当前位置:文档之家› 三维荧光数据主成分分析

三维荧光数据主成分分析

三维荧光数据主成分分析
三维荧光数据主成分分析

三维荧光数据主成分分析

在文献上看到有对三维荧光数据矩阵进行主成分分析,然后用主成分得分进行投影的内容,不知道对于一个三维荧光光谱(数据为一个两维的数据矩阵)是怎么得到主成分得分的。

以前一般做的都是针对一维数据的主成分分析,一个样本的数据就是一个行向量,把N个样本放在一起组成一个二维矩阵然后进行主成分分析。

对于二维的不知道是什么情况,是怎么得到单个三维荧光光谱的主成分得分的

三维荧光光谱数据矩阵行向量代表某个激发波长下的荧光发射光谱,列向量代表某个发射波长下的荧光激发光谱,样品中的复杂组分在多种激发,发射光谱条件下会有不同特性,对这个数据矩阵进行主成分分析等化学计量算法,就可分析其中的复杂组分了。

以前你做的是多个样品组成的数据矩阵,而三维荧光光谱数据是单个样品在多种激发,发射条件下的荧光强度数据矩阵,方法应该类似。

所谓三维荧光光谱,其实只是一个三维形式的展示,其数据仍为一个二维的数据矩阵。一些常规的化学计量学程序(如The Unscrambler 等)都有固定的PCA功能,将你的数据转成两维的数据矩阵后,直接输入,再依指示操作,就可得到主成分。

我认为和网友以前所做的是一样的,你所说的把N个样本放在一起组成一个二维矩阵,其实已经是一个三维展示(包括样本变量,波数或波长,强度三个变量)。

用Singular Value Decomposition,再加上基于模型的数据拟合可以实现。这是比较成熟的方法。

三维荧光光谱(即激发发射矩阵荧光光谱)技术,应用于一个样品所获得数据,虽可以三维显示,但本质为矩阵响应数。

对于这样的矩阵数据,应用一般的矩阵分析方法,如主成分分析或奇异值分解方法就可得到主成分数,但须注意其物理意义,并注意估计时,最好利用“零组分区”第一主成分的结果来做比较。

当三维荧光光谱(即激发发射矩阵荧光光谱)技术应用于多样本或多试验条件时,所得的响应值为三维及更高维数据阵。

而三维数阵的主成分数或成分数估计,国内外已有许多篇论文涉及这一内容,请上网搜索吴海龙简介资料。

SPSS主成分分析操作步骤,详细的很啊^_^==

SPSS主成分分析操作步骤,详细的很啊^_^ SPSS在调用Factor Analyze过程进行分析时,SPSS会自动对原始数据进行标准化处理,所以在得到计算结果后指的变量都是指经过标准化处理后的变量,但SPSS不会直接给出标准化后的数据,如需要得到标准化数据,则需调用Descriptives过程进行计算。 图表 3 相关系数矩阵

图表 4 方差分解主成分提取分析表 主成分分析在SPSS中的操作应用(3) 图表 5 初始因子载荷矩阵

从图表3可知GDP与工业增加值,第三产业增加值、固定资产投资、基本建设投资、社会消费品零售总额、地方财政收入这几个指标存在着极其显著的关系,与海关出口总额存在着显著关系。可见许多变量之间直接的相关性比较强,证明他们存在信息上的重叠。 主成分个数提取原则为主成分对应的特征值大于1的前m个主成分。注:特征值在某种程度上可以被看成是表示主成分影响力度大小的指标,如果特征值小于1,说明该主成分的解释力度还不如直接引入一个原变量的平均解释力度大,因此一般可以用特征值大于1作为纳入标准。通过图表4(方差分解主成分提取分析)可知,提取2个主成分,即m=2,从图表5(初始因子载荷矩阵)可知GDP、工业增加值、第三产业增加值、固定资产投资、基本建设投资、社会消费品零售总额、海关出口总额、地方财政收入在第一主成分上有较高载荷,说明第一主成分基本反映了这些指标的信息;人均GDP和农业增加值指标在第二主成分上有较高载荷,说明第二主成分基本反映了人均GDP和农业增加值两个指标的信息。所以提取两个主成分是可以基本反映全部指标的信息,所以决定用两个新变量来代替原来的十个变量。但这两个新变量的表达还不能从输出窗口中直接得到,因为“Component Matrix”是指初始因子载荷矩阵,每一个载荷量表示主成分与对应变量的相关系数。用图表5(主成分载荷矩阵)中的数据除以主成分相对应的特征值开平方根便得到两个主成分中每个指标所对应的系数[2]。将初始因子载荷矩阵中的两列数据输入(可用复制粘贴的方法)到数据编辑窗口(为变量B1、B2),然后利用“TransformàCompute Variable”,在Compute Variable对话框中输入“A1=B1/SQR(7.22)” [注:第二主成分SQR后的括号中填1.235],即可得到特征向量A1(见图表6)。同理,可得到特征向量A2。将得到的特征向量与标准化后的数据相乘,然后就可以得出主成分表达式[注:因本例只是为了说明如何在SPSS进行主成分分析,故在此不对提取的主成分进行命名,有兴趣的读者可自行命名]: F 1=0.353ZX 1 +0.042ZX 2 -0.041ZX 3 +0.364ZX 4 +0.367ZX 5 +0.366ZX 6 +0.352ZX 7 +0.364ZX 8+0.298ZX 9 +0.355ZX 10

