当前位置:文档之家› 复合材料力学论文

复合材料力学论文

复合材料力学论文
复合材料力学论文

纤维增强复合材料力学性能研究现状文献综述

崔鹏

中北大学理学院工程力学学科部 030051太原中国

摘要:纤维增强复合材料(Fiber Reinforced Plastic,简称FRP)是由增强纤维材料,如玻璃纤维,碳纤维,芳纶纤维等,与基体材料经过缠绕,模压或拉挤等成型工艺而形成的复合材料。根据增强材料的不同,常见的纤维增强复合材料分为玻璃纤维增强复合材料(GFRP),碳纤维

增强复合材料(CFRP)以及芳纶纤维增强复合材料(AFRP)。由于纤维增强复合材料的材料特性,因此它越来越广泛地应用于各种民用建筑、桥梁、公路、海洋、水工结构以及地下结构等领域中。本文将综述近年来国内外的学者对它的力学性能的研究现状。

关键词:纤维增强;复合材料;力学性能;材料特性;应用

Composite Research Status literature review of fiber reinforced mechanical properties of materials

CUI Peng

College of Engineering Department of Mechanical Discipline North University of

China Taiyuan, China 030051

Abstract:Fiber-reinforced composite material (Fiber Reinforced Plastic, referred FRP) is a reinforcing fiber material, such as glass fiber, carbon fiber, aramid fiber, and composite matrix material after winding, pultrusion molded or formed by molding process. Depending on the reinforcing material, a common fiber-reinforced composite material into glass fiber reinforced Plastic (GFRP), carbon fiber reinforced Plastic (CFRP) and aramid fiber reinforced Plastic (AFRP). Since the material properties of the fiber-reinforced composite materials, so it is increasingly widely used in various areas of civil construction, bridges, highways, marine, hydraulic structures and underground structures like. This paper will present research scholars at home and abroad in recent years, its mechanical properties. Keywords:Fiber reinforced; Composites; Mechanical Properties;Material properties; application

1.引言

复合材料是将两种或两种以上不同品质的材料通过专门的成型工艺和制造

方法复合而成的一种高性能新材料,按使用要求可分为结构复合材料和功能复合材料到目前为止,主要的发展方向是结构复合材料,但现在也正在发展集结构和功能一体化的复合材料。通常将组成复合材料的材料或原材料称之为组分材料(constituent materials),它们可以是金属、陶瓷或高聚物材料。对结构复合材料而言,组分材料包括基体和增强体,基体是复合材料中的连续相,其作用是将增强体固结在一起并在增强体之间传递载荷;增强体是复合材料中承载的主体,包括纤维、颗粒、晶须或片状物等的增强体,其中纤维可分为连续纤维、长纤维和短切纤维,按纤维材料又可分为金属纤维、陶瓷纤维和聚合物纤维,而目前用得最多的和最重要的是碳纤维。范围在6~8μm内,是近几十年发展起来的一种新型材料。目前用在复合材料中的碳纤维主要有两大类:聚丙烯腈基碳纤维和沥青基碳纤维,分别用聚丙烯腈原丝(称之为前驱体)、沥青原丝通过专门而又复杂的碳化工艺制备而得。通过碳化工艺,使纤维中的氢、氧等元素得以排出,成为一种接近纯碳的材料,含碳量一般都在90%以上,而本身质量却大为减轻;由于碳化过程中对纤维进行了沿轴向的预拉伸处理,使得分子沿轴向进行取向排列,因而碳纤维轴向拉伸强度大大提高,成为一种轻质、高强度、高模量、化学性能稳定的高性能纤维材料。纤维增强复合材料具有如下特点:(1)比强度高,比模量大;(2)材料性能具有可设计性:(3)抗腐蚀性和耐久性能好;(4)热膨胀系数与混

凝土的相近。这些特点使得FRP材料能满足现代结构向大跨、高耸、重载、轻质高强以及在恶劣条件下工作发展的需要,同时也能满足现代建筑施工工业化发展的要求,应用广泛。

2.理论基础与依据

纤维增强复合材料(Fiber Reinforced Plastic,简称FRP)是由增强纤维材料,如玻璃纤维,碳纤维,芳纶纤维等,与基体材料经过缠绕,模压或拉挤等成型工艺而形成的复合材料。

2.1 FRP材料的优点

1.有很高的比强度,即通常所说的轻质高强,因此采用FRP 材料可减轻结构自重。在桥梁工程中,使用FRP 结构或FRP 组合结构作为上部结构可使桥梁的极限跨度大大增加。

2.有良好耐腐蚀性,FRP 可以在酸、碱、氯盐和潮湿的环境中长期使用,这是传统结构材料难以比拟的。

3.具有很好的可设计性。FRP 属于人工材料 以通过使用不同的纤维材料、纤维含量和铺陈方向设计出各种强度指标、弹性模量以及特殊性能要求的FRP 产品。而且FRP 产品成型方便 状可灵活设计。

4.具有很好的弹性性能,应力应变曲线接近线弹性,在发生较大变形后还

能恢复原状,塑性变形小,有利于结构偶然超载后的变形恢复。

5.FRP 产品适合于在工厂生产、运送到工地、现场安装的工业化施工过程,有利于保证工程质量、提高劳动效率和建筑工业化。

2.2 关于纤维增强复合材料力学性能研究现状

2.2.1李岩,罗业[1]研究了天然纤维的化学成分、结构以及力学性能;综述了天然纤维的表面处理方式, 分析了其作用机理, 并讨论了表面处理对其复合材

料力学性能的影响;从增强体形式出发, 介绍了短纤维、纤维毡、纤维织物以及单向纤维增强复合材料, 并研究了成型工艺、纤维含量和表面处理等对其拉伸、弯曲、界面性能和冲击强度以及断裂韧性的影响。

然后总结了天然纤维增强复合材料在汽车,建筑等土木领域的应用现状,

随着生态环保意识的加强, 各行各业越来越青睐“绿色” , 特别是与人们生活紧密相关的汽车工业和建筑土木行业.天然纤维增强复合材料得到了广泛的应用, 有着良好的应用前景。

2.2.2关苏军,万春风等[2]则研究了用短切玄武岩纤维(BF)增强木塑(WPC)复合材料(BF /WPC)体系中, BF 的含量与BF /WPC 力学性能之间的关系, 定性探讨了纤维增强机制。结果表明, 与WPC 相比, 除断裂伸长率有所下降之外, BF /WPC 的拉伸强度、冲击强度、弯曲强度均有明显提高, 且这些性能取得最大值时BF 的质量分数分别为15% ~ 30%、15% ~ 25%、20 %~ 30 %, 提高的幅度约为30 %。提出了“弱端面”的定性假说, 由此解释了BF /WPC 各项强度指标与增强纤维含量之间存在着最大值现象的原因。

2.2.3张敏,吴刚等[4]研究了连续玄武岩纤维(CBF)由于其优异的力学性能、物理性能和较低的价格,在土木工程中应用前景广泛。CBF可以与树脂复合制作片状、板状、筋状等各种各样的复合材料(CBFRP),在实际工程中科学合理应

用CBFRP,必须对其力学性能作深入了解。对CBFRP片材和棒材的力学性能进行研究,重点讨论了影响CBFRP力学性能的各种参数,研究结果可为CBF及其CBF片材生产厂家提供参考,并为CBF的深入研究和工程应用打下基础。

2.2.4刘建华等[3] 采用中性盐雾条件模拟海洋大气环境进行加速老化试验, 评价玻璃纤维增强环氧改性酚醛树脂基复合材料(GFRP)在海洋气候中的耐久性。通过该复合材料经盐雾老化后的质量变化和纵向拉伸强度、横向拉伸强度、压缩强度、层间剪切强度的变化, 结合湿热老化机理, 研究其老化规律。结果表明, 随着老化时间的增加, 复合材料的吸湿量增加, 力学强度下降, 压缩和层间剪切曲线表现出塑性特征。吸湿最初阶段对力学性能影响最大, 纵向拉伸强度、横向拉伸强度、压缩强度、层间剪切强度分别下降到56.1%、54.7%、54 .0 %、61 .0 %。其中拉伸强度变化趋势最稳定, 更适用于评价该复合材料的老化程度。

