当前位置:文档之家› 机构仿真之运动分析指引机构运动结构

机构仿真之运动分析指引机构运动结构

机构仿真之运动分析指引机构运动结构
机构仿真之运动分析指引机构运动结构

机构仿真之运动分析指引/机构/运动/结构

日期:2007-10-22 22:41:38 人气:210 [大中小]

的基础内容,并配实例讲解。

一。PROE能做的仿真内容还算比较好,不过用好的兄弟不多。当然真正专做仿真分析的兄弟,估计都用Ansys去了。但是,Ansys研究起来可比PROE 坛子里关于仿真的教程也有过一些,但很多都是动画,或实例。偶再发放一份学习笔记,并整理一下,当个基础教程吧。希望能对学习仿真的兄弟有所帮

PROE中的定义:

无相对运动的一组元件,主体内DOF=0。

束相对运动的主体之间的关系。

允许的机械系统运动。连接的作用是约束主体之间的相对运动,减少系统可能的总自由度。

标拾取并移动机构。

受力后的运动。

用于旋转轴或平移轴上(引起运动)的力。

n) - 应用到两连接轴的速度约束。

。其它主体相对于基础运动。

(例如销钉接头、滑块接头和球接头)。

运动,而不考虑移动机构所需的力。

加到运动环中的最后一个连接。

或负荷作用时的移动方式。

- 组件中放置元件并限制该元件在组件中运动的图元。

析运行的结果。

义一个主体相对于另一个主体运动的方式。可在接头或几何图元上放置电动机,并可指定主体间的位置、速度或加速度运动。

。LCS 是与主体中定义的第一个零件相关的缺省坐标系。

局坐标系,它包括用于组件及该组件内所有主体的全局坐标系。

接、凸轮从动机构、槽从动机构或齿轮副连接的要求的情况下,模拟机构的运动。运动分析不考虑受力,它模拟除质量和力之外的运动的所有方面。因此,动分析忽略模型中的所有动态图元,如弹簧、阻尼器、重力、力/力矩以及执行电动机等,所有动态图元都不影响运动分析结果。

,在运行运动分析前软件会尝试使其轮廓连续,如果不能使其轮廓连续,则此伺服电机将不能用于分析。

及加速度

机构运动的运动包络

”,在WF2.0里被称为“重复组件分析”。它与运动分析类似,所有适用于运动分析的要求及设定,都可用于重复组件分析,所有不适于运动分析的因素分析少,不能分析速度、加速度,不能做机构的运动包络。

息:

,定义连接轴设置,生成特殊连接

义的连接是否能产生预期的运动

照,创建测量

接与约束连接

元件放置”窗口,此窗口有三个页面:“放置”、“移动”、“连接”。传统的装配元件方法是在“放置”页面给元件加入各种固定约束,将元件的自由度减少析(基体除外)。另一种装配元件的方法是在“连接”页面给元件加入各种组合约束,如“销钉”、“圆柱”、“刚体”、“球”、“6DOF”等等,使用这些组除外),元件可以自由移动或旋转,这样装配的元件可用于运动分析。传统装配法可称为“约束连接”,后一种装配法可称为“接头连接”。

都使用PROE的约束来放置元件,组件与子组件的关系相同。

约束连接使用一个或多个单约束来完全消除元件的自由度,接头连接使用一个或多个组合约束来约束元件的位置。约束连接装配的目的是消除所有自由元件通常还具有一个或多个自由度。

特定运动(含固定)的组合约束,包括:销钉、圆柱、滑动杆、轴承、平面、球、6DOF、常规、刚性、焊接,共10种。

与轴垂直的平移约束组成。元件可以绕轴旋转,具有1个旋转自由度,总自由度为1。轴对齐约束可选择直边或轴线或圆柱面,可反向;平移约束可以是,可以设置偏移量。

比销钉约束少了一个平移约束,因此元件可绕轴旋转同时可沿轴向平移,具有1个旋转自由度和1个平移自由度,总自由度为2。轴对齐约束可选择直边约束和一个旋转约束(实际上就是一个与轴平行的平移约束)组成。元件可滑轴平移,具有1个平移自由度,总自由度为1。轴对齐约束可选择直边或轴线处位置自动计算,可反向。

它与机械上的“轴承”不同,它是元件(或组件)上的一个点对齐到组件(或元件)上的一条直边或轴线上,因此元件可沿轴线平移并任意方向旋转,具就是确定了元件上某平面与组件上某平面之间的距离(或重合)。元件可绕垂直于平面的轴旋转并在平行于平面的两个方向上平移,具有1个旋转自由度和件上的一个点对齐到组件上的一个点,比轴承连接小了一个平移自由度,可以绕着对齐点任意旋转,具有3个入旋转自由度,总自由度为3。

元件不作任何约束,仅用一个元件坐标系和一个组件坐标系重合来使元件与组件发生关联。元件可任意旋转和平移,具有3个旋转自由度和3个平移自由,将元件与组件连接到一起。连接后,元件与组件成为一个主体,相互之间不再有自由度,如果刚性连接没有将自由度完全消除,则元件将在当前位置件内各零件也将一起被“粘”住,其原有自由度不起作用。总自由度为0。

由度被完全消除。连接后,元件与组件成为一个主体,相互之间不再有自由度。如果将一个子组件与组件用焊接连接,子组件内各零件将参照组件坐标

可根据需要指定一个或多个基本约束来形成一个新的组合约束,其自由度的多少因所用的基本约束种类及数量不同而不同。可用的基本约束有:匹配、种。在定义的时候,可根据需要选择一种,也可先不选取类型,直接选取要使用的对象,此时在类型那里开始显示为“自动”,然后根据所选择的对象系

的“匹配/对齐”构成的自定义组合约束转换为约束连接后,变为只有一个“匹配/对齐”约束的不完整约束,再转换为接头约束后变为“平面”连接。

可反向。定义完后,在不修改对象的情况下可更改类型(匹配

面。单一的“插入”构成的自定义组合约束转换为约束连接后,变为只有一个“插入”约束的不完整约束,再转换为接头约束后变为“圆柱”连接。

坐标系,与6DOF的坐标系约束不同,此坐标系将元件完全定位,消除了所有自由度。单一的“坐标系”构成的自定义组合约束转换为约束连接后,变为“焊接”连接。

点和一条直线或轴线。与“轴承”等效。单一的“线上点”构成的自定义组合约束转换为约束连接后,变为只有一个“线上点”约束的不完整约束,再

一个平面和一个点。单一的“曲面上的点”构成的自定义组合约束转换为约束连接后,变为只有一个“曲面上的点”约束的不完整约束,再转换为接头约

一个平面/柱面和一条直边。单一的“曲面上的点”构成的自定义组合约束不能转换为约束连接。

查看测量结果,创建轨迹曲线,创建运动包络

个系统(主体)的运动或状态(如位置)所必需的独立参变量(或坐标数)。一个不受任何约束的自由主体,在空间运动时,具有6个独立运动参数(自动,在平面运动时,则只具有3个独立运动参数(自由度),即沿XYZ三个轴的独立移动。

参数不再存在,相对应的,这些自由度也就被消除。当6个自由度都被消除后,主体就被完全定位并且不可能再发生任何运动。如使用销钉连接后,主体主体只能绕指定轴(如X轴)旋转,不能绕另两个轴(YZ轴)旋转,绕这两个轴旋转的自由度被消除,结果只留下一个旋转自由度。

里,要完全约束住一个主体,需要将三个独立移动和三个独立转动分别约束住,如果把一个主体的这六个自由度都约束住了,再另加一个约束去限制它沿

各部份受到的力,使主体受力均匀或减少磨擦、补偿误差,延长设备使用寿命。冗余约束对主体的力状态产生影响,对主体的对运动没有影响。因运动分,可不考虑冗余约束的作用,而在涉及力状态的分析里,必须要适当的处理好冗余约束,以得到正确的分析结果。系统在每次运行分析时,都会对自由度余。

例子来讲冗余与自由度的计算,但其分析实丰有欠妥当,各位想准确计算模型的自由度的话,请找机构设计方面的书来仔细研究一番。这也不是几句话能

。在“元件放置”窗口的“放置”页面和“连接”页面里,在约束列表下方,都有一个“约束转换”按钮。使用此按钮可在任何时候根据需要将接头连接其对象的性质自动选取最相配的新类型。如对系统自动选取的结果不满意,可再进行编辑。转换的规则,可参考PROE的自带帮助。不过,没有很好的