主成分分析PCA(含有详细推导过程以及案例分析matlab版)

主成分分析法(PCA) 在实际问题中,我们经常会遇到研究多个变量的问题,而且在多数情况下,多个变量之间常常存在一定的相关性。由于变量个数较多再加上变量之间的相关性,势必增加了分析问题的复杂性。如何从多个变量中综合为少数几个代表性变量,既能够代表原始变量的绝大多数信息,又互不相关,并且在新的综合变量基础上,可以进一步的统计分析,这时就需要进行主成分分析。 I. 主成分分析法(PCA)模型 (一)主成分分析的基本思想 主成分分析是采取一种数学降维的方法,找出几个综合变量来代替原来众多的变量,使这些综合变量能尽可能地代表原来变量的信息量,而且彼此之间互不相关。这种将把多个变量化为少数几个互相无关的综合变量的统计分析方法就叫做主成分分析或主分量分析。 主成分分析所要做的就是设法将原来众多具有一定相关性的变量,重新组合为一组新的相互无关的综合变量来代替原来变量。通常,数学上的处理方法就是将原来的变量做线性组合,作为新的综合变量,但是这种组合如果不加以限制,则可以有很多,应该如何选择呢?如果将选取的第一个线性组合即第一个综合变量记为1F ,自然希望它尽可能多地反映原来变量的信息,这里“信息”用方差来测量,即希望)(1F Var 越大,表示1F 包含的信息越多。因此在所有的线性组合中所选取的1F 应该是方差最大的,故称1F 为第一主成分。如果第一主成分不足以代表原来p 个变量的信息,再考虑选取2F 即第二个线性组合,为了有效地反映原来信息,1F 已有的信息就不需要再出现在2F 中,用数学语言表达就是要求 0),(21=F F Cov ,称2F 为第二主成分,依此类推可以构造出第三、四……第p 个主成分。 (二)主成分分析的数学模型 对于一个样本资料,观测p 个变量p x x x ,,21,n 个样品的数据资料阵为: ??????? ??=np n n p p x x x x x x x x x X 21 222 21112 11()p x x x ,,21=

matlab主成分分析案例

1?设随机向量X= (X i , X 2, X 3)T 的协方差与相关系数矩阵分别为 1 4 ,R 4 25 分别从,R 出发,求X 的各主成分以及各主成分的贡献率并比较差异况。 解答: >> S=[1 4;4 25]; >> [P C,vary,ex plain ed]=p cacov(S); 总体主成分分析: >> [P C,vary,ex plain ed]=p cacov(S) 主成分交换矩阵: PC = -0.1602 -0.9871 -0.9871 0.1602 主成分方差向量: vary = 25.6491 0.3509 各主成分贡献率向量 explained = 98.6504 1.3496 则由程序输出结果得出,X 的主成分为: Y 1=-0.1602X 1-0.9871X 2 Y 2=-0.9871X 1+0.1602X 2 两个主成分的贡献率分别为:98.6504%, 1.3496%;贝U 若用第一个主成分代替原 来的变量,信息损失率仅为1.3496,是很小的。 2.根据安徽省2007年各地市经济指标数据,见表 5.2,求解: (1) 利用主成分分析对17个地市的经济发展进行分析,给出排名; (2) 此时能否只用第一主成分进行排名?为什么? 1 0.8 0.8 1

1.0000 0.9877 0.9980 0.9510 0.9988 0.9820 0.4281 0.9999 解答: (1) >> clear >> A=[491.70,380.31,158.39,121.54,22.74,439.65,344.44,17.43; 21.12,30.55,6.40,12.40,3.31,21.17,17.71,2.03; 1.71, 2.35,0.57,0.68,0.13,1.48,1.36,-0.03; 9.83,9.05,3.13,3.43,0.64,8.76,7.81,0.54; 64.06,77.86,20.63,30.37,5.96,63.57,52.15,4.71; 30.38,46.90,9.19,9.83,17.87,28.24,21.90,3.80; 31.20,70.07,8.93,18.88,33.05,31.17,26.50,2.84; 79.18,62.09,20.78,24.47,3.51,71.29,59.07,6.78; 47.81,40.14,17.50,9.52,4.14,45.70,34.73,4.47; 104.69,78.95,29.61,25.96,5.39,98.08,84.81,3.81; 21.07,17.83,6.21,6.22,1.90,20.24,16.46,1.09; 214.19,146.78,65.16,41.62,4.39,194.98,171.98,11.05; 31.16,27.56,8.80,9.44,1.47,28.83,25.22,1.05; 12.76,14.16,3.66,4.07,1.57,11.95,10.24,0.73; 6.45,5.37,2.39,2.20,0.40,5.97,4.79,0.52; 39.43,44.60,15.17,15.72,3.27,36.03,27.87,3.48; 5.02,3.62,1.63,1.42,0.53,4.45,4.04,0.02]; 得到的相关系数矩阵为: >> R=corrcoef(A) R =

