当前位置:文档之家› 2013届高三理科数学一轮总复习第十四章 推理与证明(教师用书)

2013届高三理科数学一轮总复习第十四章 推理与证明(教师用书)

2013届高三理科数学一轮总复习第十四章 推理与证明(教师用书)
2013届高三理科数学一轮总复习第十四章 推理与证明(教师用书)

第十四章推理与证明

高考导航

学归纳法的基

知识网络

14.1 合情推理与演绎推理

典例精析

题型一运用归纳推理发现一般性结论

【例1】通过观察下列等式,猜想出一个一般性的结论,并证明结论的真假.

sin215°+sin275°+sin2135°=3 2;

sin230°+sin290°+sin2150°=3 2;

sin245°+sin2105°+sin2165°=3 2;

sin260°+sin2120°+sin2180°=3 2.

【解析】猜想:sin2(α-60°)+sin2α+sin2(α+60°)=3 2.

左边=(sin αcos 60°-cos αsin 60°)2+sin2α+(sin αcos 60°+cos αsin 60°)2=3

2(sin

2α+cos2α)=3

2=右边.

【点拨】先猜后证是一种常见题型;归纳推理的一些常见形式:一是“具有共同特征型”,二是“递推型”,三是“循环型”(周期性).

【变式训练1】设直角三角形的两直角边的长分别为a,b,斜边长为c,斜边上的高为h,则有a+b <c+h成立,某同学通过类比得到如下四个结论:

①a2+b2>c2+h2;②a3+b3<c3+h3;③a4+b4<c4+h4;④a5+b5>c5+h5.

其中正确结论的序号是;

进一步类比得到的一般结论是.

【解析】②③;a n+b n<c n+h n(n∈N*).

题型二运用类比推理拓展新知识

三角形两边之和大于第三边

【解析】本题由已知的前两组类比可得到如下信息:

①平面中的三角形与空间中的三棱锥是类比对象;②三角形各边的边长与三棱锥各面的面积是类比对象;③三角形边上的高与三棱锥面上的高是类比对象;④三角形的面积与三棱锥的体积是类比对象;⑤三角形的面积公式中的“二分之一”与三棱锥的体积公式中的“三分之一”是类比对象.

由以上分析可知:

故第三行空格应填:三棱锥的体积等于其内切球半径与三棱锥表面积的乘积的三分之一.

本题结论可以用等体积法,将三棱锥分割成四个小的三棱锥去证明,此处从略.

【点拨】类比推理的关键是找到合适的类比对象.平面几何中的一些定理、公式、结论等,可以类比到

【变式训练2】面积为S i ,此四边形内任一点P 到

第i 条边的距离为h i (i =1,2,3,4),(1)若a 11=a 22=a 33=a 4

4

=k ,则∑

=4

1

i i ih = ;(2)类比以上性质,体积为V 的三棱锥的第i 个面的面积记为S i (i =1,2,3,4),此三棱锥内任一点Q 到第i 个面的距离记为H i (i =

1,2,3,4),若S 11=S 22=S 33=S 4

4

=K ,则∑

=4

1

i i iH = .

【解析】2S k ;3V

K

.

题型三 运用“三段论”进行演绎推理

【例3】已知函数f (x )=ln ax -x -a

x

(a ≠0).

(1)求此函数的单调区间及最值;

(2)求证:对于任意正整数n ,均有1+12+13+…+1n ≥ln e n

n !

.

【解析】(1)由题意f ′(x )=x -a

x 2.

当a >0时,函数f (x )的定义域为(0,+∞),

此时函数在(0,a )上是减函数,在(a ,+∞)上是增函数, f min (x )=f (a )=ln a 2,无最大值.

当a <0时,函数f (x )的定义域为(-∞,0),

此时函数在(-∞,a )上是减函数,在(a,0)上是增函数, f min (x )=f (a )=ln a 2,无最大值.

(2)取a =1,由(1)知,f (x )=ln x -x -1

x

≥f (1)=0,

故1x ≥1-ln x =ln e x

, 取x =1,2,3,…,n ,则1+12+13+…+1n ≥ln e +ln e 2+…+ln e n =ln e n

n !

.

【点拨】演绎推理是推理证明的主要途径,而“三段论”是演绎推理的一种重要的推理形式,在高考中以证明题出现的频率较大.

【变式训练3】已知函数f (x )=e g (x ),g (x )=kx -1

x +1(e 是自然对数的底数),

(1)若对任意的x >0,都有f (x )<x +1,求满足条件的最大整数k 的值; (2)求证:ln(1+1×2)+ln(1+2×3)+…+ln[1+n (n +1)]>2n -3(n ∈N *). 【解析】(1)由条件得到

f (1)<2?1

1

-2e +x x <2?k <2ln 2+1<3,猜测最大整数k =2,

现在证明11-2e +x x <x +1对任意x >0恒成立:

1

1-2e +x x <x +1等价于2-3x +1<ln(x +1)?ln(x +1)+3

x +1

>2,

设h (x )=ln(x +1)+

3x +1,则h ′(x )=1x +1-3

(x +1)2=x -2(x +1)2

. 故x ∈(0,2)时,h ′(x )<0,当x ∈(2,+∞)时,h ′(x )>0. 所以对任意的x >0都有h (x )≥h (2)=ln 3+1>2,即1

1-2e +x x <x +1对任意x >0恒成立,

所以整数k 的最大值为2.

(2)由(1)得到不等式2-3

x +1

<ln(x +1),

所以ln[1+k (k +1)]>2-3k (k +1)+1>2-3

k (k +1)

ln(1+1×2)+ln(1+2×3)+…+ln[1+n (n +1)]>(2-

31×2)+(2-32×3)+…+[2-3n (n +1)

]=2n -3[1

1×2+12×3+…+1n (n +1)]=2n -3+3

n +1

>2n -3, 所以原不等式成立.

总结提高

合情推理与演绎推理是两种基本的思维推理方式.尽管合情推理(归纳、类比)得到的结论未必正确,但归纳推理与类比推理具有猜想和发现新结论、探索和提供证明的新思路的重要作用,特别在数学学习中,我们可以由熟悉的、已知的知识领域运用归纳、类比思维获取发现和创造的灵感去探索陌生的、未知的知识领域.演绎推理是数学逻辑思维的主要形式,担负着判断命题真假的重要使命.如果说合情推理是以感性思维为主,只需有感而发;那么演绎推理则是以理性思维为主,要求言必有据.在近几年高考中一道合情推理的试题往往会成为一套高考试题的特色与亮点,以彰显数学思维的魅力.其中数列的通项公式、求和公式的归纳、等差数列与等比数列、平面与空间、圆锥曲线与圆、杨辉三角等的类比的考查频率较大.而演绎推理的考查则可以渗透到每一道试题中.

14.2 直接证明与间接证明

典例精析

题型一 运用综合法证明

【例1】设a >0,b >0,a +b =1,求证:1a +1b +1

ab

≥8.

【证明】因为a +b =1,

所以1a +1b +1ab =a +b a +a +b b +a +b ab =1+b a +1+a b +a +b ab ≥2+b

a

a b ?+a +b (a +b 2

)2=2+2+4=8,当且仅

当a =b =1

2

时等号成立.

【点拨】在用综合法证明命题时,必须首先找到正确的出发点,也就是能想到从哪里起步,我们一般的处理方法是广泛地联想已知条件所具备的各种性质,逐层推进,从已知逐渐引出结论.

【变式训练1】设a ,b ,c >0,求证:a 2b +b 2c +c 2

a

≥a +b +c .