曲面上的点、相切约束,在转换时是不会转换成常规连接的。

”按钮:(yd3)

参与运动的主体。

的第一个元件自动成为基础。

”窗口中“放置”页面)与基础发生关系,则此元件也成为基础的一部份。

,或者因两个零件在同一主体中而不能创建连接,就可以使用“重定义主体”来确认主体之间的约束关系及删除某些约束。

—>“重定义主体”进入主体重定义窗口,选定一个主体,将在窗口里显示这个主体所受到的约束(仅约束连接及“刚体”接头所用的约束)。可以选定一

控制从动件的运动规律。PROE里的凸轮连接,使用的是平面凸轮。但为了形象,创建凸轮后,都会让凸轮显示出一定的厚度(深度)。

的各一个(或一组)曲面或曲线就可以了。定义窗口里的“凸轮1”“凸轮2”分别是两个主体中任何一个,并非从动件就是“凸轮2”。

”复选框勾上,这样,系统将自动把与所选曲面的邻接曲面选中,如果不用“自动选取”,需要选多个相邻面时要按住Ctrl。

是无效的。如果所选边是直边或基准曲线,则还要指定工作平面(即所定义的二维平面凸轮在哪一个平面上)。

面运动,在PROE里定义凸轮时,还要确定运动的实际接触面。选取了曲面或曲线后,将会出线一个箭头,这个箭头指示出所选曲面或曲线的法向,箭方向与想定义的方向不同,可反向。

项,凸轮运转时,从动件可离开主动件,不使用此选项时,从动件始终与主动件接触。启用升离后才能定义“恢复系数”,即“启用升离”复选框下方的那轮轮廓和工作平面,这个凸轮的形状与位置也就算定义完整了。为了形象,系统会给这个二维凸轮显示出一个厚度(即深度)。通常我们可不必去修改它析结果没有影响。

(如拉伸曲面),不能是多向弯曲曲面(如旋转出来的鼓形曲面)。

面和直边,但应避免在两个主体上同时出现。

)中的尖角/拐点/不连续,如果存在这样的问题,应在定义凸轮前适当处理。

”与“磨擦”。

间的速度关系。在PROE中齿轮连接分为标准齿轮和齿轮齿条两种类型。标准齿轮需定义两个齿轮,齿轮齿条需定义一个小齿轮和一个齿条。一个齿轮此,在定义齿轮前,需先定义含有旋转轴的接头连接(如销钉)。

接定义出来的与齿轮本体相关的那个旋转轴即可,系统自动将产生这根轴的两个主体设定为“齿轮”(或“小齿轮”、“齿条”)和“托架”,“托架”一般可用“反向”按钮将齿轮与托架主体交换。“齿轮2”或“齿条”所用轴的旋转方向是可以变更的,点定义窗口里“齿轮2”轴右侧的反向按钮就可以,点

口的“齿轮1”、“齿轮2”、“小齿轮”页面里,都有一个输入节圆直径的地方,可以在定义齿轮时将齿轮的实际节圆直径输入到这里。在“属性”页面里“用户定义的”。选择“节圆直径”时,D1、D2由系统自动根据前两个页面里的数值计算出来,不可改动。选择“用户定义的”时,D1、D2需要输入,里输入的节圆直径不起作用。速度比为节圆直径比的倒数,即:齿轮1速度/齿轮2速度=齿轮2节圆直径/齿轮1节圆直径=D2/D1。齿条比为齿轮转一周根据小齿轮的节圆数值计算出来,不可改动,选择“用户定义的”时,其数值需要输入,此情况下,小齿轮定义页面里输入的节圆直径不起作用。

齿轮都有一个图标,以显示这里定义了一个齿轮,一条虚线把两个图标的中心连起来。默认情况下,齿轮图标在所选连接轴的零点,图标位置也可自定只是一视觉效果,不会对分析产生影响。

要指定一个旋转轴和节圆参数就可以了。因此,齿轮的具体形状可以不用做出来,即使是两个圆柱,也可以在它们之间定义一个齿轮连接。

主体,如果没有公共的托架主体,分析时系统将创建一个不可见的内部主体作为公共托架主体,此主体的质量等于最小主体质量的千分之一。并且在运行与托架主体。

----曲线连接。从动件上的一个点,始终在主动件上的一根曲线(3D)上运动。槽连接只使两个主体按所指定的要求运动,不检查两个主体之间是否干涉,可以在实体内部。

即要求相连,不必相切),可以是基准曲线,也可以是实体/曲面的边,可以是开放的,也可以是封闭的。

,但只能是零件中的,组件中的点不能用于槽连接。

动件上的指定曲线上,如果曲线是一条(组)开放曲线,则此曲线(曲线组)的首末两个端点为槽的默认端点,如果是一条(组)封闭曲线,则默认无端其中的一段上,则需要自定义槽的端点。对于开放曲线(曲线组),只要指定新的端点就可以了,对于封闭曲线,指定两个新端点后,系统自动选取被两,点“反向”选取另一段。定义槽端点可选取基准点、顶点、曲线/边/曲面,如果选的是曲线/边/曲面,则槽端点为槽曲线与所选曲线/边/曲面的交点。

磨擦”。

械。快照,对机械的某一特殊状态的记录。可以使用拖动调整机构中各零件的具体位置,初步检查机构的装配与运动情况,并可将其保存为快照,快照

动”窗口,此窗口具有一个工具栏,工具栏左第一个按钮为“保存快照”,即将当前屏幕上的状态保存为一个快照,左第二个按钮为“点拖动”,即点取机主体拖动”,选取一个主体,移动鼠标以改变元件的位置。右侧两个按钮为“撤消”和“恢复”,每一次拖动,系统都会记录入内存,使用此两按钮,可查个列表,显示当前已经定义的快照和为当前拖动定义的临时约束。

第一个为显示当前快照,即将屏幕显示刷新为选定快照的内容;第二个为从其它快照中把某些元件的位置提取入选定快照;第三个为刷新选定快照,即选定快照可被当做分解状态使用,从而在绘图中使用,这是一个开关型按钮,当快照可用于绘图时,列表中的快照名前会有一个图标;第五个是删除选定义的临时约束,这些临时约束只用于当前拖动操作,以进一步限制拖动时各主体之间的相对运动。

具,用于精确限定拖动时被拖动点或主体的运动。

体碰撞后的相对速度(V2-V1)与碰撞前的相对速度(V10-V20)的比值,即e=(V2-V1)/(V10-V20),它的值介于0到1之间。典型的恢复系数可从工程书碰撞速度等因素。在机构中应用恢复系数,是在刚体计算中模拟非刚性属性的一种方法。完全弹性碰撞的恢复系数为1。完全非弹性碰撞的恢复系数为近0。

系数取决于接触材料的类型以及实验条件。可在物理或工程书籍中查找各种典型的摩擦系数表。需要分别指定静磨擦系数和动磨擦系数,且静磨擦系数指定凸轮连接的磨擦系数。

和槽连接,也可用于连接轴设置。

为由接头连接(如销钉)产生的连接轴定义一些具体的属性,包括:连接轴的位置,连接轴的零参照,连接轴的再生位置(用于重复组件分析),连接轴的轴,然后再对此轴进行各种设置。

连接轴的两个零参照间的位置或距离,未改变时,显示的是当前屏幕上这个位置时的值。如果自己输入一个数值并回车(对于旋转轴,此数值为-180到18转换成可接受的范围内的值),屏幕上的组件也将临时改变位置以反映当前修改,如果按了“生成零点”,则将当前位置设定为连接轴零点,其它测量都从如果选了“指定参照”,则“生成零点”无效。“指定参照”可为连接轴的两个主体分别选定零位置的几何参照。

连接轴零点位置再生,这个用于重复组件分析中。

的最大最小运动范围及恢复系数。对于旋转轴,“最小”值为-180到180之间且小于最大值,“最大”值为-180到180之间且大于最小值。恢复系数用来模主体之间相互运动的阻力。需指定静磨擦系数和动磨擦系数,对于旋转轴,还应指定一个大于零的接触半径值,它用于定义磨擦扭矩作用于连接轴上的半个连接轴零点。不能为球接头定义连接轴设置。另外,不能编辑属于多旋转DOF 接头(如6DOF 或某个一般连接)的旋转连接轴的连接轴设置。

