当前位置:文档之家› 2010年高考备考第二轮数学专题辅导——分类讨论的思想

2010年高考备考第二轮数学专题辅导——分类讨论的思想

2010年高考备考第二轮数学专题辅导——分类讨论的思想
2010年高考备考第二轮数学专题辅导——分类讨论的思想

【专题九】分类讨论的思想

【考情分析】

高考中的分类讨论思想就是根据所研究对象的性质差异,分各种不同的情况予以分析解决.分类讨论题覆盖知识点较多,利于考查学生的知识面、分类思想和技巧;同时方式多样,具有较高的逻辑性及很强的综合性,树立分类讨论思想,应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论.”

【知识交汇】

分类讨论思想是解决问题的一种逻辑方法,也是一种数学思想,这种思想在简化研究对象,发展思维方面起着重要作用,因此,有关分类讨论的思想的数学命题在高考试题中占有重要地位。

所谓分类讨论,就是在研究和解决数学问题时,当问题所给对象不能进行统一研究,我们就需要根据数学对象的本质属性的相同点和不同点,将对象区分为不同种类,然后逐类进行研究和解决,最后综合各类结果得到整个问题的解决,这一思想方法,我们称之为“分类讨论的思想”.

1. 分类讨论的思想方法是中学数学的基本方法之一,是历年高考的重点

⑴分类讨论的思想具有明显的逻辑特点;

⑵分类讨论问题一般涵盖知识点较多,有利于对学生知识面的考察;

⑶解决分类讨论问题,需要学生具有一定的分析能力和分类技巧;

⑷分类讨论的思想与生产实践和高等数学都紧密相关。

2. 分类讨论的思想的本质

分类讨论思想的本质上是“化整为零,积零为整”,从而增加了题设条件的解题策略.

3. 运用分类讨论的思想解题的基本步骤

⑴确定讨论对象和确定研究的全域;

⑵对所讨论的问题进行合理的分类(分类时需要做到不重复、不遗漏、标准统一、分层不越级);

⑶逐类讨论:即对各类问题详细讨论,逐步解决;

⑷归纳总结,整合得出结论.

4. 明确分类讨论的思想的原因,有利于掌握分类讨论的思想方法解决问题,其主要原因有:

⑴由数学概念引起的分类讨论:如绝对值定义、等比数列的前n项和公式等等;

⑵由数学运算要求引起的分类讨论:如偶次方根非负、对数中的底数和真数的要求、不等式两边同乘一实数对不等号方向的影响等等;

⑶由函数的性质、定理、公式的限制引起的分类讨论;

⑷由几何图形中点、线、面的相对位置不确定引起的分类讨论;

⑸由参数的变化引起的分类讨论:某些含参数的问题,由于参数的取值不同会导致所得结果不同,或由于不同的参数值要运用不同的求解或证明方法;

⑹其他根据实际问题具体分析进行分类讨论,如排列、组合问题,实际应用题等。

【思想方法】

一、问题中的变量或含有需讨论的参数的,要进行分类讨论

【例1】设0>a ,函数|1ln |)(2

-+=x a x x f .

(1) 当1=a 时,求曲线)(x f y =在1=x 处的切线方程; (2) 当),1[+∞∈x 时,求函数)(x f 的最小值. 【解析】(1)当1=a 时,|1ln |)(2

-+=x x x f

令1=x 得 ,1)1(,2)1(='=f f 所以切点为(1,2),切线的斜率为1, 所以曲线)(x f y =在1=x 处的切线方程为:01=+-y x 。 (2)①当e x ≥时,a x a x x f -+=ln )(2,x

a

x x f +

='2)( )(e x ≥ 0>a ,0)(>∴x f 恒成立。 )(x f ∴在),[+∞e 上增函数。

故当e x =时,2

m in )(e e f y ==

② 当e x <≤1时,1ln )(2+-=x a x x f ,

)2

)(2(22)(a x a x x x a x x f -+=-

='(e x <≤1) (i )当

,12

≤a

即20≤

21,即222e a <<时,)(x f '在)2,1(a x ∈时为负数,在间),2

(e a x ∈ 时为正数。所以)(x f 在区间)2,

1[a 上为减函数,在],2

(e a

上为增函数 故当2a x =

时,2

ln 223m in a a a y -=,且此时)()2(e f a f < (iii)当

e a

≥2

;即 22e a ≥时,)(x f '在),1(e x ∈时为负数,所以)(x f 在区间[1,e]上为减函数,故当e x =时,2m in )(e e f y ==。

综上所述,当22e a ≥时,)(x f 在e x ≥时和e x ≤≤1时的最小值都是2

e 。

所以此时)(x f 的最小值为2

)(e e f =;当2

22e a <<时,)(x f 在e x ≥时的最小值为

2ln 223)2(

a a a a f -=,而)()2

(e f a f <, 所以此时)(x f 的最小值为2

ln 223)2(

a

a a a f -=。 当20≤

e ,在e x <≤1时的最小值为a

f +=1)1(, 而)()1(e f f <,所以此时)(x f 的最小值为a f +=1)1(

所以函数)(x f y =的最小值为??

???>≤<-≤<+=222min

2,22,2

ln 22320,1e a e e a a

a a a a y 【点评】本题涉及的知识点有带绝对值的式子,因此要了解绝对值概念的定义,进行分类讨论。

二、根据数学中的定理,公式和性质确定分类标准

【例2】求和2n n S a a a =+++ = 【解析】:当0a =时,0n S =;

当0a ≠时,此题为等比数列求和,

① 若1a ≠时,则由求和公式,(1)

1n n a a S a

-=-。

② 若1a =时, n S n =。

综合可得 (1)

,(1)1,(1)

n n a a a a S n a ?-≠?-=??=?

【点评】:由于等比数列定义本身有条件限制,等比数列求和公式是分类给出的。因此,应用等比数列求和公式时也需要讨论,这里进行了两层分类:第一层分类的依据是等比数列的概念,分为0a =和0a ≠;第二层分类依据是等比数列求和公式的应用条件。

三、涉及几何问题时,由几何元素的形状、位置的变化需要分类讨论

【例3】若四面体各棱长是1或2,且该四面体不是正四面体,则其体积的值是 .(只须写出一个可能的值)

【解析】首先得考虑每个面的三条棱是如何构成的.

排除{1,1,2},可得{1,1,1},{1,2,2},{2,2,2},然后由这三类面在空间构造满足条件的一个四面体,再求其体积.

由平时所见的题目,至少可构造出二类满足条件的四面体,五条边为2,另一边为1,对棱相等的四面体. 对于五条边为2,另一边为1的四面体,参看图1所示,设AD=1,取AD 的中点为M ,平面BCM 把三棱锥分成两个三棱锥,由对称性可知AD ⊥面BCM ,且V A —BCM =V D —BCM ,所以

V ABCD =

3

1

S ΔBCM ·AD. CM=2

2

DM CD -=2

2

)2

1(2-=

2

15.设N 是BC 的中点,则MN ⊥BC ,MN=2

2CN CM -=1415-=211,从而S ΔBCM =

2

1

×2×211=211,

故V ABCD =

3

1

×211×1=611

.