2.2.5张杨,马岩[5]为了研究碳纤维增强木基复合材料的力学性能,选择直径为12μm的碳纤维制备试样。分别对碳纤维增强木基复合材料与木纤维板进行了三点弯曲力学性能测试,运用扫描电镜(SEM)其微观结构进行表征。结果表明:通过力学曲线对比及断裂机理分析,可以明显的发现碳纤维增强木基复合材料的力学性能要优于木纤维板,这种“三明治”结构的材料设计充分发挥出碳纤维独特的缓冲能力,试件在较高外加载荷作用下并不是产生突然的断裂破坏,而是具有一定的承载能力。SEM分析表明,聚醋酸乙烯胶粘剂工作强度高,在受力时能够很好的传递载荷,碳纤维网与木纤维板结合良好。

2.2.6焦珑,康卫民等[6]也研究了碳纳米管修饰碳纤维增强树脂基复合材料力学性能,碳纳米管以其稳定的结构、优异的力学性能,成为复合材料的理想增强相。详细介绍了碳纳米管/碳纤维功能增强体的制备方法及其在增强树脂基复合材料力学性能方面的研究进展,并评述了碳纳米管/碳纤维增强树脂基复合材料存在的相应问题,为提高碳纤维树脂基复合材料力学性能的研究提供了参考。

碳纤维复合材料由于其优异的性能得到了无限的青睐。它已经变成了一种多学科、跨行业的特殊精细化产品,国外已实现了其商业化的生产。然而我国碳纤维及其复合材料的研制与生产较世界先进水平仍有较大的差距,加之我国对碳纤维材料的需求正逐年增加,为了摆脱对国外进口产品的依赖,发展我国自主的碳纤维高性能复合材料已经迫在眉睫。基于碳纳米管优异的性能,将其与碳纤维有

效结合,制备出高性能的碳纳米管/碳纤维功能增强体,无疑对提高碳纤维及其复合材料的性能带来了一片生机。

2.2.7刘鹏,李方义等[7]为了解决生物质复合材料中淀粉基质与植物纤维分子间的表面结合问题,探究淀粉/纤维预处理对二者分子间氢键形成的影响,提高生物质复合材料的力学性能,在多年研究的基础上,优化成分配伍,分别制备了剑麻纤维、纸浆纤维、稻草纤维和木质纤维增强的生物质复合材料。通过红外光谱实验,研究了热塑性淀粉的化学键变化和复合材料制品化学键的变化机理,对比了4 种复合材料中淀粉和纤维分子间氢键的强弱。拉伸强度和压缩强度实验结果表明,剑麻纤维增强的复合材料的拉伸强度最高可达3. 75 MPa,压缩强度最高可达1. 26 MPa,远远好于纸浆纤维、稻草纤维和木质素纤维复合材料。SEM 图像显示了热塑性淀粉和生物质复合材料的微观结构形态。

生物质复合材料制备流程图

The preparation process of biomass composites

2.2.8对于纤维增强复合材料的制备,姜飞正等[8]采用模压成型法制备纺织结构碳纤维增强聚苯硫醚基(carbon fiber fabric/polyphenylene sulfide,CFF/PPS)复合材料层压板,通过纤维改性处理和模压工艺优化,得到力学性能优异的CFF/PPS复合材料。采用DSC、TGA、流变行为测试等手段对PPS 基体性能进行了表征。基于分析结果,考察了模压成型温度、压力、时间和加载方式等工艺参数对复合材料力学性能的影响,并初步探讨了这些因素对材料结构与性能的调控机制。在最佳工艺参数下制得的层压板拉伸强度为762.31MPa,弯曲强度720.93MPa,层间剪切强度58.90MPa,冲击强度46.18KJ/m2。借助SEM、

金相显微镜等表征手段观察到,PPS基体完全渗透于纺织结构碳纤维单丝之间,复合材料层压板内部没有发现微观孔隙。

对于力学性能来说,得到结论:

1)通过纤维热处理和模压工艺优化,得到力学性能优异的CFF/PPS复合材料层压板,因此薄膜叠层模压法制备CFF/PPS复合材料路线是可行

的。确定了合适的热压参数:热压温度330℃,热压时间为25min,加压方式为0.5~2.1MPa三段式加压。

2)树脂基体PPS对温度的敏感性较高,随着温度的升高,熔体粘度逐渐下降;但是温度过高易使PPS发生交联反应。但不同程度的交联对材料的拉伸、弯曲、层间剪切、冲击的影响是不一样的。

3)采用三段式加压及合理的温度与时间解决了热塑性树脂基体对纤维丝束的浸润性,有效地降低了材料的孔隙率。

2.2.9杜凤,王伟宏[9]研究了碳纤维增强木粉/聚乙烯复合材料的制备及其力学性能,将短切碳纤维(SCF)与木粉(WF)、高密度聚乙烯(HDPE)塑料和其他添加剂共混、熔融复合后,用模压成型方法制备了短切碳纤维增强木塑( SCF/WF/HDPE) 复合材料;将碳布放置于木塑板上下表面,经模压成型制备碳纤维布增强木塑(CFC/WF/HDPE)复合材料。

研究了碳纤维用量对碳纤维增强WF/HDPE 复合材力学性能的影响,并利用扫描电镜(SEM)和红外光谱(FTIR)对碳纤维进行表征。结果表明:与纯WF/HDPE 复合材相比,碳纤维加入量为10% 时,复合材料的力学强度提高幅度最大,拉伸强度和弯曲强度分别提高了8. 4% 和10. 6%;当碳纤维加入量为6%时,复合材料的韧性提高幅度最大,断裂伸长率提高了25. 9%,冲击强度提高了24. 4%。使用丙酮清洗掉碳纤维表面的上浆剂后,其增强效果比未经过处理的碳纤维略有下降。与短切碳纤维相比,碳布的增强效果更好,与短切碳纤维增强木塑(SCF/WF/HDPE) 复合材料相比,碳布平铺在木塑板表面的结构拉伸性能可提高62%,断裂伸长率提高148%,弯曲强度提高71%,冲击强度高313%。

2.2.10对于很多纤维增强复合材料,对于碳纤维增强复合材料则是研究比较多,对于这一材料,刘新宇,刘锐等[10]研究了连续碳纤维增强杂萘联苯共聚芳醚砜复合材料的制备及力学性能。

热塑性复合材料较传统的热固性复合材料具有更高的韧性和抗损伤容限,成型周期短,可重复加工等特点,热塑性复合材料的研究和应用越来越被人们所重视[11,12]。以PPBES 为树脂基体,连续碳纤维为增强材料,采用溶液浸渍和热压成型的工艺制备出连续纤维增强复合材料,重点考察了纤维体积分数、模压成型温度、成型压力及保压时间对复合材料力学性能的影响。并在确定了最佳成型工艺条件后,考察了复合材料的耐湿热性能。

以含二氮杂萘酮联苯共聚芳醚砜( PPBES) 为树脂基体,连续碳纤维T700-12K 为增强材料,采用溶液浸渍和模压成型的方法制备出单向复合材料。通过对复合材料样条进行三点弯曲以及短梁剪切力学性能测试,考察了复合材料纤维体积分数、模压成型温度、成型压力及保压时间对复合材料弯曲强度、模量及层间剪切强度的影响。分别测试了复合材料在干态及湿态下的高温力学性能的变化规律。结果表明,当复合材料纤维体积分数为63%,模压成型温度为350 ℃,成型压力为4 MPa,保压时间为20 min 时,复合材料的力学性能最佳。动态热机械性能测试结果表明复合材料在230 ℃之前,储能模量保持稳定。而水煮48 h 后复合材料的吸水率为0. 3%。

3.应用

纤维增强复合材料在工程中应用广泛,学者经过很多年的研究,已经通过FRP 的特性,发现了FRP的实用性.下面通过一些材料了解一下FRP在工程结构中的应用.

