MATLA实现,并且以图形的方式再现各种信号的波形。 二、实验内容 1、编写MATLAB程序产生离散随机信号 2、编写MATLAB程序生成连续时间信号 3、编写MATLAB程序实现常见特殊信号 三、实验原理 从通信的角度来看,通信的过程就是消息的交换和传递的过程。而从数学的角度来看,信息从一地传送到另一地的整个过程或者各个环节不外乎是一些码或信号的交换过程。例如信源压缩编码、纠错编码、AMI编码、扰码等属于码层次上的变换,而基带成形、滤波、调 制等则是信号层坎上的处理。码的变换是易于用软件来仿真的。要仿真信号的变换,必须解 决信号与信号系统在软件中表示的问题。 3.1信号及系统在计算机中的表示 3.1.1时域取样及频域取样 一般来说,任意信号s(t)是定义在时间区间(-R, +R)上的连续函数,但所有计算机的CPU都只能按指令周期离散运行,同时计算机也不能处理( -R, + R)这样一个时间段。 为此将把s(t)按区间T, T截短为 2 2 S T(t),再对S T(t)按时间间隔△ t均匀取样,得到取样 点数为: 仿真时用这个样值集合来表示信号 T Nt t s(t)。显然△ t反映了仿真系统对信号波形的分辨 率, (3-1) △ t越小则仿真的精确度越高。据通信原理所学,信号被取样以后,对应的频谱时频率的周期函数,其重复周期是—。如果信号的最高频率为f H,那么必须有f H W 丄才能保证不发 t 2 t 生频域混叠失真。设 1 B s 2 t 则称B s为仿真系统的系统带宽。如果在仿真程序中设定的采样间隔是△ (3-2) t,那么不能用

武汉大学计算机网络实验报告 (2)

武汉大学教学实验报告 动力与机械学院能源动力系统及自动化专业2013 年11 月10 日

一、实验操作过程 1.在仿真软件packet tracer上按照实验的要求选择无线路由器,一般路由器和PC机构建一个无线局域网,局域网的网络拓扑图如下: 2.按照实验指导书上的表9.1(参数配置表)对路由器,DNS服务器,WWW服务器和PC机进行相关参数的配置: 服务器配置信息(子网掩码均为255.255.255.0) 主机名IP地址默认网关 DNS 202.2.2.1 202.2.2.2 WWW 202.3.3.1 202.3.3.3 路由器配置信息(子网掩码均为255.255.255.0) 主机名型号IP地址默认网关时钟频率ISP 2620XM e1/0:202.2.2.2 e1/1:202.3.3.3 s0/0:202.1.1.2 64000 Router2(Server) 2620XM f0/0:192.168.1.1 s0/0:202.1.1.1 Wireless Router Linksys WRT300N 192.168.1.2 192.168.1.1 202.2.2.1 备注:PC机的IP地址将通过无线路由器的设置自动分配 2.1 对router0(sever)断的配置: 将下列程序代码输到router0中的IOS命令行中并执行,对router0路由器进行设置。Router>en Router#conf t

2.3 WWW服务器的相关配置 对www服务器进行与DNS服务器相似的配置,包括它的IP地址,子网掩码,网关等,具体的相关配置图见下图: WWW服务器的相关配置图

通信原理实验报告

实验一常用信号的表示 【实验目的】 掌握使用MATLAB的信号工具箱来表示常用信号的方法。 【实验环境】 装有MATLAB6.5或以上版本的PC机。 【实验内容】 1. 周期性方波信号square 调用格式:x=square(t,duty) 功能:产生一个周期为2π、幅度为1 ±的周期性方波信号。其中duty表示占空比,即在信号的一个周期中正值所占的百分比。 例1:产生频率为40Hz,占空比分别为25%、50%、75%的周期性方波。如图1-1所示。 clear; % 清空工作空间内的变量 td=1/100000; t=0:td:1; x1=square(2*pi*40*t,25); x2=square(2*pi*40*t,50); x3=square(2*pi*40*t,75); % 信号函数的调用subplot(311); % 设置3行1列的作图区,并在第1区作图plot(t,x1); title('占空比25%'); axis([0 0.2 -1.5 1.5]); % 限定坐标轴的范围 subplot(312); plot(t,x2); title('占空比50%'); axis([0 0.2 -1.5 1.5]); subplot(313); plot(t,x3); title('占空比75%'); axis([0 0.2 -1.5 1.5]);

图1-1 周期性方波 2. 非周期性矩形脉冲信号rectpuls 调用格式:x=rectpuls(t,width) 功能:产生一个幅度为1、宽度为width、以t=0为中心左右对称的矩形波信号。该函数横坐标范围同向量t决定,其矩形波形是以t=0为中心向左右各展开width/2的范围。Width 的默认值为1。 例2:生成幅度为2,宽度T=4、中心在t=0的矩形波x(t)以及x(t-T/2)。如图1-2所示。 t=-4:0.0001:4; T=4; % 设置信号宽度 x1=2*rectpuls(t,T); % 信号函数调用 subplot(121); plot(t,x1); title('x(t)'); axis([-4 6 0 2.2]); x2=2*rectpuls(t-T/2,T); % 信号函数调用

