当前位置:文档之家› 汽车制动系统设计说明书

汽车制动系统设计说明书

汽车制动系统设计说明书
汽车制动系统设计说明书

目录

第一章绪论 (1)

1.1 本次制动系统设计的意义 (2)

1.2 本次制动系统应达到的目标 (2)

1.3 本次制动系统设计内容 (3)

1.4 汽车制动系统的组成 (3)

1.5 制动系统类型 (3)

1.6 制动系工作原理 (3)

第二章汽车制动系统方案确定 (4)

2.1 汽车制动器形式的选择 (5)

2.2 鼓式制动器的优点及其分类 (6)

2.3 盘式制动器的缺点 (8)

2.4 制动驱动机构的结构形式 (8)

2.4.1 简单制动系 (9)

2.4.2 动力制动系 (9)

2.4.3 伺服制动系 (10)

2.5 制动管路的形式选择 (10)

2.6 液压制动主缸方案的设计 (12)

第三章制动系统主要参数的确定 (14)

3.1 轻型货车主要技术参数 (14)

的确定 (14)

3.2 同步附着系数的

3.3 前、后轮制动力分配系数 的确定 (15)

3.4 鼓式制动器主要参数的确定 (16)

3.5 制动器制动力矩的确定 (18)

3.6 制动器制动因数计算 (19)

3.6.1 制动器制动因数计算 (19)

3.6.1 制动器制动因数计算 (20)

3.7 鼓式制动器零部件的结构设计 (21)

第四章液压制动驱动机构的设计计算 (24)

4.1 制动轮缸直径d的确定 (24)

的计算 (25)

4.2 制动主缸直径d

4.3 制动踏板力

F (26)

P

4.4 制动踏板工作行程Sp (26)

第五章制动性能分析 (27)

5.1 制动性能评价指标 (27)

5.2 制动效能 (27)

5.3 制动效能的恒定性 (27)

5.4 制动时汽车的方向稳定性 (28)

5.5 前、后制动器制动力分配 (28)

5.5.1 地面对前、后车轮的法向反作用力 (29)

5.6 制动减速度j (29)

5.7 制动距离S (29)

5.8 摩擦衬片(衬块)的磨损特性计算 (30)

5.9 汽车能够停留在极限上下坡角度计算 (32)

第六章总结 (33)

参考文献 (34)

一.绪论

汽车工业是一个综合性产业,汽车工业的生产水平,能够代表一个国家的整个工业水平,汽车工业的发展,能够带动各行各业的发展,进而促进我国工业生产的总体水品。所以重视发展汽车工业,有着深远的现实意义。

随着我国经济的发展,尤其我国对外贸易的不断扩大,汽车工业受到国外同行业的强烈竞争,而我国汽车工业起步比较晚,生成技术水平较低,因而改进和提高我国的汽车性能及其机构是一个迫在眉睫的问题,这关系到我国汽车工业的生存与发展的大事。

汽车的行驶速度是汽车的一个重要性能参数。尽可能提高汽车的行驶速度,是提高运输生产率的主要技术措施之一,但必须保证行驶的安全性为前提。因此在道路宽阔平坦,人流和车流又较小的情况下,汽车可以用高速度行驶,而在转向或者行驶在不平路面或两车交会时,都必须降低车速,特别是在遇到障碍物,或者碰撞行人或其他车辆危险时,更需要在尽可能短的距离内将车速降低到最低,甚至为零。如果汽车不具备这一性能,高速行驶就不可能实现。

汽车在下长坡时,在重力作用下,有不断加速到危险程度的倾向,此时应当将车速限制在一定的安全性以内,并保持稳定。

此外对已停驶的汽车,应使其可靠的驻留在原地不动。

上述使行驶中的汽车减速甚至行车,使下坡行驶的汽车速度保持稳定,以及使已静止的汽车保持不动,这些作用叫做制动。保证这些性能的系统叫制动系统因此对汽车制动系统的研究,开发是汽车工业的一个非常重要的课题,如何改善汽车的制动效能,改善制动器的结构使一个重要环节。

本人所设计的车型为五十铃轻型货车制动系统,在结构上做了一些改进,采用了自动调节间隙结构,即自动调节制动器摩擦片与制动鼓的间隙,来保证在摩擦片磨损的情况下,汽车的制动效果仍然符合设计要求。

由于本人缺乏设计经验,及实践经验不足,在设计过程中会出现不少错误,

希望各位老师给予指教。

1.1 本次制动系统设计的意义

在交通运输中,公路运输日益成为主要的交通运输形式。高速公路的快速发展使汽车运输速度加快。但是,在提高车速的同时,汽车应能够及时地制动,减速,停车。特别是在人流、车流比较大的道路上行车,安全行驶是最重要的前提条件。对汽车起制动作用的只能是作用在汽车上且方向与汽车行驶方向相反的外力,作用在行驶汽车上的滚动阻力,上坡阻力,空气阻力都能对汽车起制动作用,但这些外力的大小都是随机的、不可控制的,因此汽车上必须装设一系列专门装置以便驾驶员能根据道路和交通情况,利用装在汽车上的一系列专门装置,迫使路面在汽车车轮上施加一定的与汽车行驶方向相反的外力,对汽车进行一定程度的强制制动。这种可控制的对汽车进行制动的外力称为制动力,用于产生制动力的一系列专门装置称为制动系统。

制动系统的作用:使行驶中的汽车按照驾驶员的要求进行强制减速甚至停车;使已停驶的汽车在各种道路条件下稳定驻车;使下坡行驶的汽车速度保持稳定。制动系直接影响着汽车行驶的安全性和停车的可靠性。

本设计通过合理的结构分析,制动器形式的确定,并进行了科学合理的计算及结构设计,缩短了制动距离、保证制动系统具有良好的制动效能的热稳定性与水稳定性以及良好的操纵稳定性,对保证制动系统工作可靠具有理论与实际意义。

1.2 本次制动系统应达到的目标

1.具有良好的制动效能

2.具有良好的制动效能的水稳定性

3.制动时汽车操纵稳定性好

4.制动效能的热稳定性好

5.摩擦副磨损后,应有能消除因磨损而产生间隙的机构,且调整间隙工作容

易,设置自动调整间隙机构

1.3 本次制动系统设计内容

1.前后制动器设计

参数计算、结构设计

2.制动主缸设计

主缸参数计算、结构设计

3.制动管路布置设计,实现双管路布置

1.4 汽车制动系统的组成

1.供能装置——包括供给、调节制动所需能量以及改善传能介质状态的各种部件。

2.控制装置——包括产生制动动作和控制制动效果的各种部件,如制动踏板、制动阀等。

3.传动装置——包括将制动能量传输到制动器的各个部件。

4.制动器——产生阻碍车辆的运动或运动趋势的力的部件。

1.5制动系统类型

1.按制动系统的功用分类

行车制动系统、驻车制动系统、第二制动系统、辅助制动系统

2.按制动系统的制动能源分类

人力制动系统、动力制动系统、伺服制动系统。

1.6 制动系工作原理

一个以内圆面为工作表面的金属制动鼓固定在车轮轮毂上,随车轮一同旋转。在固定不动的制动底板上,有两个支承销,支承着两个弧形制动蹄的下端。制动蹄的外圆面上又装有一般是非金属的摩擦片。制动底板上还装有液压制动轮缸,

用油管与装在车架上的液压制动主缸相连通。主缸中的活塞可由驾驶员通过制动踏板来操纵。

制动系统不工作时,制动鼓的内圆面与制动蹄摩擦片的外圆面之间保持由一定的间隙,使车轮和制动鼓可以自由转动。

要使行驶中的汽车减速,驾驶员应踩下制动踏板,通过推杆和主缸活塞,使主缸内的油液在一定压力下流入轮缸,并通过两个轮缸活塞推动两制动蹄绕支撑销转动,上端向两边分开而以其摩擦片压紧在制动鼓的内圆面上。这样,不旋转的制动蹄就对旋转的制动鼓作用一个摩擦力矩,其方向与车轮行驶方向相反。制动鼓将该力矩传到车轮后,由于车轮与路面间有附着作用,车轮对路面作用一个向前的圆周力,同时路面也对车轮作用着一个向后的反作用力,即制动力。制动力由车轮经过车桥和悬架传给车架及车身,迫使整个汽车产生一定的减速度,制动力越大,则汽车减速度越大。当放开制动踏板时,复位弹簧将制动蹄拉回复位,摩擦力矩和制动力消失,制动作用即行终止。

图1-1

二.汽车制动系统方案确定

汽车制动系统的设计是一项综合性、系统性的设计,它涉及到制动系统的整体设计和零件设计,设计要求中既体现了对整体的要求,又有对各零件各自性能的要求。

对制动系整体性能,除了上面所说的以外,还有使用性能良好,故障少等要求。对零部件除了能实现各自功能外,还要求它与其他组装起来的配合能力,协作能力良好,因此,在制动系统设计前,应先提出制动系统综合设计方案。