【证明】因为a ,b ,c >0,根据基本不等式, 有a 2b +b ≥2a ,b 2c +c ≥2b ,c 2

a

+a ≥2c . 三式相加:a 2b +b 2c +c

2a

+a +b +c ≥2(a +b +c ).

即a 2b +b 2c +c

2a

≥a +b +c . 题型二 运用分析法证明

【例2】设a 、b 、c 为任意三角形三边长,I =a +b +c ,S =ab +bc +ca .求证:I 2<4S .

【证明】由I 2=(a +b +c )2=a 2+b 2+c 2+2(ab +bc +ac )=a 2+b 2+c 2+2S , 故要证I 2<4S ,只需证a 2+b 2+c 2+2S <4S ,即a 2+b 2+c 2<2S . 欲证上式,只需证a 2+b 2+c 2-2ab -2bc -2ca <0, 即证(a 2-ab -ac )+(b 2-bc -ba )+(c 2-ca -cb )<0, 只需证三括号中的式子均为负值即可, 即证a 2<ab +ac ,b 2<bc +ba ,c 2<ca +cb , 即a <b +c ,b <a +c ,c <a +b ,

显然成立,因为三角形任意一边小于其他两边之和. 故I 2<4S .

【点拨】(1)应用分析法易于找到思路的起始点,可探求解题途径.

(2)应用分析法证明问题时要注意:严格按分析法的语言表达;下一步是上一步的充分条件.

【变式训练2】已知a >0,求证:a 2+1a 2-2≥a +1

a

-2.

【证明】要证a 2+1a 2-2≥a +1

a -2,

只要证a 2+1a 2+2≥a +1

a

+ 2.

因为a >0,故只要证(a 2+1a 2+2)2≥(a +1

a

+2)2,

即a 2+1a 2+4a 2+1a 2+4≥a 2+2+1a 2+22(a +1

a

)+2,

从而只要证2a 2+1a 2≥2(a +1

a ),

只要证4(a 2+1a 2)≥2(a 2+2+1a 2),即a 2+1

a

2≥2,

而该不等式显然成立,故原不等式成立. 题型三 运用反证法证明

【例3】 若x ,y 都是正实数,且x +y >2.求证:1+x y <2或1+y

x

<2中至少有一个成立.

【证明】假设1+x y <2和1+y x <2都不成立.则1+x y ≥2,1+y

x ≥2同时成立.

因为x >0且y >0,所以1+x ≥2y 且1+y ≥2x ,

两式相加得2+x +y ≥2x +2y ,所以x +y ≤2,这与已知条件x +y >2相矛盾.

因此1+x y <2与1+y x

<2中至少有一个成立.

【点拨】一般以下题型用反证法:①当“结论”的反面比“结论”本身更简单、更具体、更明确;②否定命题,唯一性命题,存在性命题,“至多”“至少”型命题;③有的肯定形式命题,由于已知或结论涉及到无限个元素,用直接证明形式比较困难因而往往采用反证法.

【变式训练3】已知下列三个方程:x 2+4ax -4a +3=0;x 2+(a -1)x +a 2=0;x 2+2ax -2a =0,若至少有一个方程有实根,求实数a 的取值范围.

【解析】假设三个方程均无实根,则有 ???????----+--<0.

)2(4)(2<0,

4)1(<0,)34(4)4(22

22a a a a a a 由(4a )2-4(-4a +3)<0,得4a 2+4a -3<0,即-32<a <12

由(a -1)2-4a 2<0,得(a +1)(3a -1)>0,即a <-1或a >1

3

由(2a )2-4(-2a )<0,得a (a +2)<0,即-2<a <0.

以上三部分取交集得M ={a |-3

2

<a <-1},则三个方程至少有一个方程有实根的实数a 的取值范围为

?R M ,即{a |a ≤-3

2

或a ≥-1}.

总结提高

分析法与综合法各有其优缺点:分析法是执果索因,比较容易寻求解题思路,但叙述繁琐;综合法叙述简洁,但常常思路阻塞.因此在实际解题时,需将两者结合起来运用,先用分析法寻求解题思路,再用综合法简洁地叙述解题过程.从逻辑思维的角度看,原命题“p ?q ”与逆否命题“?q ??p ”是等价的,而反证法是相当于由“?q ”推出“?p ”成立,从而证明了原命题正确.因此在运用反证法的证明过程中要特别注意条件“?q ”的推理作用.综合法与分析法在新课标中第一次成为独立的显性的课题,预测可能有显性的相关考试命题.反证法证明的关键是在正确的推理下得出矛盾,这个矛盾可以是与已知矛盾,或与假设矛盾或与定义、公理、公式事实矛盾等.

14.3 数学归纳法

典例精析

题型一 用数学归纳法证明恒等式

【例1】是否存在常数a 、b 、c ,使等式12+22+32+…+n 2+(n -1)2+…+22+12=an (bn 2+c )对于一切n ∈N *都成立?若存在,求出a 、b 、c 并证明;若不存在,试说明理由.

【解析】 假设存在a 、b 、c 使12+22+32+…+n 2+(n -1)2+…+22+12=an (bn 2+c )对于一切n ∈N *

都成立.

当n =1时,a (b +c )=1; 当n =2时,2a (4b +c )=6; 当n =3时,3a (9b +c )=19. 解方程组???

??=+=+=+,

19)9(3,3)4(,1)(c b a c b b c b a 解得?

??

????===.1,2,31c b a

证明如下:

当n =1时,显然成立;

假设n =k (k ∈N *,k ≥1)时等式成立,

即12+22+32+…+k 2+(k -1)2+…+22+12=1

3k (2k 2+1);

则当n =k +1时,

12+22+32+…+k 2+(k +1)2+k 2+(k -1)2+…+22+12=1

3

k (2k 2+1)+(k +1)2+k 2

=13k (2k 2+3k +1)+(k +1)2=1

3k (2k +1)(k +1)+(k +1)2

=13(k +1)(2k 2+4k +3)=1

3

(k +1)[2(k +1)2+1]. 因此存在a =1

3

,b =2,c =1,使等式对一切n ∈N *都成立.

【点拨】 用数学归纳法证明与正整数n 有关的恒等式时要弄清等式两边的项的构成规律:由n =k 到n =k +1时等式左右各如何增减,发生了怎样的变化.

【变式训练1】用数学归纳法证明:

当n∈N*时,1

1×3+

1

3×5+…+

1

(2n-1)(2n+1)

n

2n+1

.

【证明】(1)当n=1时,左边=1

1×3=1

3,右边=

1

2×1+1

1

3,

左边=右边,所以等式成立.

(2)假设当n=k(k∈N*)时等式成立,即有1

1×3+

1

3×5+…+

1

(2k-1)(2k+1)

k

2k+1

则当n=k+1时,

1

1×3+1

3×5+…+

1

(2k-1)(2k+1)

1

(2k+1)(2k+3)

k

2k+1

1

(2k+1)(2k+3)

k(2k+3)+1

(2k+1)(2k+3)

2k2+3k+1

(2k+1)(2k+3)

k+1

2k+3

k+1

2(k+1)+1

所以当n=k+1时,等式也成立.

由(1)(2)可知,对一切n∈N*等式都成立.

题型二用数学归纳法证明整除性问题

【例2】已知f(n)=(2n+7)·3n+9,是否存在自然数m使得任意的n∈N*,都有m整除f(n)?若存在,求出最大的m值,并证明你的结论;若不存在,请说明理由.