3.1FRP 筋和预应力FRP 筋混凝土结构

FRP 筋中纤维体积含量可达到60%具有轻质高强的优点,重量约为普通钢筋的1/5.强度为普通钢筋的6 倍,且具有抗腐蚀、低松弛、非磁性、抗疲劳等优点。目前用FRP 筋代替钢筋可利用其良好的耐腐蚀性,避免锈蚀对结构所带来的损害,减少结构维护费用;还较多地应用于有无铁磁性要求的特殊工程中;在桥梁工程中,FRP 索还可用作悬索桥的吊索及斜拉桥的斜拉索,以及预应力混凝土桥中的预应力筋。作为混凝土构件中配筋的FRP筋要通过表面砂化、压痕、滚花或编织等工艺增强其与混凝土间的粘接力;用作预应力FRP筋的索一般较柔软,具有一定的韧性。在北美、北欧等西方国家,由于冬季的除冰盐对桥梁结构中钢筋腐蚀所带来的严重危害已成为困扰基础设施工程的主要问题,FRP 配筋和FRP预应力筋

混凝土结构的研究和应用发展较早且较快。20 世纪70 年代末FRP 筋开发成功,并应用于工程中;80 年代末,德国、日本相继建成FRP 预应力混凝土桥。目前已有多种FRP筋、索和网格材产品以及配套的锚具,并编制了相关的规范和规程。3.2FRP 结构及FRP 组合结构

FRP 结构是指用FRP 制成各种基本受力构件所形成的结构;FRP 组合结构则是指将FRP与传统结构材料,主要是混凝土和钢材,通过受力形式上的组合,共同工作来承受荷载的结构形式。FRP 与混凝土通过合理的组合方式使FRP 型材与混凝土共同受力,发挥各自的优势,达到提高受力性能、降低造价、增强耐久性、便于施工的目的。FRP 与钢材组合,可发挥出钢材的高弹性模量和FRP 耐腐蚀、耐疲劳|生能好的优势,达到互补的效果。可在拉挤FRP 型材时,直接将钢筋和钢丝嵌入型材中成型,也可在钢结构外部采用FRP 型材封闭,一方面防止钢结构锈蚀,另一方面可与钢结构共同受力。还可用钢结构骨架与FRP 织物蒙皮结合的组成蒙皮结构。

3.3FRP 加固砌体结构

近年来提出的采用FRP 加固砌体结构的新型技术,可以避免传统砌体结构补强方法的缺点。国外对FRP 加固砌体结构的研究和应用比较多,主要是针对FRP 加固砌体结构的平面外弯曲性能研究、抗剪性能研究和抗震性能研究等。试验结果表明,FRP 加固能有效提高砌体的受剪承载力和抗震性能。在应用上,欧洲的许多古建筑采用了FRP 进行修复加固,取得了良好的效果。目前,国内在FRP 加固砌体结构的研究应用还比较少,理论还不够成熟,也没有关于FRP 加固砌体结构的有关规范。

3.4FRP 加固钢结构

在役钢结构,如桥梁、建筑物等在设计、制造、施工过程中可能产生各种缺陷,在使用阶段因超载、锈蚀、疲劳等原因会引起损伤累积,从而影响结构的安全。传统的钢结构加固方法主要有钢板焊接、螺栓连接、铆接或者粘接,这些方法存在许多缺点,如产生新的损伤和焊接残余应力等。近年来的研究表明,FRP 加固钢结构显示出很好的效果。FRP 加固修复损伤钢结构能有效恢复其刚度、承载能力并改善其疲劳性能,还能对钢结构形成保护,起到加固和防腐的双重效果。国外关于FRP 加固钢结构的试验研究大部分集中在受弯加固和疲劳加固方面,分为无损

伤缺陷钢梁的加固和损伤钢梁的加固。FRP 加固无初始损伤缺陷钢梁的试验结果显示,钢梁加固后的承载能力有一定提高,但刚度大部分没有明显变化。已有的试验结果表明,加固效果的离散性比较大,随着粘贴的纤维量、纤维的弹性模量、钢材的弹性模量、钢材的屈服强度的不同,加固效果也不同。存在损伤缺陷钢梁用高模量的CFRP板加固后,刚度基本能恢复到未损伤情况下钢梁刚度的90%以上,极限承载能力的提高随着加固量和损伤大小而不同。

3.5FRP 铝合金组合结构

新型结构形式,它兼有两种材料轻质的特点,同时FRP 又极大地增强了铝合金构件的刚度和承载力。这种组合结构已在航空航天工程中得到广泛应用,我国也已开始在土木与建筑工程结构中的研究。

4.FRP材料发展前景

FRP 材料用于加固行业促进了加固行业的进一步发展,备受国内外加固行业、研究者、设计部门等的青睐。目前,国内外一些学者,已相继展开了内嵌FRP 片材加固方法有关的试验研究、理论分析和工程应用。尽管嵌入FRP 材料与外贴FRP 片材相比有许多优点,但在构件不卸载、卸载不充分或构造措施不当时,嵌入混凝土内的FRP 材料强度仍难以充分发挥作用,而增加FRP 材料的断面又受到保护层厚度及构件横向尺寸的限制,已有的FRP内嵌抗弯加固试验研究结果(包括作者的试验研究)均表明了这一问题。且在试验中,大部分试件发生粘结失效破坏(这里所指的粘结破坏,与外贴FRP 片材的剥离破坏相比,破坏的突然性和脆性有所降低)。有研究者还采用了高模量的CFRP 方形筋,承载能力提高幅度更大,但延性降低,也因粘结失效而破坏。而目前对于内嵌加固的粘结失效强度模型的研究还较少,所提出的模型一般都是在原有片材模型上的改进,而这些模型都具有各自的局限性且未得到大量试验结果的验证。因此,探索出能够更好地改善被加固构件的工作性能、大幅度提高其承载能力、且能够充分发挥FRP 材料强度以及具有合理的粘结失效强度模型的加固方法势在必行。

5.致谢

感谢我的论文指导老师张建军老师,他对我进行了无私的指导和帮助,不厌其烦的帮助进行论文的修改和改进。在此向帮助和指导过我的各位老师和同学表示最中心的感谢!由于我的学术水平有限,所写论文难免有不足之处,恳请老师

的批评和指正!

6.参考文献

[1]李岩,罗业.天然纤维增强复合材料力学性能及其应用. 固体力学学报,2010,31(6).

[2] 关苏军,万春风等.玄武岩纤维增强木塑复合材料的力学性能.复合材料学报,2011,28(5).

[3] 刘建华等,盐雾环境对玻璃纤维增强树脂基复合材料力学性能的影响. 复合材料学报,2007,24(3).

[4] 张敏,吴刚等,连续玄武岩纤维增强复合材料力学性能试验研究.高科技纤维与应用,2007,32(2).

[5] 张杨,马岩,碳纤维增强木基复合材料的制备及其力学性能.西北林学院学报,2015,30(6).

[6]焦珑,康卫民等,碳纳米管修饰碳纤维增强树脂基复合材料力学性能研究进展.材料导报,2013,27(12).

[7] 刘鹏,李方义等,植物纤维增强的生物质复合材料微观机理及力学性能研究.功能材料,2015,11(46).

[8]姜飞正等,纺织结构碳纤维增强聚苯硫醚基复合材料的制备与力学性能.

复合材料学报,2013,30.

[9] 杜凤,王伟宏,碳纤维增强木粉/聚乙烯复合材料的制备及其力学性能.

南京林业大学学报( 自然科学版),2015,39(2).

[10] 刘新宇,刘锐等,连续碳纤维增强杂萘联苯共聚芳醚砜复合材料的制备及力学性能.高分子材料科学与工程,2015,31(3).

[11]王兴刚,于洋,李树茂,等.先进热塑性树脂基复合材料在航天航空上的应用[J].纤维复合材料,2011( 2).