无线通信原理实验报告—李晓-52112113

现代无线通信原理实验 李晓21班13号52112113 实验一Okumura-Hata无线传播模型仿真实验 实验内容 使用Matlab编程计算Okumura-Hata传播路径损耗,绘制Okumura-Hata传播模型损耗---频率曲线图。 实验条件 频率范围:300 ~1500MHz,基站天线高度为30m,移动台天线高度为1.5m。传播距离分别为d=2km和5 km,以频率为变量,通信距离为参变量编程绘出城市准平滑地形、郊区、农村环境下的Okumura-Hata传播模型损耗-频率曲线图。实验要求 在一个图中显示6条曲线; 所有曲线均为蓝色线,d=2km用实线,d=5km用虚线;城区用“o”、郊区用“* ”及乡村用“□”标注曲线上的点; 在曲线图的空白处对曲线进行标注; 图要有横纵坐标标示,横坐标为频率(Mhz),纵坐标为损耗中值(dB) 图形的题头为学生本人姓名和学号。 实验仿真图

200 400600 8001000120014001600 90100 110 120 130 140 150 160 频率(MHz) 损耗中值(d B ) 姓名:李晓 班级:二十一班 学号:52112113 城市: d1=2km 城市: d2=5km 郊区: d1=2km 郊区: d2=5km 乡村: d1=2km 乡村: d2=5km 实验图反映了随着频率,距离以及地点的变化而变化的损耗中值。 实验分析 由图看出 ①路径损耗都随传输距离的增大而增大; ②城市的路径损耗最大,郊区次之,乡村最小,说明障碍物越多对信号传输损耗的就越强; ③随 频 率 的 增 大,路径损耗越强。 附录 Okumura-Hata 传播模型路径损耗计算公式 式中 fc — 工作频率(MHz ) ()() ()69.5526.16log 13.82log 44.9 6.55log log p c te re te cell terrain L dB f h h h d C C α=+--+-++

通信原理实验一、二实验报告

通信原理 实验一 实 验 报 告 实验日期: 学院: 班级: 学号: 姓名: 指导老师:

实验一数字基带传输系统的MA TLAB仿真 一、实验目的 1、熟悉和掌握常用的用于通信原理时域仿真分析的MATLAB函数; 2、掌握连续时间和离散时间信号的MATLAB产生; 3、牢固掌握冲激函数和阶跃函数等函数的概念,掌握卷积表达式及其物理意义,掌握 卷积的计算方法、卷积的基本性质; 4、掌握利用MATLAB计算卷积的编程方法,并利用所编写的MA TLAB程序验证卷积的 常用基本性质; 5、掌握MATLAB描述通信系统中不同波形的常用方法及有关函数,并学会利用 MATLAB求解系统功率谱,绘制相应曲线。 基本要求:掌握用MATLAB描述连续时间信号和离散时间信号的方法,能够编写 MATLAB程序,实现各种常用信号的MA TLAB实现,并且以图形的方式再现各种信号的波形。 二、实验内容 1、编写MATLAB 程序产生离散随机信号 2、编写MATLAB 程序生成连续时间信号 3、编写MATLAB 程序实现常见特殊信号 三、实验原理 从通信的角度来看,通信的过程就是消息的交换和传递的过程。而从数学的角度来看, 信息从一地传送到另一地的整个过程或者各个环节不外乎是一些码或信号的交换过程。例如 信源压缩编码、纠错编码、AMI编码、扰码等属于码层次上的变换,而基带成形、滤波、调 制等则是信号层次上的处理。码的变换是易于用软件来仿真的。要仿真信号的变换,必须解 决信号与信号系统在软件中表示的问题。 四、实验步骤 (1)分析程序program1_1 每条指令的作用,运行该程序,将结果保存,贴在下面的空白 处。然后修改程序,将dt 改为0.2,并执行修改后的程序,保存图形,看看所得图形的效果 怎样。 dt=0.01 时的信号波形 Sinusoidal signal x(t) -2-1.5-1-0.500.51 1.52 Time t (sec) dt=0.2 时的信号波形