主成分分析法总结

主成分分析法总结 在实际问题研究中,多变量问题是经常会遇到的。变量太多,无疑会增加分析问题的难度与复杂性,而且在许多实际问题中,多个变量之间是具有一定的相关关系的。 因此,人们会很自然地想到,能否在相关分析的基础上,用较少的新变量代替原来较多的旧变量,而且使这些较少的新变量尽可能多地保留原来变量所反映的信息? 一、概述 在处理信息时,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠,例如,高校科研状况评价中的立项课题数与项目经费、经费支出等之间会存在较高的相关性;学生综合评价研究中的专业基础课成绩与专业课成绩、获奖学金次数等之间也会存在较高的相关性。而变量之间信息的高度重叠和高度相关会给统计方法的应用带来许多障碍。 为了解决这些问题,最简单和最直接的解决方案是削减变量的个数,但这必然又会导致信息丢失和信息不完整等问题的产生。为此,人们希望探索一种更为有效的解决方法,它既能大大减少参与数据建模的变量个数,同时也不会造成信息的大量丢失。主成分分析正式这样一种能够有效降低变量维数,并已得到广泛应用的分析方法。 主成分分析以最少的信息丢失为前提,将众多的原有变量综合成较少几个综合指标,通常综合指标(主成分)有以下几个特点: ↓主成分个数远远少于原有变量的个数 原有变量综合成少数几个因子之后,因子将可以替代原有变量参与数据建模,这将大大减少分析过程中的计算工作量。 ↓主成分能够反映原有变量的绝大部分信息 因子并不是原有变量的简单取舍,而是原有变量重组后的结果,因此不会造成原有变量信息的大量丢失,并能够代表原有变量的绝大部分信息。 ↓主成分之间应该互不相关 通过主成分分析得出的新的综合指标(主成分)之间互不相关,因子参与数据建模能够有效地解决变量信息重叠、多重共线性等给分析应用带来的诸多问题。 ↓主成分具有命名解释性 总之,主成分分析法是研究如何以最少的信息丢失将众多原有变量浓缩成少数几个因子,如何使因子具有一定的命名解释性的多元统计分析方法。 主成分分析的具体步骤如下: (1)计算协方差矩阵 计算样品数据的协方差矩阵:Σ=(s ij )p ?p ,其中 1 1()() 1n ij ki i kj j k s x x x x n ==---∑i ,j=1,2,…,p (2)求出Σ的特征值 i λ及相应的正交化单位特征向量i a Σ的前m 个较大的特征值λ1≥λ2≥…λm>0,就是前m 个主成分对应的方差,i λ对应的单 位特征向量 i a 就是主成分Fi 的关于原变量的系数,则原变量的第i 个主成分Fi 为:

SPSS进行主成分分析的步骤 图文

主成分分析的操作过程 原始数据如下(部分) 调用因子分析模块(Analyze―Dimension Reduction―Factor),将需要参与分析的各个原始变量放入变量框,如下图所示: 单击Descriptives按钮,打开Descriptives次对话框,勾选KMO and Bartlett’s test of sphericity选项(Initial solution选项为系统默认勾选的,保持默认即可),如下图所示,然后点击Continue按钮,回到主对话框: 其他的次对话框都保持不变(此时在Extract次对话框中,SPSS已经默认将提取公因子的方法设置为主成分分析法),在主对话框中点OK按钮,执行因子分析,得到的主要结果如下面几张表。 ①KMO和Bartlett球形检验结果: KMO为0.635>0.6,说明数据适合做因子分析;Bartlett球形检验的显着性P值为 0.000<0.05,亦说明数据适合做因子分析。 ②公因子方差表,其展示了变量的共同度,Extraction下面各个共同度的值都大于0.5,说明提取的主成分对于原始变量的解释程度比较高。本表在主成分分析中用处不大,此处列出来仅供参考。 ③总方差分解表如下表。由下表可以看出,提取了特征值大于1的两个主成分,两个主成分的方差贡献率分别是55.449%和29.771%,累积方差贡献率是85.220%;两个特征值分别是3.327和1.786。 ④因子截荷矩阵如下: 根据数理统计的相关知识,主成分分析的变换矩阵亦即主成分载荷矩阵U与因子载荷矩阵A以及特征值λ的数学关系如下面这个公式: 故可以由这二者通过计算变量来求得主成分载荷矩阵U。 新建一个SPSS数据文件,将因子载荷矩阵中的各个载荷值复制进去,如下图所示: 计算变量(Transform-Compute Variables)的公式分别如下二张图所示: 计算变量得到的两个特征向量U1和U2如下图所示(U1和U2合起来就是主成分载荷矩阵):所以可以得到两个主成分Y1和Y2的表达式如下: Y1=0.456X1+0.401X2+0.428X3+0.490X4+0.380X5+0.253X6 Y2=-0.367X1+0.322X2-0.323X3-0.303X4+0.453X5+0.602X6 由上面两个表达式,可以通过计算变量来得到Y1、Y2的值。需要注意的是,在计算变量之前,需要对原始变量进行标准化处理,上述Y1、Y2表达式中的X1~X9应为各原始变量的标准分,而不是原始值。(另外需注意,本操作需要在SPSS原始文件中来进行,而不是主成分载荷矩阵的那个SPSS数据表中。) 调用描述统计:描述模块(Analyze-Descriptive Statistics-Descriptives),将各个原始变量放入变量框,并勾选Save standardized values as variables框,如下图所示: 得到各个原始变量的标准分如下图(部分): Z人均GDP即为X1,Z固定资产投资即为X2,其余类推。 调用计算变量模块(Transform-Compute Variables),输入公式如下图所示: 计算出来的主成分Y1、Y2如下图所示:

主成分案例分析

主成分案例分析 主成分分析案例 ---我国各地区普通高等教育发展水平综合评价 (一)案例教学目的 主成分分析试图在力保数据信息丢失最少的原则下,对多变量的截面数据表进行最佳综合简化,也就是说,对高维变量空间进行降维处理。本案例运用主成分分析方法综合评价我国各地区普通高等教育的发展水平。通过本案例的教学,力图使学生加深对主成分分析的统计思想和实际意义的理解,明确主成分分析方法的适用环境,掌握主成分分析软件实现操作方法,提高学生思考、分析和解决实际问题的能力。 (二)案例研究背景 近年来,我国普通高等教育得到了迅速发展,为国家培养了大批人才。但由于我国各地区经济发展水平不均衡,加之高等院校原有布局使各地区高等教育发展的起点不一致,因而各地区普通高等教育的发展水平存在一定的差异。对我国各地区普通高等教育的发展水平进行综合评价,明确各地区的差异,有利于管理和决策部门从宏观上把握各地区普通高等教育的发展现状,更好的指导和规划高教事业的健康发展。 (三)案例研究过程 1、建立综合评价指标体系 高等教育是依赖高等院校进行的,高等教育的发展状况主要体现在高等院校的相关方面。遵循选取评价指标的目的性和可比性原则,从高等教育的五个方面选取十项评价指标,具体如下:

2、数据资料 指标的原始数据取自《中国统计年鉴,1995》和《中国教育统计年鉴,1995》除以各地区相应的人口数得到十项指标值见表1。其中:x为每百万人口高等院校数;x为每十万人口高等院校毕业生数;x123为每十万人口高等院校招生数;x为每十万人口高等院校在校生数;4 x 为每十万人口高等院校教职工数;x 为每十万人口高等院校专职56 教师数;x为高级职称占专职教师的比例;x为平均每所高等院校的78 在校生数;x为国家财政预算内普通高教经费占国内生产总值的比9 重;x为生均教育经费。 10 表1-1 我国各地区普通高等教育发展状况数据地区 x x x x x x x x x x 12345678910北京1 5.96 310 461 1557 931 319 44.36 2615 2.2 13631 上海2 3.39 234 308 1035 498 161 35.02 3052 0.9 12665 天津3 2.35 157 229 713 295 109 38.4 3031 0.86 9385 陕西4 1.35 81 111 364 150 58 30.45 2699 1.22 7881 辽宁5 1.5 88 128 421 144 58 34.3 2808 0.54 7733 吉林6 1.67 86 120 370 153 58 33.53 2215 0.76 7480 黑龙江7 1.17 63 93 296 117 44 35.22 2528 0.58 8570 湖北8 1.05 67 92 297 115 43 32.89

主成分分析法PCA的原理

主成分分析法原理简介 1.什么是主成分分析法 主成分分析也称主分量分析,是揭示大样本、多变量数据或样本之间内在关系的一种方法,旨在利用降维的思想,把多指标转化为少数几个综合指标,降低观测空间的维数,以获取最主要的信息。 在统计学中,主成分分析(principal components analysis, PCA)是一种简化数据集的技术。它是一个线性变换。这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征。这是通过保留低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面。但是,这也不是一定的,要视具体应用而定。 2.主成分分析的基本思想 在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。这些涉及的因素一般称为指标,在多元统计分析中也称为变量。因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。主成分分析正是适应这一要求产生的,是解决这类题的理想工具。 对同一个体进行多项观察时必定涉及多个随机变量X1,X2,…,X p,它们之间都存在着相关性,一时难以综合。这时就需要借助主成分分析来概括诸多信息的主要方面。我们希望有一个或几个较好的综合指标来概括信息,而且希望综合指标互相独立地各代表某一方面的性质。

spss进行主成分分析及得分分析

spss进行主成分分析及得分分析 1 将数据录入spss 1. 2 数据标准化:打开数据后选择分析→描述统计→描述,对数据进行标准化,选中将标准化得分另存为变量: 2.3 进行主成分分析:选择分析→降维→因子分析,

3.4设置描述性,抽取,得分和选项:

4.5 查看主成分分析和分析: 相关矩阵表明,各项指标之间具有强相关性。比如指标GDP总量与财政收入、固定资产投资总额、第二产业增加值、第三产业增加值、工业增加值的相关系数较大。这说明他们之间指标信息之间存在重叠,适合采用主成分分析法。(下表非完整呈现)

5.6 由Total Variance Explained(主成分特征根和贡献率)可知,特征根λ1=9.092,特征根λ2=1.150前两个主成分的累计方差贡献率达93.107%,即涵盖了大部分信息。这表明前两个主成分能够代表最初的11个指标来分析河南各个城市经济综合实力的发展水平,故提取前两个指标即可。主成分,分别记作F1、F2。 6.7

指标X1、X2、X3、X4、X5、X6、X7、X8、X9、X10在第一主成分上有较高载荷,相关性强。第一主成分集中反映了总体的经济总量。X11在第二主成分上有较高载荷,相关性强。第二主成分反映了人均的经济量水平。但是要注意: 这个主成分载荷矩阵并不是主成分的特征向量,也就是说并不是主成分1和主成分2的系数,主成分系数的求法是:各自主成分载荷向量除以各自主成分特征值的算术平方根。