[12]Chang I Y,Lees J K.Recent development in thermoplastic composites:

a review of matrix systems and processing methods [J].Thermoplast. Compos. Mater,1988,1.

复合材料论文

摘要 与传统的CF增强材料相比,CNTs/CF混杂多尺度增强体在提高复合材料横向力学性能,充分发挥CNTs和cF的优异性能,开发具有综合优异性能的先进复合材料方面具有显著优势。目前该领域的研究尚处于起步阶段,几种常见的制备方法中化学气相沉积法尤其是等离子体化学气相沉积法获得的多尺度增强体的纳米结构在纤维表面均匀密布,具有广阔的发展前景和应Hj潜力。总之,CNTs/CF制备工艺的进一步完善和其与树脂复合后的新型复合材料的性能研究有待深入探索。 引言 碳纤维增强树脂基复合材料(CFRP)具有强度高、模量高、密度小、尺寸稳定等一系列优异性能,已器材等领域。众所周知,复合材料的性能主要取决于纤维和树脂基体本身的力学性能、纤维的表面能、纤维与基体之间的界面粘结以及界面应力传递能力。由于碳纤维(CF)表面为石墨乱层结构,纤维表面惰性大、表面能低,有化学活性的宫能}玎少,反应活性低,与基体的粘结性差,复合材料界面中存在较多的缺陷,界面粘结强度低,复合材料层间剪切强度(Interlaminar Sheafing Strength,ILSS)低。另外,纤维复合材料是各向异性十分突出的材料,其优异的物理、力学性能都集中在纤维的轴向,而在复合材料的横向无纤维加强作用.复合材料耐冲击性能较差。为改善纤维增强树脂基复合材料的性能,必须对纤维/树脂基体间的界面进行优化设计,同时改善树脂基体的性能指标。 纳米管(Carbon Nanotubes,CNTs)是由单层或多层石墨烯片围绕中心轴按一定的螺旋角卷绕而成的无缝、纳米级中空管体。组成CNTs的c—C共价键是自然界巾很稳定的化学键,理论计算和实验表明CNTs具有极高的强度和极大的韧性¨1,理论估计其杨氏模量高达5TPa,实验测得平均为1.8TPa,弯曲强度为14.2GPa,抗拉强度为钢的100倍,密度仅为钢的1/6~l/7。其直径在0.4—50nm之间,长度可达数微米至数毫米,因而具有很大的长径比,一般大于1000,是准一维的量子线,被看作复合材料增强体的终极形式,必将作为增强相而在复合材料中得到应用HJ。CNTs主要由碳元素组成,与聚合物有相似的结构,尺寸在同一数量级上,可将CNTs看作一种单元素的聚合物,且CNTs表面原子约占50%以上,与聚合物之间的相互作用强,研究表明,CNTs与聚合物之间的应力传递能力至少是传统纤维增强复合材料的10倍以上¨J,同时CNTs还具有很好的韧性,能够承受40%的张力应变,而不会呈现膪I生行为、塑性变形或键断裂.可以提高基体材料的韧性。6 J,因此可与聚合物复合制备高性能的复合材料。将准一维纳米材料CNTs与传统连续纤维混合作为复合材料增强相,有望同时改善复合材料的界面性能和树脂基体的抗冲强度。 CNTs/CF作为多尺度增强材料,其方式主要有掺杂法、化学气相沉积法、混纺法及化学接枝法。 碳纳米管/碳纤维混杂多尺度增强体 研究现状 掺杂法 掺杂法是将CNTs直接混合在树脂中,然后与连续CF复合,制备复合材料。究了多壁碳纳米管(MWCNTs)/T300连续cF环氧树脂复合材料的力学性能,当基体中CNTs的含量为3%时复合材料的力学性能最佳,断裂强度为1780MPa,模量为164GPa。国防科学技术大学采

复合材料力学

复合材料力学 论文题目:用氧化铝填充导热和电绝缘环氧 复合材料的无缺陷石墨烯纳米片 院系班级:工程力学1302 姓名:黄义良 学号: 201314060215

用氧化铝填充导热和电绝缘环氧复合材料的无缺陷石墨烯纳米片 孙仁辉1 ,姚华1 ,张浩斌1 ,李越1 ,米耀荣2 ,于中振3 (1.北京化工大学材料科学与工程学院,有机无机复合材料国家重点实验室北京 100029;2.高级材料技术中心(CAMT ),航空航天,机械和机电工程学院J07,悉尼大学;3.北京化工大学软件物理科学与工程北京先进创新中心,北京100029) 摘要:虽然石墨烯由于其高纵横比和优异的导热性可以显着地改善聚合物的导热性,但是其导致电绝缘的严重降低,并且因此限制了其聚合物复合材料在电子和系统的热管理中的广泛应用。为了解决这个问题,电绝缘Al 2O 3用于装饰高质量(无缺陷)石墨烯纳米片(GNP )。借助超临界二氧化碳(scCO 2),通过Al(NO 3)3 前体的快速成核和水解,然后在600℃下煅烧,在惰性GNP 表面上形成许多Al 2O 3纳米颗粒。或者,通过用缓冲溶液控制Al 2(SO 4)3 前体的成核和水解,Al 2(SO 4)3 缓慢成核并在GNP 上水解以形成氢氧化铝,然后将其转化为Al 2O 3纳米层,而不通过煅烧进行相分离。与在scCO2的帮助下的Al 2O 3@GNP 混合物相比,在缓冲溶液的帮助下制备的混合物高度有效地赋予具有优良导热性的环氧树脂,同时保持其电绝缘。具有12%质量百分比的Al 2O 3@GNP 混合物的环氧复合材料表现出1.49W /(m ·K )的高热导率,其比纯环氧树脂高677%,表明其作为导热和电绝缘填料用于基于聚合物的功能复合材料。 关键词:聚合物复合基材料(PMCs ) 功能复合材料 电气特性 热性能 Decoration of defect-free graphene nanoplatelets with alumina for thermally conductive and electrically insulating epoxy composites Renhui Sun 1,Hua Yao 1, Hao-Bin Zhang 1,Yue Li 1,Yiu-Wing Mai 2,Zhong-Zhen Yu 3 (1.State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; 2.Centre for Advanced Materials Technology (CAMT), School of Aerospace, Mechanical and Mechatronic Engineering J07, The University of Sydney, Sydney, NSW 2006, Australia; 3.Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China) Abstract:Although graphene can significantly improve the thermal conductivity of polymers due to its high aspect ratio and excellent thermal conductance, it causes serious reduction in electrical insulation and thus limits the wide applications of its polymer composites in the thermal management of electronics and systems. To solve this problem, electrically insulating Al 2O 3is used to decorate high quality (defect-free) graphene nanoplatelets (GNPs). Aided by supercritical carbon dioxide (scCO 2), numerous Al 2O 3 nanoparticles are formed

复合材料力学计算题网上整理

例3?1:己知HT3/5244碳纤维增强复介材料单层的T 程弹性常数为 E )= 140GPa; E 2 =8.6GPa; G }2 =5.0GPa; v 12=0.35 试求单层受到面内应力分量为硏=500MPa ,

例3?2:单层板受面内应力rr =15OMPa, q=50MPa, r =75MPa 作用, ^=45° ,试求材料主方向坐标系下的应力分量。 ■ 1 -1 解: 0.5 0.5 -0.5 0.5 0.5 0.5 6 J J 140.9 3.0 ■ 0 e= 3.0 10」 0 GPa 0 ■ 0 5.0 ■ 0.5 0.5 -1 0.5 0.5 1 0.5 -0.5 0.5 0.5 1 0.5 0.5 -1 -0.5 0.5 0