2.1 汽车制动器形式的选择

1.制动器按其直接作用对象的不同可分为车轮制动器和中央制动器。前者的旋转元件固定装在车轮或半轴上,即制动力矩直接作用在两侧车轮上。后者的制动力矩必须经过驱动桥在分配到两侧车轮上。车轮制动器一般用于行车制动,也有兼用第二制动和驻车制动的。中央制动器用于驻车制动,其优点式制动力矩须经过驱动轴放大后传到车轮。因而容易满足操纵手力小的要求,但在应急制动时往往造成传动轴超载。现在,由于车速高,对应急制动的可靠性要求更严格。在中、高级轿车及总重在15T以下的货车上,多在后轮制动器上附加手动机械驱动机构,也不再设置中央制动器。

2.制动器所用张开式装置的型式可分为液压轮缸、非平衡式凸轮式、平衡凸轮式、楔块式机械张开机构

3.制动系按制动能量的传输方式制动系统可分为机械式、液压式、气压式、电磁式等。同时采用两种以上传能方式的制动系称为组合式制动系统。本次设计的轻型货车采用的是液压式制动系统。

4.一般制动器都是通过其中的固定元件对旋转元件施加制动力矩,使后者的旋转角速度降低,同时依靠车轮与地面的附着作用,产生路面对车轮的制动力以使汽车减速。凡利用固定元件与旋转元件工作表面的摩擦而产生制动力矩的制动器都成为摩擦制动器。目前汽车所用的摩擦制动器就其摩擦副的结构型式可分为鼓式和盘式带式三大类。他们的区别在于前者的摩擦副中的旋转元件为制动鼓,其圆柱面为工作表面;后者的摩擦副中的旋转元件为圆盘壮制动盘,其端面为工作表面。带式之用做中央制动器。

本次设计轻型货车制动器为双鼓式液压轮缸式制动器

2.2 鼓式制动器的优点及其分类

鼓式制动器具有自刹作用:由于刹车时令蹄片外张,车轮旋转连带着外张的刹车鼓扭曲一个角度,刹车时蹄片外张力(刹车制动力)越大,则情形就越明显,因此,一般大型车辆还是使用鼓式刹车,除了成本较低外,大型车与小型车的鼓刹,差别只有大型车采用气动辅助,而小型车采用真空辅助来帮助刹车。鼓式制动器制造技术要求比较低,因此制造成本要比碟式刹车低。所以本次设计所采用的制动器为鼓式制动器。

鼓式制动器有内张型和外束型两种。前者的制动鼓以内圆为工作表面,应用广泛。后者制动鼓的工作表面则是外圆柱面,应用较少。

鼓式制动器按蹄的类型还分为领从蹄式制动器如图a,双领蹄式如图b,双向双领蹄式如图c,双从蹄式如图d,单向自增力式如图e,双向自增力式制动器如图f。比较各种制动器的效能因数于摩擦系数可知:增力式制动器效能最高、双领蹄次之、领从蹄又次之、而双从蹄效能最低。但若就效能因数稳定性而言,名词排列正好相反,双从蹄最好,增力式最差。

双领蹄式制动器正向效能相当高,但倒车时则变成双从蹄式,效能大降。很多中级轿车的前轮制动器采用双领蹄式,这是由于这类汽车前进制动时前轴的动轴荷及附着力大于后轴,倒车制动时则相反,正与这种制动器的特点相适应。

双向双领蹄式制动器在前进和倒退制动时效能不变,故广泛应用于中,轻型货车及部分轿车的前后轮。但用作后轮制动器时需另设中央制动器。

双领蹄式制动器荷双向双领蹄式制动器中有两个轮缸。双领蹄式制动器两蹄片各有其固定支点,并用各具有一个活塞的两个轮缸张开蹄片。双向双领蹄式制动器,两蹄片浮动。用各有两个活塞的轮缸张开双蹄片。与双领蹄式制动器比较,双向双领蹄式制动器的特点式制动鼓无论朝哪个方向转动,制动效能都不变。

增力式制动器的两蹄片之间相互连接,两蹄都式领蹄,次领蹄的轮缸张开后的作用效果很西欧啊或次领蹄的轮缸不存在张开。然而由主领蹄的自行增势作用

所造成且比主领蹄张开力后大得多的支点反力F传到次领蹄的下端,成为次领蹄的张开力,采用增力式制动器后,及时制动驱动机构中不用伺服装置,也可以借很西欧啊的踏板力得到很大的制动力矩。但因其效能大不稳定且效能因数太高容易发生制动自馈,故设计时应妥善选择几何参数,吧效能因数限制在一定程度,且需选用摩擦性能稳定的摩擦片。

单向增力时制动器在倒车制动时效能大为降低,之有少数轻,中型货车和轿车用作前轮制动器。

图2-1

此外,双领蹄式制动器,由于其结构呈中心对称,因而领蹄对鼓作用的合力恰好相互平行,属于平衡式制动器。领从蹄与其他型式制动器均不能保证这种平衡,是非平衡式制动器。非平衡式制动器将对轮毂轴成造成附加径向载荷而且领蹄或次领蹄摩擦片表面单位压力大于从蹄磨损较严重,为使衬片寿命均衡可将从

蹄式的衬片包角适当减小。

由于本次设计的是轻型货车制动器,汽车在制动时轴荷要前移原理前轮的制动力应大于后轮,如果后轮制动力大于前轮且先制动于后轮即后轮先抱死时汽车将出现制动跑偏或侧滑现象,这将极易造成严重的交通事故!所以本次设计前轮选用双领蹄增力式制动器,后轮选用领从蹄式鼓式制动器。

2.3 盘式制动器的缺点

盘式制动器的缺点:

效能较低、难以完全防止尘污和锈蚀、兼用于驻车制动时,需要加装的驻车制动传动装置较鼓式制动器复杂。

盘式制动器又称为碟式制动器,这种制动器兼作驻车制动器时,所需附加的手驱动机构比较复杂,摩擦片的耗损量较大,成本贵,衬块工作面小,磨损快,使用寿命短,需要用高材质的衬块,需要的制动液压高,必须要有助力装置的车辆才能使用,所以只能适用于轿车和一些微型车上,不适合用于货车上,因此我们选用鼓式制动器。

2.4 制动驱动机构的结构形式

制动驱动机构用于将驾驶员或其它力源的力传给制动器,使之产生需要的制动转矩。

制动系统工作的可靠性在很大程度上取决于制动驱动机构的结构和性能。所以首先保证制动驱动机构工作可靠性;其次是制动力的产生和撤除都应尽可能快,充分发挥汽车的制动性能;再次是制动驱动机构操纵轻便省力;最后是加在踏板上的力和踩下踏板的距离应该与制动器中产生的制动力矩有一定的比例关系。保证汽车在最理想的情况下产生制动力矩。

根据制动力源的不同,制动驱动机构一般可以分为简单制动、动力制动和伺服制动三大类。

2.4.1简单制动系

简单制动系即人力制动系,是单靠驾驶员作用于制动踏板上或手柄上的力作为制动力源,而力的传递方式又有机械式和液压式两种。

机械式的靠杆系或钢丝绳传力,结构简单,造价低廉,工作可靠,但机械效率低,传动比小,润滑点多,且难以保证前后轴制动力的正确比例和左右轮制动力的均衡所以在汽车的行车制动装置中已被淘汰。因为这种方式结构简单、经济性好,工作可靠等优点广泛地应用于中,小型汽车的驻车制动器中。

液压制动用于行车制动装置。制动的优点是作用滞后时间短(0.1s~0.3s),工作压力大(可达10MPa~12MPa),缸径尺寸小,可以安装在制动器内部作为制动蹄的张开机构或制动块的压紧机构,而不需要制动臂等传动件。这样就减少了非黄载质量。液压制动也有器缺点。主要是过度受热后会有一部分制动液液化,在管路中形成气泡,严重影响液压传输,使制动系效能降低,甚至完全失效,液压制动广泛应用在轿车,轻型货车及一部分中型货车上。

2.4.2动力制动系

动力制动即利用发动机的动力转化而成,并表现为气压或液压形式的势能作为汽车制动的全部力源,驾驶员施加于踏板或手柄上的力仅用于回路中的控制元件的操纵。从而可式踏板力较小,同时又又适当的踏板行程。

1.气压制动系

气压制动系是动力制动系最常见的型式,由于可获得较大的制动驱动力,且主车与被拖的挂车以及汽车列车之间制动驱动系统的连接装置结构简单、连接和断开均很方便,因此被广泛用于总质量为8t以上尤其是15t以上的载货汽车、越野汽车和客车上。但气压制动系必须采用空气压缩机、储气筒、制动阀等装置,使其结构复杂、笨重、轮廓尺寸大、造价高;管路中气压的产生和撤除均较慢,作用滞后时间较长(0.3s~0.9s),因此,当制动阀到制动气室和储气筒的距离较远时,有必要加设气动的第二级控制元件——继动阀(即加速阀)以及快放阀;管

路工作压力较低(一般为0.5MPa~0.7MPa),因而制动气室的直径大,只能置于制动器之外,再通过杆件及凸轮或楔块驱动制动蹄,使非簧载质量增大;另外,制动气室排气时也有较大噪声。