通信原理实验报告

通信原理实验报告 一.实验目的 熟悉掌握MATLAB软件的应用,学会对一个连续信号的频谱进行仿真,熟悉sigexpand(x2,ts2/ts1)函数的意义和应用,完成抽样信号对原始信号的恢复。 二.实验内容 设低通信号x(t)=cos(4pi*t)+1.5sin(6pi*t)+0.5cos(20pi*t); (1)画出该低通信号的波形 (2)画出抽样频率为fs=10Hz(亚采样)、20Hz(临界采样)、50Hz(过采样)的抽样序列 (3)抽样序列恢复出原始信号 (4)三种抽样频率下,分别分析对比模拟信号、离散采样信号、恢复信号的时域波形的差异。 原始信号与恢复信号的时域波形之差有何特点?有什么样的发现和结论? (5)三种抽样频率下,分别分析对比模拟信号、离散采样信号、恢复信号的频域特性的差异。 原始信号与恢复信号的频域波形之差有何特点?有什么样的发现和结论? 实验程序及输出结果 clear; close all; dt=0.05; t=-2:dt:2 x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t); N=length(t); Y=fft(x)/N*2; fs=1/dt; df=fs/(N-1); f=(0:N-1)*df; subplot(2,1,1) plot(t,x) title('抽样时域波形') xlabel('t') grid; subplot(2,1,2) plot(f,abs(Y)); title('抽样频域信号 |Y|'); xlabel('f'); grid;

定义sigexpand函数 function[out]=sigexpand(d,M) N=length(d); out=zeros(M,N); out(1,:)=d; out=reshape(out,1,M*N); 频域时域分析fs=10Hz clear; close all; dt=0.1; t0=-2:0.01:2 t=-2:dt:2 ts1=0.01 x0=cos(4*pi*t0)+1.5*sin(6*pi*t0)+0.5*cos(20*pi*t0); x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t); B=length(t0); Y2=fft(x0)/B*2; fs2=1/0.01; df2=fs2/(B-1); f2=(0:B-1)*df2; N=length(t); Y=fft(x)/N*2;

通信原理实验报告一

实验一信号源实验 一、实验目的 1、了解通信系统的一般模型及信源在整个通信系统中的作用。 2、掌握信号源模块的使用方法。 二、实验内容 1、对应液晶屏显示,观测DDS信源输出波形。 2、观测各路数字信源输出。 3、观测正弦点频信源输出。 4、模拟语音信源耳机接听话筒语音信号。 三、实验仪器 1、信号源模块一块 2、20M双踪示波器一台 四、实验原理 信号源模块大致分为DDS信源、数字信源、正弦点频信源和模拟语音信源几部分。 1、DDS信源 DDS直接数字频率合成信源输出波形种类、频率、幅度及方波B占空比均可通过“DDS信源按键”调节(具体的操作方法见“实验步骤”),并对应液晶屏显示波形信息。 正弦波输出频率范围为1Hz~200KHz,幅度范围为200mV~4V。 三角波输出频率范围为1Hz~20KHz,幅度范围为200mV~4V。 锯齿波输出频率范围为1Hz~20KHz,幅度范围为200mV~4V。 方波A输出频率范围为1Hz~50KHz,幅度范围为200mV~4V,占空比50%不变。 方波B输出频率范围为1Hz~20KHz,幅度范围为200mV~4V,占空比以5%步进可调。 输出波形如下图1-1所示。

正弦波:1Hz-200KHz 三角波:1Hz-20KHz 锯齿波:1Hz-20KHz 方波A:1Hz-50KHz(占空比50%) 方波B:1Hz-20KHz(占空比0%-100%可调) 图1-1 DDS信源信号波形 2、数字信源 (1)数字时钟信号 24.576M:钟振输出时钟信号,频率为24.576MHz。 2048K:类似方波的时钟信号输出点,频率为2048 KHz。64K:方波时钟信号输出点,频率为64 KHz。 32K:方波时钟信号输出点,频率为32KHz。 8K:方波时钟信号输出点,频率为8KHz。 输出时钟如下图1-2所示。

无线通信原理与应用复习题.docx

一、选择题 1?用光缆作为传输的通信方式是_A ____ A有限通信B明显通信C微波通信D无线通信 2.下列选项屮_A—不属于传输设备 A电话机B光缆C微波接收机D同轴电缆 3?网状网拓扑结构中如果网络节点数为6,则连接网络的链路数为_D ________ A10 B 5 C6 D15 4.目前我国的电信网络是_C_级网络结构 A7 B5 C 3 D2 5.国际电信联盟规定话音信号牌的抽样频率为_D_ A3400HZ B5000HZ C6800HZ D8000HZ 6?下列_C_号码不属于我国常用的特殊号码业务。 A110 B122 C911 D114 7.PCM30/32路系统采用的是_B _____ 多路复用技术。 A频分多路复用技术B时分多路复用技术C波分多路复用技术D码分多路复用技术8?我国7号信令网采用的是_C_级网络结构。 A7 B5 C3 D2 9.下列哪两种数字数据编码方式会积累直流分量(多选)_A,C_ A单极性不归零码B双极性不归零C单极性归零码D双极性归零码 10.下列哪种数据交流形式不属于分组交换_A_ A电路交换B ATM交换CIP交换D MPLS交换 11?传统微波频段,频率范围为_D _____ A30~300HZ B30K~300KHZ C300K~3000KHZ D300M~300GHZ 12.下列哪种传输方式不属于无线电波的多径传输方式_B _____ A地波B宁宙射线C对流层反射波D B由空间波 13.关于微波通信补偿技术屮,下列哪项不属于常用的分集接收技术_D_ A频率分集B空间分集C混合分集D时间分集 14.卫星通信的工作频段屮,C频段的工作频段为6/4GHZ,下列哪项关于C频段的表述是正 确的___ C ___ A工作频段为4~6GHZ B工作频段为1.5GHZ C上行频率为6GHZ,下行频率为4GHZ D上彳丁频率为4GHZ,下彳丁频率为6GHZ 15.为保证同步卫星的可通信区域,地球站天线的仰角应为_B ______ AO B5 C大于0 D大于5 正在建设的我国第二代北斗系统是由_A_颗卫星组成 A35 B5 C3 D30 17.ADSL技术采用的是—A_复用技术 A频分复用技术B时分复用技术C波分复用技术D码分复用技术 18.下列哪种xDSL技术是上、下行速率对称的_C— A VDSL B ADSL C SDSL D RADSL 19.ADSL信道传输速率是_C ____ A上行最高1.6Mbits/s,下彳丁最高13Mbits/s B上彳丁最高2.3Mbits/s,下彳丁最高2.3Mbits/s C上行最高IMbits/s,下行最高12Mbits/s D上行最高2Mbits/s,下行最高2Mbits/s