例3?4:已知碳纤维/环氟HT3/5224单层板材料主方向应变 c, =0.005; ? =-0.01; y n =0.02 — 45。,试求(1)材料主方向应力;(2)参考坐标系下的应 _ 0.5 0.5 1 _0.5 0.5 -1' T = 0.5 0.5 -1 r1 =0.5 0.5 1 -0.5 0.5 0 ■ ■0.5 -0.5 0 ■ ■ ■ ■■■「0.5 0.5 -0.5' "0.005--0.0125 =r T& :2=0.5 0.5 0.5 -0.01 =0.0075 2V712. 1 ■-1 0 0.02 0.0150 ■B 力和应变。141.9 3.06 ■ 已知:Q =3.06 8.66 0 GPa 0 0 5.0 解:■ ■Qu a o ■ ■ 所 ^2=2|> 02 0 % _ 0 0纸 ■ 712. 141.9 3.06 ■ "0.005" 「678. 9' 3.06 8.66 0 -0.01 xl03 =-71.3 MPa 0 0 50 0.02 100 ■ -1 '67X.< ■204 1 -71.3 二404 0 100 375 MPa

复合材料力学上机编程作业(计算层合板刚度)要点

复合材料力学上机编程作业 学院:School of Civil Engineering专业:Engineering Mechanics 小组成员信息:James Wilson(2012031890015)、Tau Young(2012031890011)复合材料力学学了五个星期,这是这门课的第一次编程作业。我和杨涛结成一个小组,我用的是Fortran编制的程序,Tau Young用的是matlab编制。其中的算例以我的Fortran计算结果为准。Matlab作为可视化界面有其独到之处,在附录2中将会有所展示。 作业的内容是层合板的刚度的计算和验算,包括拉伸刚度A、弯曲刚度D以及耦合刚度B。 首先要给定层合板的各个参数,具体有:层合板的层数N;各单层的弹性常数 E1、E2、υ21、G12;各单层 对应的厚度;各单层对应的主方向夹角θ。然后就要计算每个单层板的二维刚度矩阵Q,具体公式如下: υ12=υ21E2 E1;Q11=E11-υ12υ21;Q22=E21-υ12υ21;Q12=υ12E1; 1-υ12υ21Q66=G12 得到Q矩阵后,根据课本上讲到的Q=(T-1)TQ(T-1)得到Q。 然后根据z坐标的定义求出z0到zn,接下来,最重要的一步,根据下式计算A、B、D。 n??Aij=∑(Qij)k(zk-zk-1) k=1??1n22?Bij=∑(Qij)k(zk-zk-1) 2k=1??1n33?Dij=∑(Qij)k(zk-zk-1)3k=1? 一、书上P110的几个问题可以归纳为以下几个类型。

第 1 页共 1 页 (4)6层反对称角铺设层合板(T5-10)第 2 页共 2 页

复合材料论文

复合材料论文 陶瓷基复合材料的发展状况 12级无机非(1)班1203031002 秦宇 摘要:材料是科学技术发展的基础,材料的发展可以推动科学技术的发展,材料主要有金属材料、聚合物材料、无机非金属材料和复合材料四大类。其中复合材料是是最新发展地来的一大类,发展非常迅速。最早出现的是宏观复合材料,它复合的组元是肉眼可以看见的,比如混凝土。随后发展起来的是微观复合材料,它的组元肉眼看不见。由于复合材料各方面优异的性能,因此得到了广泛的应用。复合材料对航空、航天事业的影响尤为显著,可以说如果没有复合材料的诞生,就没有今天的飞机、火箭和宇宙飞船等高科技产品。 本文从纤维增强陶瓷基复合材料Cf/SiC入手,综述了陶瓷基复合材料(ceramic matrix composite,CMC)的特殊使用性能、界面增韧机理、制备工艺作了较全面的介绍,并对CMC 的的研究现状、未来发展进行了展望。 关键词:陶瓷基复合材料、增强纤维、基体 正文 陶瓷基复合材料的定义与特性 陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。 陶瓷基复合材料(CMC)由于具有高强度、高硬度、高弹性模量、热化学稳定性等优异性能,是制造推重比10 以上航空发动机的理想耐高温结构材料。一方面,它克服了单一陶瓷材料脆性断裂的缺点,提高了材料的断裂韧性;另一方面,它保持了陶瓷基体耐高温、低膨胀、低密度、热稳定性好的优点。陶瓷基复合材料的最高使用温度可达1650℃,而密度只有高温合金的70%。因此,近几十年来,陶瓷基复合材料的研究有了较快发展。目前CMC 正在航空发动机的高温段的少数零件上作评定性试用。 陶瓷基复合材料的分类 按增强材料形态分类,陶瓷基复合材料可分为颗粒增强陶瓷复合材料、纤维增强陶瓷复合材料、片材增强陶瓷复合材料。 按基体材料分类,陶瓷基复合材料可分为氧化物基陶瓷复合材料、非氧化物基陶瓷复合材料、碳/碳复合材料、微晶玻璃基复合材料。 三、陶瓷基复合材料的界面对材料整体性能的影响 界面直接影响复合材料的整体力学性能。纤维与基体间界面的主要作用有: (1)传递作用:由于纤维是主要的载荷承担者,因此界面必须有足够的结合强度来传递载荷,使纤维承受大部分载荷,在基体与纤维之间起到桥梁作用; (2)阻断作用:当基体裂纹扩展到纤维与基体间界面时,结合适当的界面能够阻止裂纹扩展或使裂纹发生偏转,从而达到调整界面应力,阻止裂纹向纤维内部扩展的效果。 当一垂直于纤维方向的裂纹穿入包埋单根纤维的基体时,随后的破坏机制界面对陶瓷基复合材料力学性能的影响分析可能为:基体断裂、纤维—基体界面脱粘、脱粘后摩擦、纤维断裂、应力重新分布、纤维拔出等。 对陶瓷基复合材料来说,纤维与基体的界面是控制材料性能的关键因素。因此,研究界面对陶瓷基复合材料的力学性能的影响具有重要意义。在纤维与基体之间的界面反应将改变材料

复合材料结构力学认识

暨南大学研究生课程论文 题目:复合材料结构力学认识 学院:理工学院 学系:土木工程 专业:建筑与土木工程 课程名称:复合材料结构力学 学生姓名:陈广强 学号:1339297001 电子邮箱:chengq09@https://www.doczj.com/doc/ce18303544.html, 指导教师:王璠

复合材料结构力学认识 主题词:复合材料力学;复合材料结构力学;力学特性;力学基础复合材料结构力学研究复合材料的杆、板、壳及基组合结构的应力分析、变形、稳定和振动等各种力学问题,,在广议上属于复合材料力学的一个分支。由于其内容丰富,问题重要和研究对象不同,已成为和研究复合材料力学问题的狭义复合材料力学并列的学科分支。 一、复合材料结构力学研究内容和办法 目前复合材料结构力学以纤维增强复合材料层压结构为研究对象,主要研究内容包括:层合板和层合壳结构的弯曲,屈曲与振动问题,以及耐久性、损伤容限、气功弹性剪裁、安全系数与许用值、验证试验和计算方法等专题。研究中采用宏观力学模型,可以分辩出层和层组的应力。这些应力的平均值为层合板应力。研究方法以各向异性弹性力学方法为主,同时采用有限元素法、有限差分法、能量变分法等方法。对耐久性、损伤容限等较新的课题则采用以试验为主的研究方法。 二、复合材料结构的力学特性 1、复合材料的比强度和比刚度较高 材料的强度除以密度称为比强度;材料的刚度除以密度称为比刚度。这两个参量是衡量材料承载能力的重要指标。比强度和比刚度较高说明材料重量轻,而强度和刚度大。这是结构设计,特别是航空、航天结构设计对材料的重要要求。现代飞机、导弹和卫星、复合电缆支架、复合电缆夹具等机体结构正逐渐扩大使用纤维增强复合材料的

复合材料结构与力学设计复结习题(本科生)