对于对棱相等的四面体,可参见图2.其体积的计算可先将其置于一个长方体之中,再用长方体的体积减去四个小三棱锥的体积来进行.亦可套公式V=12

2

·)b a c )(a c b )(c b a (222222222-+-+-+, 不妨令a=b=2,c=1,则 V=

122·)441)(414)(144(-+-+-+=122

·7=12

14. 四、问题中的条件是分类给出的

【例4】(2009年湖北卷理科)已知数列{}n a 满足:1a =m (m 为正整数),1,231,n

n n n n a a a a a +??=??+?当为偶数时,

当为奇数时。若

6a =1,则m 所有可能的取值为__________。

【解析】(1)若1a m =为偶数,则

12a 为偶, 故223 a 224a m m

a === ①当4

m

仍为偶数时,46832m m a a =??????= 故13232m m =?=

②当4m

为奇数时,4333114a a m =+=+63

1

44

m a +??????=

故3

1414

m +=得m=4。 (2)若1a m =为奇数,则213131a a m =+=+为偶数,故331

2

m a +=必为偶数

63116m a +??????=,所以31

16

m +=1可得m=5 五、解题过程不能统一叙述,必须分类讨论的

某商店经销一种奥运会纪念品,每件产品的成本为30元,并且每卖出一件产品需向税务部门上交a 元(a 为常数,2≤a ≤5 )的税收。设每件产品的售价为x 元(35≤x ≤41),根据市场调查,日销售量与x

e (e 为自然对数的底数)成反比例。已知每件产品的日售价为40元时,日销售量为10件。

(1)求该商店的日利润L (x )元与每件产品的日售价x 元的函数关系式;

(2)当每件产品的日售价为多少元时,该商品的日利润L (x )最大,并求出L (x )的最大值。

解(1)设日销售量为40

40,10,10,.x k k k e e e =∴=40x 10e 则则日售量为件e

则日利润40401030()(30)10x x e x a L x x a e e e

--=--= (2)'4031()10x

a x L x e e +-=

①当2≤a ≤4时,33≤a +31≤35,当35

()0L x <

∴当x =35时,L (x )取最大值为5

10(5)a e -

②当4<a ≤5时,35≤a +31≤36,'

()0,31,L x x a ==+令得 易知当x=a +31时,L (x )取最大值为910a e

-

综合上得5

max

910(5),(24)()10,(45)

a a e a L x e a -?-≤≤?=?<≤?? 用分类讨论的思维策略解数学问题的操作过程:明确讨论的对象和动机→确定分类→逐类进行讨论→归纳

综合结论→检验分类是否完备(即分类对象彼此交集为空集,并集为全集)。做到“确定对象的全体,明确分类的标准,分层类别不重复、不遗漏的分析讨论.”

【专题演练】

1.已知集合A ={x |x 2–3x +2=0},B ={x |x 2–ax +(a –1)=0},C ={x |x 2–mx +2=0},且A ∪B =A ,A ∩C =C ,则a 的值为 ,m 的取值范围为 .

2给出定点A (a ,0)(a >0)和直线l :x =–1,B 是直线l 上的动点,∠BOA 的角平分线交AB 于点C .求点C 的轨迹方程,并讨论方程表示的曲线类型与a 值的关系.

3. 设函数f (x )=x 2+|x –a |+1,x ∈R . (1)判断函数f (x )的奇偶性;

(2)求函数f (x )的最小值.

4. 设a R ∈,函数2()22.f x ax x a =--若()0f x >的解集为A ,{}|13,B x x =<<

A B φ≠ ,求实数a 的取值范围。

【参考答案】

1. 解: A ={1,2},B ={x |(x –1)(x –1+a )=0},由A ∪B =A 可得1–a =1或1–a =2;由A ∩C =C ,可知C ={1}或?.答案:2或3 3或(–22,22)

2. 解:依题意,记B (–1,b ),(b ∈R ),则直线OA 和OB 的方程分别为y =0和y =–bx . 设点C (x ,y ),则有0≤x <a ,由OC 平分∠AOB ,知点C 到OA 、OB 距离相等. 根据点到直线的距离公式得|y |=2

1||b

bx y ++ ①

依题设,点C 在直线AB 上,故有

)(1a x a

b

y -+-

= 由x –a ≠0,得a

x y

a b -+-

=)1( ②

将②式代入①式,得y 2[(1–a )x 2–2ax +(1+a )y 2]=0 若y ≠0,则

(1–a )x 2–2ax +(1+a )y 2=0(0<x <a )

若y =0则b =0,∠AOB =π,点C 的坐标为(0,0)满足上式. 综上,得点C 的轨迹方程为

(1–a )x 2–2ax +(1+a )y 2=0(0<x <a )

(i)当a =1时,轨迹方程化为y 2=x (0≤x <1) ③ 此时方程③表示抛物线弧段; (ii)当a ≠1,轨迹方程化为

)0(11)1()1(2

2

2

22

a x a a y a a a a x <≤=-+---

所以当0<a <1时,方程④表示椭圆弧段; 当a >1时,方程④表示双曲线一支的弧段.

3. 解:(1)当a =0时,函数f (–x )=(–x )2+|–x |+1=f (x ),此时f (x )为偶函数. 当a ≠0时,f (a )=a 2+1,f (–a )=a 2+2|a |+1.f (–a )≠f (a ),f (–a )≠–f (a ) 此时函数f (x )既不是奇函数,也不是偶函数.

(2)①当x ≤a 时,函数f (x )=x 2–x +a +1=(x –21)2+a +4

3 若a ≤

2

1

,则函数f (x )在(–∞,a ]上单调递减. 从而函数f (x )在(–∞,a ]上的最小值为f (a )=a 2+1

若a >

21,则函数f (x )在(–∞,a ]上的最小值为f (21)=43+a ,且f (2

1

)≤f (a ). ②当x ≥a 时,函数f (x )=x 2+x –a +1=(x +21)2–a +4

3

若a ≤–21,则函数f (x )在[a ,+∞]上的最小值为f (–21)=43–a ,且f (–21

)≤f (a );

若a >–2

1

,则函数f (x )在[a ,+∞)单调递增.

从而函数f (x )在[a ,+∞]上的最小值为f (a )=a 2+1. 综上,当a ≤–21时,函数f (x )的最小值为4

3

–a ; 当–

21<a ≤21

时,函数f (x )的最小值是a 2+1; 当a >21时,函数f (x )的最小值是a +4

3.