通信原理实验报告

实验一、PCM编译码实验 实验步骤 1. 准备工作:加电后,将交换模块中的跳线开关KQ01置于左端PCM编码位置,此时MC145540工作在PCM编码状态。 2. PCM串行接口时序观察 (1)输出时钟和帧同步时隙信号观测:用示波器同时观测抽样时钟信号(TP504)和输出时钟信号(TP503),观测时以TP504做同步。分析和掌握PCM编码抽样时钟信号与输出时钟的对应关系(同步沿、脉冲宽度等)。 (2)抽样时钟信号与PCM编码数据测量:用示波器同时观测抽样时钟信号(TP504)和编码输出数据信号端口(TP502),观测时以TP504做同步。分析和掌握PCM编码输出数据与抽样时钟信号(同步沿、脉冲宽度)及输出时钟的对应关系。 3. PCM编码器 (1)方法一: (A)准备:将跳线开关K501设置在测试位置,跳线开关K001置于右端选择外部信号,用函数信号发生器产生一个频率为1000Hz、电平为2Vp-p的正弦波测试信号送入信号测试端口J005和J006(地)。 (B)用示波器同时观测抽样时钟信号(TP504)和编码输出数据信号端口(TP502),观测时以TP504做同步。分析和掌握PCM编码输出数据与抽样时钟信号(同步沿、脉冲宽度)及输出时钟的对应关系。分析为什么采用一般的示波器不能进行有效的观察。 (2)方法二: (A)准备:将输入信号选择开关K501设置在测试位置,将交换模块内测试信号选择开关K001设置在内部测试信号(左端)。此时由该模块产生一个1KHz的测试信号,送入PCM编码器。(B)用示波器同时观测抽样时钟信号(TP504)和编码输出数据信号端口(TP502),观测时以内部测试信号(TP501)做同步(注意:需三通道观察)。分析和掌握PCM编码输出数据与帧同步时隙信号、发送时钟的对应关系。 4. PCM译码器 (1)准备:跳线开关K501设置在测试位置、K504设置在正常位置,K001置于右端选择外部信号。此时将PCM输出编码数据直接送入本地译码器,构成自环。用函数信号发生器产生一个频率为1000Hz、电平为2Vp-p的正弦波测试信号送入信号测试端口J005和J006(地)。 (2) PCM译码器输出模拟信号观测:用示波器同时观测解码器输出信号端(TP506)和编码器输入信号端口(TP501),观测信号时以TP501做同步。定性的观测解码信号与输入信号的关系:质量、电平、延时。 5. PCM频率响应测量:将测试信号电平固定在2Vp-p,调整测试信号频率,定性的观测解码恢复出的模拟信号电平。观测输出信号信电平相对变化随输入信号频率变化的相对关系。

通信原理实验报告

通信原理 实 验 报 告

实验一 数字基带信号实验(AMI/HDB3) 一、 实验目的 1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点 2、掌握AMI 、HDB 3的编码规则 3、掌握从HDB 3码信号中提取位同步信号的方法 4、掌握集中插入帧同步码时分复用信号的帧结构特点 5、了解HDB 3(AMI )编译码集成电路CD22103 二、 实验内容 1、用示波器观察单极性非归零码(NRZ )、传号交替反转码(AMI )、三阶高密度 双极性码(HDB 3)、整流后的AMI 码及整流后的HDB 3码 2、用示波器观察从HDB 3/AMI 码中提取位同步信号的波形 3、用示波器观察HDB 3、AMI 译码输出波形 三、 基本原理 本实验使用数字信源模块(EL-TS-M6)、AMI/HDB 3编译码模块(EL-TS-M6)。 BS S5S4S3S2S1 BS-OUT NRZ-OUT CLK 并 行 码 产 生 器 八选一 八选一八选一分 频 器 三选一 NRZ 抽 样 晶振 FS 倒相器 图1-1 数字信源方框图 010×0111××××××××× ×××××××数据2 数据1 帧同步码 无定义位 图1-2 帧结构 四、实验步骤 1、 熟悉信源模块和HDB3/AMI 编译码模块的工作原理。 2、 插上模块(EL-TS-M6),打开电源。用示波器观察数字信源模块上的各种信号波形。 用FS 作为示波器的外同步信号,进行下列观察: (1) 示波器的两个通道探头分别接NRZ-OUT 和BS-OUT ,对照发光二极管的发光状态,判断数字信源单元是否已正常工作(1码对应的发光管亮,0码对应的发光管熄);