《复合材料结构设计》习题 §1 绪论 1.1 什么是复合材料? 1.2 复合材料如何分类? 1.3 复合材料中主要的增强材料有哪些? 1.4 复合材料中主要的基体材料有哪些? 1.5 纤维复合材料力学性能的特点哪些? 1.6 复合材料结构设计有何特点? 1.7 根据复合材料力学性能的特点在复合材料结构设计时应特别注意到哪些问题? §2 纤维、树脂的基本力学性能 2.1 玻璃纤维的主要种类及其它们的主要成分的特点是什么? 2.2 玻璃纤维的主要制品有哪些?玻璃纤维纱和织物规格的表示单位是什么?2.3 有一玻璃纤维纱的规格为2400tex,求该纱的横截面积(取玻璃纤维的密度 为2.54g/cm3)? 2.4 有一玻璃纤维短切毡其规格为450 g/m2,求该毡的厚度(取玻璃纤维的密 度为2.54g/cm3)? 2.5 无碱玻璃纤维(E-glass)的拉伸弹性模量、拉伸强度及断裂伸长率的大致 值是多少? 2.6 碳纤维T-300的拉伸弹性模量、拉伸强度及断裂伸长率的大致值是多少?密 度为多少? 2.7 芳纶纤维(kevlar纤维)的拉伸弹性模量、拉伸强度及断裂伸长率的大致值 是多少?密度为多少? 2.8 常用热固性树脂有哪几种?它们的拉伸弹性模量、拉伸强度的大致值是多 少?密度为多少?热变形温度值大致值多少? 2.9 简述单向纤维复合材料抗拉弹性模量、抗拉强度的估算方法。 2.10 试比较玻璃纤维、碳纤维单向复合材料顺纤维方向拉压弹性模量和强度值,指出其特点。 2.11 简述温度、湿度、大气、腐蚀质对复合材料性能的影响。 2.12 如何确定复合材料的线膨胀系数? 2.13已知玻璃纤维密度为ρf=2.54g/cm3,树脂密度为ρR=1.20g/cm3,采用规格 为450 g/m2的玻璃纤维短切毡制作内衬时,其树脂含量为70%,这样制作一层其GFRP的厚度为多少? 2.14 采用2400Tex的玻璃纤维(ρf=2.54g/cm3)制造管道,其树脂含量为35% (ρR=1.20g/cm3),缠绕密度为3股/10 mm,试求缠绕层单层厚度? 2.15 试估算上题中单层板顺纤维方向和垂直纤维方向的抗拉弹性模量和抗拉强度。 2.16已知碳纤维密度为ρf=1.80g/cm3,树脂密度为ρR=1.25g/cm3,采用规格为300 g/m2的碳纤维布制作复合材料时,其树脂含量为32%,这样制作一层其CFRP的厚度为多少?其纤维体积含量为多少? 2.17 某拉挤构件的腹板,厚度为5mm,采用±45°的玻璃纤维多轴向织物(面密

先进复合材料论文

摘要:纤维增强复合材料具有较强的结构特性,是一种多相体材料。其力学性能及损伤破坏规律不仅取决于各组分材料性能,同时也取决于细观结构特征。采用细观力学分析研究复合材料宏现力学性能与细观结构参数之间的内在联系具有重要的科学意义和工程价值。论述了细观力学实验技术的理论基础和常用实验技术及进展,介绍了复合材料的细观力学模型的发展,综述了复合材料力学行为有限元分析的研究现状,并对这一学科的研究发展进行了简要评述与展望。 1 前言 纤维增强复合材料是目前最先进的复合材料之一。它以其轻质高强、耐高温、抗腐蚀、热力学性能优良等特点广泛用作结构材料及耐高温抗烧蚀材料,是其它复合材料所无法比拟的。纤维复合材料因其较高的比强度、比模量在国外先进战略、战术固体火箭发动机方面应用较多,如美国的战略导弹“侏儒”三级发动机壳体,“三叉戟”一、二、三级发动机壳体的复合材料裙,民兵系列发动机的喷管扩张段,部分固体发动机及高速战术导弹美国的11IAAD、ERINT等。除军用外,开发纤维复合材料的其它应用也大有作为,如飞机及高速列车刹车系统、民用飞机及汽车复合材料结构件、高性能碳纤维轴承、风力发电机大型叶片、体育运动器材(如滑雪板、球拍、渔杆)等。随着碳纤维生产规模的扩大和生产成本的逐步下降,在增强混凝土、新型取暖装置、新型电极材料乃至日常生活用品中的应用也必将迅速扩大。我国拟大力开发新型纤维增强复合材料建材及与环保、日用消费品档关的高科技纤维增强复合材料的新市场,因此,对于纤维增强复合材料的力学性能研究是十分必要的。 复合材料既表现出宏观特征,又具有明显的细观结构特征。复合材料力学是一种两层次的力学理论。在宏观尺度上,可以将复合材料当作各向异性的宏观均匀连续体,用连续介质力学理论研究复合材料的力学行为旧,但是无法研究对宏观行为有重要影响的细观尺度上各组份相的变形及损伤失效行为。在细观尺度上,复合材料具有包含多种组份相的非均质结构,复合材料细观力学在宏观有效性能预测以及细观应力、应变场分析方面取得了一定进展。如果将复合材料宏观结构分析与细观结构分析结合起来,在进行宏观结构分析时就能够获得细观尺度上的力学参量值,将是一种更好的分析方法。本文在分析复合材料宏观、细观特

复合材料力学讲义

复合材料力学讲义-CAL-FENGHAI.-(YICAI)-Company One1

复合材料力学讲义 第一部分简单层板宏观力学性能 1.1各向异性材料的应力—应变关系 应力—应变的广义虎克定律可以用简写符号写成为: (1—1) 其中σi为应力分量,C ij为刚度矩阵εj为应变分量.对于应力和应变张量对称的情形(即不存在体积力的情况),上述简写符号和常用的三维应力—应变张量符号的对照列于表1—1。 按表1—l,用简写符号表示的应变定义为: 表1—1 应力——应变的张量符号与简写符号的对照 注:γij(i≠j)代表工程剪应变,而εij(i≠j)代表张量剪应变 (1—2) 其中u,v,w是在x,y,z方向的位移。 在方程(1—2)中,刚度矩阵C ij有30个常数.但是当考虑应变能时可以证明弹性材料的实际独立常数是少于36个的.存在有弹性位能或应变能密度函数的弹性材料当应力σi作用于应变dεj时,单位体积的功的增量为: (1—3) 由应力—应变关系式(1—1),功的增量为:

(1—4) 沿整个应变积分,单位体积的功为: (1—5) 虎克定律关系式(1—1)可由方程(1—5)导出: (1—6) 于是 (1—7) 同样 (1—8) 因W的微分与次序无,所以: (1—9) 这样刚度矩阵是对称的且只有21个常数是独立的。 用同样的方法我们可以证明: (1—10) 其中S ij是柔度矩阵,可由反演应力—变关系式来确定应变应力关系式为 (1—11) 同理 (1—12) 即柔度矩阵是对称的,也只有21个独立常数.刚度和柔度分量可认为是弹性常数。 在线性弹性范围内,应力—应变关系的一般表达式为: (1—13)

复合材料力学笔记

《复合材料力学》沈观林编著清华大学出版社 第一章复合材料概论 1.1复合材料及其种类 1、复合材料是由两种或多种不同性质的材料用物理和化学方法在宏观尺度上组成的具有新性能的材料。 2、复合材料从应用的性质分为功能复合材料和结构复合材料两大类。功能复合材料主要具有特殊的功能。 3、结构复合材料由基体材料和增强材料两种组分组成。其中增强材料在复合材料中起主要作用,提供刚度和强度,基本控制其性能。基体材料起配合作用,支持和固定纤维材料,传递纤维间的载荷,保护纤维。 根据复合材料中增强材料的几何形状,复合材料可分为三大类:颗粒复合材料、纤维增强复合材料(fiber-reinforced composite)、层和复合材料。 (1)颗粒:非金属颗粒在非金属基体中的复合材料如混凝土;金属颗粒在非金属基体如固体火箭推进剂;非金属在金属集体中如金属陶瓷。 (2)层合(至少两层材料复合而成):双金属片;涂覆金属;夹层玻璃。 (3)纤维增强:按纤维种类分为玻璃纤维(玻璃钢)、硼纤维、碳纤维、碳化硅纤维、氧化铝纤维和芳纶纤维等。 按基体材料分为各种树脂基体、金属基体、陶瓷基体、和碳基体。 按纤维形状、尺寸可分为连续纤维、短纤维、纤维布增强复合材料。 还有两种或更多纤维增强一种基体的复合材料。如玻璃纤维和碳纤维增强树脂称为混杂纤维复合材料。 5、常用纤维(性能表见P7表1-1) 玻璃纤维(高强度、高延伸率、低弹性模量、耐高温) 硼纤维(早期用于飞行器,价高) 碳纤维(主要以聚丙烯腈PAN纤维或沥青为原料,经加热氧化,碳化、石墨化处理而成;可分为高强度、高模量、极高模量,后两种成为石墨纤维(经石墨化2500~3000°C);密度比玻璃纤维小、弹性模