【解析】由f(1)=36,f(2)=108,f(3)=360,猜想:f(n)能被36整除,下面用数学归纳法证明.

(1)当n=1时,结论显然成立;

(2)假设当n=k(k≥1,k∈N*)时结论成立,即f(k)=(2k+7)·3k+9能被36整除.

则当n=k+1时,f(k+1)=(2k+9)·3k+1+9=3[(2k+7)·3k+9]+18(3k-1-1),

由假设知3[(2k+7)·3k+9]能被36 整除,又3k-1-1是偶数,

故18(3k-1-1)也能被36 整除.即n=k+1时结论也成立.

故由(1)(2)可知,对任意正整数n都有f(n)能被36整除.

由f(1)=36知36是整除f(n)的最大值.

【点拨】与正整数n有关的整除性问题也可考虑用数学归纳法证明. 在证明n=k+1结论也成立时,要注意“凑形”,即凑出归纳假设的形式,以便于充分利用归纳假设的条件.

【变式训练2】求证:当n为正整数时,f(n)=32n+2-8n-9能被64整除.

【证明】方法一:①当n=1时,f(1)=34-8-9=64,命题显然成立.

②假设当n=k(k≥1,k∈N*)时结论成立,即f(k)=32k+2-8k-9能被64整除.

由于32(k+1)+2-8(k+1)-9=9(32k+2-8k-9)+9·8k+9·9-8(k+1)-9=9(32k+2-8k-9)+64(k+1),即f(k+1)=9f(k)+64(k+1),

所以n=k+1时命题也成立.

根据①②可知,对任意的n∈N*,命题都成立.

方法二:①当n=1时,f(1)=34-8-9=64,命题显然成立.

②假设当n=k(k≥1,k∈N*)时,f(k)=32k+2-8k-9能被64整除.由归纳假设,设32k+2-8k-9=64m(m 为大于1的自然数),将32k+2=64m+8k+9代入到f(k+1)中得

f(k+1)=9(64m+8k+9)-8(k+1)-9=64(9m+k+1),所以n=k+1时命题也成立.

根据①②可知,对任意的n∈N*,命题都成立.

题型三数学归纳法在函数、数列、不等式证明中的运用

【例3】(2009山东)等比数列{a n}的前n项和为S n,已知对任意的n∈N*,点(n,S n)均在函数y=b x+r(b>0且b≠1,b,r均为常数)的图象上.

(1)求r 的值;

(2)当b =2时,记b n =2(log 2a n +1)(n ∈N *),求证:对任意的n ∈N *,不等式b 1+1

b 1

· b 2+1b 2·…·b n +1

b n

>n +1成立. 【解析】(1)因为点(n ,S n )均在函数y =b x +r (b >0且b ≠1,b ,r 均为常数)的图象上, 所以S n =b n +r (b >0且b ≠1,b ,r 均为常数).

当n =1时,a 1=S 1=b +r ;当n ≥2时,a n =S n -S n -1=b n +r -b n -

1-r =(b -1)b n -

1.

又数列{a n }为等比数列,故r =-1且公比为b . (2)当b =2时,a n =2n -

1,

所以b n =2(log 2a n +1)=2(log 22n -

1+1)=2n (n ∈N *),

所以b n +1b n =2n +12n

于是要证明的不等式为32·5

4·…·2n +12n

>n +1对任意的n ∈N *成立.

下面用数学归纳法证明.

当n =1时,3

2

>2显然成立.

假设当n =k 时不等式成立,即32·5

4·…·2k +12k >k +1.

则当n =k +1时,32·5

4·…·2k +12k ·2k +32k +2>k +1·2k +32k +2=k +1·

(2k +32k +2

)2=(2k +3)2

4(k +1)

[2(k +1)+1]24(k +1)

4(k +1)2+4(k +1)+1

4(k +1)

(k +1)+1+1

4(k +1)

>(k +1)+1,

即当n =k +1时不等式成立,所以原不等式对任意n ∈N *成立.

【点拨】 运用归纳推理得到的结论不一定正确,需进行证明.用数学归纳法证明不等式时必须要利用归纳假设的条件,并且灵活运用放缩法、基本不等式等数学方法.

【变式训练3】设函数f (x )=e x -

1+a x

(a ∈R ).

(1)若函数f (x )在x =1处有极值,且函数g (x )=f (x )+b 在(0,+∞)上有零点,求b 的最大值; (2)若f (x )在(1,2)上为单调函数,求实数a 的取值范围;

(3)在(1)的条件下,数列{a n }中a 1=1,a n +1=f (a n )-f ′(a n ),求|a n +1-a n |的最小值.

【解析】(1)f ′(x )=e x -

1-a x

2,又函数f (x )在x =1处有极值,

所以f ′(1)=0,即a =1,经检验符合题意.

g ′(x )=e x -

1-1x

2,当x ∈(0,1)时,g ′(x )<0,g (x )为减函数,当x =1时,g ′(x )=0,当x ∈(1,+∞)时g ′(x )

>0,g (x )为增函数.

所以g (x )在x =1时取得极小值g (1)=2+b ,依题意g (1)≤0,所以b ≤-2, 所以b 的最大值为-2.

(2)f ′(x )=e x -

1-a x

2,

当f (x )在(1,2)上单调递增时,e x -1-a x

2≥0在[1,2]上恒成立,所以a ≤x 2e x -

1,

令h (x )=x 21e x ,则h ′(x )=e x -

1(x 2+2x )>0在[1,2]上恒成立,即h (x )在[1,2]上单调递增,

所以h (x )在[1,2]上的最小值为h (1)=1,所以a ≤1; 当f (x )在[1,2]上单调递减时,同理a ≥x 2e x -

1,

h (x )=x 2e x

-1

在[1,2]上的最大值为h (2)=4e ,所以a ≥4e.

综上实数a 的取值范围为a ≤1或a ≥4e.

(3)由(1)得a =1,所以f (x )-f ′(x )=1x +1x 2,因此a n +1=1a n +1

a 2n

,a 1=1,所以a 2=2,可得0<a 2n +1<1,

a 2n +2>2.用数学归纳法证明如下:

①当n =1时,a 3=34,a 4=28

9

,结论成立;

②设n =k ,k ∈N *时结论成立,即0<a 2k +1<1,a 2k +2>2,

则n =k +1时,a 2k +3=1a 2k +2+1a 22k +2<12+1

2

=1,

所以0<a 2k +3<1,a 2k +4=1a 2k +3+1

a 22k +3>1+1=2.

所以n =k +1时结论也成立,

根据①②可得0<a 2n +1<1,a 2n +2>2恒成立,

所以|a n +1-a n |≥a 2-a 1=2-1=1,即|a n +1-a n |的最小值为1.

总结提高

数学归纳法是证明与自然数有关的命题的常用方法,它是在归纳的基础上进行的演绎推理,其大前提是皮亚诺公理(即归纳公理):

设M 是正整数集合的子集,且具有如下性质: ①1∈M ;

②若k ∈M ,则k +1∈M ,那么必有M =N *成立.

数学归纳法证明的两个步骤体现了递推的数学思想,第一步是递推的基础,第二步是递推的依据,通过对两个命题的证明替代了无限多次的验证,实现了有限与无限的辩证统一.

从近几年的高考试题来看,比较注重于对数学归纳法的思想本质的考查,如“归纳、猜想、证明”是一种常见的命题形式.而涉及的知识内容也是很广泛的,可覆盖代数命题、三角恒等式、不等式、数列、几何命题、整除性命题等.其难点往往在第二步,关键是“凑形”以便运用归纳假设的条件.