通信原理实验报告

通信原理实验报告 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

实验一常用信号的表示 【实验目的】 掌握使用MATLAB的信号工具箱来表示常用信号的方法。 【实验环境】 装有或以上版本的PC机。 【实验内容】 1. 周期性方波信号square 调用格式:x=square(t,duty) 功能:产生一个周期为2π、幅度为1±的周期性方波信号。其中duty表示占空比,即在信号的一个周期中正值所占的百分比。 例1:产生频率为40Hz,占空比分别为25%、50%、75%的周期性方波。如图1-1所示。 clear; % 清空工作空间内的变量 td=1/100000; t=0:td:1; x1=square(2*pi*40*t,25); x2=square(2*pi*40*t,50); x3=square(2*pi*40*t,75); % 信号函数的调用 subplot(311); % 设置3行1列的作图区,并在第1区作图 plot(t,x1); title('占空比25%'); axis([0 ]); % 限定坐标轴的范围 subplot(312); plot(t,x2); title('占空比50%'); axis([0 ]); subplot(313); plot(t,x3);

title('占空比75%'); axis([0 ]); 图1-1 周期性方波 2. 非周期性矩形脉冲信号rectpuls 调用格式:x=rectpuls(t,width) 功能:产生一个幅度为1、宽度为width、以t=0为中心左右对称的矩形波信号。该函数横坐标范围同向量t决定,其矩形波形是以t=0为中心向左右各展开width/2的范围。Width 的默认值为1。 例2:生成幅度为2,宽度T=4、中心在t=0的矩形波x(t)以及x(t-T/2)。如图1-2所示。 t=-4::4; T=4; % 设置信号宽度x1=2*rectpuls(t,T); % 信号函数调用 subplot(121); plot(t,x1);

通信原理题目

第一章绪论 填空 1、在八进制中(M=8),已知码元速率为1200B,则信息速率为3600b/s 。 2、在四进制中(M=4),已知信息速率为2400b/s,则码元速率为1200B 。 3、数字通信与模拟通信相比较其最大特点是_占用频带宽和__噪声不积累_。 4、数字通信系统的有效性用传输频带利用率衡量,可靠性用差错率衡量。 5、模拟信号是指信号的参量可连续取值的信号,数字信号是指信号的参量可离散取值的信号。 消息:指通信系统传输的对象,它是信息的载体。是信息的物理形式 信息:是消息中所包含的有效内容。 信号:是消息的传输载体! 信息源的作用就是把各种消息转换成原始信号。 发送设备:产生适合在信道中传输的信号,使发送信号的特性和信道特性相匹配,具有抗信道干扰的能力,可能包含变换、放大、滤波、编码、调制等过程。 简答 1、码元速率与信息速率的关系?R b=R B log2M R b信息传输速率R B码元速率M是进制T B码元长度R B=1/T B 2、按传输信号的复用方式,通信系统如何分类? 答:按传输信号的复用方式,通信系统有三种复用方式,即频分复用、时分复用和码分复用。频分复用是用频谱搬移的方法使不同信号占据不同的频率范围;时分复用是用抽样或脉冲调制方法使不同信号占据不同的时间区间;码分复用则是用一组包含正交的码字的码组携带多路信号。 3、解释半双工通信和全双工通信,并用实际通信系统举例说明? 半双工,双向不同时通信,如:对讲机;双工,双向同时通信,如:移动通信系统 4、简述数字通信系统的基本组成以及各部分功能,画出系统框图。 信源:把各种消息转换成原始信号。 信道:用来将来自发送设备的信号传送到发送端。 信宿:传送消息的目的地。 信源编码/译码:提高信息传输的有效性,二是完成模/数转换。 信道编码/译码:作用是进行差错控制。 加密解密:为了保证所传信息的安全。 数字调制解调:把数字基带信号的频谱搬移到高频处,形成适合在信道传输的带通信号。 第二章确知信号 填空 1、确知信号:是指其取值在任何时间都是确定的和可预知的信号,通常可以用数学公式表示它在任何时间的取值。