2.气顶液式制动系

气顶液式制动系是动力制动系的另一种型式,即利用气压系统作为普通的液压制动系统主缸的驱动力源的一种制动驱动机构。它兼有液压制动和气压制动的主要优点。由于其气压系统的管路短,故作用滞后时间也较短。显然,其结构复杂、质量大、造价高,故主要用于重型汽车上,一部分总质量为9t—11t的中型汽车上也有所采用。

3.全液压动力制动系

全液压动力制动系除了具有一般液压制动系统的优点外,还具有操纵轻便、制动反应快、制动能力强、受气阻影响较小、易于采用制动力调节装置和防滑移装置,及可与动力转向、液压悬架、举升机构及其他辅助设备共用液压泵和储油罐等优点。但其结构复杂、精密件多,对系统的密封性要求也较高,并未得到广泛应用,目前仅用于某些高级轿车、大型客车以及极少数的重型矿用自卸汽车上。

2.4.3伺服制动系

伺服制动系是在人力液压制动系中增加由其他能源提供的助力装置,使人力与动力并用。在正常情况下,其输出工作压力主要由动力伺服系统产生,而在伺服系统失效时,仍可全由人力驱动液压系统产生一定程度的制动力。因此,在中级以上的轿车及轻、中型客、货车上得到了广泛的应用。

按伺服系统能源的不同,又有真空伺服制动系、气压伺服制动系和液压伺服制动系之分。其伺服能源分别为真空能(负气压能)、气压能和液压能。

综上所述,经过比较与分析,本次设计轻型货车采用液压传动。

2.5 制动管路的形式选择

为了提高制动驱动机构的工作可靠性,保证行车安全,制动管路一般都采用分立系统,即全车的所有行车制动器的液压或气压管路分属于两个或更多的相互隔绝的回路。这样,即使其中一个回路失效后,另一个回路仍然可以起作用。一般多设计成双回路。

下图为双轴汽车的液压式制动驱动机构的双回路系统的5种分路方案图。选择分路方案时,主要是考虑其制动效能的损失程度、制动力的不对称情况和回路系统的复杂程度等。

(a)(b)(c)(d)(e)图2—2双轴汽车液压双回路系统的5种分路方案图

1—双腔制动主缸2—双回路系统的一个回路3—双回路系统的另一分路图2—2(a)为一轴对一轴II型,前轴制动器与后桥制动器各用一各回路。其特点是管路布置最为简单,可与传统的单轮缸鼓式制动器相配合使用,成本较低,目前在各类汽车特别使商用车上用的最广泛。对于这种形式,若后轮制动回路失效,则一旦前轮抱死即极易丧失转弯制动能力。对于采用前轮驱动因而前轮制动强于后轮的乘用车,当前制动回路失效而单用后桥制动时,制动力将严重不足,并且,若后桥负荷小于前轴负荷,则踏板力过大时易使后桥车轮抱死而汽车侧滑。

图2—2(b)X型的结构也很简单,直行制动时任一回路失效,剩余的总制动力都能保持正常值的50%,但是,一旦某一管路破损造成制动力不对称,此时前

轮超制动力大的一边绕主销转动,使汽车丧失稳定性。因此这种方案适用于主销偏移距为(达20mm)的汽车上,这时,不平衡的制动力使车轮反向转动,改善了汽车稳定性。

图2—3(c)一轴版对半轴HI型。两侧前制动器的半数轮缸和全部后轮制动器轮缸属一个回路,其余的前轮缸属另一回路。

图2—4(d)半轴一轮对半轴一轮LL型。两个回路分别对两侧前轮制动器的半数轮缸和一个后轮制动器器作用。

图2—5(e)双半轴对双半轴HH型。每个回路均只对每个前、后制动器的半数轮缸器作用。这种形式的双回路制动效能最好。

HI,LL,HH型的结构均比较复杂。LL型与HH型在任一回路失效时,前、后制动力的比值均与正常情况下相同,剩余的总制动力可达到正常值的50%左右。HI型单用一轴半回路时剩余制动力较大,但此时与LL型一样,紧急制动情况下后轮极易先抱死。

综合各个方面的因素和比较各回路形式的优缺点。本次设计选择了半轴一轮对半轴一轮(LL)型回路。

2.6 液压制动主缸方案的设计

为了提高汽车的行驶安全性,现代汽车的行车制动装置均采用双回路制动系统。双回路制动系统的制动主缸为串列双腔制动主缸,因此用与单回路制动系的单腔制动主缸已被淘汰。制动主缸由灰铸铁制造,也可以采用低碳钢冷挤成形;活塞可用灰铸铁,铝合金或中碳钢制造。

主缸的作用是将驾驶员踩到制动踏板上的压力传递到四个车轮的制动器以使汽车停车。主缸将驾驶员在踏板上的机械压力转变为液压力,在车轮制动器处液压力转(变为机械力。主缸利用液体不可压缩原理,将驾驶员的踏板运动传送到车轮制动器。主缸由储液罐和主缸体构成。储液罐提供主缸工作的制动液。现在

的所有储液罐都是分体设计,即两个独立的活塞有两个独立的储液区域。分体设计分别为前轮和后轮,或一个前轮一个后轮的液压系统供液,以防一个液压系统失效影响另一个液压系统。本次设计采用的制动主缸为串列双腔制动主缸。

如图所示,该主缸相当于两个单腔制动主缸串联在一起而构成。储蓄罐中的油经每一腔的进油螺栓和各自旁通孔、补偿孔流入主缸的前、后腔。在主缸前、后工作腔内产生的油压,分别经各自得出油阀和各自的管路传到前、后制动器的轮缸。

主缸不制动时,前、后两工作腔内的活塞头部与皮碗正好位于前、后腔内各自得旁通孔和补偿孔之间。

当踩下制动踏板时,踏板传动机构通过制动推杆15推动后腔活塞12前移,到皮碗掩盖住旁通孔后,此腔油压升高。在液压和后腔弹簧力的作用下,推动前腔活塞7前移,前腔压力也随之升高。当继续踩下制动踏板时,前、后腔的液压继续提高,使前、后制动器制动。

撤出踏板力后,制动踏板机构、主缸前、后腔活塞和轮缸活塞在各自的回位弹簧作用下回位,管路中的制动液在压力作用下推开回油阀流回主缸,于是解除制动。

若与前腔连接的制动管路损坏漏油时,则踩下制动踏板时,只有后腔中能建立液压,前腔中无压力。此时在液压差作用下,前腔活塞7迅速前移到活塞前端顶到主缸缸体上。此后,后缸工作腔中的液压方能升高到制动所需的值。若与后腔连接的制动管路损坏漏油时,则踩下制动踏板时,起先只有后缸活塞12前移,而不能推动前缸活塞7,因后缸工作腔中不能建立液压。但在后腔活塞直接顶触前缸活塞时,前缸活塞前移,使前缸工作腔建立必要的液压而制动。

由此可见,采用这种主缸的双回路液压制动系,当制动系统中任一回路失效时,串联双腔制动主缸的另一腔仍能工作,只是所需踏板行程加大,导致汽车制动距离增长,制动力减小。大大提高了工作的可靠性。

三. 制动系统主要参数的确定

3.1 轻型货车主要技术参数

表3-1设计参数

3.2 同步附着系数的0?的确定

轿车制动制动力分配系数β采用恒定值得设计方法。

欲使汽车制动时的总制动力和减速度达到最大值,应使前、后轮有可能被制

动同步抱死滑移,这时各轴理想制动力关系为

F 1μ+F 2μ=?

G (3-1)

F 1μ/ F 2μ=(L 2-?