高考推理与证明真题汇编理科数学(解析版)

2012高考真题分类汇编:推理与证明 1. 【 2012 高 考 真 题 江 西 理 6 】 观 察 下 列 各 式 : 221,3,a b a b +=+=3344554,7,11,a b a b a b +=+=+=L 则1010a b += A .28 B .76 C .123 D .199 【答案】C 【命题立意】本题考查合情推理中的归纳推理以及递推数列的通项公式。 【解析】等式右面的数构成一个数列1,3,4,7,11,数列的前两项相加后面的项,即 21++=+n n n a a a ,所以可推出12310=a ,选C. 2.【2012高考真题全国卷理12】正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,AE =BF = 7 3 .动点P 从E 出发沿直线喜爱那个F 运动,每当碰到正方形的方向的边时反弹,反弹时反射等于入射角,当点P 第一次碰到E 时,P 与正方形的边碰撞的次数为 (A )16(B )14(C )12(D)10 【答案】B 【解析】结合已知中的点E,F 的位置,进行作图,推理可知,在反射的过程中,直线是平行的,那么利用平行关系,作图,可以得到回到EA 点时,需要碰撞14次即可. 3.【2012高考真题湖北理10】我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数, 以十六乘之,九而一,所得开立方除之,即立圆径. “开立圆术”相当于给出了已知球的体积V ,求其直径d 的一个近似公式d ≈ . 人们还用过一些类似的近似公式. 根据π =3.14159L 判断,下列近似公式中最精确的一个是 11.d ≈ B .d C .d D .d ≈ 【答案】D 【解析】 346b 69()d ,===3.37532b 16 616157611 ==3==3.14,==3.142857230021 d a V A a B D πππππππ?==???由,得设选项中常数为则;中代入得, 中代入得,C 中代入得中代入得,由于D 中值最接近的真实值,故选择D 。 4.【2012高考真题陕西理11】 观察下列不等式 213122+ < 231151233++<,

2020年高考理科数学一轮总复习:基本不等式

2020年高考理科数学一轮总复习 基本不等式 [基础梳理] 1.重要不等式 a 2+ b 2≥2ab (a ,b ∈R )(当且仅当a =b 时等号成立). 2.基本不等式:ab ≤a +b 2 (1)基本不等式成立的条件是a >0,b >0. (2)等号成立的条件是:当且仅当a =b 时取等号. (3)其中a +b 2称为正数a ,b 的算术平均数, ab 称为正数a ,b 的几何平均数. 3.利用基本不等式求最值问题 已知x >0,y >0,则: (1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2 p (简记:积定和最小). (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 2 4(简记:和定积最大) 1.基本不等式的两种常用变形形式 (1)ab ≤? ????a +b 22 (a ,b ∈R ,当且仅当a =b 时取等号). (2)a +b ≥2 ab (a >0,b >0,当且仅当a =b 时取等号).

2.几个重要的结论 (1)a 2+b 22≥? ?? ??a +b 22 . (2)b a +a b ≥2(ab >0). (3)21a +1b ≤ab ≤a +b 2≤ a 2+b 2 2(a >0,b >0). [四基自测] 1.设x >0,y >0,且x +y =18,则xy 的最大值为( ) A .80 B .77 C .81 D .82 答案:C 2.若x <0,则x +1 x ( ) A .有最小值,且最小值为2 B .有最大值,且最大值为2 C .有最小值,且最小值为-2 D .有最大值,且最大值为-2 答案:D 3.若把总长为20 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是________. 答案:25 m 2 4.已知x >1,则x +4 x -1 的最小值为________. 答案:5 5.若1a +1 b =1(a >0,b >0),则a +b 的最小值为________. 答案:4

高考理科数学第一轮复习教案

第一节分类加法计数原理与分步乘法计数原理 两个原理 分类加法计数原理、分步乘法计数原理 (1)理解分类加法计数原理和分步乘法计数原理. (2)会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题. 知识点两个原理

1.分类加法计数原理 完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m +n种不同的方法. 2.分步乘法计数原理 完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法. 易误提醒(1)分类加法计数原理在使用时易忽视每类做法中每一种方法都能完成这件事情,类与类之间是独立的. (2)分步乘法计数原理在使用时易忽视每步中某一种方法只是完成这件事的一部分,而未完成这件事,步与步之间是相关联的. [自测练习] 1.从0,1,2,3,4,5这六个数字中,任取两个不同数字相加,其和为偶数的不同取法的种数有() A.30 B.20 C.10 D.6 解析:从0,1,2,3,4,5六个数字中,任取两数和为偶数可分为两类,①取出的两数都是偶数,共有3种方法;②取出的两数都是奇数,共有3种方法,故由分类加法计数原理得共有N=3+3=6种.答案:D 2.用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为() A.243 B.252 C.261 D.279 解析:0,1,2…,9共能组成9×10×10=900(个)三位数,其中无重复数字的三位数有9×9×8=648(个),

∴有重复数字的三位数有900-648=252(个).答案:B 考点一分类加法计数原理|

历年高考数学真题精选46 推理与证明

历年高考数学真题精选(按考点分类) 专题46 推理与证明(学生版) 一.选择题(共9小题) 1.(2019?新课标Ⅱ)在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高. 成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为() A.甲、乙、丙B.乙、甲、丙C.丙、乙、甲D.甲、丙、乙2.(2019?新课标Ⅰ)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的 长度之比是5151 (0.618 -- ≈,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此 外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是51 - .若某人满足上述两 个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是( ) A.165cm B.175cm C.185cm D.190cm 3.(2017?新课标Ⅱ)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则() A.乙可以知道四人的成绩B.丁可以知道四人的成绩 C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩4.(2016?新课标Ⅲ)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图,图中A点表示十月的平均最高气温约为15C ?,B点表示

四月的平均最低气温约为5C ?,下面叙述不正确的是( ) A .各月的平均最低气温都在0C ?以上 B .七月的平均温差比一月的平均温差大 C .三月和十一月的平均最高气温基本相同 D .平均最高气温高于20C ?的月份有5个 5.(2016?北京)袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每 次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则( ) A .乙盒中黑球不多于丙盒中黑球 B .乙盒中红球与丙盒中黑球一样多 C .乙盒中红球不多于丙盒中红球 D .乙盒中黑球与丙盒中红球一样多 6.(2014?北京)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不 合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,则这一组学生最多有( ) A .2人 B .3人 C .4人 D .5人 7.(2013?广东)设整数4n ,集合{1X =,2,3,?,}n .令集合{(S x =,y ,)|z x ,y , z X ∈,且三条件x y z <<,y z x <<,z x y <<恰有一个成立}.若(x ,y ,)z 和(z ,w ,)x 都在S 中,则下列选项正确的是( )

高考理科数学第一轮复习辅导讲义

选修4经典回顾 主讲教师:丁益祥 北京陈经纶中学数学特级教师 开篇语 选修系列4在高考中主要考查4—1中的几何证明选讲、4—4中的坐标系与参数方程、4—5中的不等式选讲三个专题内容.围绕着三部分内容的试题,既有选择题和填空题,又有解答题.因此在第一轮复习中必须围绕上述核心考点,选择相关的问题进行求解训练,提高解决不等式问题能力 开心自测 题一:不等式|21|35x x -++≤的解集是_______________. 题二:如图,,AB CD 是半径为a 的圆O 的两条弦,他们相交于AB 的中点P ,23a PD = ,30OAP ∠=?,则CP =_________. 考点梳理 选修4—1几何证明选讲部分: 1.垂径定理: 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. D

2.圆周角定理: 在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 3.圆内接四边形的性质定理: 圆内接四边形的对角互补;外角等于它的内角的对角. 4.圆内接四边形的判定定理: 如果一个四边形的对角互补,那么这个四边形的四个顶点共圆.推论:如果一个四边形的外角等于它的内角的对角,那么这个四边形的四个顶点共圆. 5.切线长定理: 从圆外一点引圆的两条切线,它们的切线长相等. 6.弦切角定理:弦切角等于它所夹的弧所对的圆周角. 7.相交弦定理: 圆内的两条相交弦,被交点分成的两条线段长的积相等. 8.切割线定理: 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项. 选修4—4中的坐标系与参数方程部分: 1. 极坐标与直角坐标的关系 设点M的直角坐标为(x,)y,极坐标为(ρ,)θ, 则 cos, sin. x y ρθ ρθ = ? ? = ? 或 222, tan(0). x y y x x ρ θ ?=+ ? ? =≠ ??