7.8 成分得分系数矩阵(因子得分系数)列出了强两个特征根对应的特征向量,即各主要成分解析表达式中的标准化变量的系数向量。故各主要成分解析表达式分别为:F1=0.32ZX11+0.33ZX12+0.31ZX13+0.31ZX14+0.32ZX15+0.32ZX16+0.32ZX17+0.32ZX18+0. 32ZX19+0.21ZX110+0.15ZX111 F2=8.46ZX21+0.02ZX22-0.02ZX23-0.20ZX24-0.23Z25-0.04ZX26-0.15ZX27-0.02ZX28+0.10Z X29+0.47ZX210+0.78ZX211 8.9 主成分的得分是相应的因子得分乘以相应的方差的算术平方根。即:主成分1得分=因子1得分乘以9.092的算术平方根主成分2得分=因子2得分乘以1.150的算术平方根例如郑州:主成分因子=FAC1_1*9.092的算术平方根=3.59386*9.092的算术平方根=10.83,将各指标的标准化数据带入个主成分解析表达式中,分别计算出2个主成分得分(F1、F2),再以个主成分的贡献率为全书对主成分得分进行加权平均,即:H=(82.672*F1+10.497*F2)/93.124,求得主成分综合得分。

主成分分析案例

姓名:XXX 学号:XXXXXXX 专业:XXXX 用SPSS19软件对下列数据进行主成分分析: ……

一、相关性 通过对数据进行双变量相关分析,得到相关系数矩阵,见表1。 表1 淡化浓海水自然蒸发影响因素的相关性 由表1可知: 辐照、风速、湿度、水温、气温、浓度六个因素都与蒸发速率在0.01水平上显著相关。 分析:各变量之间存在着明显的相关关系,若直接将其纳入分析可能会得到因多元共线性影响的错误结论,因此需要通过主成份分析将数据所携带的信息进行浓缩处理。 二、KMO和球形Bartlett检验 KMO和球形Bartlett检验是对主成分分析的适用性进行检验。 KMO检验可以检查各变量之间的偏相关性,取值范围是0~1。KMO的结果越接近1,表示变量之间的偏相关性越好,那么进行主成分分析的效果就会越好。实际分析时,KMO统计量大于0.7时,效果就比较理想;若当KMO统计量小于0.5时,就不适于选用主成分分析法。 Bartlett球形检验是用来判断相关矩阵是否为单位矩阵,在主成分分析中,若拒绝各变量独立的原假设,则说明可以做主成分分析,若不拒绝原假设,则说明这些变量可能独立提供一些信息,不适合做主成分分析。

由表2可知: 1、KMO=0.631<0.7,表明变量之间没有特别完美的信息的重叠度,主成分分析得到的模型又可能不是非常完善,但仍然值得实验。 2、显著性小于0.05,则应拒绝假设,即变量间具有较强的相关性。 三、公因子方差 公因子方差表示变量共同度。表示各变量中所携带的原始信息能被提取出的主成分所体现的程度。 由表3可知: 几乎所有变量共同度都达到了75%,可认为这几个提取出的主成分对各个变量的阐释能力比较强。 四、解释的总方差 解释的总方差给出了各因素的方差贡献率和累计贡献率。

主成分分析法介绍(高等教育)

主成分分析方法 我们进行系统分析评估或医学上因子分析等时,多变量问题是经常会遇到的。变量太多,无疑会增加分析问题的难度与复杂性,而且在许多实际问题中,多个变量之间是具有一定的相关关系的。因此,我们就会很自然地想到,能否在各个变量之间相关关系研究的基础上,用较少的新变量代替原来较多的变量,而且使这些较少的新变量尽可能多地保留原来较多的变量所反映的信息?事实上,这种想法是可以实现的,本节拟介绍的主成分分析方法就是综合处理这种问题的一种强有力的方法。 第一节 主成分分析方法的原理 主成分分析是把原来多个变量化为少数几个综合指标的一种统计分析方法,从数学角度来看,这是一种降维处理技术。假定有n 样本,每个样本共有p 个变量描述,这样就构成了一个n×p 阶的数据矩阵: 111212122212.....................p p n n np x x x x x x X x x x ?? ? ?= ? ? ??? (1)

如何从这么多变量的数据中抓住事物的内在规律性呢?要解决这一问题,自然要在p 维空间中加以考察,这是比较麻烦的。为了克服这一困难,就需要进行降维处理,即用较少的几个综合指标来代替原来较多的变量指标,而且使这些较少的综合指标既能尽量多地反映原来较多指标所反映的信息,同时它们之间又是彼此独立的。那么,这些综合指标(即新变量)应如何选取呢?显然,其最简单的形式就是取原来变量指标的线性组合,适当调整组合系数,使新的变量指标之间相互独立且代表性最好。 如果记原来的变量指标为p x x x ,,21 ,它们的综合指标——新变量指标为 21,z z ,m z (m≤p)。则 )2.........(..........22112222121212121111??? ??? ?+++=+++=+++=p mp m m m p p p p x l x l x l z x l x l x l z x l x l x l z 在(2)式中,系数l ij 由下列原则来决定: (1)z i 与 z j (i≠j;i ,j=1,2,…,m)相互无关; (2)z 1是x 1,x 2,…,x p 的一切线性组合中方差最大者;z 2是与z 1不相关的x 1,x 2,…,x p 的所有线性组合中方差最大者;……;z m 是与z 1,z 2,……z m-1都不相关的x 1,x 2,…,x p 的所有线性组合中方差最大者。