G )/(L 1-?hg) (3-2)

式中:F 1μ:前轴车轮的制动器制动力

F 2μ:后轴车轮的制动器制动力

G :汽车重力

L 1:汽车质心至前轴中心线的距离

L 2:汽车质心至后轴中心线的距离

hg :汽车质心高度

由上式可知,前后轮同时抱死时前、后轮制动器制动力是?的函数,如果

汽车前后轮制动器制动力能按I 曲线的要求匹配,则能保证汽车在不同的附着系

数的路面制动时,前后轮同时抱死。

然而,目前大多数汽车的前后制动器制动力之比为定值。常用前制动器制

动力与汽车总制动力之比来表明分配的比例,称为制动器制动力分配系数,并以

符号β 来表示,即

β= F 1μ/ F 2μ (3-3)

当汽车在不同?值的路面上制动时,可能有以下3种情况。

1.当?<0?时,β线在I 线下方,制动时总是前轮先抱死。这是一种稳定工

况,但在制动时汽车有可能丧失转向能力,附着条件没有充分利用。

2.当?>0?时,β线在I 线上方,制动时总是后轮先抱死,因而容易发生后

轴侧滑使汽车失去方向稳定性。

3.当?=0?时,前、后轮同时抱死,是一种稳定的工况,但也失去转向能力。

综上所述,如果要确定β值首先要选取同步附着系数0?。由于我国道路条件

还较差,车速也不可能设计太高,推荐同步系数的选择轿车0?=0.55~0.8一般货

车取0?=0.45-0.7 本次轻型货车设计取取0?=0.7 取?=0.6。

3.3 前、后轮制动力分配系数β的确定

制动力分配系数β

β=(b+0??hg )/L (3-4)

得:β=(1260+0.7?1420)/4200=0.54

式中 0?:同步附着系数 0?=0.7

b :汽车重心至后轴中心线的距离

L :轴距

hg:汽车质心高

3.4 鼓式制动器主要参数的确定

1.制动鼓直径D

货车D/Dr=0.70~0.83

这里选D/Dr=400/20×25.4=0.78mm R=200mm

由于轻型货车的轮胎规格为7.50R20

前后轮制动鼓直径D=400mm

2.摩擦衬片宽度b 和 包角θ

b/D=0.16-0.26取0.25,故b=100mm

制动鼓半径R 确定后,摩擦衬片的宽度b 和包角θ便决定了衬片的摩擦面积Ap ,

Ap 越大则制动时所受单位面积的正压力和能量负荷越小,从而磨损特性越好Ap

随汽车总重而增加,给定的轻型总重量Ga=8930×9.8/1000=87.51KN 查汽车设计

书得Ap=250~400 (cm 2)

Ap==Rb θ (3-5)

Ap==Rb θ=200×100×100×π/180=349.06 cm 2

选取前轮摩擦衬片包角θ

1=θ2=100° 摩擦衬片起始角θ01=θ02=40°

后轮摩擦衬片包角θ=90°

摩擦衬片起始角θ0=90°—θ/2=90°—90°/2=45°

3.制动器中心到张开力P作用线的距离e

在保证轮缸或制动凸轮能够布置于制动鼓内的条件下,应使距离e尽可能大,以提高制动效能。e=0.4Dmm=160mm

4.制动蹄支承点位置坐标a和c

a取0.8R=160mm

c取0.8R=160mm

5.整车制动性能

同步附着系数

?按公式计算

?=(Lβ-b)/hg (3-6)

式中: L---轴距

Hg—重心高

β--制动分配系数

变换公式得:

β=(b+

?hg)/L (3-7)

β=(1260+0.7?1420)/4200=0.54

?=(4200?0.54-1260)/1420=0.709

6.适应性系数ε

适应性系数ε也称附着系数利用率,它表示整车最大可能利用的制动力矩与附着力之比,既表征在各种道路上附着重量利用的程度。当前轮首先抱死时

ε=L

2/ L

2

+(

?-?)hg (3-8)

??

?时,当后轮首先抱死时:

ε=L

1/ L

1

+(?-

?)hg

??

?时,取?=0.7,

ε=L

1/ L

1

+(?-

?)hg=1260/1260+0.03?830=0.99

??

?时,取?=0.6,

ε=L

2/ L

2

+(

?-?)hg=2700/2700+0.07?830=0.97

可见当??

?时ε更大一些。

制动系统匹配设计计算分解

制动系统匹配设计计算 根据AA车型整车开发计划,AA车型制动系统在参考BB轿车底盘制造平台的基础上进行逆向开发设计,管路重新设计。本计算是以选配C发动机为基础。 AA车型的行车制动系统采用液压制动系统。前、后制动器分别为前通风盘式制动器和实心盘式制动器,制动踏板为吊挂式踏板,带真空助力器,制动管路为双回路对角线(X型)布置,采用ABS。驻车制动系统为机械式手动后盘式制动,采用远距离棘轮拉索操纵机构。因AA车型与参考样车BB的整车参数接近,制动系统采用了BB样车制动系统,因此,计算的目的在于校核前/后制动力、最大制动距离、制动踏板力、驻车制动手柄力及驻坡极限倾角。 设计要符合GB 12676-1999《汽车制动系统结构、性能和试验方法》;GB 13594-2003《机动车和挂车防抱制动性能和试验方法》和GB 7258-2004《机动车运行安全技术条件》的要求,其中的踏板力要求≤500N,驻车制动停驻角度为20%(12),驻车制动操纵手柄力≤400N。 制动系统设计的输入条件 整车基本参数见表1,零部件主要参数见表2。 表1 整车基本参数

表2 零部件主要参数制动系统设计计算 1.地面对前、后车轮的法向反作用力 地面对前、后车轮的法向反作用力如图1所示。 图1 制动工况受力简图由图1,对后轮接地点取力矩得:

式中:FZ1(N):地面对前轮的法向反作用力;G(N):汽车重力;b(m):汽车质心至后轴中心线的水平距离;m(kg):汽车质量;hg(m):汽车质心高度;L(m):轴距;(m/s2):汽车减速度。 对前轮接地点取力矩,得: 式中:FZ2(N):地面对后轮的法向反作用力;a(m):汽车质心至前轴中心线的距离。 2.理想前后制动力分配 在附着系数为ψ的路面上,前、后车轮同步抱死的条件是:前、后轮制动器制动力之和等于汽车的地面附着力;并且前、后轮制动器制动力Fm1、Fm2分别等于各自的附着力,即:

制动系统设计开题报告

毕业设计(论文)开题报告

1 选题的背景和意义 1.1 选题的背景 在全球面临着能源和环境双重危机的严峻挑战下世界各国汽车企业都在寻求新的解决方案一一如开发新能源技术,发展新能源汽车等等然而. 新能源汽车在研发过程中已出现!群雄争霸的局面在能源领域. 有压缩天然气,液化石油气,煤炼乙醇,植物乙醇,生物乙醇,,生物柴油,甲醇,二甲醚,合成油等等新能源动力汽车在转换能源方面有燃料电池汽车氢燃料汽车纯电动汽车轮毅电机车等等。选择哪种新能源技术作为未来汽车产业发展的主要方向是摆在中国汽车行业面前的重要课题。据有关专家分析进入新世纪以来,以汽车动力电气化为主要特征的新能源电动汽车技术突飞猛进。其中油电混合动力技术逐步进入产业化锂动力电池技术取得重大突破。新能源电动汽车技术的变革为我国车用能源转型和汽车产业化振兴提供了历史机遇[1]。 作为 21 世纪最清洁的能源———电能,既是无污染又是可再生资源,因此电动汽车应运而生,随着人民生活水平和环保觉悟的提高电动汽车越来越受到广泛关注[2]。传统车辆的转向、驱动和制动都通过机械部件连接来操纵,而在电动汽车中,这些系统操纵机构中的机械部件(包括液压件)有被更紧凑、反应更敏捷的电子控制元件系统所取代的趋势。加上四轮能实现± 90°偏转的四轮转向技术,车辆可实现任意角度的平移,绕任意指定转向点转向以及进行原地旋转。线控和四轮转向的有机结合,是当今汽车新技术领域的一大亮点,其突出特点就是操纵灵活和行驶稳定[3]。轮毂电机驱动电动车以其节能环保高效的特点顺应了当今时代的潮流,全方位移动车辆是解决日益突出的城市停车难问题的重要技术途径,因此,全方位移动的线控转向轮毂电机驱动电动车是未来先进车辆发展的主流方向之一。全方位移动车辆可实现常规行驶、沿任意方向的平移、绕任意设定点、零半径原地转向等转向功能[4]。 1.2 国内外研究现状及发展趋势 电动汽车的出现得益于19世纪末电池技术和电机技术的发展较内燃机成熟,而此时石油的运用还没有普及,电动车辆最早出现在英国,1834年Thomas Davenport 在布兰顿演示了采用不可充电的玻璃封装蓄电池的蓄电池车,此车的出现比世界上第一部内燃机型的汽车(1885年)早了半个世纪。1873年英国人Robert Davidson制造的一辆三轮车,它由一块铁锌电池向电机提供电力,这被认为是电动汽车的诞生,这也比第一部内燃机型的汽车早出现了13年。到了1881年,法国人Gustave Trouve 使用铅酸电池制造了第一辆能反复充电的电动汽车。此后三四十年间,电动汽车在当时的汽车发展中占据着重要位置,据统计,到1890年在全世界4200辆汽车中,有

基于MATLAB的汽车制动系统设计与分析软件开发.