4. 解:由f (x )为二次函数知0a ≠,

令f (x )=0解得其两根为1211x x a a =-=由此可知120,0x x <>

(i )当0a >时,12{|}{|}A x x x x x x =,A B φ?≠的充要条件是23x <,即

13a +<解得6

7

a >

(ii )当0a <时,12{|}A x x x x =<<,A B φ?≠的充要条件是21x >,即

11a 解得2a <-; 综上,使A B φ?=成立的a 的取值范围为6

(,2)(,)7

-∞-?+∞。

高中数学解题思想之分类讨论思想

分类讨论思想方法 在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性,所以在高考试题中占有重要的位置。 引起分类讨论的原因主要是以下几个方面: ①问题所涉及到的数学概念是分类进行定义的。如|a|的定义分a>0、a=0、a<0三种情况。这种分类讨论题型可以称为概念型。 ②问题中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的。如等比数列的前n项和的公式,分q=1和q≠1两种情况。这种分类讨论题型可以称为性质型。 ③解含有参数的题目时,必须根据参数的不同取值范围进行讨论。如解不等式ax>2时分a>0、a=0和a<0三种情况讨论。这称为含参型。 另外,某些不确定的数量、不确定的图形的形状或位置、不确定的结论等,都主要通过分类讨论,保证其完整性,使之具有确定性。 进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论。其中最重要的一条是“不漏不重”。 解答分类讨论问题时,我们的基本方法和步骤是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不漏不重、分类互斥(没有重复);再对所分类逐步进行讨论,分级进行,获取阶段性结果;最后进行归纳小结,综合得出结论。 Ⅰ、再现性题组: 1.集合A={x||x|≤4,x∈R},B={x||x-3|≤a,x∈R},若A?B,那么a的范围是_____。 A. 0≤a≤1 B. a≤1 C. a<1 D. 00且a≠1,p=log a (a3+a+1),q=log a (a2+a+1),则p、q的大小关系是 _____。 A. p=q B. pq D.当a>1时,p>q;当0

专题四:分类讨论思想在解题中的应用

专题四:分类讨论思想在解题中的应用 一.知识探究: 分类讨论是一种重要的数学思想方法,当问题的对象不能进行统一研究时,就需要对研究的对象进行分类,然后对每一类分别研究,给出每一类的 结果,最终综合各类结果得到整个问题的解答。 1.有关分类讨论的数学问题需要运用分类讨论思想来解决,引起分类 讨论的原因大致可归纳为如下几种: (1)涉及的数学概念是分类讨论的;如绝对值|a|的定义分a>0、a=0、a<0三种情况。这种分类讨论题型可以称为概念型。 (2)运用的数学定理、公式、或运算性质、法则是分类给出的;如等 比数列的前n项和的公式,分q=1和q≠1两种情况。这种分类讨论题型可 以称为性质型。 (3)求解的数学问题的结论有多种情况或多种可能性; (4)数学问题中含有参变量,这些参变量的不同取值导致不同的结果的;如解不等式ax>2时分a>0、a=0和a<0三种情况讨论。这称为含参型。 (5)较复杂或非常规的数学问题,需要采取分类讨论的解题策略来解 决的。 2.分类讨论是一种逻辑方法,在中学数学中有极广泛的应用。根据不 同标准可以有不同的分类方法,但分类必须从同一标准出发,做到不重复,不遗漏,包含各种情况,同时要有利于问题研究; 3.分类原则:(1)对所讨论的全域分类要“即不重复,也不遗漏”(2)在同一次讨论中只能按所确定的一个标准进行(3)对多级讨论,应逐级进行,不能越级; 4.分类方法:(1)概念和性质是分类的依据(2)按区域(定义域或值域)进行分类是基本方法(3)不定因素(条件或结论不唯一,数值大小的不确定,图形位置的不确定)是分类的突破口(4)二分发是分类讨论的利器(4)层次分明是分类讨论的基本要求; 5.讨论的基本步骤:(1)确定讨论的对象和讨论的范围(全域)(2)确定分类的标准,进行合理的分类(3)逐步讨论(必要时还得进行多级分类)

初中数学分类讨论思想在教学中的应用

初中数学分类讨论思想在教学中的应用 新课标指出:“通过义务教育阶段的数学学习,学生能够获得适应未来社会生活和进一步发展所必需的重要数学知识(包括数学事实、数学活动经验)以及基本的数学思想方法和必要的应用技能”。所以在数学教学中有效地渗透,培养数学思想方法,已逐渐成为数学、课改的热点。所谓数学思想,是指人们对数学科学研究的本质及规律的理性认识。数学思想是数学的精髓。初中阶段常见的数学思想包括:函数与方程思想,化归思杨,分类讨论思想、数形结合思想等。其中分类讨论思想是初中数学中最常见、最重要的一种数学思想,它贯穿于整个初中数学,它有利于考查学生的综合数学基础知识和灵活运用能力。 本文从分类讨论思想的概念和特点,引起分类讨论的原因,以及分类讨论思想在数学教学中的应用举例等内容展开,比较系统全面地介绍了分类讨论思想。 一、分类讨论思想的概念 分类讨论思想是一种最基本的解决问题的思维策略,就是把要研究的数学对象按照标准划分为若干不同的类别,然后逐类进行研究,求解的一种数学解题思想。它是问题不能以统一的同一种方法处理或同一形式来表述、概括时,根据数学对象的本质属性的相同点和不同点,再按照一定的原则或某一确定的标准,在比较的基础上,将对象划分为若干个既有

联系又有区别的部分,进行逐类讨论,最后把几类结论汇总,从而得出问题的答案。分类讨论的实质是化繁为简,将一个复杂的问题分为几个简单的问题,分而治之。 二、引起分类讨论的原因 分类讨论思想贯穿于整个中学数学的全部内容中。初中阶段数学运用分类讨论思想解决的数学问题,其引起分类的原因主要可以归结为以下几个方面: 1.概念本身是分类定义的。如绝对值等。 2.问题中涉及的数学定理、公式或运算性质、法则是有条件或范围是限制的,或者是分类给出的。 3.含有字母系数(参数)的问题,有时需对该字母的不同取值范围进行讨论。 4.某些不确定的数量、不确定的图形的形状或位置,不确定的结论等都要进行分类讨论。 三、解答分类讨论型问题的步骤 分类讨论型问题常与开放探究型问题综合在一起,不论是在分类中探究,还是在探究中分类,都需要具备扎实的基础知识,和灵活的思维方式,对问题进行全面衡量、统筹兼顾,切忌以偏概全。解答分类讨论型问题的关键是要有分类讨论的意识,克服想当然的错误习惯。 通常解答分类讨论型问题的一般步骤是: 1.确定分类对象。

[精品]新高三数学第二轮专题复习分类讨论思想优质课教案

高三数学第二轮专题复习:分类讨论思想 高考要求 分类讨论思想就是根据所研究对象的性质差异,分各种不同的情况予以分析解决分类讨论题覆盖知识点较多,利于考查学生的知识面、分类思想和技巧;同时方式多样,具有较高的逻辑性及很强的综合性,树立分类讨论思想,应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论” 重难点归纳 分类讨论思想就是依据一定的标准,对问题分类、求解,要特别注意分类必须满足互斥、无漏、最简的原则分类讨论常见的依据是 1由概念内涵分类如绝对值、直线的斜率、指数对数函数、直线与平面的夹角等定义包含了分类 2由公式条件分类如等比数列的前n项和公式、极限的计算、圆锥曲线的统一定义中图形的分类等 3由实际意义分类如排列、组合、概率中较常见,但不明显、有些应用问题也需分类讨论 在学习中也要注意优化策略,有时利用转化策略,如反证法、补集法、变更多元法、数形结合法等简化甚至避开讨论 典型题例示范讲解