R语言主成分分析的案例

R 语言主成分分析的案例
R 语言也介绍到案例篇了,也有不少同学反馈说还是不是特别明白一些基础的东西,希望能 够有一些比较浅显的可以操作的入门。其实这些之前 SPSS 实战案例都不少,老实说一旦用 上了开源工具就好像上瘾了,对于以前的 SAS、clementine 之类的可视化工具没有一点 感觉了。本质上还是觉得要装这个、装那个的比较麻烦,现在用 R 或者 python 直接简单 安装下,导入自己需要用到的包,活学活用一些命令函数就可以了。以后平台上集成 R、 python 的开发是趋势,包括现在 BAT 公司内部已经实现了。 今天就贴个盐泉水化学分析资料的主成分分析和因子分析通过 R 语言数据挖掘的小李 子: 有条件的同学最好自己安装下 R,操作一遍。 今有 20 个盐泉,盐泉的水化学特征系数值见下表.试对盐泉的水化学分析资料作主成分分 析和因子分析.(数据可以自己模拟一份)
其中 x1:矿化度(g/L);

x2:Br?103/Cl; x3:K?103/Σ 盐; x4:K?103/Cl; x5:Na/K; x6:Mg?102/Cl; x7:εNa/εCl.
1.数据准备
导入数据保存在对象 saltwell 中 >saltwell<-read.table("c:/saltwell.txt",header=T) >saltwell
2.数据分析

1 标准误、方差贡献率和累积贡献率
>arrests.pr<- prcomp(saltwell, scale = TRUE) >summary(arrests.pr,loadings=TRUE)
2 每个变量的标准误和变换矩阵
>prcomp(saltwell, scale = TRUE)
3 查看对象 arests.pr 中的内容
>> str(arrests.pr)

主成分分析报告matlab程序

Matlab编程实现主成分分析 .程序结构及函数作用 在软件Matlab中实现主成分分析可以采取两种方式实现:一是通过编程来实现;二是直接调用Matlab种自带程序实现。下面主要主要介绍利用Matlab的矩阵计算功能编程实现主成分分析。 1程序结构 2函数作用 Cwstd.m——用总和标准化法标准化矩阵 Cwfac.m——计算相关系数矩阵;计算特征值和特征向量;对主成分进行排序;计算各特征值贡献率;挑选主成分(累计贡献率大于85%),输出主成分个数;计算主成分载荷 Cwscore.m——计算各主成分得分、综合得分并排序 Cwprint.m——读入数据文件;调用以上三个函数并输出结果

3.源程序 3.1 cwstd.m总和标准化法标准化矩阵 %cwstd.m,用总和标准化法标准化矩阵 function std=cwstd(vector) cwsum=sum(vector,1); %对列求和 [a,b]=size(vector); %矩阵大小,a为行数,b为列数 for i=1:a for j=1:b std(i,j)= vector(i,j)/cwsum(j); end end 3.2 cwfac.m计算相关系数矩阵 %cwfac.m function result=cwfac(vector); fprintf('相关系数矩阵:\n') std=CORRCOEF(vector) %计算相关系数矩阵 fprintf('特征向量(vec)及特征值(val):\n') [vec,val]=eig(std) %求特征值(val)及特征向量(vec) newval=diag(val) ; [y,i]=sort(newval) ; %对特征根进行排序,y为排序结果,i为索引fprintf('特征根排序:\n') for z=1:length(y) newy(z)=y(length(y)+1-z); end fprintf('%g\n',newy) rate=y/sum(y); fprintf('\n贡献率:\n') newrate=newy/sum(newy) sumrate=0; newi=[]; for k=length(y):-1:1 sumrate=sumrate+rate(k); newi(length(y)+1-k)=i(k); if sumrate>0.85 break; end end %记下累积贡献率大85%的特征值的序号放入newi中fprintf('主成分数:%g\n\n',length(newi)); fprintf('主成分载荷:\n') for p=1:length(newi)

主成分分析法介绍教学文稿

主成分分析法介绍

主成分分析方法 我们进行系统分析评估或医学上因子分析等时,多变量问题是经常会遇到的。变量太多,无疑会增加分析问题的难度与复杂性,而且在许多实际问题中,多个变量之间是具有一定的相关关系的。因此,我们就会很自然地想到,能否在各个变量之间相关关系研究的基础上,用较少的新变量代替原来较多的变量,而且使这些较少的新变量尽可能多地保留原来较多的变量所反映的信息?事实上,这种想法是可以实现的,本节拟介绍的主成分分析方法就是综合处理这种问题的一种强有力的方法。 第一节 主成分分析方法的原理 主成分分析是把原来多个变量化为少数几个综合指标的一种统计分析方法,从数学角度来看,这是一种降维处理技术。假定有n 样本,每个样本共有p 个变量描述,这样就构成了一个n×p 阶的数据矩阵: 11121212221 2 .....................p p n n np x x x x x x X x x x ?? ? ? = ? ? ??? (1)

如何从这么多变量的数据中抓住事物的内在规律性呢?要解决这一问题,自然要在p 维空间中加以考察,这是比较麻烦的。为了克服这一困难,就需要进行降维处理,即用较少的几个综合指标来代替原来较多的变量指标,而且使这些较少的综合指标既能尽量多地反映原来较多指标所反映的信息,同时它们之间又是彼此独立的。那么,这些综合指标(即新变量)应如何选取呢?显然,其最简单的形式就是取原来变量指标的线性组合,适当调整组合系数,使新的变量指标之间相互独立且代表性最好。 如果记原来的变量指标为p x x x ,,21 ,它们的综合指标——新变量指标为 21,z z ,m z (m≤p)。则 )2.........(..........22112222121212121111??? ?? ? ?+++=+++=+++=p mp m m m p p p p x l x l x l z x l x l x l z x l x l x l z 在(2)式中,系数l ij 由下列原则来决定: (1)z i 与 z j (i≠j;i ,j=1,2,…,m)相互无关; (2)z 1是x 1,x 2,…,x p 的一切线性组合中方差最大者;z 2是与z 1不相关的x 1,x 2,…,x p 的所有线性组合中方差最大者;……;z m 是与z 1,z 2,……z m-1都