基于MAT LAB 的汽车制动系统 3 设计与分析软件开发 孙益民(上汽汽车工程研究院 【摘要】根据整车制动系统开发需要, 利用MAT LAB 平台开发了汽车制动系统的设计和性能仿真软件。 该软件用户界面和模块化设计方法可有效缩短开发时间, 提高设计效率。并以上汽赛宝车为例, 对该软件的可行性进行了验证。 【主题词】制动系汽车设计 统分成两个小闭环系统, 使设计人员更加容易把 1引言 制动性能是衡量汽车主动安全性的主要指标。如何在较短的开发周期内设计性能良好的制动系统一直是各汽车公司争相解决的课题。 本文拟根据公司产品开发工作需要, 利用现有MA T LAB 软件平台, 建立一套面向设计工程师, 易于调试的制动开发系统, 实现良好的人机互动, 以提高设计效率、缩短产品开发周期。 握各参数对整体性能的影响, 使调试更具针对性。 其具体实施过程如图1所示。 3软件开发

与图1所示的制动系统方案设计流程对应, 软件开发也按照整车参数输入、预演及主要参数确定, 其他参数确定和生成方案报告4个步骤实现。3. 1车辆参数输入 根据整车产品的定位、配置及总布置方案得出空载和满载两种条件下的整车质量、前后轴荷分配、质心高度, 轮胎规格及额定最高车速。以便获取理想的前后轴制动力分配及应急制动所需面临的极限工况。 3. 2预演及主要参数确定 在获取车辆参数后, 设计人员需根据整车参数进行制动系的设计, 软件利用MAT LAB 的G U I 工具箱建立如图2所示调试界面。左侧为各主要参数, 右侧为4组制动效能仿真曲线, 从曲线可以查看给定主要参数下的制动力分配、同步附着系数、管路压力分配、路面附着系数利用率随路况的变化曲线, 及利用附着系数与国标和法规的符合现制动器选型、性能尺寸调节, 查看液压比例阀、感载比例阀、射线阀等多种调压工况的制动效能, 并通过观察了 2汽车制动系统方案设计流程的优化 从整车开发角度, 制动系统的开发流程主要包括系统方案设计、产品开发和试验验证三大环节。制动系统的方案设计主要包含结构选型、参数选择、性能仿真与评估, 方案确定4个环节。以前, 制动系统设计软件都是在完成整个流程后, 根据仿真结果对初始设计参数修正。因此, 设计人员往往要反复多次方可获得良好的设计效果, 而且, 在调试过程中, 一些参数在特定情况下的相互影响不易在调试中发现, 调试的尺度很难把握。 本文将整车设计流程划分为两个阶段:主要参数的预演和确定、其他参数的预演和参数确定。即根据模块化设计思想, 将原来一个闭环设计系 收稿日期:2004-12-27 3本文为上海市汽车工程学会2004年(第11届学术年会优秀论文。

轿车鼓式制动器设计毕业设计

第1章绪论 1.1制动系统设计的意义 汽车是现代交通工具中用得最多,最普遍,也是最方便的交通运输工具。汽车制动系是汽车底盘上的一个重要系统,它是制约汽车运动的装置。而制动器又是制动系中直接作用制约汽车运动的一个关键装置,是汽车上最重要的安全件。汽车的制动性能直接影响汽车的行驶安全性。随着公路业的迅速发展和车流密度的日益增大,人们对安全性、可靠性要求越来越高,为保证人身和车辆的安全,必须为汽车配备十分可靠的制动系统。 通过查阅相关的资料,运用专业基础理论和专业知识,确定汽车制动器的设计方案,进行部件的设计计算和结构设计。使其达到以下要求:具有足够的制动效能以保证汽车的安全性;同时在材料的选择上尽量采用对人体无害的材料。 1.2制动系统研究现状 车辆在行驶过程中要频繁进行制动操作,由于制动性能的好坏直接关系到交通和人身安全,因此制动性能是车辆非常重要的性能之一,改善汽车的制动性能始终是汽车设计制造和使用部门的重要任务。当车辆制动时,由于车辆受到与行驶方向相反的外力,所以才导致汽车的速度逐渐减小至零,对这一过程中车辆受力情况的分析有助于制动系统的分析和设计,因此制动过程受力情况分析是车辆试验和设计的基础,由于这一过程较为复杂,因此一般在实际中只能建立简化模型分析,通常人们主要从三个方面来对制动过程进行分析和评价: (1)制动效能:即制动距离与制动减速度; 1

(2)制动效能的恒定性:即抗热衰退性; (3)制动时汽车的方向稳定性; 目前,对于整车制动系统的研究主要通过路试或台架进行,由于在汽车道路试验中车轮扭矩不易测量,因此,多数有关传动系!制动系的试验均通过间接测量来进行汽车在道路上行驶,其车轮与地面的作用力是汽车运动变化的根据,在汽车道路试验中,如果能够方便地测量出车轮上扭矩的变化,则可为汽车整车制动系统性能研究提供更全面的试验数据和性能评价。 1.3制动系统设计内容 (1)研究、确定制动系统的构成 (2)汽车必需制动力及其前后分配的确定 前提条件一经确定,与前项的系统的研究、确定的同时,研究汽车必需的制动力并把它们适当地分配到前后轴上,确定每个车轮制动器必需的制动力。 (3)确定制动器制动力、摩擦片寿命及构造、参数 制动器必需制动力求出后,考虑摩擦片寿命和由轮胎尺寸等所限制的空间,选定制动器的型式、构造和参数,绘制布置图,进行制动力制动力矩计算、摩擦磨损计算。 (4)制动器零件设计 零件设计、材料、强度、耐久性及装配性等的研究确定,进行工作图设计。 1.4制动系统设计要求 制定出制动系统的结构方案,确定计算制动系统的主要设计参数制动器主要参数设计和液压驱动系统的参数计算。利用计算机辅助设计绘制装配图 2

最新汽车制动系统毕业设计

摘要 Formula SAE比赛由美国车辆工程师学会(SAE)于1979年创立,每年在世界各地有600余支大学车队参加各个分站赛,2011年将在中国举办第一届中国大学生方程式赛车,本设计将针对中国赛程规定进行设计。 本说明书主要介绍了大学生方程式赛车制动的设计,首先介绍了汽车制动系统的设计意义、研究现状以及设计目标。然后对制动系统进行方案论证分析与选择,主要包括制动器形式方案分析、制动驱动机构的机构形式选择、液压分路系统的形式选择和液压制动主缸的设计方案,最后确定方案采用简单人力液压制动双回路前后盘式制动器。除此之外,还根据已知的汽车相关参数,通过计算得到了制动器主要参数、前后制动力矩分配系数、制动力矩和制动力以及液压制动驱动机构相关参数。最后对制动性能进行了详细分析。 关键字:制动、盘式制动器、液压

Abstract Formula SAE race was founded in 1979 by the American cars institute of Engineers every year more than 600 teams participate in various races around the world,China will hold the first Formula one for Chinese college students,the design will be for design of the provisions of the Chinese calendar. This paper mainly introduces the design of breaking system of the Formula Student.First of all,breaking system's development,structure and category are shown,and according to the structures,virtues and weakness of drum brake and disc brake analysis is done. At last, the plan adopting hydroid two-backway brake with front disc and rear disc.Besides, this paper also introduces the designing process of front brake and rear break,braking cylinder,parameter's choice of main components braking and channel settings and the analysis of brake performance. Key words:braking,braking disc,hydroid pressure

毕业设计-制动器开题报告

上海工程技术大学 毕业设计(论文) 开题报告 题目SY1046载货汽车制动系统设计 汽车工程学院(系)车辆工程专业班 学生姓名 学号 指导教师 开题日期:2016 年3 月14 日

开题报告 一、毕业设计题目的来源、理论、实际意义和发展趋势 1、题目:SY1046载货汽车制动系统设计 2、题目来源:生产实践 3、意义: 从汽车诞生时起,车辆制动系统在车辆的安全方面就扮演着至关重要的角色。近年来,随着车辆技术的进步和汽车行驶速度的提高,这种重要性表现得越来越明显。汽车制动系统种类很多,形式多样。传统的制动系统结构型式主要有机械式、气动式、液压式、气-液混合式。它们的工作原理基本都一样,都是利用制动装置,用工作时产生的摩擦热来逐渐消耗车辆所具有的动能,以达到车辆制动减速,或直至停车的目的。伴随着节能和清洁能源汽车的研究开发,汽车动力系统发生了很大的改变,出现了很多新的结构型式和功能形式。新型动力系统的出现也要求制动系统结构形式和功能形式发生相应的改变,例如电动汽车没有内燃机,无法为真空助力器提供真空源,一种解决方案是利用电动真空泵为真空助力器提供真空。[1]制动系统在汽车中是非常重要的,当一辆车在高速上行驶的时候,制动系统突然出现问题导致汽车无法制动,这个是非常危险的,国内很多报道都报道过,某某车辆由于制动系统失灵出现了严重的事故,制动系统作用是:使行驶中的汽车按照驾驶员的要求进行强制减速甚至停车;使已停驶的汽车在各种道路条件下(包括在坡道上)稳定驻车;使下坡行驶的汽车速度保持稳定。对汽车起制动作用的只能是作用在汽车上且方向与汽车行驶方向相反的外力,而这些外力的大小都是随机的、不可控制的,因此汽车上必须装设一系列专门装置以实现上述功能。 2013年7月14日至2014年3月1日期间生产的2013款翼虎汽车,共计191368辆。被福特召回,原因是由于制动真空助力器密封圈缺少润滑油脂,导致密封圈过早磨损,极端情况下密封圈会与隔板分离,导致制动踏板变硬,车主会感觉到真空助力不足从而需要更用力地踩刹车,存在安全隐患。长安福特汽车有限公司将为召回范围内的车辆免费检查并更换有潜在风险的制动真空助力器,以消除安全隐患。 可想而知,汽车拥有传动系统、制动系统、行走系统、转向系统,而可以看出,制动系统是汽车四大系统之一。 本课题研究的是SY1046载货汽车制动系统的设计,这个制动系统对整车来言是重要部件之一,设计的要求双管路前、后鼓式制动系统,进行动力分配,同时进行相关关键部件的校核运算。本设计能充分体现大学期间的知识掌握程度和创新思想,具有重要意义。 4、国内外研究现状与趋势 (1)国外研究现状与趋势:已经普遍应用的液压制动现在已经是非常成熟的技术,随着人们对制动性能要求的提高,防抱死制动系统、驱动防滑控制系统、电子稳定性控制程序、主动避撞技术等功能逐渐融人到制动系统当中,需要在制动系统上添加很多附加装置来实现这些功能,这就使得制动系统结构复杂化,增加了液压回路泄漏的可能以及装配、维修的难度,制动系统要求结