北邮通信原理软件实验报告XXXX27页

通信原理软件实验报告 学院:信息与通信工程学院 班级: 一、通信原理Matlab仿真实验 实验八 一、实验内容 假设基带信号为m(t)=sin(2000*pi*t)+2cos(1000*pi*t),载波频率为20kHz,请仿真出AM、DSB-SC、SSB信号,观察已调信号的波形和频谱。 二、实验原理 1、具有离散大载波的双边带幅度调制信号AM 该幅度调制是由DSB-SC AM信号加上离散的大载波分量得到,其表达式及时间波形图为: 应当注意的是,m(t)的绝对值必须小于等于1,否则会出现下图的过调制: AM信号的频谱特性如下图所示: 由图可以发现,AM信号的频谱是双边带抑制载波调幅信号的频谱加上离散的大载波分量。 2、双边带抑制载波调幅(DSB—SC AM)信号的产生 双边带抑制载波调幅信号s(t)是利用均值为0的模拟基带信号m(t)和正弦载波 c(t)相乘得到,如图所示: m(t)和正弦载波s(t)的信号波形如图所示:

若调制信号m(t)是确定的,其相应的傅立叶频谱为M(f),载波信号c(t)的傅立叶频谱是C(f),调制信号s(t)的傅立叶频谱S(f)由M(f)和C(f)相卷积得到,因此经过调制之后,基带信号的频谱被搬移到了载频fc处,若模拟基带信号带宽为W,则调制信号带宽为2W,并且频谱中不含有离散的载频分量,只是由于模拟基带信号的频谱成分中不含离散的直流分量。 3、单边带条幅SSB信号 双边带抑制载波调幅信号要求信道带宽B=2W, 其中W是模拟基带信号带宽。从信息论关点开看,此双边带是有剩余度的,因而只要利用双边带中的任一边带来传输,仍能在接收机解调出原基带信号,这样可减少传送已调信号的信道带宽。 单边带条幅SSB AM信号的其表达式: 或 其频谱图为: 三、仿真设计 1、流程图:

通信原理实验报告——xxx

通信原理 实验报告 实验名称:实验一码型变换实验 姓名:xxxx 专业班级:电信xxxxx班 学号:xxxxxxxxxxxxx 中南大学物理与电子学院 X2013年下学期 xx月xx号

码型变换实验: 一、实验目的 1、了解几种常用的数字基带信号。 2、掌握常用数字基带传输码型的编码规则。 3、掌握常用CPLD实现码型变换的方法。 二、实验内容 1、观察NRZ码、RZ码、AMI码HDB3码CMI 码BPH码的波形。 2、观察全0码或者全1码时各码型的波形。 3、观察HDB3码、AMI码的正负极性波形。 4、观察RZ码、AMI码、HDB3码、CMI码、 BPH码经过码型反变换后的输出波形。5、自行设计码型变换电路,下载并观察波 形。 三、实验器材 1、信号源模块 2、编码、译码模块 3、20M双示踪示波器 4、连接线 四、实验结果分析 1、CMI、RZ、BPH码遍解码电路观测

信号源: S1:01110010 S2:01010101 S3:00110011 CMI码: DOUT1波形:1110010 NRZ-OUT输出波形:01010101001100110111 RZ码: DOUT1:11001101

NRZ-OUT输出波形:001100110111001001 DOUT1:10111001001010101

NRZ-OUT输出波形:010110010110011 2、AMI、HDB3码编解码电路观测 S1:01110010 S2:00011000 S3:01000011 AMI码: DOUT1:

DOUT2: AMI-OUT:101001100100110111010011001

通信原理实验报告systemview-数字信号的基带传输

通信原理实验报告 实验名称:数字信号的基带传输 一.实验目的 (1)理解无码间干扰数字基带信号的传输; (2)掌握升余弦滚降滤波器的特性;

(3)通过时域、频域波形分析系统性能。 二、仿真环境 SystemView 仿真软件 三、实验原理 (1)数字基带传输系统的基本结构 它主要由信道信号形成器、信道、接收滤滤器和抽样判决器组成。为了保证系统可靠有序地工作,还应有同步系统。 1.信道信号形成器 把原始基带信号变换成适合于信道传输的基带信号,这种变换主要是通过码型变换和波形变换来实现的。 2.信道 是允许基带信号通过的媒质,通常为有线信道,信道的传输特性通常不满足无失真传输条件,甚至是随机变化的。另外信道还会进入噪声。 3.接收滤波器 滤除带外噪声,对信道特性均衡,使输出的基带波形有利于抽样判决。 4.抽样判决器 在传输特性不理想及噪声背景下,在规定时刻(由位定时脉冲控制)对接收滤波器的输出波形进行抽样判决,以恢复或再生基带信号。而用来抽样的位定时脉冲则依靠同步提取电路从接收信号中提取。 (2) 奈奎斯特第一准则 奈奎斯特准则提出:只要信号经过整形后能够在抽样点保持不变, 即使其波形已经发生了变化,也能够在抽样判决后恢复原始的信号, 因为信息完全恢复携带在抽样点幅度上。 奈奎斯特准则要求在波形成形输入到接收端的滤波器输出的整个 传送过程传递函数满足: 令k′=j -k , 并考虑到k′也为整数,可用k 表示: 在实际应用中,理想低通滤波器是不可能实现的,升余弦滤波器 是在实际中满足无码间干扰传输的充要条件,已获得广泛应用的滤波 器。 升余弦滤波器满足的传递函数为: ???=+-0)(1])[(0或其它常数t T k j h b k j k j ≠=???=+0 1)(0t kT h b 00≠=k k