例1已知{a n }是首项为2,公比为2 1的等比数列,S n 为它的前n 项和 (1)用S n 表示S n +1; (2)是否存在自然数c 和k ,使得21>--+c S c S k k 成立 命题意图 本题主要考查等比数列、不等式知识以及探索和论证存在性问题的能力 知识依托 解决本题依据不等式的分析法转化,放缩、解简单的分式不等式;数列的基本性质 错解分析 第2问中不等式的等价转化为学生的易错点,不能确定出k k S c S <<-223 技巧与方法 本题属于探索性题型,是高考试题的热点题型 在探讨第2问的解法时,采取优化结论的策略,并灵活运用分类讨论的思想 即对双参数k ,c 轮流分类讨论,从而获得答案 解 (1)由S n =4(1–n 21),得221)2 11(411+=-=++n n n S S ,(n ∈N *) (2)要使21>--+c S c S k k ,只要0)223(<---k k S c S c 因为4)211(4<-=k k S 所以0212)223(>-=--k k k S S S ,(k ∈N *)故只要23S k –2<c <S k ,(k ∈N *) 因为S k +1>S k ,(k ∈N *) ① 所以23S k –2≥2 3S 1–2=1 又S k <4,故要使①成立,c 只能取2或3 当c =2时,因为S 1=2,所以当k =1时,c <S k 不成立,从而①不

七年级上册--分类讨论思想

分类讨论思想 在数学中,如果一个命题的条件或结论不唯一确定,有多种可能情况,难以统一解答,就需要按可能出现的各种情况分门别类的加以讨论,最后综合归纳出问题的正确答案,这种解题方法叫做分类讨论。 在分类讨论的问题中有三个重要的注意事项。 1. 什么样的题会出现分类讨论思想--往往是在题目中的基本步骤中出现了“条件不确定,无法进行下一步”(如几何中,画图的不确定;代数中,出现字母系数等)。 2. 分类讨论需要注意什么----关键是“不重、不漏”,特别要注意分类标准的统一性。 3. 分类讨论中最容易错的是什么--总是有双重易错点“讨论有重漏,讨论之后不检验是否合题意”。 【例1】解方程:|x-1|=2 【例2】试比较1+a与1-a的大小。 。 【例3】已知线段AB长度为6cm,点C在直线AB上,且AC=2cm,求BC的长度。 【例4】一张桌子有四个角,砍掉一只角后,还剩几个角? 【例5】已知△ABC周长为20cm,AB=AC,其中一边边长是另一边边长的2倍,BC长多少?

【例6】 富城书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元,但不超过200元,一律打九折;③一次性购书超过200元,一律打八折。如果小明一次性购书 付款162元,那么小明所购书的价格为多少。 练习题 1.解方程:(1)|x+4|=3 (2)22)3(-=a 2.|a|+a 的值的情况讨论。 3. 如果a 、b 、c 是非零有理数,求c c b b a a -+的值 5.数轴上有A 、B 两点,若A 点对应的数是-2,且A 、B 两点的距离为3,则点B 对应的数为多少(画图表示)。 6.平面内有四点,经过两点可画多少条直线。 7.平面内有三条直线,它们可能有几个交点?

高中数学专题练习:分类讨论思想

高中数学专题练习:分类讨论思想 [思想方法解读]分类讨论思想是一种重要的数学思想方法,其基本思路是将一个较复杂的数学问题分解(或分割)成若干个基础性问题,通过对基础性问题的解答来实现解决原问题的思想策略. 1.中学数学中可能引起分类讨论的因素: (1)由数学概念而引起的分类讨论:如绝对值的定义、不等式的定义、二次函数的定义、直线的倾斜角等. (2)由数学运算要求而引起的分类讨论:如除法运算中除数不为零,偶次方根为非负数,对数运算中真数与底数的要求,指数运算中底数的要求,不等式中两边同乘以一个正数、负数,三角函数的定义域,等比数列{a n}的前n项和公式等. (3)由性质、定理、公式的限制而引起的分类讨论:如函数的单调性、基本不等式等. (4)由图形的不确定性而引起的分类讨论:如二次函数图象、指数函数图象、对数函数图象等. (5)由参数的变化而引起的分类讨论:如某些含有参数的问题,由于参数的取值不同会导致所得的结果不同,或者由于对不同的参数值要运用不同的求解或证明方法等. 2.进行分类讨论要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论.其中最重要的一条是“不重不漏”. 3.解答分类讨论问题时的基本方法和步骤是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不重不漏、分类互斥(没有重复);再对所分类逐步进行讨论,分级进行,获取阶段性结果;最后进行归纳小结,综合得出结论. 常考题型精析 题型一由概念、公式、法则、计算性质引起的分类讨论 例1设集合A={x∈R|x2+4x=0},B={x∈R|x2+2(a+1)x+a2-1=0,a∈R},若B?A,求实数a的取值范围.

浅谈数学解题中的分类讨论思想

浅谈数学解题中的分类讨论思想 洪湖市第一中学 付志刚 分类讨论的数学思想方法就是当问题所给的对象不能进行统一研究时,就需要对研究对象按某个标准分类,然后对每一类分别研究得出每一类的结论,最后综合各类结果得到整个问题的解答。实质上,分类讨论是“化整为零,各个击破,再积零为整”的数学策略。分类讨论是解决问题的一种逻辑方法,也是一种数学思想,这种思想对于简化研究对象,发展人的思维有着重要帮助,因此有关分类讨论的数学命题在高考试题中占有重要位置。本文想就分类讨论的原则、方法和步骤等作一些阐述,不妥之处,敬请斧正。 一、科学合理的分类 把一个集合分成若干个非空真子集(、、? ? ?)(≥,∈),使集合中的每一个元素属于且仅属于某一个子集。即 ①∪∪∪?? ? ?∪= ②∩=φ(∈,且≠)。 则称对集进行了一次科学的分类(或称一次逻辑划分) 科学的分类满足两个条件:条件①保证分类不遗漏;条件②保证分类不重复。在此基础上根据问题的条件和性质,应尽可能减少分类。 二、确定分类标准 在确定讨论的对象后,最困难是确定分类的标准,一般来讲,分类标准的确定通常有三种: ()根据数学概念来确定分类标准 例如:绝对值的定义是: 所以在解含有绝对值的不等式 (-)≥时,就必须根据确定 , (-)正负的值和将定义域(,)分成三个区间进行讨论,即<<, ≤<,≤<三种情形分类讨论。 例、 已知动点到原点的距离为,到直线:=的距离为,且= ()求点的轨迹方程。 ()过原点作倾斜角为α的直线与点的轨迹曲线交于两点,求弦长||的最大值及对应的倾斜角α。 解:()设点的坐标为(),依题意可得: 根据绝对值的概念,轨迹方程取决于>还是≤,所以以为标准进行分类讨论可 得轨迹方程为: 解()如图,由于,的位置变化, 弦长||的表达式不同,故必须分点, 都在曲线()以及一点 在曲线() 上而另一点在曲线-(-)上可求得: 从而知当 或 时 ()根据数学中的定理,公式和性质确定分类标准。 数学中的某些公式,定理,性质在不同条件下有不同的结论,在运用它们时,就要分类讨论,分类的依据是公式中的条件。 ()()()?????-==0000< >a a a a a a 3131 314 222=-++x y x ???()() 3221<