汽车理论课程设计制动性能计算

序号:汽车理论课程设计说明书题目:汽车制动性计算 班级: 姓名: 学号: 序号: 指导教师:

目录 1.题目要求 (3) 2.计算步骤 (4) 3.结论 (8) 4.改进措施 (9) 5.心得体会 (9) 6.参考资料 (9)

1. 题目要求 汽车制动性计算 数据: 1 ) 根据所提供的数据,绘制:I 曲线,β线,f 、r 线组; 2) 绘制利用附着系数曲线;绘制出国家标准(GB 12676-1999汽车制动5) 对制动性进行评价。 6) 此车制动是否满足标准GB 12676-1999的要求如果不满足需要采取什么附加措施(要充分说明理由,包括公式和图) 注: 1、 符号中下标a 标示满载,如m a 、h ga 分别表示满载质量和满载质心高度 2、 符号中下标0标示空载,如m 0、h g0分别表示空载质量和空载质心高度

2. 计算步骤 1)由前后轮同时抱死时前后制动器制动力的关系公式: 绘出理想的前后轮制动器制动力分配曲线,即I曲线 由β曲线公式 绘出β曲线,由于空载时和满载时β相同,则β曲线相同。 f线组:当前轮抱死时, 得: r线组:当后轮抱死时, 得: 空载时,将G=3980*,h=,L=3.950m,a=2.200m,b=1.750m,φ=,,,,,,带入公式放在一个坐标系内,绘出空载时r,f曲线: 图1 空载时r,f,I线组 满载时,将G=9000*,h=1.170m,L=3.950m,a=2.95m,b=1m,φ=,,,,,,带入公式放 在一个坐标系内,绘出空载时r,f曲线:

图2 满载时r,f,I线组2)前轴利用附着系数 后轴利用附着系数 将数据带入可绘出利用附着系数与制动强度关系曲线:

汽车防抱死制动系统设计论文

摘要 防抱死制动控制系统(ABS)是在传统制动系统的基础上采用智能控制技术,在制动时自动调节制动力防止车轮抱死,充分利用道路附着力,提高制动方向稳定性和操纵稳定性,从而获得最大制动力且缩短制动距离,尽可能地避免交通事故发生的机电一体化安全装置。 本文根据防抱死制动控制系统的工作原理,应用汽车单轮运动的力学模型,分析了制动过程中的运动情况。采用基于车轮滑移率的防抱控制理论,根据车速、轮速来计算车轮滑移率。以MSP430F149单片机为核心,完成了输入电路、输出驱动电路及故障诊断等电路设计,阐述了ABS系统软件各功能模块的设计思想和实现方法,完成了ABS 检测软件、控制软件的设计。 课题所完成的汽车防抱死制动控制系统己通过模拟试验台的基本性能试验,结果表明:汽车防抱死制动控制系统的硬件电路设计合理可行,软件所采用的控制策略正确、有效,系统运行稳定可靠,改善了汽车制动系统性能,基本能够满足汽车安全制动的需要。 本文对汽车防抱死制动系统进行了数学建模,并在Matlab/Simulink 的环境下,对汽车常规制动系统和基于PID 控制器的防抱死制动系统的制动过程进行了仿真,通过对比分析,验证了基于PID 控制器的汽车防抱死制动系统具有良好的制动性能和方向操纵性。 关键词:防抱死制动系统(ABS);滑移率;控制策略;单片机;建模;仿真;

第一章绪论 1.1 防抱死制动系统概述 1.1.1 防抱死制动系统的产生 当汽车以较高的车速在表面潮湿或有冰雪的路面上紧急制动时,很可能会出现这样一些危险的情况:车尾在制动的过程中偏离行进的方向,严重的时候会出现汽车旋转掉头,汽车失去方向稳定性,这种现象称为侧滑;另一种情况是在制动过程中驾驶员控制不了汽车的行驶方向,即汽车失去方向可操纵性,若在弯道制动,汽车会沿路边滑出或闯入对面车道,即便是直线制动,也会因为失去对方向的控制而无法避让对面的障碍物。产生这些危险状况的原因在于汽车的车轮在制动过程中产生抱死现象,此时,车轮相对于路面的运动不再是滚动,而是滑动,路面作用在轮胎上的侧滑摩擦力和纵向制动力变得很小,路面越滑,车轮越容易出现抱死现象;同时汽车制动的初速度越高,车轮抱死所产生的危险性也越大。这将导致汽车可能会出现下面三种情况: ① 制动距离变长 ②方向稳定性变差,出现侧滑现象,严重时出现旋转掉头 ③ 方向操纵性丧失,驾驶员不能控制汽车的行驶方向 防抱死制动系统ABS(Anti-lock Braking System)是一种主动安全装置,它在制动过程中根据“车辆一路面”状况,采用电子控制方式自动调节车轮的制动力矩来达到防止车轮抱死的目的。即在汽车制动时使车轮的纵向处于附着系数的峰值,同时使其侧向也保持着较高的附着系数,防止车轮抱死滑拖,提高制动过程中的方向稳定性、转向控制能力和缩短制动距离,使制动更为安全有效。 随着汽车行驶速度的提高、道路行车密度的增大、以及人们对汽车行驶安全性的要

制动系统设计计算分析

制动系统计算分析 一制动技术条件: 1. 行车制动: 2. 应急制动: 3. 驻车制动: 在空载状态下,驻车制动装置应能保证机动车在坡度20%(对总质量为整备质量的1.2倍以下的机动车为15%),轮胎与地面的附着系数不小于0.7的坡道上正反两个方向上保持不动,其时间不应少于5分钟。

二制动器选型 1.最大制动力矩的确定 根据同步附着系数和整车参数,确定前后轴所需制动力矩的范围,最大制动力是汽车附着质量被完全利用的条件下获得的,设良好路面附着系数φ=0.7。满载情况下,确定前后轴制动器所需要的最大制动力矩。 为:前轴 Mu1=G*φ(b+φ*h g)*r e /L (N.m) 后轴 Mu2=G*φ(a-φ*h g)*r e /L (N.m) 或者 Mu1=β/(1-β)* Mu2 【β=(φ*h g+b)/L】 其中 r e -轮胎有效半径 a-质心到前轴的距离 b-质心到后轴的距离 h g -质心高度 L-轴距φ-良好路面附着系数 G-满载总重量(N;g=9.8m/s2) 同理:空载亦如此。 前轴;Mu11 后轴:Mu21 根据满载和空载的情况,确定最大制动力矩,此力满足最大值。 所以:前轮制动器制动力矩(单个)≥Mu1或Mu11/2 后轮制动器制动力矩(单个)≥Mu2或Mu21/2 2.行车制动性能计算(满载情况下) 已知参数:前桥最大制动力矩Tu1(N.m) 单个制动器 后桥最大制动力矩Tu2(N.m) 单个制动器 满载整车总质量M(kg)

Mu1= Tu1*φ*2 (N.m) Mu2= Tu2*φ*2 (N.m) Fu= (Mu1+ Mu2)/r e (N) ②制动减速度 a b=Fu/M (m/s2) ③制动距离 S= U a0*(t21+ t211 /2)/3.6+ U a02 /25.92* a b 其中:U a0 (km/h)-制动初速度, t21+ t211 /2 为气压制动系制动系作用时间(一般在0.3-0.9s) 3.驻车制动性能计算 满载下坡停驻时后轴车轮的附着力矩:Mf Mf=M*g*φ(a*cosα/L -h g*sinα/L)*r e (N.m) 其中附着系数φ=0.7 坡度20%(α=11.31o) 在20%坡上的下滑力矩:M滑 M滑=M*g*sinα*r e (N.m)驻车度α=11.31o 则Mf>M滑时,满足驻车要求。 三储气筒容量校核 设储气筒容积为V储,全部制动管路总容积为∑V管,各制动气室压力腔最大容积之和为∑V s , 其中∑V管约为∑Vs的25%-50%,V储/∑V s=20-40(推荐值)。