一组空气污染数据的主成分分析

一组空气污染数据的主成分分析 【说明】下面的多元统计分析练习题摘自R.A. Johnson等编写的《应用多元统计分析(第五版)》,原书为:Richard A. Johnson and Dean W. Wichern. Applied Multivariate Statistical Analysis(5th Ed). Pearson Education, Inc. 2003。我看的是中国统计出版社(China Statistics Press)2003年发行的影印本。 第一题为原书第1.6题,即第1章的第6题,第二题为原书第8.12题,即第8章的第12题。 第二题用的是第一题的数据。 1 习题 1.6. The data in Table 1.5 are 42 measurements on air-pollution variables recorded at 12:00 noon in the Los Angeles area on different days. (a)Plot the marginal dot diagrams for all the variables. (b)Construct the x, S n, and R arrays, and interpret the entries in R. TABLE 1.5 AIR-POLLUTION DATA Wind (x1)Solar radiation (x2)CO (x3)NO (x4)NO2 (x5)O3 (x6)HC (x7) 8 98 7 2 12 8 2 7 107 4 3 9 5 3 7 103 4 3 5 6 3 10 88 5 2 8 15 4 6 91 4 2 8 10 3 8 90 5 2 12 12 4 9 84 7 4 12 15 5 5 72 6 4 21 14 4 7 82 5 1 11 11 3 8 64 5 2 13 9 4 6 71 5 4 10 3 3 6 91 4 2 12 7 3 7 72 7 4 18 10 3 10 70 4 2 11 7 3 10 72 4 1 8 10 3 9 77 4 1 9 10 3 8 76 4 1 7 7 3 8 71 5 3 16 4 4 9 67 4 2 13 2 3 9 69 3 3 9 5 3

主成分分析法matlab实现,实例演示

利用Matlab 编程实现主成分分析 1.概述 Matlab 语言是当今国际上科学界 (尤其是自动控制领域) 最具影响力、也是 最有活力的软件。它起源于矩阵运算,并已经发展成一种高度集成的计算机语言。它提供了强大的科学运算、灵活的程序设计流程、高质量的图形可视化与界面设计、与其他程序和语言的便捷接口的功能。Matlab 语言在各国高校与研究单位起着重大的作用。主成分分析是把原来多个变量划为少数几个综合指标的一种统计分析方法,从数学角度来看,这是一种降维处理技术。 1.1主成分分析计算步骤 ① 计算相关系数矩阵 ?? ? ???? ???? ?? ?=pp p p p p r r r r r r r r r R 2 122221 11211 (1) 在(3.5.3)式中,r ij (i ,j=1,2,…,p )为原变量的xi 与xj 之间的相关系数,其计算公式为 ∑∑∑===----= n k n k j kj i ki n k j kj i ki ij x x x x x x x x r 1 1 2 2 1 )() () )(( (2) 因为R 是实对称矩阵(即r ij =r ji ),所以只需计算上三角元素或下三角元素即可。

② 计算特征值与特征向量 首先解特征方程0=-R I λ,通常用雅可比法(Jacobi )求出特征值 ),,2,1(p i i =λ,并使其按大小顺序排列,即0,21≥≥≥≥p λλλ ;然后分别求 出对应于特征值i λ的特征向量),,2,1(p i e i =。这里要求i e =1,即112 =∑=p j ij e ,其 中ij e 表示向量i e 的第j 个分量。 ③ 计算主成分贡献率及累计贡献率 主成分i z 的贡献率为 ),,2,1(1 p i p k k i =∑=λ λ 累计贡献率为 ) ,,2,1(11 p i p k k i k k =∑∑==λ λ 一般取累计贡献率达85—95%的特征值m λλλ,,,21 所对应的第一、第二,…,第m (m ≤p )个主成分。 ④ 计算主成分载荷 其计算公式为 ) ,,2,1,(),(p j i e x z p l ij i j i ij ===λ (3)

主成分分析在STATA中的实现以及理论介绍

主成分分析在S T A T A 中的实现以及理论介绍 文件编码(TTU-UITID-GGBKT-POIU-WUUI-0089)

第十二章 主成分分析 主成分分分析也称作主分量分析,是霍特林(Hotelling)在1933年首先提出。主成分分析是利用降维的思想,在损失较少信息的前提下把多个指标转化为较少的综合指标。转化生成的综合指标即称为主成分,其中每个主成分都是原始变量的线性组合,且各个主成分互不相关。Stata 对主成分分析的主要内容包括:主成分估计、主成分分析的恰当性(包括负偏协方差矩阵和负偏相关系数矩阵、KMO(Kaiser-Meyer-Olkin)抽样充分性、复相关系数、共同度等指标测度)、主成分的旋转、预测、各种检验、碎石图、得分图、载荷图等。 p j n i b a y ij j i ij ,,2,1,,2,1,' ==+=ε 主成分的模型表达式为: p p j i i i i diag v v v v i p V V C λλλλλλλ≥≥≥=∧='' ==∧=∑ 2121),,,,(0 1 其中,a 称为得分,b 称为载荷。主成分分析主要的分析方法是对相关系数矩阵(或协方差矩阵)进行特征值分析。