中考数学专题复习专题三大数学思想方法第一节分类讨论思想训练

专题三 5大数学思想方法 第一节 分类讨论思想 类型一 由概念内涵分类 (2018·山东潍坊中考)如图1,抛物线y 1=ax 2 -12x +c 与x 轴交于点A 和点B(1,0),与y 轴交于 点C(0,3 4),抛物线y 1的顶点为G ,GM⊥x 轴于点M.将抛物线y 1平移后得到顶点为B 且对称轴为直线l 的 抛物线y 2. (1)求抛物线y 2的表达式; (2)如图2,在直线l 上是否存在点T ,使△TAC 是等腰三角形?若存在,请求出所有点T 的坐标;若不存在,请说明理由; (3)点P 为抛物线y 1上一动点,过点P 作y 轴的平行线交抛物线y 2于点Q ,点Q 关于直线l 的对称点为R.若以P ,Q ,R 为顶点的三角形与△AMG 全等,求直线PR 的表达式. 【分析】(1)应用待定系数法求表达式; (2)设出点T 坐标,表示出△TAC 三边,进行分类讨论; (3)设出点P 坐标,表示出Q ,R 坐标及PQ ,QR ,根据以P ,Q ,R 为顶点的三角形与△AMG 全等,分类讨论对应边相等的可能性即可. 【自主解答】

此类题型与概念的条件有关,如等腰三角形有两条边相等(没有明确哪两条边相等)、直角三角形有一个角是直角(没有明确哪个角是直角)等,解决这类问题的关键是对概念内涵的理解,而且在分类讨论后还要判断是否符合概念本身的要求(如能否组成三角形). 1.(2018·安徽中考改编)若一个数的绝对值是8,则这个数是( ) A .-8 B .8 C .±8 D .-18 类型二 由公式条件分类 (2018·浙江嘉兴中考)我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫

分类讨论的思想方法

分类讨论的思想方法 慕泽刚 (重庆市龙坡区渝西中学 401326) 一、知识要点概述 1.分类讨论的思想方法的原理及作用:在研究与解决数学问题时,如果问题不能以统一的同一种方法处理或同一种形式表述、概括,可根据数学对象的本质属性的相同和不同点,按照一定的原则或某一确定的标准,在比较的基础上,将数学对象划分为若干既有联系又有区别的部分,然后逐类进行讨论,再把这几类的结论汇总,从而得出问题的答案,这种研究解决问题的思想方法就是分类讨论的思想方法.分类讨论的思想方法是中学数学的基本方法之一,在近几年的高考试题中都把分类讨论思想方法列为重要的思想方法来考查,体现出其重要的位置.分类讨论的思想方法不仅具有明显的逻辑性、题型覆盖知识点较多、综合性强等特点,而且还有利于对学生知识面的考查、需要学生有一定的分析能力、一定分类技巧,对学生能力的考查有着重要的作用.分类讨论的思想的实质就是把数学问题中的各种限制条件的制约及变动因素的影响而采取的化整为零、各个突破的解题手段. 2.引入分类讨论的主要原因 (1)由数学概念引起的分类讨论:如绝对值的定义、直线与平面所成的角、定比分点坐标公式等; (2)由数学运算要求引起的分类讨论:如除法运算中除数不为零、对数中真数与底数的要求等; (3)由函数的性质、定理、公式的限制引起的分类讨论; (4)由图形的不确定引起的分类讨论; (5)由参数的变化引起的分类讨论; (6)按实际问题的情况而分类讨论. 二、解题方法指导 1.分类讨论的思想方法的步骤:(1)确定标准;(2)合理分类;(3)逐类讨论;(4)归纳总结. 2.简化分类讨论的策略:(1)消去参数;(2)整体换元;(3)变更主元;(4)考虑反面;(5)整体变形; (6)数形结合;(7)缩小范围等. 3.解题时把好“四关” (1)要深刻理解基本知识与基本原理,把好“基础关”; (2)要找准划分标准,把好“分类关”; (3)要保证条理分明,层次清晰,把好“逻辑关”; (4)要注意对照题中的限制条件或隐含信息,合理取舍,把好“检验关”. 三、范例剖析 例1解关于x 的不等式:a(x-1)x-2 >1(a ≠1) 解析:原不等式等价于:(a-1)x-(a-2)x-2>0,即(a ﹣1)(x ﹣a-2a-1 )(x ﹣2)>0 ① 若a>1,则①等价于(x ﹣a-2a-1 )(x ﹣2)>0. 又∵2﹣a-2a-1=﹣1a-1﹣1<0,∴a-2a-1 <2 ∴原不等式的解集为;(﹣∞,a-2a-1 )∪(2,+∞); 若a<1时,则①等价于(x ﹣a-2a-1)(x ﹣2)<0.由于2﹣a-2a-1=a a-1, 当02,∴原不等式的解集为(2,a-2a-1 ). 当a<0时,a-2a-1<2,∴原不等式的解集为(a-2a-1 ,2).

2020高考数学分类讨论思想

难点38 分类讨论思想 分类讨论思想就是根据所研究对象的性质差异,分各种不同的情况予以分析解决.分类讨论题覆盖知识点较多,利于考查学生的知识面、分类思想和技巧;同时方式多样,具有较高的逻辑性及很强的综合性,树立分类讨论思想,应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论.” ●难点磁场 1.(★★★★★)若函数514121)1(31)(23+-+-= x ax x a x f 在其定义域内有极值点,则a 的取值为 . 2.(★★★★★)设函数f (x )=x 2+|x –a |+1,x ∈R . (1)判断函数f (x )的奇偶性; (2)求函数f (x )的最小值. ●案例探究 [例1]已知{a n }是首项为2,公比为 21的等比数列,S n 为它的前n 项和. (1)用S n 表示S n +1; (2)是否存在自然数c 和k ,使得21>--+c S c S k k 成立. 命题意图:本题主要考查等比数列、不等式知识以及探索和论证存在性问题的能力,属★★★★★级题目. 知识依托:解决本题依据不等式的分析法转化,放缩、解简单的分式不等式;数列的基本性质. 错解分析:第2问中不等式的等价转化为学生的易错点,不能确定出k k S c S <<-22 3. 技巧与方法:本题属于探索性题型,是高考试题的热点题型.在探讨第2问的解法时,采取优化结论的策略,并灵活运用分类讨论的思想:即对双参数k ,c 轮流分类讨论,从而获得答案. 解:(1)由S n =4(1–n 21),得 221)2 11(411+=-=++n n n S S ,(n ∈N x ) (2)要使21 >--+c S c S k k ,只要0)223(<---k k S c S c 因为4)2 11(4<-=k k S 所以0212)223(>- =--k k k S S S ,(k ∈N x ) 故只要2 3S k –2<c <S k ,(k ∈N x )

数学总复习之数学思想第2讲《分类讨论》

数学总复习之数学思想第2讲《分类讨论》 题型一 根据数学概念分类讨论 【例题1】在△ABC 中,已知sin B =154,a =6,b =8,求边c 的长.. 题型二 根据公式、定理、性质的条件分类讨论 【例题2】数列{}n a 的前n 项和为221n S n n =+-,则其通项n a = . 题型三 根据变量或参数的取值情况分类讨论 【例题3】解关于x 的不等式01)1(2 <++-x a ax . 题型四 根据图形位置或形状变化分类讨论 【例题4】在△ABC 中,AB =(2,3),AC =(1,k ),若△ABC 是Rt △,求k 的值.