照的要求

下事项:

轴的方向从每一点绘制向量。这两个向量对连接零点应重合。这两个点不能位于连接轴上。

转连接轴的平面应平行于为连接零点选取的平面。该点不能位于连接轴上。

面在连接零点处平行。两个平面都必须平行于旋转轴。

下列事项:

两点之间在平移连接轴方向上的距离将为零。

,平面和点之间在平移连接轴方向上的距离将为零。该平面必须垂直于连接轴。

处,平面间的距离为零。两个平面都必须垂直于连接轴。

点参照时应注意:

为,只能为平面平移轴定义点-点或点-平面零点参照。同样,只能为平面旋转轴定义平面-平面零点参照。

式运动。伺服电动机引起在两个主体之间、单个自由度内的特定类型的运动。伺服电动机将位置、速度或加速度指定为时间的函数,并可控制平移或旋义运动的轮廓。可从多个预定义的函数中选取,也可输入自己的函数。可在一个图元上定义任意多个伺服电动机。

选取或定义了位置或速度函数,在进行运动或动态分析时这个伺服电动机将被忽略。但是,可在重复组件分析中使用非连续伺服电动机轮廓。当用图形

接轴伺服电机,用于定义某一旋转轴的旋转运动,一种是几何伺服电机,用于创建复杂的运动,如螺旋运动。连接轴伺服电机只需要选定一个事先由接服电机可用于运动分析。几何伺服电机需要选取从动件上的一个点/平面,并选取另一个主体上的一个点/平面作为运动的参照,并需确定运动的方向及种

,并指定方向。

以下几种:

从动“点”,参照“平面”,旋转;从动“平面”,参照“平面”,旋转;从动“点”,参照“平面”,平移;从动“平面”,参照“平面”,平移。其中,前

律,对于平移运动,它是长度(单位:mm)对时间的函数,对于旋转,它是角度(单位:度)对时间的函数。点最下方的“图形”按钮,将会以图形或速度或加速度。“模”定义的就是图形的形状,“规范”里定义的就是“模”所定义的图形的纵轴所代表的意义。模有九种:常数、斜坡、余弦、SCCA 、速度、加速度。其中模里的SCCA这一种,只能用于描述加速度(即对应的“规范”只能是加速度)。“规范”为位置时,无需自己定义初始位置,为“初始角速度”,默认位置为当前屏幕上的位置。

入“连接轴设置”窗口,对当前电机所用的连接轴进行设置。

廓,定义模时,需选定模函数并输入函数的系数值。对于伺机服电动机,函数中的X为时间,对于执行电动机,函数中的X为时间或选取的测量参数。、余弦、SCCA、摆线、抛物线、多项式、表、用户定义的。

摆线、抛物线、多项式这六种。

。此用于需要恒定轮廓时。

X,A为一常数,B为斜率。用于轮廓随时间做线性变化时。

+B)+C,A为幅值,B为相位,C为偏移量。用于轮廓呈余弦规律变化时。

*pi*X/T)/2*pi,L为总高度,T为周期。用于模拟凸轮轮廓输出。

*X^2,A为线性系数,B为二次项系数。用于模拟电动机的轨迹。

^2+D*X^3,A为常数,B为线性系数,C为二次项系数,D为三次项系数。用于模拟一般的电动机轨迹。

定义的主体上选取一个点或平面,即具有点-线约束的直线。系统将此参照与定义轴承连接的点对齐。

,不能用于执行电机。它用来模拟凸轮轮廓输出。它称做“正弦-常数-余弦-加速度”运动,缩写为SCCA。它一共有五个参数:

供 A 和 B 的值、幅值和周期。

0 <= t < A 时

A <= t < (A + B) 时

(A+B) <= t < (A + B + 2C) 时

(A+B+2C) <= t < (A + 2B + 2C) 时2*A)] (A+2B+2C) <= t <= 2*(A + B + C) 时

式进行计算:

A轮廓周期)

身。

的电机轮廓。各函数的参数值:

也就是指定N个点,以这些点为节点,按线性或样条插值的方式构建一条通过所有点的曲线,这条曲线就是电动机的轮廓。如电动机的模是指定给“位置线性拟合”或“样条拟合”之一,如是指定给“加速度”并用于伺服电机(即“规范”为加速度),则插值方式只能是“线性拟合”。样条拟合构建的曲线比型的下方会出现一个列表框,可用框右侧的“增加行”/“删除行”来向列表中加增加或删除行。这个表由N行两列构成,第一列是时间(即电机轮廓的,第二列是模(即电机轮廓的纵轴)。每一行有一个时间值和一个模值,这两个数代表电机轮廓上的一个点。输入时要注意的时,时间列只能是递增或递减

1,15,22;线性拟合。

种,还有一种,即“用户定义的”,这个是自行构建一条或多条规则去确定电机的轮廓。定义比较复杂,当属高级应用。这里不再讲了,有空的朋友去研

”。

的组件”。然后设置“优先选项”页和“电动机”页。对于运动分析和重复组件分析,“外部负荷”页是不可用的。

止时间及定义动画时域,并可设定主体锁定、连接锁定及初始位置。主体锁定使两个主体在运动分析(或重复组件分析)期间不做相对运动,由接头连

分析期间保持当前配置。设置主体锁定需选择一个先导主体,如果选择先导主体时用了中键,则用基体作为先导主体。连接锁定可以用于接头连接、凸轮齿轮轴的接头连接。初始位置选取当前位置作为分析起点,或用一先前保存的快照作分析起点。

电动机。对于运动分析和重复组件分析,只能用连接轴伺服电动机,几何伺服电动机及执行电动机都不可用。可以设定各个电动机的作用时间,以实现多分析,并产生一个结果集。

干涉情况、将分析的不同部分组合成一段影片、显示力和扭矩对机构的影响,以及在分析期间跟踪测量的值。可以将运动分析结果捕捉为MPEG动画文构”----“回放”,启动“回放”窗口。在“结果集”里,选择将用于回放的运动分析(或重复组件分析)结果集。

。检查模式有四种:无干涉、快速检查、两个零件、全局干涉。“无干涉”即不检查干涉;“快速检查”是进行较低层次的检查,选用此模式将自动选中“的干涉情况;“全局干涉”是检查所有零件的所有类型的干涉。检查选项有两个:包括面组、停止回放。“包括面组”是曲面也将参与干涉检查;“停止回

果片段。“显示时间”,如选中,则在回放时会在屏幕左上角显示回放已进行的时间。“缺省进度表”选中则回放整个结果集,如取消此项,则在其下方的间段,则按从上到下的次序依次播放,同一时间段可多次输入,以实现此小段的重复播放,如某时间段的“开始”时间大于“结束”时间,则此小段将反段,再输入新的开始、结束时间,点“更新”按钮确认修改。默认情况下,“显示时间”和“缺省进度表”都是选中的。

分析相关的测量、力、扭矩、重力和执行电动机的大小和方向的三维箭头。使用显示箭头可查看负荷对机构的相对影响。对于力、线性速度和线性加速双头箭头。箭头的颜色取决于测量或负荷的类型。回放分析结果时,箭头的大小将改变,以反映测量值、力或扭矩的计算值。箭头方向随计算矢量方向而所有可用箭头显示的测量,“输入负荷”列表中,列出所选结果集中所有可用箭头显示的负荷。

”窗口左上角的“播放”按钮,则进入“动画”窗口。在此窗口可按前面的设置对回放结果进行动画演示。“捕捉”按钮,可将动画结果保存为MPEG动帧”,输出结果的图片质量较高。

基于Solid Edge的高级机构运动仿真

基于Solid Edge的高级机构运动仿真 在机构设计中,分析输入/输出构件运动的相关性是比较困难和繁琐的,但若能方便地得到输入/输出构件及相关中间构件的运动曲线,解决这类问题就会容易许多。 Solid Edge 具有功能强大的三维造型模块和装配模块,而Dynamic Designer/Motion for Solid Edge实现了Dynamic Desinger和Solid Edge的无缝集成,用户不必离开自己所熟悉的Solid Edge界面,就可以对所设计的装配体进行运动仿真。 Dynamic Designer产品由Simply Motion、Motion和Professional组成,用户可以根据设计的复杂程度进行选择,也可以根据实际应用的情况逐步升级到更高一级的产品。在机构设计中,熟练使用以上模块,完成零件的三维实体造型,模拟整个机构的装配,分析装配干涉情况,进而实现运动模拟、运动干涉分析和动力分析,即可实现机构的精确设计,优化机器的性能和可靠性,从而减少从设计到产品的开发周期。 本文以单、双万向联轴结机构为例,简述了运用以上模块进行机构的装配、运动模拟及运动分析、动力分析的过程。 一、单万向联轴结机构的运动分析 图1是应用Solid Edge的Part模块制作的十字结、叉轴和支架。在支架的制作中要注意精确定位左右轴孔的位置及角度,以便准确安装。 图1 十字结、叉轴和支架的实体造型 图2为装配后的单万向联轴结,装配中左右叉轴与支架、十字结的定位关系均为轴对齐、面对齐。