2020高考数学第一轮复习全套讲义

第一章 集合与简易逻辑 第1课时 集合的概念及运算 【考点导读】 1. 了解集合的含义,体会元素与集合的属于关系;能选择自然语言,图形语言,集合语言描述不同的具体问题,感受集合语言的意义和作用. 2. 理解集合之间包含与相等的含义,能识别给定集合的子集;了解全集与空集的含义. 3. 理解两个集合的交集与并集的含义,会求两个集合的交集与并集;理解在给定集合中一个子集补集的含义,会求给定子集的补集;能使用文氏图表达集合的关系及运算,体会直观图示对理解抽象概念的作用. 4. 集合问题常与函数,方程,不等式有关,其中字母系数的函数,方程,不等式要复杂一些,综合性较强,往往渗透数形思想和分类讨论思想. 【基础练习】 1. 集 合 {(, )0 2,02,,} x y x y x y Z ≤≤≤<∈用列举法表示{ ( , ) , ( 0,. 2.设集合{21,}A x x k k Z ==-∈,{2,}B x x k k Z ==∈,则A B ?=?. 3.已知集合{0,1,2}M =,{2,}N x x a a M ==∈,则集合M N ?=_______. 4.设全集{1,3,5,7,9}I =,集合{1,5,9}A a =-,{5,7}I C A =,则实数a 的值为____8 或2___. 【范例解析】 例.已知R 为实数集,集合2{320}A x x x =-+≤.若R B C A R ?=, {01R B C A x x ?=<<或23}x <<,求集合B . 分析:先化简集合A ,由R B C A R ?=可以得出A 与B 的关系;最后,由数形结合,利用数轴直观地解决问题. 解:(1) {12}A x x =≤≤,{1R C A x x ∴=<或2}x >.又R B C A R ?=, R A C A R ?=, 可得A B ?. {0,2}

2020年高考理科数学《推理与证明》题型归纳与训练

1 2020年高考理科数学《推理与证明》题型归纳与训练 合情推理与演绎推理 题型一 归纳推理 1 与数字有关的等式的推理 【易错点】 例1观察下列等式: ????sin π3-2+????sin 2π3-2=43 ×1×2; ????sin π5-2+????sin 2π5-2+????sin 3π5-2+????sin 4π5-2=43×2×3; ????sin π7-2+????sin 2π7-2+????sin 3π7-2+…+????sin 6π7-2=43×3×4; ????sin π9-2+????sin 2π9-2+????sin 3π9-2+…+????sin 8π9-2=43 ×4×5; … 照此规律,????sin π2n +1-2+????sin 2π2n +1-2+????sin 3π2n +1-2+…+??? ?sin 2n π2n +1- 2=__________. 【答案】 4 3 ×n ×(n +1) 【解析】观察等式右边的规律:第1个数都是4 3,第2个数对应行数n ,第3个数为n +1. 2 与不等式有关的推理 例2已知a i >0(i =1,2,3,…,n ),观察下列不等式: a 1+a 2 2≥a 1a 2; a 1+a 2+a 33≥3 a 1a 2a 3; a 1+a 2+a 3+a 44≥4 a 1a 2a 3a 4; … 照此规律,当n ∈N *,n ≥2时,a 1+a 2+…+a n n ≥______. 【答案】 n a 1a 2…a n 【解析】 根据题意得a 1+a 2+…+a n n ≥n a 1a 2…a n (n ∈N *,n ≥2). 3 与数列有关的推理 例3观察下列等式:

数学高考第一轮复习规划与建议

数学高考第一轮复习规划与建议 一、高三期间复习阶段分析 第一轮复习一般从8月到12月,以教材的知识体系作为复习的主要线索,以帮助同学们回忆、回顾以前学习过的知识为主,对知识面进行全方位的覆盖,以及对基本方法、基本题型进行总结、反思; 第二轮复习大概从2月到4月中旬,在此阶段打破了教材的体系,主要是对高中数学的六大板块进行专题性的复习,在第一轮复习的基础上进一步加强综合性运用,提高解题的准确性、速度性和解答题的规范性; 第三轮复习一般从4月中旬到5月中旬,此阶段主要是同学们进行高考试题的模拟考试、训练,以培养同学们的答题技巧、答题方法、考场应变能力。5月下旬到6月5日期间则是同学们自主复习,以回归教材、错题反思、方法的进一步归纳总结。 所以在整个高三的复习中,第一轮复习所用的时间是最长的,它的复习成效将直接影响后面的复习效果。 二、数学第一轮复习建议 一、端正态度,切忌浮躁,忌急于求成 在第一轮复习的过程中,心浮气躁是一个非常普遍的现象。主要表现为平时复习觉得没有问题,题目也能做,但是到了考试时就是拿不了高分!这主要是因为: 1对复习的知识点缺乏系统的理解,解题时缺乏思维层次结构。第一轮复习着重对基础知识点的挖掘,数学老师一定都会反复强调基础的重要性。如果不重视对知识点的系统化分析,不能构成一个整体的知识网络构架,自然在解题时就不能拥有整体的构思,也不能深入理解高考典型例题的思维方法。 2复习的时候心不静。心不静就会导致思维不清晰,而思维不清晰就会促使复习没有效率。建议大家在开始一个学科的复习之前,先静下心来认真想一想接下来需要复习哪一块儿,需要做多少事情,然后认真去做,同时需要很高的注意力,只有这样才会有很好的效果。 3在第一轮复习阶段,学习的重心应该转移到基础复习上来。 因此,建议广大同学在一轮复习的时候千万不要急于求成,一定要静下心来,认真的揣摩每个知识点,弄清每一个原理。只有这样,一轮复习才能显出成效。 二、注重教材、注重基础,忌盲目做题

2019年度高三理科数学一轮复习资料计划

2019 届高三理科数学一轮复习计划

目录 一、背景分析 (1) 三、目标要求 (1) 四、具体计划 (2) (一)总体要求 (2) (二)要解决的问题 (2) (三)总体思路设计 (3) 五、测试制度 (3) (一)周测 (3) (二)单元测试 (3) (三)月测 (3) (四)备注 (3) 六、课程分类 (4) (一)知识梳理课 (4) (二)能力提高课 (4) (三)章节复习课 (4) (四)试卷讲评课 (5) 七、一轮复习进度计划具体安排如下....................................................................... 5. .