1. 等比数列{a n }中,a 3=7,前3项之和S 3=21,则公比q 的值是 ( ) A .1 B .-12 C .1或-12 D .-1或12 2.设集合A ={x |x 2+x -12=0},集合B ={x |kx +1=0},如果A ∪B =A ,则由实数 k 组成的集合中所有元素的和与积分别为 ( ) A .-112,0 B.112,-112 C.112,0 D.14,-112 3.一条直线过点(5,2),且在x 轴,y 轴上截距相等,则这直线方程为( ) A. x y +-=70 B. 250x y -= C. x y x y +-=-=70250或 D. x y y x ++=-=70250或 4.不等式2 (2)2(2)40a x a x -+--<对一切x ∈R 恒成立,则a 的取值范围是 ( ) A .(-∞,2] B .[-2,2] C .(-2,2] D .(-∞,-2) 5.若圆柱的侧面展开图是边长为4和2的矩形,则圆柱的体积是 . 6.函数f (x )=mx 2+mx +1的定义域为一切实数,则实数m 的取值范围是 . 7.已知a ∈R ,若关于x 的方程2104 x x a a ++- +=有实根,求a 的取值范围. 8. 已知等差数列{a n }的前3项和为6,前8项和为-4. (1)求数列{a n }的通项公式; (2)设b n =(4-a n )q n -1 (q ≠0,n ∈N *),求数列{b n }的前n 项和S n .

分类讨论思想

分类讨论思想

第三讲分类讨论思想 [思想方法解读]分类讨论思想是一种重要的数学思想方法,其基本思路是将一个较复杂的数学问题分解(或分割)成若干个基础性问题,通过对基础性问题的解答来实现解决原问题的思想策略. 1.中学数学中可能引起分类讨论的因素: (1)由数学概念而引起的分类讨论:如绝对值的定义、不等式的定义、二次函数的定义、直线的倾斜角等. (2)由数学运算要求而引起的分类讨论:如除法运算中除数不为零,偶次方根为非负数,对数运算中真数与底数的要求,指数运算中底数的要求,不等式中两边同乘以一个正数、负数,三角函数的定义域,等比数列{a n}的前n项和公式等. (3)由性质、定理、公式的限制而引起的分类讨论:如函数的单调性、基本不等式等. (4)由图形的不确定性而引起的分类讨论:如二次函数图象、指数函数图象、对数函数图象等. (5)由参数的变化而引起的分类讨论:如某些含有参数的问题,由于参数的取值不同会导致所得的

结果不同,或者由于对不同的参数值要运用不同的求解或证明方法等. 2.进行分类讨论要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论.其中最重要的一条是“不重不漏”. 3.解答分类讨论问题时的基本方法和步骤是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不重不漏、分类互斥(没有重复);再对所分类逐步进行讨论,分级进行,获取阶段性结果;最后进行归纳小结,综合得出结论. 常考题型精析 题型一由概念、公式、法则、计算性质引起的分类讨论 例1设集合A={x∈R|x2+4x=0},B={x∈R|x2+2(a+1)x+a2-1=0,a∈R},若B?A,求实数a的取值范围.

分类讨论的数学思想方法

一模试卷课后作业 一、“分类讨论”概述 二、巩固练习: 1、(2013?河西区一模)如图,Rt △ABC 中,∠C=90°,AC=3,BC=4,P 是斜边AB 上一动点(不与点A 、B 重合),PQ ⊥AB 交△ABC 的直角边于点Q ,设AP 为x ,△APQ 的面积为y ,则下列图象中,能表示y 关于x 的函数关系的图象大致是( ) 2、△ABC 中,AB=AC ,AB 的中垂线与AC 所在的直线相交所得的锐角为40度,则底角B 的度数为 __________ 三、方法探究: 1、 在下图三角形的边上找出一点,使得该点与三角形的两顶点构成等腰三角形. 2、在平面直角坐标系中,已知点P (-2,-1). (1)点T (t ,0)是x 轴上的一个动点。当t 取何值时,△TOP 是等腰三角形? (2) 过P 作y 轴的垂线PA,垂足为A.点T 为坐标系中的一点。以点A.O.P.T 为顶点的四边形为平行四边形,请写出点T 的坐 (3) 过P 作y 轴的垂线PA,垂足为A.点T 为坐标轴上的一点。以P.O.T 为顶点的三角形与△AOP 相似,请写出点T 的坐标? _____________________,25-,63-.3则这个函数的解析式为是相应的函数的取值范围的自变量的取值范围是一次函数-≤≤≤≤+=y x b kx y ( ) 的坐标为(两点,且点、轴交于两点,与、直线交于与,抛物线轴交于点,与轴交于点与已知,直线、综合练习:0,12 1y 12132 B C B x B A c bx x y D x A x y ++=+=C A B C A B C A B B A C D

分类讨论思想

分类讨论思想 一、含义 分类讨论思想就是当问题所给的对象不能进行统一研究时,需要把研究对象按某个标准分类,然后对每一类分别研究得出结论,最后综合各类结果得到整个问题的解答。实质上,分类讨论是“化整为零,各个击破,再积零为整”的解题策略。 二、常见类型 有关分类讨论的数学问题需要运用分类讨论思想来解决,引起分类讨论的原因大致可归纳为如下几种: 1.由数学概念引起的分类讨论:有的概念本身是分类的,如绝对值、直线斜率、指数函数、对数函数等。 2.由性质、定理、公式的限制引起的分类讨论:有的数学定理、公式、性质是分类给出的,在不同的条件下结论不一致,如等比数列的前n项和公式、函数的单调性等。 3.由数学运算要求引起的分类讨论:如除法运算中除数不为零,偶次方根被开方数为非负,对数真数与底数的要求,指数运算中底数的要求,不等式两边同乘以一个正数、负数,三角函数的定义域等。 4.由图形的不确定性引起的分类讨论:有的图形类型、位置需要分类,如角的终边所在的象限,点、线、面的位置关系等。 5.由参数的变化引起的分类讨论:某些含有参数的问题,如含参数的方程、不等式,由于参数的取值不同会导致所得结果不同,或对于不同的参数值要运用不同的求解或证明方法。 6.由实际意义引起的讨论:此类问题常常出现在应用题中。 三、高中数学中相关的知识点 1.绝对值的定义;