汽车盘式制动器设计

机械工程学院毕业设计 题目:汽车盘式制动器设计 专业:车辆工程 班级: 姓名: 学号: 指导教师: 日期:2016.5.26

目录 摘要 (3) 前言 (3) 1绪论 (4) 1.1 制动系统设计的意义 (4) 1.2 本次制动系统应达到的目标 (4) 2制动系统方案论证分析与选择 (4) 2.1 盘式制动器 (5) 2.2 简单制动系 (5) 2.3 动力制动系 (5) 2.4 伺服制动系 (6) 2.5 液压分路系统的形式的选择 (6) 2.6 液压制动主缸的设计方案 (6) 3盘式制动器概述 (8) 3.1制动盘 (8) 3.2制动摩擦衬块 (9) 3.3 盘式制动器操纵机构 (9) 4制动系统设计计算 (10) 4.1 相关主要参数 (10) 4.2 同步附着系数的分析 (11) 4.3 分析计算法向作用力 (11) 4.4 制动力矩分配系数的选取和计算 (12) 4.5 制动器制动力矩的确定 (12) 4.6 盘式制动器主要参数确定 (13) 4.7 盘式制动器的制动力计算 (15) 4.8 制动器主要零部件的结构设计 (16) 5液压制动驱动机构的设计计算 (17) 5.1 前轮制动轮缸直径d的确定 (17) 5.2 制动主缸直径0d的确定 (17) 5.3 制动踏板力p F和制动踏板工作行程p S (18) 第6章制动性能分析 (19) 6.1 制动性能评价指标 (20) 6.2 制动效能 (20) 6.3 制动效能的恒定性 (20) 6.4 制动时汽车方向的稳定性 (20) 6.5 制动器制动力分配曲线分析 (21) 6 .6制动减速度j和制动距离。 (22) 6.7 摩擦衬块的磨损特性计算 (22) 7总结 (24) 参考文献 (25) 致谢 (25)

制动系统设计计算报告

制动系统设计计算报告 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

目录

1系统概述 系统设计说明 只有制动性能良好、制动系统工作可靠的汽车才能充分发挥其动力性能。因此,在整车新产品开发设计中制动系统的匹配计算尤为重要。 LF7133是在标杆车的基础上设计开发的一款全新车型,其制动系统是在标杆车制动系统为依托的前提下进行设计开发。根据项目要求,需要对制动系统各参数进行计算与校核,以确保制动系统的正常使用,使系统中各零部件之间参数匹配合理,并且确保其满足国家相关法律法规的要求。 系统结构及组成 经双方确认的设计依据和要求,LF7133制动系统采用同国内外大量A级三厢轿车一致的液压制动系统。制动系统包含以下装置: 行车制动系统:根据车辆配置选择前后盘式或前盘后鼓制动器,制动踏板为吊挂式踏板,带真空助力器,管路布置采用相互独立的X型双管路系统; 驻车制动系统:为机械式手动后鼓式制动,采用远距离棘轮拉索操纵机构; 应急制动系统:行车制动系统具有应急特性,应保证在行车制动只有一处管路失效的情况下,满足应急制动性能要求。 LF7133制动系统主要由如下部件组成。结构简图如图1所示: 图1制动系统结构简图 1.真空助力器带制动主缸总成 2.制动踏板 3.车轮 4.轮速传感器 5.制动管路 6.制动轮缸控制器 系统设计原理及规范 本计算报告根据总布置提供的整车参数、制动器与总泵及真空助力器厂家提供的数据、制动踏板、驻车操纵机构选型进行匹配计算,校核前/后制动力、制动效能、制

动踏板力、驻车制动手柄力及驻坡极限倾角等,用以验证制动系统设计的合理性。本报告基于ABS不介入制动作用的前提下进行计算。 制动系统设计规范 1)基本要求:车辆应具备行车制动、应急制动、驻车制动功能。 2)法规要求: ①行车制动性能要求 表1行车制动性能要求 表2应急制动性能要求 GB21670-2008《乘用车制动系统技术要求及试验方法》规定能使满载车辆在20%的上下坡道上保持静止。 ④操纵力要求 GB7258-2004《机动车运行安全技术条件》的要求,其中的踏板力要求≤500N,踏板行程不超过120mm,驻车制动操纵手柄力≤400N。 2输入条件 整车基本参数 LF7133整车输入参数见表3: 表3整车输入参数

制动系统匹配设计计算

制动系统匹配设计计算 只有制动性能良好、制动系统工作可靠的汽车才能充分发挥其动力性能。因此,在整车新产品开发设计中制动系统的匹配计算尤为重要。 一、概述 根据AA车型整车开发计划, AA车型制动系统在参考BB轿车底盘制造平台的基础上进行逆向开发设计,管路重新设计。本计算是以选配C发动机为基础。 AA车型的行车制动系统采用液压制动系统。前、后制动器分别为前通风盘式制动器和实心盘式制动器,制动踏板为吊挂式踏板,带真空助力器,制动管路为双回路对角线(X型)布置,采用ABS。驻车制动系统为机械式手动后盘式制动,采用远距离棘轮拉索操纵机构。因AA车型与参考样车BB的整车参数接近,制动系统采用了BB样车制动系统,因此,计算的目的在于校核前/后制动力、最大制动距离、制动踏板力、驻车制动手柄力及驻坡极限倾角。 设计要符合GB 12676《汽车制动系统结构、性能和试验方法》;GB 13594《机动车和挂车防抱制动性能和试验方法》和GB 7258《机动车运行安全技术条件》的要求,其中的踏板力要求≤500N,驻车制动停驻角度为20%(12齿),驻车制动操纵手柄力≤400N。 二、制动系统设计的输入条件 整车基本参数见表1,零部件主要参数见表2。

表1 整车基本参数 表2 零部件主要参数 三、制动系统设计计算(法规校核) 1、地面对前、后车轮的法向反作用力 地面对前、后车轮的法向反作用力如图1所示。

图1 制动工况受力简图 由图1,对后轮接地点取力矩得: 式中: FZ1(N ):地面对前轮的法向反作用力;G (N ):汽车重力;b (m ):汽车质心至后轴中心线的水平距离;m (kg ):汽车质量;hg (m ):汽车质心高度;L (m ):轴距;du/dt (m/s2):汽车减速度。 对前轮接地点取力矩,得: 式中:FZ2(N ):地面对后轮的法向反作用力;a (m ):汽车质心至前轴中心线的距离。 2、理想前后制动力分配 在附着系数为ψ的路面上,前、后车轮同步抱死的条件是:前、后轮制动器制动力之和等于汽车的地面附着力;并且前、后轮制动器制动力F μ1、F μ2分别等于各自的附着力,即: (2) (1)

制动系统设计计算报告

制动系统设计计算报告 Prepared on 22 November 2020

目录

1系统概述 系统设计说明 只有制动性能良好、制动系统工作可靠的汽车才能充分发挥其动力性能。因此,在整车新产品开发设计中制动系统的匹配计算尤为重要。 LF7133是在标杆车的基础上设计开发的一款全新车型,其制动系统是在标杆车制动系统为依托的前提下进行设计开发。根据项目要求,需要对制动系统各参数进行计算与校核,以确保制动系统的正常使用,使系统中各零部件之间参数匹配合理,并且确保其满足国家相关法律法规的要求。 系统结构及组成 经双方确认的设计依据和要求,LF7133制动系统采用同国内外大量A级三厢轿车一致的液压制动系统。制动系统包含以下装置: 行车制动系统:根据车辆配置选择前后盘式或前盘后鼓制动器,制动踏板为吊挂式踏板,带真空助力器,管路布置采用相互独立的X型双管路系统; 驻车制动系统:为机械式手动后鼓式制动,采用远距离棘轮拉索操纵机构; 应急制动系统:行车制动系统具有应急特性,应保证在行车制动只有一处管路失效的情况下,满足应急制动性能要求。 LF7133制动系统主要由如下部件组成。结构简图如图1所示: 图1制动系统结构简图 1.真空助力器带制动主缸总成 2.制动踏板 3.车轮 4.轮速传感器 5.制动管路 6.制动轮缸控制器 系统设计原理及规范 本计算报告根据总布置提供的整车参数、制动器与总泵及真空助力器厂家提供的数据、制动踏板、驻车操纵机构选型进行匹配计算,校核前/后制动力、制动效能、制

动踏板力、驻车制动手柄力及驻坡极限倾角等,用以验证制动系统设计的合理性。本报告基于ABS不介入制动作用的前提下进行计算。 制动系统设计规范 1)基本要求:车辆应具备行车制动、应急制动、驻车制动功能。 2)法规要求: ①行车制动性能要求 表1行车制动性能要求 表2应急制动性能要求 GB21670-2008《乘用车制动系统技术要求及试验方法》规定能使满载车辆在20%的上下坡道上保持静止。 ④操纵力要求 GB7258-2004《机动车运行安全技术条件》的要求,其中的踏板力要求≤500N,踏板行程不超过120mm,驻车制动操纵手柄力≤400N。 2输入条件 整车基本参数 LF7133整车输入参数见表3: 表3整车输入参数