复合材料力学

目录 复合材料细观力学 (1) 简支层合板的自由振动 (9) 不同条件下对称层合板的弯曲分析 (14)

复合材料细观力学 ——混凝土细观力学 一、研究背景 复合材料细观力学 复合材料细观力学是20世纪力学领域重要的科学研究成果之一,是连续介质力学和材料科学相互衍生形成的新兴学科。 近20年来,我国科技工作者应用材料细观力学的理论和方法,成功研究了许多复合材料的增强,断裂和破坏问题,给出了一些特色和有价值的研究成果。 混凝土细观力学 混凝土作为一种重要的建筑材料已有百余年的历史,它广泛应用于房屋、桥梁、道路、矿井、及军工等诸多方面。在水工建筑方面,混凝土也被大量使用,特别是大体积混凝土,它是重力坝和拱坝的主要组成部分,对混凝土各项力学性能的准确把握及应用,在一定程度上决定了水工建筑物的质量和安全性能。 二、研究目的 长期以来,在混凝土应用的各个领域里,人们对混凝土的力学特性进行了大量的研究。如何充分的利用混凝土的力学性能,建造出更经济、更安全和更合理的建筑物或工程结构,一直都是结构工程设计领域研究的重要课题。 三、研究现状 混凝土是由粗骨料和水泥砂浆组成的非均质材料,它的力学性能

受到材料的品质、组分、施工工艺和使用条件等因素的影响。过去,人们对混凝土力学性能的研究很大程度上是依靠实验来确定的。随着实验技术的发展,混凝土各种力学性能被揭示出来。但由于实验需要花费大量的人力、物力和财力,而且所得到的实验成果往往由于实验条件的限制也是很有限的。 现代科学的一个重要的思维方式与研究方法就是层次方法,在对客观世界的研究中,当停留在某一层次,许多问题无法解决时,深入到下一个层次,问题就会迎刃而解。 对混凝土断裂问题的研究归纳为如下四个研究层次: 1)宏观层次:混凝土这种非均质材料存在着一个特征体积,经验的 特征体积相应于3~4倍的最大骨料体积。当混凝土体积大于这种特征体积时,材料被假定为均质的,当小于这种特征体积时,材料的非均质性将会十分明显。有限元计算结果反映了一定体积内的平均效应,这个特征体积的平均应力和平均应变称之谓宏观应力和宏观应变。 2)细观层次:在这个层次中,混凝土被认为是一种由骨料、砂浆和 它们之间的粘结带组成的三相非均质复合材料,细观内部裂隙的发展将直接影响混凝土的宏观力学性。细观层次的模型一般是毫米或厘米量级。 3)微观层次:在这个层次上,认为砂浆的非均质性是由浆体中的孔 隙所产生的。由于砂浆中孔隙很小而且量多,随机分布,水泥砂

复合材料力学讲解学习

复合材料力学

复合材料力学 论文题目:用氧化铝填充导热和电绝缘环氧 复合材料的无缺陷石墨烯纳米片 院系班级:工程力学1302 姓名:黄义良 学号: 201314060215 用氧化铝填充导热和电绝缘环氧复合材料的无缺 陷石墨烯纳米片

孙仁辉1,姚华1,张浩斌1,李越1,米耀荣2,于中振3 (1.北京化工大学材料科学与工程学院,有机无机复合材料国家重点实验室北京100029;2.高级材料技术中心(CAMT),航空航天,机械和机电工程学院J07,悉尼大学;3.北京化工大学软件物理科学与工程北京先进创新中心,北京100029) 摘要:虽然石墨烯由于其高纵横比和优异的导热性可以显着地改善聚合物的导热性,但是其导致电绝缘的严重降低,并且因此限制了其聚合物复合材料在电子和系统的热管理中的广泛应用。为了解决这个问题,电绝缘Al2O3用于装饰高质量(无缺陷)石墨烯纳米片(GNP)。借助超临界二氧化碳(scCO2),通过Al(NO3)3前体的快速成核和水解,然后在600℃下煅烧,在惰性GNP表面上形成许多Al2O3纳米颗粒。或者,通过用缓冲溶液控制Al2(SO4)3前体的成核和水解, Al2(SO4)3缓慢成核并在GNP上水解以形成氢氧化铝,然后将其转化为Al2O3纳米层,而不通过煅烧进行相分离。与在scCO2的帮助下的Al2O3@GNP混合物相比,在缓冲溶液的帮助下制备的混合物高度有效地赋予具有优良导热性的环氧树脂,同时保持其电绝缘。具有12%质量百分比的Al2O3@GNP混合物的环氧复合材料表现出1.49W /(m·K)的高热导率,其比纯环氧树脂高677%,表明其作为导热和电绝缘填料用于基于聚合物的功能复合材料。 关键词:聚合物复合基材料(PMCs)功能复合材料电气特性热性能 Decoration of defect-free graphene nanoplatelets with alumina for thermally conductive and electrically insulating epoxy composites Renhui Sun1,Hua Yao1, Hao-Bin Zhang1,Yue Li1,Yiu-Wing Mai2,Zhong-Zhen Yu3 (1.State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; 2.Centre for Advanced Materials Technology (CAMT), School of Aerospace, Mechanical and Mechatronic Engineering J07, The University of Sydney, Sydney, NSW 2006, Australia; 3.Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China) Abstract:Although graphene can significantly improve the thermal conductivity of polymers due to its high aspect ratio and excellent thermal conductance, it causes serious reduction in electrical insulation and thus limits the wide applications of its polymer composites in the thermal management of electronics and systems. To solve this problem, electrically insulating Al2O3is used to decorate high quality (defect-free) graphene nanoplatelets (GNPs). Aided by supercritical carbon dioxide (scCO2), numerous Al2O3 nanoparticles are formed on the inert GNP surfaces by fast nucleation and hydrolysis of Al(NO3)3 precursor followed by calcination at 600 °C. Alternatively, by controlling nucleation and hydrolysis of Al2(SO4)3precursor with a buffer solution, Al2(SO4)3 slowly nucleates and hydrolyzes on GNPs to form aluminum hydroxide, which is then converted to Al2O3 nanolayers without phase separation by calcination. Compared to the Al2O3@GNP hybrid with the assistance of scCO2, the hybrid prepared with the help of a buffer solution is highly efficient in conferring epoxy with excellent thermal conductivity while retaining its electrical insulation. Epoxy composite with 12 wt% of Al2O3@GNP hybrid exhibits a high thermal conductivity of 1.49 W/(mK), which is 677% higher than that of neat epoxy, indicating its high potential as thermally conductive and electrically insulating fillers for polymer-based functional composites. Keywords:Polymer-matrix composites (PMCs); Functional composites; Electrical properties;Thermal properties 1.介绍 随着电子器件的高集成化和小型化,积累的热量的快速和高效的耗散对于各种高性能器件的正常功能变得越来越重要。导热聚合物复合材料

复合材料力学小论文

2011年秋季学期复合材料力学 课程小论文 《微纳米尺度复合材料界面强度的研究》 班级: 姓名: 评分:

微纳米尺度复合材料界面强度的研究 课题背景: 复合材料是一大类新型材料,其强度高、刚度大、质量轻,并具有抗疲劳、减振、耐高温、可设计等一系列优点,近40年来,在航空航天、能源、交通、建筑、机械、信患,生物、医学和体育等工程和部门日益得到广泛的应用。 随着微纳米结构加工技术的发展,人类已经能够在微电子器件、微纳米机电系统中实现多种功能。这些期间与系统通常包含沉积于衬底上的部件,比如薄膜、细线或管状结构、岛状结构或点状结构等。它们的三维尺度非常小,其特征尺寸往往处于微米甚至纳米量级。这些器件的构成材料多样,比如陶瓷、金属间化合物、金属、聚合物等。在这些微纳米尺寸的结构中存在的双相材料界面,由于界面两侧材料物性不同导致的变形不匹配,往往会造成界面处应力集中。因此,界面是微纳米结构极易发生失效的位置之一。界面脱黏、剥离、分层破坏是这类材料的制作及其制成品的使用中的主要失效行为。这些界面失效经常会导致器件报废,直接影响其成品率和使用寿命。因此,为了保证所研制的或正在使用中的微纳米器件或系统的可靠性与耐久性,非常有必要对这些材料及其结构中的界面的强度特性进行研究与分析评价。 论文内容: 本文主要有两大内容:其一,从实验的角度展现在微纳米尺度下复合材料界面端裂纹启裂的现象,并对实验结果作简要分析;其二,

基于分子动力学理论,利用分子动力学模拟软件LAMMPS和Abaqus 模拟微纳米尺度下复合材料界面端裂纹启裂的强度准则。 1 实验 对于微纳米材料与结构而言,比较突出的问题是界面裂纹启裂问题。因为在微纳米系统中,结构或器件的一点失效往往就意味着整个系统的失效。特别是在表面与界面的交汇处,即界面端,由于变形失配引起的应力奇异性使得界面分层裂纹常于此萌生。需要指出的是,随着部件尺寸逐渐缩小,奇异应力主导区的尺寸也在相应减小。对于微纳米部件,根据线弹性应力分析,应力奇异区域一般仅有数十到数百纳米大小。此时,经典断裂力学的概念能否使用值得商榷。 在物理意义上,界面指的是结合材料的结合部,一般不是一个理想的面,存在所谓的界面层、界面相或界面中间层。界面材料的特性不仅复杂,而且具有一定的随机性。但是,界面层厚度非常小,因此,在研究界面的宏观力学性能时,一般将界面结合部理想化为一个面,即,界面。从力学分析与评价的角度来看,这种处理可以避免被界面相得复杂性所困扰,以获取界面、结合材料整体的强度特性参数等。因此,这里将界面定义为材料内的物性间断或不连续处,界面本身不具有厚度,在界面两侧,材料的物性截然不同。 实验装置如图所示,图中的长度量纲为mm,由于采用了夹层结构和较为刚性的悬臂梁,实验中可以有效地抑制薄膜塑性变形与断裂的产生。在远离薄膜材料界面端的悬臂梁左端面处,机械载荷可以被方便地施加并传递到界面端处。

材料成型论文范文2篇

材料成型论文范文2篇 材料成型论文范文一:工科高校材料成型控制工程论文 一、设计性实验选题的“五个原则” 此外,设计性实验选题时,在把握综合性、创造性、应用性、自主性和灵活性这五个原则外,还要合理掌控学生专业知识结构、专业知识掌握程度及学生自主实验的可操作性等方面。 二、设计性实验选题的“四个方向” 材料成型与控制工程专业设计性实验选题在把握“五个原则”的前提下,通常可通过“四个方向”来进行选题设立,即验证性实验转化为设计性实验、科研项目转化为设计性实验、生产项目转化为设计性实验和学生兴趣转化为设计性实验。 (一)验证性实验转化为设计性实验 验证性实验是为促使学生掌握并加深对专业基本理论、知识的理解,而按照实验教材的要求,由学生进行实验操作,并从实验结果验证所学的理论知识。由于实验结果在理论授课时已经涉及,因此学生实验的兴趣不浓,热情不高。但不要因为这些就抹杀验证性实验验证理论知识,加深学生对基本理论知识理解的独特作用。完全可以通过合理安排,将一些验证性实验转换为设计性实验。这样就可以激发学生的实验兴趣,提高学生的实验学习主动性、自主性。例如,对长杆型坯料进行局部镦粗是模锻生产中经常采用的变形工序之一。因此,在《锻压工艺及模具设计》

专业实验课中设立了“局部镦粗规则的验证”这项验证性实验。该实验通过对不同长度试件,使用局部镦粗模进行镦粗,验证局部镦粗规则的正确性,观察和分析由于局部镦粗长度与直径比值的影响而出现的正常和不正常现象。由于是验证性实验,学生兴趣不高,往往抱着看热闹的心态参加实验,不能达到良好的教学效果,但该实验涉及内容是比较典型且在生产中常用到的。怎样保留并将其转换为学生感兴趣的设计性实验呢?这就需要转换思路,可将该实验内容转换为首先要求学生根据给定尺寸的不同试件,进行局部镦粗积聚工步计算,并绘制镦粗模模具图。当然,由于实验经费及加工时间的限制,学生设计的镦粗模并不需要制作出来,因为给定尺寸的试件,其局部镦粗模主要模具尺寸及工步是唯一的,可以采用原有的局部镦粗模进行实验和鉴定学生设计结果的准确性,这些需要教师在实验过程中灵活掌握。这样,通过对原有实验内容转换为设计性实验,可使学生根据给定的实验目的,自行设计实验方案并予以实施,对实验结果进行分析论证,一方面有力地提升学生的实验热情,巩固所学理论知识,提高解决本专业有关加工工艺问题的能力;另一方面增加的镦粗模设计又锻炼了学生的工程制图能力。验证性实验转换为设计性实验,不但可以保留一些经过长期教学积淀总结的经典、原理性强的验证性实验内容,而且节约实验经费,还能提高学生的实验热情,达到良好的实验教学效果,有着“一举三得”的益处。当然,并不是所有验证性实验都能转换为设计性实验,对于这类实验项目,如果确实是经典、原理性强的验证实验项目,只要集思广益,通过合理安排,完全可以将验证性实验穿插在设计性实验项目中,

复合材料力学论文

纤维增强复合材料力学性能研究现状文献综述 崔鹏 中北大学理学院工程力学学科部 030051太原中国 摘要:纤维增强复合材料(Fiber Reinforced Plastic,简称FRP)是由增强纤维材料,如玻璃纤维,碳纤维,芳纶纤维等,与基体材料经过缠绕,模压或拉挤等成型工艺而形成的复合材料。根据增强材料的不同,常见的纤维增强复合材料分为玻璃纤维增强复合材料(GFRP),碳纤维 增强复合材料(CFRP)以及芳纶纤维增强复合材料(AFRP)。由于纤维增强复合材料的材料特性,因此它越来越广泛地应用于各种民用建筑、桥梁、公路、海洋、水工结构以及地下结构等领域中。本文将综述近年来国内外的学者对它的力学性能的研究现状。 关键词:纤维增强;复合材料;力学性能;材料特性;应用 Composite Research Status literature review of fiber reinforced mechanical properties of materials CUI Peng College of Engineering Department of Mechanical Discipline North University of China Taiyuan, China 030051 Abstract:Fiber-reinforced composite material (Fiber Reinforced Plastic, referred FRP) is a reinforcing fiber material, such as glass fiber, carbon fiber, aramid fiber, and composite matrix material after winding, pultrusion molded or formed by molding process. Depending on the reinforcing material, a common fiber-reinforced composite material into glass fiber reinforced Plastic (GFRP), carbon fiber reinforced Plastic (CFRP) and aramid fiber reinforced Plastic (AFRP). Since the material properties of the fiber-reinforced composite materials, so it is increasingly widely used in various areas of civil construction, bridges, highways, marine, hydraulic structures and underground structures like. This paper will present research scholars at home and abroad in recent years, its mechanical properties. Keywords:Fiber reinforced; Composites; Mechanical Properties;Material properties; application 1.引言

相关主题
文本预览
相关文档 最新文档