2019 届高三理科数学一轮复习计划 一、背景分析近几年来的高考数学试题逐步做到科学化、规范化,坚持了稳中求改、稳中创新的原则。考试题不但坚持了考查全面、比例适当,布局合理的特点,也突出体现了变知识立意为能力立意这一举措。更加注重考查学生进入高校学习所需的基本数学素养,这些变化应引起我们在教学中的关注和重视。 二、指导思想在全面推行素质教育的背景下,努力提高课堂复习效率是高三数学复习的重要任务。通过复习,让学生更好地学会从事社会生产和进一步学习所必需的数学基础知识,从而培养学生思维能力,激发学生学习数学的兴趣,使学生树立学好数学的信心。老师要在教学过程中不断了解新的教学信息,更新教育观念,探求新的教学模式,准确把握课程标准和考试说明的各项基本要求,立足基本知识、基本技能、基本思想和基本方法教学,针对学生实际,指导学法,着力培养学生的创新能力和运用数学的意识和能力。 三、目标要求第一轮复习要结合高考考点,紧扣教材,以加强双基教学为主线,以提高学生能力为目标,加强学生对知识的理解、联系、应用,同时结合高考题型强化训练,提高学生的解题能力。为此,确立一轮复习的总体目标:通过梳理考点,培养学生分析问题、解决问题的能力;使学生养成思考严谨、分析条理、解答正确、书写规范的良好习惯,为二轮复习乃至高考奠定坚实的基础。具体要求如下: 1、第一轮复习必须面向全体学生,降低复习起点,在夯实双基的前提下,注重培养学生的能力,包括:空间想象、抽象概括、推理论证、运算求解、数据处理等基本能力。提高学生对实际问题的阅读理解、思考判断能力;以及数学地提出、分析和解决问题的能力,数学表达和交流的能力,发展独立获取数学知识的能力。 2、在将基础问题学实学活的同时,重视数学思想方法的复习。一定要把复习内容中反映出来的数学思想方法的教学体现在第一轮复习的全过程中,使学生真正领悟到如何灵活运用数学思想方法解题。必须让学生明白复习的最终目标是新题会解,而不是单单立足于陈题的熟练。 3、要强化运算能力、表达能力和阅读能力的训练,课堂教学时要有意识安排时间让学生进行完整的规范的解题训练,对解题过程和书写表达提出明确具体的要求,培养学生良好的解题习惯,提高解题的成功率和得分率。同时要加强处理信息与数据和寻求设计合理、简捷的运算途径方面的训练,提高阅读理解的水平和运算技能。落实网上阅卷对解题规范、书写轻重、表达完整等新的要求。 四、具体计划

高考第一轮复习知识点(数学)

高考一轮复习知识点 数学 第一章-集合 考试内容:集合、子集、补集、交集、并集.逻辑联结词.四种命题.充分条件和必要条件. 考试要求: (1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合. (2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义. §01. 集合与简易逻辑 知识要点 一、知识结构: 本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分: 二、知识回顾: (一) 集合 1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用. 2. 集合的表示法:列举法、描述法、图形表示法. 集合元素的特征:确定性、互异性、无序性. 集合的性质: ①任何一个集合是它本身的子集,记为A A ?; ②空集是任何集合的子集,记为A ?φ; ③空集是任何非空集合的真子集; 如果B A ?,同时A B ?,那么A = B. 如果C A C B B A ???,那么,. [注]:①Z = {整数}(√) Z ={全体整数} (×) ②已知集合S 中A 的补集是一个有限集,则集合A 也是有限集.(×)(例:S=N ; A=+N ,则C s A= {0})

③ 空集的补集是全集. ④若集合A =集合B ,则C B A = ?, C A B = ? C S (C A B )= D ( 注 :C A B = ?). 3. ①{(x ,y )|xy =0,x ∈R ,y ∈R }坐标轴上的点集. ②{(x ,y )|xy <0,x ∈R ,y ∈R }二、四象限的点集. ③{(x ,y )|xy >0,x ∈R ,y ∈R } 一、三象限的点集. [注]:①对方程组解的集合应是点集. 例: ? ? ?=-=+1323 y x y x 解的集合{(2,1)}. ②点集与数集的交集是φ. (例:A ={(x ,y )| y =x +1} B={y |y =x 2 +1} 则A ∩B =?) 4. ①n 个元素的子集有2n 个. ②n 个元素的真子集有2n -1个. ③n 个元素的非空真子集有2n -2个. 5. ⑴①一个命题的否命题为真,它的逆命题一定为真. 否命题?逆命题. ②一个命题为真,则它的逆否命题一定为真. 原命题?逆否命题. 例:①若325≠≠≠+b a b a 或,则应是真命题. 解:逆否:a = 2且 b = 3,则a+b = 5,成立,所以此命题为真. ② 且21≠≠y x 3≠+y . 解:逆否:x + y =3x = 1或y = 2. 2 1≠≠∴y x 且3≠+y x ,故3≠+y x 是21≠≠y x 且的既不是充分,又不是必要条件. ⑵小范围推出大范围;大范围推不出小范围. 3. 例:若255 x x x 或,?. 4. 集合运算:交、并、补. {|,}{|}{,} A B x x A x B A B x x A x B A x U x A ?∈∈?∈∈?∈?U 交:且并:或补:且C 5. 主要性质和运算律 (1) 包含关系: ,,,, ,;,;,. U A A A A U A U A B B C A C A B A A B B A B A A B B ?Φ???????????C (2) 等价关系:U A B A B A A B B A B U ??=?=?= C (3) 集合的运算律: 交换律:.;A B B A A B B A == 结合律:)()();()(C B A C B A C B A C B A == 分配律:.)()()();()()(C A B A C B A C A B A C B A == 0-1律:,,,A A A U A A U A U Φ =ΦΦ===

高三第一轮复习理科数学试题(含答案)

高三第一轮复习理科数学试卷(含答案) 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求 的,请把正确答案 的代号填在题后的括号内(本大题共10个小题,每小题5分,共50分)。答案已用红色吧、标出 1.设全集U=R,集合M={x|y=32x -},N={y|y=3-2x },则图中阴影部分表示的集合是 A .{3|2 x < x 3≤} B . {3|2 x ?=?-≤?满足8 ()9f n =-, 则(4)f n += A .2 B .2- C .1 D .1- 3.已知集合22{(,)|2},{(,)|2}A x y x y B x y x y =+==+≤,设 :,:p x A q x B ∈∈,则 A .p 是q 的充分不必要条件 B .p 是q 的必要不充分条件 C .p 是q 的充要条件 D .p 是q 的 既不充分也不必要条件 4. 若x ,y 满足约束条件11y x x y y ≤?? +≤??≥-? ,则目标函数2z x y =+的最大值是 A .-3 B .32 C . 2 D .3 5 已 知 偶 函 数 () f x 在 [] 0,2上递减,则 ()122121 , log , log 42a f b f c f ????=== ? ? ???? ?大小为 A. a b c >> B. a c b >> C. b a c >> D .