图2 装配后的单万向联轴结 如果让右侧叉轴作为输入轴并以60r/min匀速旋转,左侧叉轴作为输出轴,由于其输出转速是变速的,在Solid Edge集成的Simply Motion模块中无法对该输出轴进行速度和加速度分析。应用Dynamic Designer/Motion for Solid Edge,在Edge Bar中选中左侧叉轴,单击鼠标右键,选“绘制曲线”→“角速度”→“幅值”,如图3所示;重复上述操作,在Edge Bar中选中左侧叉轴,单击鼠标右键,选“绘制曲线”→“角加速度”→“幅值”,图4为将会出现在操作区中的输出叉轴的角速度和角加速度曲线。 图3 绘制输出曲线的操作

机构运动仿真基本知识

机构仿真是PROE的功能模块之一。PROE能做的仿真内容还算比较好,不过用好的兄弟不多。当然真正专做仿真分析的兄弟,估计都用Ansys去了。但是,Ansys研究起来可比PROE麻烦多了。所以,学会PROE的仿真,在很多时候还是有用的。我再发一份学习笔记,并整理一下,当个基础教程吧。希望能对学习 仿真的兄弟有所帮助。 术语 创建机构前,应熟悉下列术语在PROE中的定义:主体(Body) - 一个元件或彼此无相对运动的一组元件,主体内DOF=0。 连接(Connections) - 定义并约束相对运动的主体之间的关系。 自由度(Degrees of Freedom) - 允许的机械系统运动。连接的作用是约束主体之间的相对运动,减少系统可能的总自由度。 拖动(Dragging) - 在屏幕上用鼠标拾取并移动机构。 动态(Dynamics) - 研究机构在受力后的运动。 执行电动机(Force Motor) - 作用于旋转轴或平移轴上(引起运动)的力。 齿轮副连接(Gear Pair Connection) - 应用到两连接轴的速度约束。 基础(Ground) - 不移动的主体。其它主体相对于基础运动。 机构(Joints) - 特定的连接类型(例如销钉机构、滑块机构和球机构)。 运动(Kinematics) - 研究机构的运动,而不考虑移动机构所需的力。 环连接(Loop Connection) - 添加到运动环中的最后一个连接。 运动(Motion) - 主体受电动机或负荷作用时的移动方式。 放置约束(Placement Constraint) - 组件中放置元件并限制该元件在组件中运动 的图元。 回放(Playback) - 记录并重放分析运行的结果。 伺服电动机(Servo Motor) - 定义一个主体相对于另一个主体运动的方式。可在机构或几何图元上放置电动机,并可指定主体间的位置、速度或加速度运动。LCS - 与主体相关的局部坐标系。LCS 是与主体中定义的第一个零件相关的缺 省坐标系。 UCS - 用户坐标系。 WCS - 全局坐标系。组件的全局坐标系,它包括用于组件及该组件内所有主体 的全局坐标系。 运动分析的定义 在满足伺服电动机轮廓和机构连接、凸轮从动机构、槽从动机构或齿轮副连接的要求的情况下,模拟机构的运动。运动分析不考虑受力,它模拟除质量和力之外的运动的所有方面。因此,运动分析不能使用执行电动机,也不必为机构指定质量属性。运动分析忽略模型中的所有动态图元,如弹簧、阻尼器、重力、力/力矩以及执行电动机等,所有动态图元都不影响运动分析结果。

液压挖掘机工作装置在ADAMS中的运动仿真解析参考文本

液压挖掘机工作装置在ADAMS中的运动仿真解 析参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

液压挖掘机工作装置在ADAMS中的运动仿真解析参考文本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 虚拟样机技术在使用过程中为液压挖掘机设计提供了 有效的方法和手段,在使用过程中受到了条件限制,较少 的单位会对运行学进行仿真研究,降低了色剂方案可行 性。文章基于动力学仿真软件ADAMS建立起了挖掘机工 作装置虚拟系统,更好的完成了前期处理工作,使得建模 正确性更高。 液压缸顺序工作的运动仿真分析 1.1.基于尺寸确定 当液压的挖掘机工作装置尺寸以及基本结构都确定下 来之后,该挖掘机的工作范围也基本确定下来。简单理解 就是挖掘机铲斗齿尖轨迹的包络图得以确定。在包括图

中,有些部分区间靠近的比较紧密,有的会深入到挖掘机停点底部下,这一个位置虽然还可以挖掘到,但是在挖掘过程中会引起土壤坍塌,从而影响机械运行稳定,使得施工安全性受到影响。在以上动臂液压缸、斗杆液压缸和铲斗液压缸运动仿真分析过程中,选择的挖掘机工作顺序和方式一般都是在装置范畴内,这里讲解的顺序指的是,挖掘工作进行时,各个油缸都是根据一定顺序进行收缩或者伸出。例如:挖掘进行时,需要先下降动动臂,再收回斗杆,这个动作完成之后,在使用铲斗进行挖掘。 1.2.顺序工作运动仿真实现的路线 仿真路线是,在斗杆液压缸、动臂液压缸、铲斗液压缸上进行设置,一般在不同的时间段内,它的运动驱动函数都不同,需要进行调节处理,使得各缸在相应的工作极限范围内相互运行,这样就可以获得挖掘机的工作范围。可以在液压缸移动副约束处添加移动驱动,改变运动方

基于MatlabSimulink的槽轮机构间歇运动特性的分析与仿真

基于Matlab/Simulink的槽轮机构间歇运动特性的分析与仿真 摘要:将槽轮机构转换为倒置曲柄滑块机构,建立了槽轮机构的运动数学模型,利用Matlab计算了槽轮机构的运动参数并绘制了相应的动态曲线,该方法直观精确,提高了设计效率。 关键词:槽轮机构间歇运动Matlab/Simulink 运动特性 Geneva mechanism based on Matlab/Simulink intermittent motion characteristics analysis and simulation Abstract :Converse geneva mechanism for inverted slider-crank mechanism,the geneva machanism motion mathematical model is established,using Matlab to calculate the dynamic movement parameters of the geneva mechanism and draw the corresponding curve,the method is accurate,intuitive improves the design efficiency Key words:the geneva mechanism intermittent motion Matlab / Simulink movement characteristics 0引言: 槽轮机构能将主动件连续旋转运动转换成从动件有规律的运动和停歇,是实现周期性运动和停歇的典型机构。槽轮机构的结构简单,外形尺寸小,效率高,并能较平稳地、间歇地进行传位,在现代机械设备中得到了广泛的应用,但因传动时尚存在柔性冲击,故常用于速度不高的场合。本文将针对槽轮机构的间歇运动,使用Matlab软件中的仿真工具箱Simulink进行运动学仿真,通过仿真得到从槽轮的运动变化曲线,并对槽轮机构的运动特性进行分析。 1槽轮机构的物理模型转换 图1 外槽轮机构简图图2 曲柄滑块机构 1-槽轮;2-拨盘1-滑块;2-曲柄;3-摇杆 在如图1所示为外槽轮机构简图,图2所示为倒置的曲柄滑块机构。当销子和轮槽结合时图2中倒置曲柄滑块构造形式与图1中槽轮机构类似。其中图1中带销子的拨盘2可视为连杆2,而槽轮可视为连杆3,滑块1代表销子。 2槽轮机构的数学建模 整个系统的运动过程可分为两个状态,即销子和轮槽结合与分离的两个状态