无线通信原理与应用期末考试题

第一章 1 短距离无线通信的特点 1)无线发射功率在uW到100mW量级 2)通信距离在几厘米到几百米 3)应用场景众多,特别是频率资源稀缺情况 4)使用全向天线和线路板天线 5)不需申请频率资源使用许可证 6)无中心,自组网 7)电池供电 2 频分复用和时分复用的特点和区别? 频分复用(FDD)同时为用户和基站提供了无线电传输信道,这样可以在发送信号的同时接收到来的信号。在基站中,使用不同的发射天线和接收天线以对应分离的信道。然而在用户单元中,使用单个天线来传输和接收信号,并使用一种称为双工器的设备来实现同一天线上的信号传输与接收。对于FDD系统,发送和接收的信道频率至少要间隔标称频率的5%,以保证在廉价的制造成本下能够提供具备足够隔离度的双工器 时分复用(TDD)方式即在时间上分享一条信道,将其一部分时间用于从基站向用户发送信息,而其余的时间用于从用户向基站发送信息。如果信道的数据传输速率远大于终端用户的数据速率,就可以通过存储用户数据然后突发的方式来实现单一信道上的全双工操作。TDD只在数字传输和数字调制时才可以使用,并且对定时很敏感。 3 蜂窝移动电话系统的结构和各部分的作用? 蜂窝电话系统为在无线覆盖范围内的、任何地点的用户提供公用电话交换网的无线接入。蜂窝系统能在有限的频带范围中于很大的地理范围内容纳大量用户,它提供了和有线电话系统相当的高通话质量。获得高容量的原因,是由于它将每个基站发射站的覆盖范围限制到称为“小区”的小块地理区域。这样,相距不远的另一个基站里可以使用相同的无线信道。一种称为“切换”的复杂的交换技术,确保了当用户从一个小区移动到另一个小区时不会中断通话。 一个蜂窝移动电话系统包括移动台、基站和移动交换中心(MSC)。移动交换中心负责在蜂窝系统中将所有的移动用户连接到公用电话交换网上,有时MSC也称为移动电话交换局(MTSO)。每个移动用户通过无线链路和某一个基站通信,在通话过程中,可能会切换到其他任何一个基站。移动台包括收发器、天线和控制电路,可以安装在机动车辆上或作为便携手机使用。基站包括几个同时处理全双工通信的发射机、接收机以及支持多个发送和接受天线的塔。基站担当者“桥”的功能,将小区中所有的通话通过电话线或微波线路连接到MSC.MSC协调所有基站的操作,并将整个蜂窝系统连接到PSTN上。ss 第二章 1 比较1G、2G、3G的各自传输的特点及其相应的技术。 1G主要用于模拟话音的传输,主要技术有NMT、AMPS、TACS 2G主要用于数字语音和低速率数据(小于64Kbps)的传输,主要的技术有GSM、PDC、D-AMPS 3G主要用于多媒体服务业务的传输,主要技术有WCDMA、CDMA2000、TD-SCDMA

通信原理实验报告

通信原理实验报告 实验一抽样定理 实验二 CVSD编译码系统实验 实验一抽样定理 一、实验目的 所谓抽样。就是对时间连续的信号隔一定的时间间隔T 抽取一个瞬时幅度值(样值),即x(t)*s(t)=x(t)s(t)。在一个频带限制在(0,f h)内的时间连续信号f(t),如果以小于等于1/(2 f h)的时间间隔对它进行抽样,那么根据这些抽样值就能完全恢复原信号。 抽样定理告诉我们:如果对某一带宽有限的时间连续信号(模拟信号)进行抽样,且抽样速率达到一定数值时,那么根据这些抽样值就能准确地还原信号。这就是说,若要传输模拟信号,不一定要传输模拟信号本身,可以只传输按抽样定理得到的抽样值。 二、功能模块介绍 1.DDS 信号源:位于实验箱的左侧 (1)它可以提供正弦波、三角波等信号,通过连接P03 测试点至PAM 脉冲调幅模块的32P010 作为脉冲幅度调制器的调制信号x(t)。抽样脉冲信号则是通过P09 测试点连至PAM 脉冲调幅模块。 (2)按下复合式按键旋钮SS01,可切换不同的信号输出状态,例如D04D03D02D01=0010 对应的是输出正弦波,每种LED 状态对应一种信号输出,具体实验板上可见。 (3)旋转复合式按键旋钮SS01,可步进式调节输出信号的频率,顺时针旋转频率每步增加100Hz,逆时针减小100Hz。 (4)调节调幅旋钮W01,可改变P03 输出的各种信号幅度。 2.抽样脉冲形成电路模块 它提供有限高度,不同宽度和频率的抽样脉冲序列,可通过P09 测试点连线送到PAM 脉冲调幅模块32P02,作为脉冲幅度调制器的抽样脉冲s(t)。P09 测试点可用于抽样脉冲的连接和测量。该模块提供的抽样脉冲频率可通过旋转SS01 进行调节,占空比为50%。 3.PAM 脉冲调幅模块 它采用模拟开关CD4066 实现脉冲幅度调制。抽样脉冲序列为高电平时,模拟开关导通,有调制信号输出;抽样脉冲序列为低电平,模拟开关断开,无信号输出。因此,本模块实现的是自然抽样。在32TP01 测试点可以测量到已调信号波形。 调制信号和抽样脉冲都需要外接连线输入。已调信号经过PAM 模拟信道(模拟实际信道的惰性)的传输,从32P03 铆孔输出,可能会产生波形失真。PAM 模拟信道电路示意图如下图所示,32W01(R1)电位器可改变模拟信道的传输特性。