c a b >> 6.等比数列{a n }中,a 3=6,前三项和3 304S xdx =?,则公比q 的值为 A.1 B.12 - C .1或12 - D.1-或12 - 7. 设()f x 是一个三次函数,'()f x 为其导函数,如图所示是函数 '()y xf x =的图像的一部分,则()f x 的极大值与极小值分别为 A .(1)(1)f f -与 B .(1)(1)f f -与 C .(2)(2)f f -与 D .(2)(2)f f -与 8. 已知,,A B C 是平面上不共线的三点,O 为平面ABC 内任一点,动点P 满足等式1[(1)(1)3 OP OA OB λλ=-+-u u u r u u u r u u u r (12)](OC λλ++∈R u u u r 且0)λ≠,则 P 的轨迹一 定通过ABC ?的 A .内心 B .垂心 C .重心 D .AB 边的中点 9.设曲线*()n y x n N =∈与x 轴及直线x=1围成的封闭图形的面积为n a ,设1122012,n n n b a a b b +=+++L 则b = A . 503 1007 B . 2011 2012 C . 2012 2013 D . 2013 2014 10.已知函数()f x 满足:①定义域为R ;②x R ?∈,有(2)2()f x f x +=;③当[0,2]x ∈时, ()2|22|f x x =--.记()()||([8,8])?x f x x x =-∈-.根据以上信息,可以得到函数() ?x 的零点个数为 A .15 B .10 C .9 D .8 二、填空题:请把答案填在题中横线上(本大题共5个小题,每小题5分,共25分)。 11.已知函数()sin()(,0,0,||)2 f x A x x R A π ω?ω?=+∈>>< 的部分图象如图所示,则()f x 的解析式是 f(x)=2sin (πx+6 π ) 。 12.已知命题“存在,x R ∈使得|||2|2x a x -++≤成立”是假命题, 则实数a 的取值范围是________.(,4)(0,)-∞-+∞U 13.一同学在电脑中打出如下图若干个圆(○表示空心圆,●表示实心圆)

2020年高考理科数学《推理与证明》题型归纳与训练

福利:本教程由捡漏优惠券(https://www.doczj.com/doc/c417935290.html, )整理提供 领红包:支付宝首页搜索“527608834”即可领取支付宝红包哟 领下面余额宝红包才是大红包,一般都是5-10元 支付的时候把选择余额宝就行呢 每天都可以领取早餐钱哟! 2020年高考理科数学《推理与证明》题型归纳与训练 合情推理与演绎推理 题型一 归纳推理 1 与数字有关的等式的推理 【易错点】 例1观察下列等式: ????sin π3-2+????sin 2π3-2=43 ×1×2; ????sin π5-2+????sin 2π5-2+????sin 3π5-2+????sin 4π5-2=43×2×3; ????sin π7-2+????sin 2π7-2+????sin 3π7-2+…+????sin 6π7-2=43×3×4; ????sin π9-2+????sin 2π9-2+????sin 3π9-2+…+????sin 8π9-2=43 ×4×5; … 照此规律,????sin π2n +1-2+????sin 2π2n +1-2+????sin 3π2n +1-2+…+??? ?sin 2n π2n +1- 2=__________. 【答案】 4 3 ×n ×(n +1) 【解析】观察等式右边的规律:第1个数都是4 3,第2个数对应行数n ,第3个数为n +1. 2 与不等式有关的推理 例2已知a i >0(i =1,2,3,…,n ),观察下列不等式: a 1+a 2 2≥a 1a 2; a 1+a 2+a 33≥3 a 1a 2a 3; a 1+a 2+a 3+a 44≥4 a 1a 2a 3a 4; … 照此规律,当n ∈N *,n ≥2时,a 1+a 2+…+a n n ≥______. 【答案】 n a 1a 2…a n

2019年度高三理科数学一轮复习资料计划

2019届高三理科数学一轮复习计划

目录 一、背景分析 (1) 三、目标要求 (1) 四、具体计划 (2) (一)总体要求 (2) (二)要解决的问题 (2) (三)总体思路设计 (3) 五、测试制度 (3) (一)周测 (3) (二)单元测试 (3) (三)月测 (3) (四)备注 (3) 六、课程分类 (4) (一)知识梳理课 (4) (二)能力提高课 (4) (三)章节复习课 (4) (四)试卷讲评课 (5) 七、一轮复习进度计划具体安排如下 (5)

2019届高三理科数学一轮复习计划 一、背景分析 近几年来的高考数学试题逐步做到科学化、规范化,坚持了稳中求改、稳中创新的原则。考试题不但坚持了考查全面、比例适当,布局合理的特点,也突出体现了变知识立意为能力立意这一举措。更加注重考查学生进入高校学习所需的基本数学素养,这些变化应引起我们在教学中的关注和重视。 二、指导思想 在全面推行素质教育的背景下,努力提高课堂复习效率是高三数学复习的重要任务。通过复习,让学生更好地学会从事社会生产和进一步学习所必需的数学基础知识,从而培养学生思维能力,激发学生学习数学的兴趣,使学生树立学好数学的信心。老师要在教学过程中不断了解新的教学信息,更新教育观念,探求新的教学模式,准确把握课程标准和考试说明的各项基本要求,立足基本知识、基本技能、基本思想和基本方法教学,针对学生实际,指导学法,着力培养学生的创新能力和运用数学的意识和能力。 三、目标要求 第一轮复习要结合高考考点,紧扣教材,以加强双基教学为主线,以提高学生能力为目标,加强学生对知识的理解、联系、应用,同时结合高考题型强化训练,提高学生的解题能力。为此,确立一轮复习的总体目标:通过梳理考点,培养学生分析问题、解决问题的能力;使学生养成思考严谨、分析条理、解答正确、书写规范的良好习惯,为二轮复习乃至高考奠定坚实的基础。具体要求如下: 1、第一轮复习必须面向全体学生,降低复习起点,在夯实双基的前提下,注重培养学生的能力,包括:空间想象、抽象概括、推理论证、运算求解、数据处理等基本能力。提高学生对实际问题的阅读理解、思考判断能力;以及数学地提出、分析和解决问题的能力,数学表达和交流的能力,发展独立获取数学知识的能力。 2、在将基础问题学实学活的同时,重视数学思想方法的复习。一定要把复习内容中反映出来的数学思想方法的教学体现在第一轮复习的全过程中,使学生真正领悟到如何灵活运用数学思想方法解题。必须让学生明白复习的最终目标是新题会解,而不是单单立足于陈题的熟练。 3、要强化运算能力、表达能力和阅读能力的训练,课堂教学时要有意识安排时间让学生进行完整的规范的解题训练,对解题过程和书写表达提出明确具体的要求,培养学生良好的解题习惯,提高解题的成功率和得分率。同时要加强处理信息与数据和寻求设计合理、简捷的运算途径方面的训练,提高阅读理解的水平和运算技能。落实网上阅卷对解题规范、书写轻重、表达完整等新的要求。

届高考理科数学第一轮总复习教案

学案37合情推理与演绎推理 导学目标: 1.了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用.2.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理.3.了解合情推理和演绎推理之间的联系和差异. 自主梳理

自我检测

1.(2010·山东)观察(x2)′=2x,(x4)′=4x3,(cos x)′=-sin x,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x) 等于() A.f(x) B.-f(x) C.g(x) D.-g(x) 2.(2010·珠海质检)给出下面类比推理命题(其中Q为有理数集,R为实数集,C为复数集): ①“若a,b∈R,则a-b=0?a=b”类比推出“若a,b∈C,则a-b=0?a=b”; ②“若a,b,c,d∈R,则复数a+b i=c+d i?a=c,b=d”类比推出“若a,b,c,d∈Q,则a+b2=c+d2?a=c,b=d”; ③“若a,b∈R,则a-b>0?a>b”类比推出“若a,b∈C,则a -b>0?a>b”.其中类比结论正确的个数是() A.0 B.1 C.2 D.3 3.(2009·江苏)在平面上,若两个正三角形的边长比为1∶2,则它们的面积比为1∶4,类似地,在空间中,若两个正四面体的棱长比为1∶2,则它们的体积比为________. 4.(2010·陕西)观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第五个等式为________________________________. 5.(2011·苏州月考)一切奇数都不能被2整除,2100+1是奇数,所以2100+1不能被2整除,其演绎推理的“三段论”的形式为___________________________________________.