典型环节动态特性的仿真

院系电子信息工程学院班级姓名学号 实训名称典型环节动态特性的仿真实训日期 一、实训目的 1、掌握典型环节仿真结构图的建立方法; 2、通过观察典型环节在单位阶跃信号作用下的动态特性,熟悉各种典型环节的响应曲线。 2、定性了解各参数变化对典型环节动态特性的影响。 3、初步了解MATLAB中SIMULINK 的使用方法。 二、实训内容 掌握比例、积分、一阶惯性、实际微分、振荡环节的动态特性。 [例] 观察实际微分环节的动态特性 (1)连接系统, 如图所示: (2)参数设置: 用鼠标双击阶跃信号输入模块,设置信号的初值和终值,采样时间sample time 和阶跃 时间step time;用鼠标双击实际微分环节,设Kd=1,Td=1;用鼠标双击示波器,设置合适的示波器参数; (3)在simulation/paramater中将仿真时间(Stop Time )设置为10秒; (4)仿真:simulation/start,仿真结果如图1-1所示; (5)改变Td、Kd,观察仿真结果有什么变化。 图1-1 实际微分环节的动态特性图 第 1 页共 7 页指导教师签名

院系电子信息工程学院班级姓名学号 实训名称典型环节动态特性的仿真实训日期 ①惯性环节 建立如下图1所示的仿真结构图,K值为1,并保持不变;T值依次为1,2和3,运行得到阶跃响应曲线(图2): 图1 惯性环节仿真结构图 T值不同 图2 惯性环节T值不同的阶跃响应曲线 建立如下图2所示的仿真结构图,T值为1,并保持不变;K值依次为1,2和3,运行得到阶跃响应曲线(图3): 图3 惯性环节仿真结构图 K值不同 第 2 页共 7 页指导教师签名

ADAMS机构设计与分析

曲柄滑块机构的仿真与分析: 图中件1、2、为齿轮,按圆柱建模,其中齿轮2半径350mm、厚度50mm;齿轮1半径150mm、厚度40mm;件3连杆(宽150mm;厚60mm)、件4长方体滑块(长600mm、宽300mm、高400mm),要求整个模型与栅格成对称状态。其中:齿轮1材料密度为7.8 10-3kg/cm2;连杆3质量Q=65kg,惯性矩Ixx=0.132kg.m2,Iyy=6.80kg.m2,Izz=6.91kg.m2;滑块4材料为铝。 绘图步骤简介: 步骤1:启动ADAMS/View程序 1)选择MD Adams>Adams-view MD 2010 2)在打开的对话框中选择create a new model 。 3)选择start in 后在单击,在自己指定的工作目录下新建的一个文件夹,以保存样机模型。 4)在model name栏中输入模型名称:model_lixiang 5)在gravity选项栏中选择earth normal(-global Y)。 6)在units文本框设定为MMKS—mm、kg、N、s、deg 。 7)单击ok按钮。如图:

步骤2:设定建模环境 1)选择settings>working grid,按图所示进行设置工作栅格大小及间距。 2)单击ok按钮,可看到工作栅格已经改变。 3)在主工具箱中选择,显示view控制图标。 4)按F键或在主工具箱中单击,可看到整个工作栅格。 步骤3:样机建模 1、创建设计点 1)在集合建模工具集中,单击点工具图标 2)在主工具箱的选项栏中选择添加到零件上add to ground。 3)在建模视窗中,先点击ground,再选择该点,点击右键,打开修改点对话框,修改坐标为A(-800,-20,20),重复此过程,依次创建点B(-300,0,25)、C(0,0,0)、D(1000,0,0) 2、创建驱动齿轮1 1)在集合建模工具集中,单击圆柱工具图标、。 2)在主工具箱的选项栏中选择新零件new part 3)在长度选项输入40mm、半径选项输入150mm,如图(1)。 4)在建模视窗中,点击点(-800,-20,20),水平拖动鼠标至点的右边点击,创建圆柱体5)旋转圆柱体与屏幕垂直:鼠标放在圆柱体左端附近,点击右键,选择标记点marker菜单,

常用机构的运动仿真(20个例程)

常用机构的运动仿真 一名资深机构设计师的话: 机构设计是机械设计中的灵魂,一种独特、新颖的机构设计体现了设计者的智慧与创新的精神。谁掌握、了解的机构越多,在研发设计新产品时就越主动,越有办法。 但是,熟练的掌握各种机构的设计并非易事,并非一日之功。它又是一种“隐性知识”,不是刚刚毕业就可以掌握的知识。需要日积月累,不断从实践、生活中学习,结合理论不断的总结,才能逐步地掌握。 但对于那些刚刚从事机械设计的人,才走上机械设计岗位的人,是否有一条稍微快捷的办法呢?我想尝试下面所述的方法:利用三维软件的运动仿真技术,把在实践中用到的、见到的以及在书本上学到的,常用的机构,绘制成三维模型仿真运动,让那些枯燥的平面图形变成实物一样的机构模型,并让他“动”起来,像看动画片一样。轻松地、在较短的时间里了解各种机构的运动原理,并大大地加深印象和记忆,用这样的办法来“缩短”掌握机构的时间。在老师的帮助下,首先完成了下面几个常用机构的仿真运动并作了简单的说明,方法是否可行?等候读者的消息。

20个常用机构的运动仿真案例 1、风扇摇头机构 图1是风扇摇头机构的原理模型。该机构把电机的转动转变成扇叶的摆动。红色的曲柄与蜗轮固接,蓝色杆为机架,绿色的连架杆与蜗杆(电机轴)固接。电机带扇叶转动,蜗杆驱动蜗轮旋转,蜗轮带动曲柄作平面运动,而完成风扇的摇头(摆动)运动。机构中使用了蜗轮蜗杆传动,目的是降低扇叶的摆动速度、模拟自然风。 图 1 风扇摇头机构 2、用摆动扇形齿轮实现间接送料机构 图2 是一个曲柄摇杆机构。绿色的可调曲柄可作整周旋转。并驱动扇形齿轮(摇杆)摆动,扇形齿轮又使蓝色小齿轮正反转动,若小齿轮与电磁离合器或超越离合器结合可完成间歇转动,可完成间断送料。 图 2 摆动扇形齿轮机构

槽轮机构运动学仿真

湖南农业大学工学院 课程设计说明书 课程名称:机械CAD/CAM课程设计 题目名称:槽轮机构运动学仿真 班级:20 11 级机制专业四班 姓名: 学号: 指导教师: 评定成绩: 教师评语: 指导老师签名: 20 年月日

目录 摘要 (1) 关键词 (1) 1 槽轮机构的结构组成和工作原理 (1) 2 零件三维实体模型建立的方法 (1) 2.1 主动转盘三维实体模型建立的方法 (1) 2.2 从动槽轮三维实体模型建立的方法 (3) 2.3 其他零件三维实体模型建立的方法 (4) 3 装配模型建立的方法和步骤 (6) 4 建立装配模型的运动仿真 (9) 5 装配模型的运动仿真分析 (13) 6 装配模型的运动仿真分析结论 (15) 7 装配模型图集 (16) 7.1 总成图 (16) 7.2 爆炸图 (16) 7.3 零件图 (17) 7.4 主动转盘工程图 (18) 8 总结 (19) 参考文献.......................................... (19)

槽轮机构运动学仿真 学生: (工学院,11-机制4班,学号) 摘要:槽轮机构是将主动拨盘的连续转动转化为从动槽轮的间歇转动,以达到间歇进给、转位和分度等工作要求。运用Pro/E软件对槽轮机构进行三维实体建模及装配,并运用模块进行运动仿真分析,得出机构的角速度、角加速度随时间变化的曲线。 关键词:槽轮机构;间歇运动;运动仿真 1、槽轮机构的结构组成和工作原理 槽轮机构由槽轮和圆柱销组成的单向间歇运动机构,又称马尔他机构。它常被用来将主动件的连续转动转换成从动件的带有停歇的单向周期性转动。槽轮机构有外啮合和内啮合以及球面槽轮等。外啮合槽轮机构的槽轮和转臂转向相反,而内啮合则相同,球面槽轮可在两相交轴之间进行间歇传动。槽轮机构典型结构由主动转盘、从动槽轮和机架组成。 2、零件三维实体模型建立的方法 2.1、主动转盘三维实体模型建立的方法 ②选择模板