汽车制动系统论文

汽车制动系统论文

贵州航天职业技术学院毕业论文(设计)题目汽车制动系统故障分析 系别:汽车工程系 专业:汽车检测与维修技术 班级: 2015级汽检一班 学生姓名: 学号: A153GZ0311001008 指导教师: 冉煜

摘要 摘要正文:汽车制动系统是汽车的一个重要组成部分,直接影响汽车的安全性。据相关资料介绍,在由于汽车本身造成的交通事故中,制动故障引起的事故占45%。可见,制动系统是保证行车安全的重要系统。制动系统作用是:使行驶中的汽车按照驾驶员的要求进行强制减速甚至停车;使已停驶的汽车在各种道路条件下(包括在坡道上)稳定驻车;使下坡行驶的汽车速度保持稳定。汽车制动系统是指为了在技术上保证汽车的安全行驶,提高汽车的平均速度等,而在汽车上安装制动装置专门的制动机构。一般来说汽车制动系统包括行车制动装置和停车制动装置两套独立的装置。其中行车制动装置是由驾驶员用脚来操纵的,故又称脚制动装置。停车制动装置是由驾驶员用手操纵的,故又称手制动装置。 关键词:制动系统、故障分析 1

目录 1 制动系统的历史 (1) 2 制动系统的组成、工作原理 (2) 3 制动器的分类 (3) 4 液压制动系统的故障诊断分析 (4) 5 气压制动系统的故障诊断分析 (5) 6 汽车液压制动系统与气压制动系统对比 (6) 总结 (7) 1

1 制动系统的历史 最原始的制动控制只是驾驶员操纵一组简单的机械装置向制动器施加作用力,这时的车辆的质量比较小,速度比较低,机械制动虽已满足车辆制动的需要,但随着汽车自质量的增加,助力装置对机械制动器来说已显得十分必要。这时,开始出现真空助力装置。1932年生产的质量为2860kg的凯迪拉克V16车四轮采用直径419.1mm的鼓式制动器,并有制动踏板控制的真空助力装置。林肯公司也于1932年推出V12轿车,该车采用通过四根软索控制真空加力器的鼓式制动器。 随着科学技术的发展及汽车工业的发展,尤其是军用车辆及军用技术的发展,车辆制动有了新的突破,液压制动是继机械制动后的又一重大革新。器。克莱斯勒的四轮液压制动器于1924年问世。通用和福特分别于1934年和1939年采用了液压制动技术。到20世纪50年代,液压助力制动器才成为现实。 20世纪80年代后期,随着电子技术的发展,世界汽车技术领域最显著的成就就是防抱制动系统(ABS)的实用和推广。ABS集微电子技术、精密加工技术、液压控制技术为一体,是机电一体化的高技术产品。它的安装大大提高了汽车的主动安全性和操纵性。防抱装置一般包括三部分:传感器、控制器(电子计算机)与压力调节器。传感器接受运动参数,如车轮角速度、角加速度、车速等传送给控制装置,控制装置进行计算并与规定的数值进行比较后,给压力调节器发出指令。 1936年,博世公司申请一项电液控制的ABS装置专利促进了防抱制动系统在汽车上的应用。1969年的福特使用了真空助力的ABS制动器;1971年,克莱斯勒车采用了四轮电子控制的ABS装置。这些早期的ABS装置性能有限,可靠性不够理想,且成本高。1979年,默本茨推出了一种性能可靠、带有独立液压助力器的全数字电子系统控制的ABS制动装置。1985年美国开发出带有数字显示微处理器、复合主缸、液压制动助力器、电磁阀及执行器“一体化”的ABS防抱装置。随着大规模集成电路和超大规模集成电路技术的出现,以及电子信息处理技术的高速发展,ABS以成为性能可靠、成本日趋下降的具有广泛应用前景的成熟产品。1992年ABS的世界年产量已超过1000万辆份,世界汽车ABS的装用率已超过20%。一些国家和地区(如欧洲、日本、美国等)已制定法规,使ABS成为汽车的标准设备。 1

制动系统设计规范

制动系统设计规范 1.范围: 本规范介绍了制动器的设计计算、各种制动阀类的功能和匹配、以及制动管路的布置。 本规范适用于天龙系列车型制动系统的设计。 2.引用标准: 本规范主要是在满足下列标准的规定(或强制)范围之内对制动系统的零、部件进行设计和整车布置。 GB 12676-1999 汽车制动系统结构、性能和试验方法 GB/T 13594 机动车和挂车防抱制动性能和试验方法 GB 7258-1997机动车运行安全技术条件 3.概述: 在设计制动系统时,应首先考虑满足零部件的系列化、通用化和零件设计的标准化。先从《产品开发项目设计定义书》上猎取新车型在设计制动系统所必须的下列信息。再设计制动器、匹配各种制动阀,以满足整车制动力和制动法规的要求。确定了制动器的规格和各种制动阀之后,再完成制动器在前、后桥上的安装,各种制动阀在整车上的布置,以及制动管路的连接走向。 3.1车辆类型:载货汽车、工程车、牵引车

3.2驱动形式:4×2、6×4、8×4 3.3 主要技术及性能参数:长×宽×高、轴距、空/满载整车重心高坐标、轮距、整备质量、额定载质量、总质量、前/后桥承载吨位、(前/后)桥空载轴荷、(前/后)桥满载轴荷、最高车速、最大爬坡度等。 3.4 制动系统的配置:双回路气/液压制动、弹簧制动、鼓/盘式制动器、防抱制动系统、手动/自动调整臂、无石棉摩擦衬片、感载阀调节后桥制动力、缓速器、排气制动。 4.制动器: 本规范仅对鼓式制动器的各主要元件和设计计算加以阐述,盘式制动器的选型和计算将暂不列入本规范的讨论范围之内。 4.1鼓式制动器主要元件: 4.1.1制动鼓: 由于铸铁耐磨,易于加工,且单位体积的热容量大,所以,重型货车制动鼓的材料多用灰铸铁。不少轻型货车和轿车的制动鼓为组合式,其圆柱部分用铸铁,腹板则用钢压制件。 制动鼓在工作载荷下将变形,使蹄、鼓间单位压力不均,带来少许踏板行程损失。制动鼓变形后的不圆柱度过大,容易引起制动时的自锁或踏板振动。所以,在制动鼓上增加肋条,以提高刚度和散热性能。中型以上货车,一般铸造的制动鼓壁厚为13~18㎜。 4.1.2制动蹄和摩擦片: 重型货车的制动蹄多用铸铁或铸钢铸成,制动蹄的断面形状和尺寸应保证其刚度。

伊兰特汽车制动系统设计

摘要 随着社会的飞速发展,科技越来越发达,世界也变得越来越小了,造成这个现象的基本原因就是交通工具的发展和普及,尤其是汽车的应用,灵活高速的汽车给我们的生活带来了极大便利。一方面,轿车变的越来越重、动力越来越大;另一方面,人们越来越强调汽车驾乘的舒适性和安全性。因而,作为能保证汽车安全行驶的组成部分之一—制动系,有必要对它的组成构件进行设计计算。 本文系统详细的介绍了汽车制动系的结构型式及其主要构件的设计计算,阐述了制动器的两种结构型式的选择和各自的工作原理、制动系的主要参数及其选择、制动器主要零部件的结构设计和分析计算、制动驱动结构的结构型式选择与设计计算。并且通过以上的比较分析,在经济可靠的基础上选择归纳了伊兰特轿车制动系主要构件的结构与参数,予以最为合理的配置。其中重点介绍了汽车车制动系的主要构件——浮钳盘式制动器、液压双回路制动主缸的分析计算。 关键词:汽车;制动系统;盘式制动器;液压驱动;驻车制动

ABSTRACT As the society is making great progress, scientific technology becomes more and more developed, and the world becomes smaller and smaller. The basic cause of this is the development and popularization of transportations, especially the application of automobiles, which bring great convenience to our lives. On one hand, what the car changes is heavier and heavier, motive force is greater and greater; On the other hand, people emphasize comfortableness and security that the automobile drives more and more. Therefore, as guaranteeing one of the components that the automobile goes safely--the brake system, it is necessary to carry on exhaustive designing calculation . This text mainly introduces the structure pattern of the brake system and its designing calculation of main departments, and explains two kinds of structure patterns and choosing and one's own operation principle of the brake , main parameter of the brake system in the department and choosing, structural design and calculation of the main spare part of the brake , applying the brake urges the structure pattern of the structure to choose and design and calculate , makes the regulation device that power distributes. Through comparative analysis of the above , is it sum up Elantra apply the brake structure and parameter , department of main member to choose on the basis of the thing that economy is reliable , in order to reach and dispose best. Especially, it introduces the main member of the department of the brake system among them --Float pincers records of type brake , hydraulic pressure pairs of meeting way apply the brake analysis of master cylinder calculate with anti-lock braking system , urge slip resistance systematic theory analyse. And have checked to rubing the friction characteristic lined with slice at the end of the thesis. Keyword: Automobile;The brake system;Disk brake;Hydraulic drive;Parking brake II

相关主题
文本预览
相关文档 最新文档