高考数学推理与证明

第十二章推理与证明 考纲解读 分析解读 本部分是新课标内容,高考考查以下几个方面:1.归纳推理与类比推理以选择题、填空题的形式出现,考查学生的逻辑推理能力,而演绎推理多出现在立体几何的证明中;2.直接证明与间接证明作为证明和推理数学命题的方法,常以不等式、立体几何、解析几何、函数为载体,考查综合法、分析法及反证法.本节内容在高考中的分值分配:①归纳推理与类比推理分值为5分左右,属中档题;②证明问题以解答题形式出现,分值为12分左右,属中高档题.

五年高考 考点一合情推理与演绎推理 1.(2016北京,8,5分)某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊. 在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则( ) A.2号学生进入30秒跳绳决赛 B.5号学生进入30秒跳绳决赛 C.8号学生进入30秒跳绳决赛 D.9号学生进入30秒跳绳决赛 答案 B 2.(2017北京,14,5分)某学习小组由学生和教师组成,人员构成同时满足以下三个条件: (i)男学生人数多于女学生人数; (ii)女学生人数多于教师人数; (iii)教师人数的两倍多于男学生人数. ①若教师人数为4,则女学生人数的最大值为;

②该小组人数的最小值为. 答案①6 ②12 3.(2016课标全国Ⅱ,16,5分)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是. 答案1和3 4.(2016山东,12,5分)观察下列等式: π- +π - =×1×2; π- +π - +π - +π - =×2×3; π- +π - +π - +…+π - =×3×4; π- +π - +π - +…+π - =×4×5; …… 照此规律, π- +π - +π - +…+π - = . 答案 5.(2015陕西,16,5分)观察下列等式 1-= 1-+-=+ 1-+-+-=++ …… 据此规律,第n个等式可为. 答案1-+-+…+ - -=++…+ 6.(2014课标Ⅰ,14,5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时, 甲说:我去过的城市比乙多,但没去过B城市;

高考理科数学一轮复习专题训练:数列(含详细答案解析)

第7单元 数列(基础篇) 第Ⅰ卷 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知等差数列{a n }的前n 项和为S n ,若a 1=12,S 5=90,则等差数列{a n }公差d =( ) A .2 B . 32 C .3 D .4 【答案】C 【解析】∵a 1=12,S 5=90,∴54 512902 d ??+=,解得d =3,故选C . 2.在正项等比数列{}n a 中,已知42a =,81 8 a =,则5a 的值为( ) A .14 B .14 - C .1- D .1 【答案】D 【解析】由题意,正项等比数列{}n a 中,且42a =,818 a =,可得 4 84116a q a ==, 又因为0q >,所以12q = ,则541 212 a a q =?=?=,故选D . 3.在等差数列{}n a 中,51340a a +=,则8910a a a ++=( ) A .72 B .60 C .48 D .36 【答案】B 【解析】根据等差数列的性质可知:513994024020a a a a +=?=?=, 89109992360a a a a a a ==++=+,故本题选B . 4.中国古代数学名著《张丘建算经》中记载:“今有马行转迟,次日减半,疾七日,行七百里”. 其大意:现有一匹马行走的速度逐渐变慢,每天走的里程数是前一天的一半,连续走了7天,共走了700里,则这匹马第7天所走的路程等于( ) A . 700 127 里 B . 350 63 里 C . 280 51 里 D . 350 127 里 【答案】A 【解析】设马每天所走的路程是127,,.....a a a ,是公比为 1 2 的等比数列,

高考数学压轴专题新备战高考《推理与证明》经典测试题附答案解析

【高中数学】数学《推理与证明》期末复习知识要点 一、选择题 1.比利时数学家Germinal Dandelin 发现:在圆锥内放两个大小不同且不相切的球,使得它们分别与圆锥的侧面、底面相切,用与两球都相切的平面截圆锥的侧面得到的截面曲线是椭圆.这个结论在圆柱中也适用,如图所示,在一个高为10,底面半径为2的圆柱体内放球,球与圆柱底面及侧面均相切.若一个平面与两个球均相切,则此平面截圆柱边缘所得的图形为一个椭圆,该椭圆的离心率为( ) A . 3 B . 23 C . 6513 D . 5 【答案】D 【解析】 【分析】 如图,作出圆柱的轴截面,由于AOB OCD ∠=∠,所以sin sin AOB OCD ∠=∠,而由已知可求出,,OB AB OD 的长,从而可得3a OC ==,而椭圆短轴的长就等于圆柱的底面直径,得2b =,由此可求出离心率. 【详解】 对圆柱沿轴截面进行切割,如图所示,切点为A ,1A ,延长1AA 与圆柱面相交于C , 1C ,过点O 作OD DC ⊥,垂足为D . 在直角三角形ABO 中,2AB =,1022 32 BO -?==, 所以2sin 3AB AOB BO ∠= =,又因为22 sin sin 3 r AOB OCD OC OC ∠=∠===,

所以3a OC ==. 由平面与圆柱所截可知椭圆短轴即为圆柱底面直径的长,即24b =,则可求得 c ==, 所以c e a = = , 故选:D. 【点睛】 此题考查了圆与圆的位置关系、直角三角形中正弦的定义和椭圆的基本概念等知识,属于基础题. 2.已知点(10,3)P 在椭圆22 2:199 x y C a +=上.若点()00,N x y 在圆222:M x y r +=上,则 圆M 过点N 的切线方程为2 00x x y y r +=.由此类比得椭圆C 在点P 处的切线方程为 ( ) A .13311x y += B . 111099 x y += C . 11133 x y += D . 199110 x y += 【答案】C 【解析】 【分析】 先根据点在椭圆上,求得2a ,再类比可得切线方程. 【详解】 因为点(10,3)P 在椭圆22 2:199 x y C a +=上, 故可得 21009 199 a +=,解得2110a =; 由类比可得椭圆C 在点P 处的切线方程为: 103111099 x y +=,整理可得11133x y + =. 故选:C. 【点睛】 本题考查由椭圆上一点的坐标求椭圆方程,以及类比法的应用,属综合基础题. 3.用“算筹”表示数是我国古代计数方法之一,计数形式有纵式和横式两种,如图1所示.金元时期的数学家李冶在《测圆海镜》中记载:用“天元术”列方程,就是用算筹来表示方程中各项的系数.所谓“天元术”,即是一种用数学符号列方程的方法,“立天元一为某某”, 意即“设x 为某某”.如图2所示的天元式表示方程1 0110n n n n a x a x a x a --++???++=,其中 0a ,1a ,…,1n a -,n a 表示方程各项的系数,均为筹算数码,在常数项旁边记一“太”字或 在一次项旁边记一“元”字,“太”或“元”向上每层减少一次幂,向下每层增加一次幂.

2020年高考数学理科一轮复习1 集 合

高考5年命题点集训 1集合 1.已知全集U=R,集合A={x| x2-4>0},则?U A=() A.(-2,2)B.(-∞,-2)∪(2,+∞) C.[-2,2]D.(-∞,-2]∪[2,+∞) C[集合A={x|x<-2或x>2},所以?U A=[-2,2].] 2.若集合A={x|-20},则A∩B=() A.{x|-23},所以A∩B={x|-2

相关主题
文本预览
相关文档 最新文档