(完整版)Adams运动仿真例子--起重机的建模和仿真

1起重机的建模和仿真,如下图所示。 1)启动ADAMS 1. 运行ADAMS,选择create a new model; 2. modal name 中命名为lift_mecha; 3. 确认gravity 文本框中是earth normal (-global Y),units文本框中是MKS;ok 4. 选择setting——working grid,在打开的参数设置中,设置size在X和Y方向均为20 m,spacing在X和Y方向均为1m;ok 5. 通过缩放按钮,使窗口显示所有栅格,单击F4打开坐标窗口。 2)建模 1. 查看左下角的坐标系为XY平面 2. 选择setting——icons下的new size图标单位为1

3. 在工具图标中,选择实体建模按钮中的box按钮 4. 设置实体参数; On ground Length :12 Height:4 Depth:8 5. 鼠标点击屏幕上中心坐标处,建立基座部分 6. 继续box建立Mount座架部件,设置参数: New part Length :3 Height:3 Depth: 3.5 设置完毕,在基座右上角建立座架Mount部件 7. 左键点击立体视角按钮,查看模型,座架Mount不在基座中间,调整座架到基座中间部位:

①右键选择主工具箱中的position按钮图标中的move按钮 ②在打开的参数设置对话框中选择Vector,Distance项中输入3m,实现Mount 移至基座中间位置 ③设置完毕,选择座架实体,移动方向箭头按Z轴方向,Distance项中输入2.25m,完成座架的移动 右键选择座架,在快捷菜单中选择rename,命名为Mount 8. 选择setting—working grid 打开栅格设置对话框,在set location中,选择pick 选择Mount.cm座架质心,并选择X轴和Y轴方向,选择完毕,栅格位于座架中心

槽轮机构的组成及其特点

槽轮机构的组成及其特点 newmaker (1) 槽轮的组成(Composition of Geneva Mechanism) 如右图所示,主动拨盘上的圆柱销进进槽轮上的径向槽以前,凸锁止弧将凹锁止弧锁住,则槽轮静止不动。圆柱销进进径向槽时,凸、凹锁止弧恰好分离,圆柱销可以驱动槽轮转动。当圆柱销脱离径向槽时,凸锁止弧又将凹锁止弧锁住,从而使槽轮静止不动。因此,当主动拨盘作连续转动时,槽轮被驱动作单向的间歇转动。 (2)槽轮的特点 构造简单,外形尺寸小; 机械效率高,并能较平稳地,间歇地进行转位; 但因传动时存在柔性冲击,故常用于速度不太高的场合。 槽轮机构的类型及应用 (1)槽轮机构的类型(Type of Geneva Mechanism) 外槽轮机构:运动时,拨盘与槽轮为异向回转。 内槽轮机构:运动时,拨盘与槽轮为同向回转。 两种机构均用于平行轴之间的间歇传动。 (2)槽轮机构的应用举例(Application Sample of Geneva Mechanism) 外槽轮机构被广泛应用于电影放映机中。

(3)球面槽轮机构(Sphere Geneva Mechanism) 当需要在两相交轴之间进行间歇传动时,可采用球面槽轮机构。右图为球面槽轮机构。 槽轮机构的运动系数及运动特性 (1)槽轮机构的运动系数k (Motion Factor of Geneva Mechanism) k=td/t 又因拨盘1一般为等速回转,因此时间的比值可以用拨盘转角的比值来表示。可得外槽轮机构运动系数的另一表达式: 由于运动系数k应大于零,所以由上式可知外槽轮径向槽的数目z应大于3。又由上式可知,

proe机构运动仿真教程

proe机构运动仿真教程 典型效果图 1.1机构模块简介 在进行机械设计时,建立模型后设计者往往需要通过虚拟的手段,在电脑上模拟所设计的机构,来达到在虚拟的环境中模拟现实机构运动的目的。对于提高设计效率降低成本有很大的作用。Pro/ engineer中“机构”模块是专门用来进行运动仿真和动态分析的模块。 PROE的运动仿真与动态分析功能集成在“机构”模块中,包括Mechanism design(机械设计)和Mechanism dynamics (机械动态)两个方面的分析功能。 使用“机械设计”分析功能相当于进行机械运动仿真,使用“机械设计”分析功能来创建某种机构,定义特定运动副,创建能使其运动起来的伺服电动机,来实现机构的运动模拟。并可以观察并记录分析,可以测量诸如位置、速度、加速度等运动特征,可以通过图形直观的显示这些测量量。也可创建轨迹曲线和运动包络,用物理方法描述运动。 使用“机械动态”分析功能可在机构上定义重力,力和力矩,弹簧,阻尼等等特征。可以设置机构的材料,密度等特征,使其更加接近现实中的结构,到达真实的模拟现实的目的。

如果单纯的研究机构的运动,而不涉及质量,重力等参数,只需要使用“机械设计”分析功能即可,即进行运动分析,如果还需要更进一步分析机构受重力,外界输入的力和力矩,阻尼等等的影响,则必须使用“机械设计”来进行静态分析,动态分析等等。 1.2总体界面及使用环境 在装配环境下定义机构的连接方式后,单击菜单栏菜单“应用程序”→“机构”,如图1-1所示。系统进入机构模块环境,呈现图1-2所示的机构模块主界面:菜单栏增加如图1-3所示的“机构”下拉菜单,模型树增加了如图1-4所示“机构”一项内容,窗口右边出现如图1-5所示的工具栏图标。下拉菜单的每一个选项与工具栏每一个图标相对应。用户既可以通过菜单选择进行相关操作。也可以直接点击快捷工具栏图标进行操作。 图1-1 由装配环境进入机构环境图 图1-2 机构模块下的主界面图 图1-3 机构菜单图1-4 模型树菜单图1-5 工具栏图标图1-5所示的“机构”工具栏图标和图1-3中下拉菜单各选项功能解释如下:

典型机构运动学

技术测量及运动学、力学分析能力训练 典 型 机 构 的 运 动 学 分 析 年级: 班级: 学号: 姓名:

对心曲柄滑块机构的运动学分析 一、已知参数: 在图1所示的曲柄滑块机构中,已知各构件的尺寸分别L1=80mm,L2=120mm,ω=66rad/s, 试确定连杆2和滑块3的位移、速度和加速度,并绘制出运动线图。 图1 曲柄滑块机构 二、机构的工作机理 1、机构自由度计算 F=3n-2p l -p h =3x3-2x4-0=1 2、机构的拆分及级别 该机构由一个Ι机构和一个ΙΙ 机构组成 三、数学模型的建立: 1、位置分析 由图1可以得到偏置曲柄滑块机构的向量模型,如图2所示,从而可得该机构的闭环位移矢量方程: 图2 对心曲柄滑块机构向量模型 C S l l =+21 将该闭环位移矢量方程向X 轴和Y 轴进行分解,可得该矢量方程的解析式: s i n s i n c o s c o s 22112211=+=+θθθθl l S l l C (1)

由式(1)得: 2211cos cos θθl l S C += ; ??? ? ??-=2112sin arcsin l l θθ ........... (2) 2、速度分析: 对(1)式两边求时间的一阶导数,可得机构的速度运动学方程: C v l l l l =--=+222111222111sin sin 0cos cos θωθωθωθω (3) 为了便于编写程序,将(3)式改写成矩阵形式: ??? ???-=????????????-11 11122222cos sin . 0 cos 1 sin θθωωθθl l v l l C (4) 3、加速度分析: 对(3)式两边求时间的一阶导数,可得机构的加速度运动学方程(矩阵形式): ? ?????--=????????????+????????????-11 11111222222222222sin cos 0 sin 0 cos 0 cos 1 sin θωθωωωθωθωαθθl l v l l a l l C C (5) 四、程序设计 1、主程序 %输入已经知道的数据 clear; l1=88; l2=102; e=0; hd=pi/180; du=180/pi; omega1=77; alpha1=0; %调用子函数 for n1=1:361 theta1(n1)=(n1-1)*hd; [theta2(n1),s3(n1),omega2(n1),v3(n1),alpha2(n1),a3(n1)]=slider_crank(theta1(n1),omega1,alpha1,l1,l2,e); end %绘制位移图 figure(1); n1=1:361; subplot(2,2,1); [AX,H1,H2]=plotyy(theta1*du,theta2*du,theta1*du,s3); set(get(AX(1),'ylabel'),'String','连杆角位移/\circ')

ADAMS实例仿真解析

ADAMS大作业 姓名:柴猛

学号:20107064 目录 绪论 (1) 模型机构 (2) 模型建立 (3) 约束添

加 (9) 运动添加 (11) 模型仿真 (14) 小结 (17) 参考文献 (17)