1.二次函数对称轴的变化; 2.函数问题中区间的变化; 3.函数图像形状的变化; 4.直线由斜率引起的位置变化; 5.圆锥曲线由焦点引起的位置变化或由离心率引起的形状变化; 6.立体几何中点、线、面的位置变化等。 七、4步解决由概念、法则、公式引起的分类讨论问题 第一步:确定需分类的目标与对象。即确定需要分类的目标,一般把需要用到公式、定理解决问题的对象作为分类目标。 第二步:根据公式、定理确定分类标准。运用公式、定理对分类对象进行区分。 第三步:分类解决“分目标”问题。对分类出来的“分目标”分别进行处理。 第四步:汇总“分目标”。将“分目标”问题进行汇总,并作进一步处理。

数学总复习之数学思想《分类讨论》

数学总复习之数学思想《分类讨论》 【例题1】在△ABC 中,已知sin B =154,a =6,b =8,求边c 的长.. 题型二 根据公式、定理、性质的条件分类讨论 【例题2】数列{}n a 的前n 项和为221n S n n =+-,则其通项n a = . 题型三 根据变量或参数的取值情况分类讨论 【例题3】解关于x 的不等式01)1(2<++-x a ax . 题型四 根据图形位置或形状变化分类讨论 【例题4】在△ABC 中,AB =(2,3),AC =(1,k ),若△ABC 是Rt △,求k 的值. 二、课后 1. 等比数列{a n }中,a 3=7,前3项之和S 3=21,则公比q 的值是 ( ) A .1 B .-12 C .1或-12 D .-1或12 2.设集合A ={x |x 2+x -12=0},集合B ={x |kx +1=0},如果A ∪B =A ,则由实数

k 组成的集合中所有元素的和与积分别为 ( ) A .-112,0 B.112,-112 C.112,0 D.14,-112 3.一条直线过点(5,2),且在x 轴,y 轴上截距相等,则这直线方程为( ) A. x y +-=70 B. 250x y -= C. x y x y +-=-=70250或 D. x y y x ++=-=70250或 4.不等式2(2)2(2)40a x a x -+--<对一切x ∈R 恒成立,则a 的取值范围是 ( ) A .(-∞,2] B .[-2,2] C .(-2,2] D .(-∞,-2) 5.若圆柱的侧面展开图是边长为4和2的矩形,则圆柱的体积是 . 6.函数f (x )=mx 2+mx +1的定义域为一切实数,则实数m 的取值范围是 . 7.已知a ∈R ,若关于x 的方程2104 x x a a ++- +=有实根,求a 的取值范围. 8. 已知等差数列{a n }的前3项和为6,前8项和为-4. (1)求数列{a n }的通项公式; (2)设b n =(4-a n )q n -1 (q ≠0,n ∈N *),求数列{b n }的前n 项和S n .

浅谈初中数学中的分类讨论思想

浅谈初中数学分类讨论思想在解题中的应用摘要:在初中数学解题中,分类讨论不仅是一种非常重要的数学思想,而且它还也是一种非常有效的解题策略,其主要体现在“集零为整,化整为零”思想和归类整理思想这两个部分。在初中数学教学中,如果教师在进行初中数学的教学时,对分类讨论思想加以运用,可以使学生对数学知识有更加深入的认识和理解,同时它能够进一步的培养学生的思维能力。本文主要是对分类讨论在初中数学解题的应用进行探讨。 关键词:分类讨论思想初中数学教学应用 俗话说的好,“数学是思维的体操”,要想进行数学学习,就一定是离不开思维运用,在对数学进行每一步探索,都是需要思维来完成。因此,在初中的数学教学中,教师要对学生慢慢的进行数学思想方法的渗透,使学生的思维能力得到进一步的提升,使其能够形成一个良好的数学思维习惯,这样不仅符合了新课改的新要求,而且其还是实施数学素质教育的一个很好的切入点。 一、分类讨论思想在初中数学解题中的重要作用 简单的来说,分类讨论起本质上就是一种逻辑上划分的思维方式。其在教学中的具体表现为对题目“化整为零”,一个一个的进行逐步击破,这样的就实现了积零为整的教学方式。在目前,分类讨论思想已经成为一种非常重要的数学思想,其在我国数学教学中得到了广泛的应用。它不仅只是一种独特的数学逻辑方法,而且在进行数学知识教学时其更是一种有效的解题策略。由于分类讨论在对不同的问题进

行综合考虑时,其在逻辑上具有优势,特别是在培养学生的学习能力以及提升学生的思维严谨性有很好的促进作用。在对数学题进行解答时,如果因为题目的题意中存在着一些不确定因素,进而导致无法解答出来,这样的情况下,就可以将题目分为若干个小问题,对其进行分类讨论,使相对复杂的问题变得简单化,方便对其进行解答。 二、分类讨论思想在初中数学解题的应用 1.在不等式中的运用 不等式在初中数学中是一种比较基础和普遍的内容。因为不等式要涉及到绝对值,所以就要进行转换符号,同时一个不等式可能会存在不止一个绝对值问题,遇到这样的情况,学生往往会变得无所适从,这也就影响着学生的学习成绩的提升,运用分类谈论思想,就能够对不等式进行很好的解答。因此,教师要注重在课堂上教授学生如何运用分类讨论来解答难题,例如:解方程 | x - 5| +| x + 4 | = 9 ,这个题目就要求对 x 的值进行求解.为了更好的对学生进行引导,培养学生运用分类谈论的良好习惯,在学生的心里树立这样一种观点:在解答关于绝对值的数学题时,应该要把绝对值符号里的数分为正数、零和负数三种情况来进行分类讨论。教师也应该抓住好时机,可以向学生提出相关的问题,对学生进行引导,加深学生对问题的印象,进而使学生的学习效率得到提升。对于这个方程来说可以分为当x>4、-5x《4和x<-5这三种情况,若当x>4时,原方程就可以表示为x - 4 + 5 + x = 9,通过计算可以求出x=4,所以它与假设是互相矛盾的,故不成立;若当x <-5时,原方程可以被看为- x + 4