北京邮电大学通信原理软件实验报告-28页文档资料

《通信原理软件》实验报告专业通信工程 班级 2011211118 姓名朱博文 学号 2011210511 报告日期 2013.12.20

基础实验: 第一次实验 实验二时域仿真精度分析 一、实验目的 1. 了解时域取样对仿真精度的影响 2. 学会提高仿真精度的方法 二、实验原理 一般来说,任意信号s(t)是定义在时间区间上的连续函数,但所有计算机的CPU 都只能按指令周期离散运行,同时计算机也不能处理这样一个时间段。为此将把s(t)截短,按时间间隔均匀取样,仿真时用这个样值集合来表示信号 s(t)。△t反映了仿真系统对信号波形的分辨率,△t越小则仿真的精确度越高。据通信原理所学,信号被取样以后,对应的频谱是频率的周期函数,才能保证不发生频域混叠失真,这是奈奎斯特抽样定理。设为仿真系统的系统带宽。如果在仿真程序中设定的采样间隔是,那么不能用此仿真程序来研究带宽大于的信号或系统。换句话说,就是当系统带宽一定的情况下,信号的采样频率最小不得小于2*f,如此便可以保证信号的不失真,在此基础上时域采样频率越高,其时域波形对原信号的还原度也越高,信号波形越平滑。也就是说,要保证信号的通信成功,必须要满足奈奎斯特抽样定理,如果需要观察时域波形的某些特性,那么采样点数越多,可得到越真实的时域信

号。 三、实验内容 1、方案思路: 通过改变取点频率观察示波器显示信号的变化 2、程序及其注释说明: 3、仿真波形及频谱图: Period=0.01 Period=0.3 4、实验结果分析: 以上两图区别在于示波器取点频率不同,第二幅图取点频率低于第一幅图,导致示波器在画图时第二幅图不如第一幅图平滑。 四、思考题 1.两幅图中第一幅图比第二幅图更加平滑,因为第一幅图中取样点数更 多 2.改为0.5后显示为一条直线,因为取点处函数值均为0 实验三频域仿真精度分析 一、实验目的

移动通信原理课程设计_实验报告_321321

电子科技大学 通信抗干扰技术国家级重点实验室 实验报告 课程名称移动通信原理 实验内容无线信道特性分析; BPSK/QPSK通信链路搭建与误码性能分析; SIMO系统性能仿真分析 课程教师胡苏 成员姓名成员学号成员分工 独立完成必做题第二题,参与选做题SIMO仿 真中的最大比值合并模型设计 参与选做题SIMO仿真中的 等增益合并模型设计 独立完成必做题第一题 参与选做题SIMO仿真中的 选择合并模型设计

1,必做题目 1.1无线信道特性分析 1.1.1实验目的 1)了解无线信道各种衰落特性; 2)掌握各种描述无线信道特性参数的物理意义; 3)利用MATLAB中的仿真工具模拟无线信道的衰落特性。 1.1.2实验内容 1)基于simulink搭建一个QPSK发送链路,QPSK调制信号经过了瑞利衰 落信道,观察信号经过衰落前后的星座图,观察信道特性。仿真参数:信源比特速率为500kbps,多径相对时延为[0 4e-06 8e-06 1.2e-05]秒,相对平均功率为[0 -3 -6 -9]dB,最大多普勒频移为200Hz。例如信道设置如下图所示:

1.1.3实验仿真 (1)实验框图 (2)图表及说明 图一:Before Rayleigh Fading1 #上图为QPSK相位图,由图可以看出2比特码元有四种。

图二:After Rayleigh Fading #从上图可以看出,信号通过瑞利信道后,满足瑞利分布,相位和幅度发生随机变化,所以图三中的相位不是集中在四点,而是在四个点附近随机分布。 图三:Impulse Response #从冲激响应的图可以看出相位在时间上发生了偏移。

相关主题
文本预览
相关文档 最新文档