绪论 大型旋挖钻机是我国近年来引进、发展的桩工机械, 逐步取代了对环境污染严重、效率低下的其它建筑工程桩孔施工机械。旋挖钻机的钻桅变幅机构对整机布局和操纵稳定性影响很大, 它是实现钻孔位置变化及改变钻桅位置状态的关键部件。钻桅是旋挖钻机主执行机构的重要支撑, 其为钻具、调整机构、加压系统等提供结构支撑, 整个桅杆对于保证整机的正常运行和工作质量起着至关重要的作用。 旋挖钻机主要是运用于灌注桩施工,功能为钻孔。而在当今灌注桩施工中旋挖钻机具有优于其它方式的优点: 1.钻井效率高; 2.成孔质量好; 3.环境污染小。 本文主要是对旋挖钻机的钻桅举升装置进行运动仿真分析。

模型机构 钻桅举升装置主要由钻头,钻杆,变幅机构,桅杆以及油缸组成, 工作过程:对孔,下钻,钻进,提钻,回转,卸土六个主要步骤。 对孔:为了保证钻桅的垂直度,采用了平行四边形平动机构,并结合液压杆及回转机构完成孔的定位; 下钻:由于钻具质量大,应控制其下降速度,将钢丝绳与钻杆通过回转接头连接,采用卷扬提升系统控制钻具的升降;钻进:通过动力头驱动扭矩并传递给钻杆,再由钻杆传递给钻钭以实现钻进;提钻:与下钻具有相同的控制系统和运动过程; 回转:由回转机构完成;卸土:通过卷扬系统和连杆的旋转来完成。

模型建立 把实际模型按比例缩 小 一.底座 因为底座不参与运动分析,所以可以用方块代替底座:

Adams动力学仿真分析的详细步骤

1、将三维模型导出成parasolid格式,在adams中导入parasolid格式的模型,并进行保存。 2、检查并修改系统的设置,主要检查单位制和重力加速度。 3、修改零件名称(能极大地方便后续操作)、材料和颜色。首先在模型界面,使用线框图来修改零件名称和材料。然后,使用view part only来修改零件的颜色。 4、添加运动副和驱动。 注意: 1)添加运动副时,要留意构件的选择顺序,是第一个构件相对于第二个构件运动。 2)对于要添加驱动的运动副,当使用垂直于网格来确定运动副的方向时,一定要注意视图定向是否对,使用右手法则进行判断。若视图定向错了,运动方向就错了,驱动函数要取负。 3)添加运动副时,应尽量使用零件的质心点,此时也应检查零件的质心点是否在其中心。 4)因为在仿真中经常要修改驱动函数,所以应为驱动取一个有意义的名称,一般旋转驱动取为:零件名称_MR1,平移驱动取为:零件名称_MT1。 5)运动副数目很多,且后面用的比较少,所以运动副的名称可以不做修改。对于要添加驱动的运动副,在添加运动副后,应马上添加驱动,以免搞错。 6)添加完运动副和驱动后,应对其进行检查。使用数据库导航器检查运动副和驱动的名称、类型和数量,使用verify model检查自由度的数目,此时要逐个零件进行自由度的检查和计算。 7)进行初步仿真,再次对之前的工作进行验证。因为添加了材料,有重力,但没有定义接触,此时模型会在重力的作用下下掉。若没问题,则进行保存。 5、添加载荷。

6、修改驱动函数。一般使用速度进行定义,旋转驱动记得加d。 7、仿真。先进行静平衡计算,再进行动力学计算。 8、后处理。 具体步骤如下: 1)新建图纸,选择data,添加曲线,修改legend。一般需要线位移,线速度,垂直轮压和水平侧向力的曲线。 2)分析验证,判断仿真结果的正确性(变化规律是否对,关键数值是否对)。 3)截图保存,得出仿真分析结论。

基于Matlab的机构运动仿真方法及其比较

基于Matlab的机构运动仿真方法及其比较 发表时间:2015-12-18T16:19:30.760Z 来源:《基层建设》2015年16期供稿作者:严家炜 [导读] 广东伊之密精密机械股份有限公司运动学仿真对于机构设计研究有着非常重要的地位,它能够去除大量的复杂繁琐和重复的计算工作,对运动过程进行直观的表达。 严家炜 广东伊之密精密机械股份有限公司 528306 摘要:机构运动仿真在机构学研究中占有着非常重要的地位,本文依照仿真活动生命周期,总结概括了三种机构运动仿真方法,并进行对比研究深入分析。基于MatLab平台,以曲柄摆杆机构为例探究这三种方法的实现途径。 关键词:Matlab;机构运动仿真;对比 前言 运动学仿真对于机构设计研究有着非常重要的地位,它能够去除大量的复杂繁琐和重复的计算工作,对运动过程进行直观的表达。在机构运动仿真中,明确不同仿真方法及其特点,把握仿真方法的发展趋势,从而充分选择和利用不同仿真平台的功能,对于节约仿真费用,提高研究效率等方面有积极作用。 1.Matlab概述 Matlab是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。 2.机构运动仿真 机构仿真周期主要由建立模型,求解模型,展现结果,观察结果和调整模型等五部分构成,如图1所示。建立模型即列出相关构件或关键点的运动方程,通过求解模型解算出相关点的位姿数据,基于这些数据建立直观的人机界面,将运动过程动态展现给用户。通常仿真与优化配合使用,由于人机界面的直观性,通过观察常常可以获得优化方面的新信息,利用优化后的新参数调整仿真模型,开始一个新的仿真活动周期,直到获得满意结果为止。 根据对机构仿真中各阶段的侧重不同,可以将机构运动仿真方法基本归为三个大的类别。第一类的核心是,对仿真模型进行数值求解,称之为基于模型解算的仿真方法。第二类以提供建模支持手段为核心,利用一些辅助工具来提高建模效率,称之为基于辅助建模的仿真方法。第三类方法中引进了虚拟现实技术,称之为基于虚拟现实的仿真方法。以下以图1所示的曲柄摆杆机构为例,说明三种仿真方法的实现过程。该机构的相关参数分别为l1=370,l2=1049.6,l3=524.7,(xd,yd)=(1080.3,-270)。其中AB为曲柄,是原动件,以ω作匀速圆周运动,DC为摆杆。 图1:一个曲柄摆杆机构 3.运动仿真方法 3.1基于模型解算的运动仿真 基于模型解算的运动仿真方法属于传统的仿真方法,它以求解模型为核心,重点研究模型的求解方法,以及如何提高求解的效率。也就是说,仿真效率的提高主要体现为模型求解效率的提高。在MatLab中,具体表现为提供了大量的功能强大的函数,供求解模型时调用。 这种传统的机构仿真方法的另一个特点是,对仿真结果即运动轨迹的展现,除非用户满意字符界面,一般要用户本人利用图形函数绘制相关构件或关键点的轨迹。对于图2所示机构,如果要在基于OpenGL的环境下,以图形方式展现运动轨迹,开发人员必须调用多个GDI 函数。但在MatLab下,对于C点的位姿数据,只要调用plot函数即可获得运动图线。 3.2基于辅助建模的运动仿真 这种方法是以提高建模效率来提高仿真效率的,MatLab/Simulink就是以框图作为建立仿真模型的主要支持手段,框图成为描述模型的基本元素。而且,MatLab还提供了一个机构系统仿真工具SimMechanics,它可以在Simulink环境下直接使用,使得仿真建模更为便捷。 3.3基于虚拟现实的仿真方法 虽然在SimMechanics下也可采用VR的显示方式,问题是由于构件模型不是三维的,不能得到虚拟环境下的效果。尤其是对于空间机构,这种缺陷更为明显。如果能够从不同的空间位置,观察机构的构件基于三维实体模型的动态运动过程,则可以得到更为逼真的仿真效果,这有助于人们对机构的直观理解,对于发现设计缺陷是非常重要的。这可以利用MatLab中的VR工具箱[6]来实现。以虚拟现实的方式展现仿真结果数据时,必须将仿真模型的数据实时传送到虚拟场景中,用仿真模型驱动三维场景。 4.方法比较 4.1模型解算方法 这类方法强调仿真模型的求解,以提高求解仿真模型的效率为核心。主要优点是对软件平台的要求不高,比较灵活,不受制于仿真软件供应商。可以在多个较为通用平台上开发,如选择VisualC++或BorlandC++,可以开发自主知识产权的仿真软件。 这类方法主要缺点是,通用性相对较差,当面临每一个具体机构时,都要开发一个单独的仿真引擎,因此工作量较大。当要以图形方式展现仿真结果时,也必须进行额外的编程工作。这类方法的另外一个缺点是,要求技术人员掌握较多的编程知识和仿真领域的知识,增