浅谈分类讨论思想及其应用

浅谈分类讨论思想及其应用 杨凌高新中学 王旭 2010-1-12 分类讨论思想方法是研究与解决数学问题的重要思想之一,在中学数学应用中十分广泛,本文从分类讨论的原则、分类讨论的步骤及应用环境出发,辅以一定例题,着重分析讨论了分类讨论思想在中学数学中应用的一般原则、方法、技巧及应用环境. 一、 分类讨论思想的概念 由于数学研究对象的属性不同,影响了研究问题的结果,从而对不同属性的对象进行研究的思想;或者由于在研究问题过程中出现了不同情况,从而对不同情况进行分类研究的思想,我们称之为分类讨论思想,其实质是一种逻辑划分的思想.从思维策略上看,它是把要解决的数学问题,分解成可能的各个部分,从而使复杂问题简单化,使“大”问题转化为“小”问题,便于求解.通过正确的分类可以使复杂的问题得到清晰、完整、严密的解答,做到正确的分类,必须遵循一定的原则,以保证分类科学、统一,不重复、不遗漏,并力求最简. 二、 分类讨论的原则 从某种意义上讲,分类讨论是不得已而为之的事情,通过协调、缓和“矛盾”,达到运用知识合理解决问题的思想方法.那如何进行分类讨论呢?分类讨论必须要遵循一定的原则,才能使分类科学、严谨,从而正确、合理地解题,分类讨论原则有同一性原则、互斥性原则、层次性原则. 1.同一性原则 同一性原则简言之即“不遗漏”,可以通过集合的思想来解释,如果把研究对象看作全集I ,()n i A i 1=是I 的子集,并以此分类,且A 1∪A 2∪…A n =I ,则称这种分类(A 1,A 2…A n )符合同一性原则.比如,我们若把实数R 分成正实数R +与负实数R ﹣,那这种分类不符合同一性原则,因为R= R +∪R ﹣∪﹛0﹜,则这种分类方法遗漏了零.在下面的例子中来讨论同一性原则的应用: 例1:已知直线l :01sin 4=+-θy x ,求它的斜率及斜率的取值范围、倾斜角的取值范围. 分析:直线l 的方程中y 的系数是θsin ,而θsin 的值域是[]1,1-,θsin 值可取零,但θsin =0时斜率不存在,故视θsin 为研究对象I []1,1-=,{}01=A ,[)(]1,00,12 -=A , A 1, A 2都是I 的子集,且A 1∪A 2=I ,满足同一性原则,作如下分类讨论:

初中数学分类讨论思想例题分析

分类讨论思想例题分析 [线段中分类讨思想的应用]——线段及端点位置的不确定性引发讨论。 例1已知直线AB 上一点C ,且有CA=3AB ,则线段CA 与线段CB 之比为_3:2_或_3:4____。 练习:已知A 、B 、C 三点在同一条直线上,且线段AB=7cm ,点M 为线段AB 的中点,线段BC=3cm ,点N 为线段BC 的中点,求线段MN 的长. 解析:(1)点C 在线段AB 上: (2)点C 在线段AB 的延长线上 M 例2下列说法正确的是( ) A 、 两条线段相交有且只有一个交点。 B 、如果线段AB=A C 那么点A 是BC 的中点。 C 、两条射线不平行就相交。 D 、不在同一直线上的三条线段两两相交必有三个交点。 [ OM 平分∠AOB ,ON 平分∠[练习] 已知o AOB 60∠=,过O 作一条射线OC ,射线OE 平分AOC ∠,射线OD 平分 这两种情况下,都有o o AOB 60 DOE= 3022 ∠∠== A B C1 C2

小结:(对分类讨论结论的反思)——为什么结论相同?虽然AOC ∠的大小不确定,但是所求的DOE ∠与AOC ∠的大小无关。我们虽然分了两类,但是结果是相同的!这也体现了分类讨论的最后一个环节——总结的重要性。 [三角形中分类讨论思想的应用] 一般有以下四种类型:一是由于一般三角形的形状不确定而进行的分类;二是由于等腰三角形的腰与底不确定而进行的分类;三是由于直角三角形的斜边不确定而进行的分类;四是由于相似三角形的对应角(或边)不确定而进行的分类。 1、三角形的形状不定需要分类讨论 例4、 在△AB C 中,∠B=25°,AD 是BC 上的高,并且 AD BD DC 2=·,则∠BCA 的度数为_____________。 解析:因未指明三角形的形状,故需分类讨论。 如图1,当△ABC 的高在形内时, 由AD BD DC 2=·, 得△ABD∽△CAD,进而 可以证明△ABC 为直角三角形。由 ∠B=25°。可知∠BAD=65°。所以∠BCA=∠BAD=65°。 如图2,当高AD 在形外时,此时 △ABC 为钝角三角形。 由 AD BD DC 2=·,得△ABD∽△CAD 所以∠B=∠CAD=25° ∠BCA=∠CAD+∠ADC=25°+90°=115° 2、等腰三角形的分类讨论: a 、在等腰三角形中求边:等腰三角形中,对给出的边可能是腰,也可能是底边,所以我们要进行分类讨论。 例5、已知等腰三角形的一边等于5,另一边等于6,则它的周长等于_________。 [练习]若等腰三角形一腰上的中线分周长为9cm 和12cm 两部分,求这个等腰三角形的底和腰的长。 简析:已知条件并没有指明哪一部分是9cm ,哪一部分是12cm ,因此,应有两种情形。 若设这个等腰三角形的腰长是x cm ,底边长为y cm ,可得???????=+=+,1221,921y x x x 或???????=+=+.921,122 1y x x x 解 得???==,9,6y x 或???==.5, 8y x 即当腰长是6cm 时,底边长是9cm ;当腰长是8cm 时,底边长是5cm 。 b 、在等腰三角形中求角:等腰三角形的一个角可能指底角,也可能指顶角,所以必须分情况讨论。 例6、已知等腰三角形的一个内角为75°则其顶角为( )

高中数学专题复习之用分类讨论思想解题

高中数学专题复习之用分类讨论思想解题 参数广泛地存在于中学数学的各类问题中,也是近几年来高考重点考查的热点问题之一。以命题的条件和结论的结构为标准,含参数的问题可分为两种类型,。一种类型的问题是根据参数在允许值范围内的不同取值(或取值范围),去探求命题可能出现的结果,然后归纳出命题的结论;另一种类型的问题是给定命题的结论去探求参数的取值范围或参数应满足的条件。本文拟就第一类问题的解题思想方法――分类与讨论作一些探讨,不妥之处,敬请斧正。 解决第一类型的参数问题,通常要用“分类讨论”的方法,即根据问题的条件和所涉及到的概念;运用的定理、公式、性质以及运算的需要,图形的位置等进行科学合理的分类,然后逐类分别加以讨论,探求出各自的结果,最后归纳出命题的结论,达到解决问题的目的。它实际上是一种化难为易,化繁为简的解题策略和方法。 一、科学合理的分类 把一个集合A 分成若干个非空真子集A i (i=1、2、3···n )(n ≥2,n ∈N ),使集合A 中的每一个元素属于且仅属于某一个子集。即 ①A 1∪A 2∪A 3∪···∪A n =A ②A i ∩A j =φ(i,j ∈N,且i ≠j )。 则称对集A 进行了一次科学的分类(或称一次逻辑划分) 科学的分类满足两个条件:条件①保证分类不遗漏;条件②保证分类不重复。在此基础上根据问题的条件和性质,应尽可能减少分类。 二、确定分类标准 在确定讨论的对象后,最困难是确定分类的标准,一般来讲,分类标准的确定通常有三种: (1)根据数学概念来确定分类标准 例如:绝对值的定义是: ?? ? ??<-=>=)0() 0(0) 0(||a a a a a a

相关主题
文本预览
相关文档 最新文档