Stata中可以通过负偏相关系数矩阵、负相关系数平方和KMO值对主成分分析的恰当性进行分析。负偏相关系数矩阵即变量之间两两偏相关系数的负数。非对角线元素则为负的偏相关系数。如果变量之间存在较强的共性,则偏相关系数比较低。因此,如果矩阵中偏相关系数较高的个数比较多,说明某一些变量与另外一些变量的相关性比较低,主成分模型可能不适用。这时,主成分分析不能得到很好的数据约化效果。 Kaiser-Meyer-Olkin抽样充分性测度也是用于测量变量之间相关关系的强弱的重要指标,是通过比较两个变量的相关系数与偏相关系数得到的。KMO介于0于1之间。KMO越高,表明变量的共性越强。如果偏相关系数相对于相关系数比较高,则KMO比较低,主成分分析不能起到很好的数据约化效果。根据Kaiser(1974),一般的判断标准如下:不能接受(unacceptable);非常差(miserable);,勉强接受(mediocre);可以接受(middling);,比较好(meritorious);非常好(marvelous)。 SMC即一个变量与其他所有变量的复相关系数的平方,也就是复回归方程的可决系数。SMC比较高表明变量的线性关系越强,共性越强,主成分分析就越合适。

主成分分析计算方法和步骤

主成分分析计算方法和步骤: 在对某一事物或现象进行实证研究时,为了充分反映被研究对象个体之间的差异, 研究者往往要考虑增加测量指标,这样就会增加研究问题的负载程度。但由于各指标都是对同一问题的反映,会造成信息的重叠,引起变量之间的共线性,因此,在多指标的数据分析中,如何压缩指标个数、压缩后的指标能否充分反映个体之间的差异,成为研究者关心的问题。而主成分分析法可以很好地解决这一问题。 主成分分析的应用目的可以简单地归结为: 数据的压缩、数据的解释。它常被用来寻找和判断某种事物或现象的综合指标,并且对综合指标所包含的信息给予适当的解释, 从而更加深刻地揭示事物的内在规律。 主成分分析的基本步骤分为: ①对原始指标进行标准化,以消除变量在数量极或量纲上的影响;②根据标准化后的数据矩阵求出相关系数矩阵 R; ③求出 R 矩阵的特征根和特征向量; ④确定主成分,结合专业知识对各主成分所蕴含的信息给予适当的解释;⑤合成主成分,得到综合评价值。 结合数据进行分析 本题分析的是全国各个省市高校绩效评价,利用全国2014年的相关统计数据(见附录),从相关的指标数据我们无法直接评价我国各省市的高等教育绩效,而通过表5-6的相关系数矩阵,可以看到许多的变量之间的相关性很高。如:招生人数与教职工人数之间具有较强的相关性,教育投入经费和招生人数也具有较强的相关性,教工人数与本科院校数之间的相关系数最高,到达了0.963,而各组成成分之间的相关性都很高,这也充分说明了主成分分析的必要性。 表5-6 相关系数矩阵 本科院校 数招生人数教育经费投入 相关性师生比0.279 0.329 0.252 重点高校数0.345 0.204 0.310 教工人数0.963 0.954 0.896 本科院校数 1.000 0.938 0.881 招生人数0.938 1.000 0.893 教育经费投 0.881 0.893 1.000 入

主成分分析matlab源程序代码

263.862 1.61144 2.754680.266575 268.764 2.07218 2.617560.182597 261.196 1.59769 2.350370.182114 248.708 2.09609 2.852790.257724 253.365 1.69457 2.94920.189702 268.434 1.56819 2.781130.13252 258.741 2.14653 2.691110.136469 244.192 2.02156 2.226070.298066 219.738 1.61224 1.885990.166298 244.702 1.91477 2.259450.187569 245.286 2.12499 2.352820.161602 251.96 1.83714 2.535190.240271 251.164 1.74167 2.629610.211887 251.824 2.00133 2.626650.211991 257.68 2.14878 2.656860.203846] stdr=std(dataset);%求个变量的标准差 [n,m]=size(dataset);%定义矩阵行列数 sddata=dataset./stdr(ones(n,1),:);%将原始数据采集标准化 sddata%输出标准化数据 [p,princ,eigenvalue,t2]=princomp(sddata);%调用前三个主成分系数 p3=p(:,1:3);%提取前三个主成分得分系数,通过看行可以看出对应的原始数据的列,每个列在每个主成分的得分 p3%输出前三个主成分得分系数 sc=princ(:,1:3);%提取前三个主成分得分值 sc%输出前三个主成分得分值 e=eigenvalue(1:3)';%提取前三个特征根并转置 M=e(ones(m,1),:).^0.5;%输出前三个特征根并转置 compmat=p3.*M;%利用特征根构造变换矩阵 per=100*eigenvalue/sum(eigenvalue);%求出成分载荷矩阵的前三列 per %求出各主成分的贡献率 cumsum(per);%列出各主成分的累积贡献率 figure(1) pareto(per);%将贡献率绘成直方图 t2 figure(2) %输出各省与平局距离 plot(eigenvalue,'r+');%绘制方差贡献散点图 hold on %保持图形 plot(eigenvalue,'g-');%绘制方差贡献山麓图

相关主题
文本预览
相关文档 最新文档