第1节 四连杆机构运动仿真

第1讲四连杆机构运动仿真 一、建立连接 1.设置工作目录 选择【文件】→【设置工作目录】打开工作目录选取面板,如图1所示,选择如图所示2的文件夹为工作目录。 图1设置工作目录 图2 选择文件夹

2.建立新的装配文件 打开PROE软件,点击'文件',选择‘新建’,有如下对话框弹出(如图3所示),在类型项选择‘组件’,子类型项选择‘设计’,名称改为‘2009109120’,不使用缺省模板,点击‘确定’。有下对话框弹出(如图4所示),在模板中选择‘mmns -asm -design’,直接点击‘确定’开始进入制图过程。 图3 新建组件 图4 选择单位

二、装配文件 1.机架的放置 (1)进入PROE的主界面,点击右下角图标‘’,有如下对话框弹出(如图5所示),选择运动仿真四连杆中1ground.prt,单击打开。 图5 载入文件 在主界面出现一行任务栏,在‘自动’选项中选择,再在右边单击‘’,如图6所示。 图6 机架1 (2)再点击右下角图标‘’,选择运动仿真四连杆中1-ground-prt,单击‘打开’,则在主

界面中出现一行任务栏,如图7所示。 图7 机架2 用鼠标左键选择前面两平面对齐,如图8所示,再单击右边。再选择底面两平面对齐。 图8 平面对齐 再在选择两侧面对齐,在任务栏中选择,如图9所示,再单击右边。 图9 侧面对齐

2.曲柄的装配 在单击右下角‘’,在运动仿真四连杆中选择‘2-crank-prt',单击‘打开’。在主界面出 现一行任务栏:,在用户定义栏中有选择'’,在操作区中选择曲柄的轴线与机座的轴线重合,如图10所示。 图10 曲柄面匹配 再选择曲柄的前面与该机座的后面配对,如图11所示。在任务栏中点击‘’,和‘’,完成该次联结。 图11 轴对齐 3.摇杆的装配 单击右下角‘’,运动仿真四连杆中选择‘4rocker-prt’,单击‘打开’。任务栏: ,同理在用 户定义中选择‘’把第4摇杆与另一机座的轴线重合连结,如图12所示。

ADAMS 柔性体运动仿真分析及运用

ADAMS 柔性体运动仿真分析及运用 焦广发,周兰英 (北京理工大学机械与车辆工程学院100081) 摘要介绍了ADAMS柔性体基本理论及在ADAMS中生成柔性体的几种方法,并构建机械系统仿真模型.通过一个实例验证了ADAMS 柔性体运动仿真分析的实效. 关键词:ADAMS 柔性体运动仿真继电器 Application of ADAMS flexible body kinetic simulation Jiao guangfa Zhou lanying (Beijing institute of technology ,school of mechanical and vehicular engineering , Beijing 100081 ) Abstract Introduced the basic theory of ADAMS flexible body and some methods of adding flexible bodies to a model to study the dynamic characteristics of the mechanical system1,constructed mechanical system simulation model1 Tested the validity of the ADAMS flexible kinematical simulation through an example1. Key words :ADAMS Flexible body Kinetic simulation relay ADAMS全称是机械系统自动动力学分析软件,它是目前世界范围内最广泛使用的多体1系统仿真分析软件,其建模仿真的精度和可靠性在现在所有的动力学分析软件中也名列前茅.机械系统动力学仿真分析是机械设计的重要内容,过去分析时建立的模型,其构件都是属于刚体,在作运动分析时不会发生弹性变形.而实际上,在较大载荷或加、减速的情况下,机构受力后会有较大的变形和位移变化,产生振动.ADAMS的分析对象主要是多刚体,但ADAMS提供了柔性体模块,运用该模块可以实现柔性体运动仿真分析,以弹性体代换刚体,可以更真实地模拟出机构动作时的动态行为,同时还可以分析构件的振动情况[1]. 一、ADAMS柔性体理论及生成柔性体的几种方法 ADAMS柔性模块是采用模态来表示物体弹性的,它基于物体的弹性变形是相对于连接物体坐标系的弹性小变形,同时物体坐标系又是经历大的非线性整体移动和转动这个假设建立的.其基本 基金项目:北京市重点学科建设(XK100070424);北京理工大学基金(0303E10) 作者简介:焦广发(1982—),男,河北人,硕士,主要研究方向为动力学仿真,有限元分析和表面涂层技术. 思想是赋予柔性体一个模态集,采用模态展开法,用模态向量和模态坐标的线性组合来表示弹性位移,通过计算每一时刻物体的弹性位移来描述其变形运动.ADAMS柔性模块中的柔性体是用离散化的若干个单元的有限个结点自由度来表示物体的无限多个自由度的.这些单元结点的弹性变形可近似地用少量模态的线性组合来表示. ADAMS提供了四种生成柔性体的方法,对于外形简单的构件,可以采用直接生成柔性件的方法,即拉伸模式;对于外形复杂的构件,可以采用先建刚性件, 再进行网格划分的模式, 即构件网格模式(Solid). 1) 拉伸法生成柔性体:首先要确定拉伸中心线,再定义截面半径、单元尺寸、材料属性等,最后定义好柔性体跟其它构件的连接点即外连点,就可以生成柔性体.模型生成柔性件的同时生成模态中性文件,该模态中性文件中包含了柔性件的质量、质心、转动惯量、频率、振型以及对载荷的参数因子等信息.将模型中原有的刚体件上的运动副修改在柔性件上,使柔性件与模型上的其它构件连接起来,同时删除无效的刚性件.这样可以使模型保持原有的自由度,从而实现柔性构件的运动仿真运算.

adams分析报告

ADAMS机构分析报告 一题目描述 题目:两个支点和中间法兰盘对夯锤切割次序的控制 图1所示的机构在行程中自动地从一个支点换到另一个支点。 图1 法兰和夯锤组成的切割机换向机构 1.运行情况 如图1中(A)可知,法兰盘被安装在切割机机架的上支点上,而切割夯锤在下支点与法兰盘相连。法兰盘下端连接有法兰支撑活塞,夯锤中间有止推块,下端有刀片。在循环工作开始时,夯锤绕着下支点旋转并用方型刀片切割平板;中间法兰盘的运动受到法兰支撑活塞的限制。在切割后,夯锤停在法兰盘的底部,如图1(B)所示。之后,有切割力作用的夯锤克服了法兰支撑活塞的约束力,并且夯锤绕着上支点转动。从而使得斜向刀刃对平板做斜向切割。 2. 实现的功能 在切割力作用下夯锤开始运动时,由于法兰盘有法兰支撑活塞,法兰盘不转动,夯锤绕下支点转动,用方型刀片切割平板。之后由于夯锤止推块的作用使夯锤停在法兰盘的下端,之后克服了法兰支撑活塞的约束力,并绕上支点转动,从而实现夯锤不要更换刀片即可改变切割方向。 二.^ 三.机构的运动简图及自由度 机构的运动简图如图2、图3所示:

图2 机构的运动简图 图3 机构的三维渲染运动简图 自由度的计算:DOF=∑--i i n n )1(6=2

四.大致确定其运动尺寸 机构的运动尺寸如图4所示: ¥ 图4 转位机构的大致尺寸 四.分析目的 分析机构能否达到题目中描述的运动要求,即夯锤可否绕设计点旋转, 实现在不更换刀片的前提下,改变刀片切割方向。

五.模型描述 图5 机构分析图 1机构的构建 该机构构件数量少,主要由夯锤、中间法兰盘组成,且各组成构件结构简单,利用adams 建模即可完成,无需通过专业CAD建模。 (1)夯锤的建立夯锤结构简单,有多种方法建立,首先建立三个marker点,分别为marker19、marker15、marker2。然后先去工具箱中拉伸命令,设置如图6所示,用点来创建,并选择close,表示选取曲线闭合,之后分别点取marker19、marker15、marker2,点

相关主题
文本预览
相关文档 最新文档