当前位置:文档之家› 用ADS设计功率放大器

用ADS设计功率放大器

用ADS设计功率放大器
用ADS设计功率放大器

广 告 页

Agilent ADS 中文学习培训课程套装

ADS 中文学习培训课程套装是迄今为止国内最全面最权威的ADS 培训教程,详细全面地讲解了ADS 在微波射频电路、通信系统和电磁仿真设计方面的内容。套装中的中文视频培训课程是由具有多年ADS 使用经验的微波射频和通信领域资深专家讲解,工程实践强,且视频演示直观易学,能让您在最短的时间内学会使用ADS ,并把ADS 真正应用到微波射频电路和通信系统设计研发工作中去...。详情请浏览网址:https://www.doczj.com/doc/cc17421594.html,/eda/agilent.html

矢量网络分析仪学习套装

矢量网络分析仪是微波射频工程师研发调试工作中常用的测试仪器之一,为了帮助微波射频工程师最迅速、全面地熟悉掌握矢量网络分析仪使用,微波EDA 网推出了这套矢量网络分析仪学习培训教程套装。套装中既有直观易学的矢量网络分析仪使用操作视频教程,也有全面的矢网用户操作手册,详情请浏览网址: https://www.doczj.com/doc/cc17421594.html,/vna/course

台湾中华射频/通信专业视频课程套装

台湾中华大学教授给岛内知名电子企业员工培训课程视频,由于是给企业员工培训,所以讲课内容尽量摒弃繁琐的数学推导、抽象的概念,多从工程实践出发,以通俗易懂的语言和直观工程实例来向学员讲述微波射频电路和数字通信系统相关知识。是从事微波射频电路设计和通信系统设计相关工程技术人员不可多得的经典学习教程。详情请浏览网址:https://www.doczj.com/doc/cc17421594.html,/vedio/vedio_45.html

Cadence Allegeo PCB 设计培训套装

衡量一个软件的优劣,其中一个很现实的标准就是看它的市场占有率,Cadence Allegro 现在几乎成为高速板设计中实际上的工业标准,被很多大型电子通信类公司采用,因此掌握Cadence Allegro 对找份好工作有实质的帮助;另外其学习资源也比较丰富,比较适合自学。本站现推出Cadence Allegro PCB 设计培训套装,实用易学,物超所值,帮助您迅速有效的学习掌握Allegeo PCB 设计。详情请浏览网址:https://www.doczj.com/doc/cc17421594.html,/eda/allegro.html

>> 更多微波射频和PCB 设计相关培训课程尽在 微波EDA

EEsof,Cheng-cheng,Xie

Feb,16,2006

Page 1

用ADS设计功率放大器

EEsof

Cheng-cheng, Xie

Application Engineer

EEsof,Cheng-cheng,Xie

Feb,16,2006

Page 2

主要内容:

?PA 的主要指标?DC 分析?偏置电路的建立?稳定性分析

?输入输出匹配电路设计?优化设计?Layout

?PI4DQPSK 调制下测试ACPR

EEsof,Cheng-cheng,Xie

Feb,16,2006

Page 3

PA 的主要指标

?工作频带?稳定性稳定系数K ?输出功率

饱和功率(Psat )1dB 压缩点输出功率(P -1)

?增益、增益平坦度?效率功率效率功率附加效率?线性度

三阶交调系数IM3 五阶交调系数IM5

二次、三次谐波

ACPR AltCPR (Alternate CPR)

?输入输出驻波比

直流输入功率

射频输入功率射频输出功率?=

add

η

EEsof,Cheng-cheng,Xie

Feb,16,2006

Page 4

指标实例

?输出功率: 50 W (47dBm )?输入功率: 1 W ?效率(η) > 50%?二次谐波抑制:40dBC ?偏置电压: 28 V

?选用放大器: MRF9045M

EEsof,Cheng-cheng,Xie

Feb,16,2006

Page 5

FET Curve Tracer

FSL_TECH_INCLUDE FTI

FSL_TECH_INCLUDE I_Probe IDS

VAR VAR1VGS =0 V

VDS =0 V Eqn

Var V_DC SRC2Vdc=VGS

DC DC1

Step=0.1

Stop=28*2Start=0SweepVar="VDS"DC

DisplayTemplate disptemp1

"FET_curve_tracer"

Temp

Disp VJ FSL_MRF_MET_MODEL MRF1

MODEL=MRF9045M

V_DC SRC1Vdc=VDS

ParamSweep Sweep1

Step=0.1

Stop=5.0Start=2.5SimInstanceName[6]=SimInstanceName[5]=SimInstanceName[4]=SimInstanceName[3]=SimInstanceName[2]=SimInstanceName[1]="DC1"SweepVar="VGS"

PARAMETER SWEEP

设置需要的Vg 、Vd 扫描范围

EEsof,Cheng-cheng,Xie

Feb,16,2006

Page 6

5

10

15

20

25

3035

40

45

50

55

60

1

2

3405VDS

I D S .i , A

VDsat IQ

m3

L o a d _L i n e VDsat

VDS=IDS.i=0.562VGS=3.8000000.600IQ

VDS=IDS.i=0.717VGS=3.80000028.000m3

VDS=IDS.i=0.055VGS=3.100000

33.000Eqn Vsat=indep(VDsat)

Eqn Vq=indep(IQ)Eqn Vmax=indep(m3)

Eqn Imin=m3

Eqn Iq=IQ

Eqn Load_Line=(Vmax-VDS)/RL+Imin Eqn Pq=Iq*Vq

P q

20.089

RL

7.508

Eqn RL=0.5*((Vq-Vsat)**2)/Pout

Eqn Pout=50

从负载曲线可以看出,此放大器工作于AB 类。

EEsof,Cheng-cheng,Xie

Feb,16,2006

Page 7

按DC 仿真结果添加偏置电路、封装放大器

VG

VJ

VD

Port P1Num=1

Port P2Num=2

sl_tok_LL2012-F_J_19960828L2

PART_NUM=LL2012-F82NJ 82 nH

sc_mrt_MC_GRM40C0G050_J_19960828C8

PART_NUM=GRM40C0G330J050 33pF

sc_mrt_MC_GRM40C0G050_J_19960828C7

PART_NUM=GRM40C0G330J050 33pF

Port P4Num=4

sc_spr_293D_A025_X9_19960828C24

PART_NUM=293D474X9025A2 0.47uF sc_mrt_MC_GRM40C0G050_D_19960828C23

PART_NUM=GRM40C0G100D050 10pF MLIN TL22

L=100 mil W=63.668898 mil Subst="MSub1" MLIN TL23

L=100 mil

W=63.668898 mil Subst="MSub1"sc_spr_293D_A025_X9_19960828C19

PART_NUM=293D474X9025A2 0.47uF

sc_mrt_MC_GRM40C0G050_D_19960828C20

PART_NUM=GRM40C0G100D050 10pF

MLIN TL21

L=100 mil

W=63.668898 mil Subst="MSub1" MLIN TL20

L=100 mil

W=63.668898 mil Subst="MSub1" Port P3Num=3

sc_mrt_MC_GRM40C0G050_J_19960828C25

PART_NUM=GRM40C0G330J050 33pF

sc_mrt_MC_GRM40C0G050_J_19960828C17

PART_NUM=GRM40C0G330J050 33pF

FSL_MRF_MET_MODEL MRF1

CTH=-1

RTH=-1TSNK=25MODEL=MRF9045M MSUB MSub1Rough=0 mil

TanD=0.002 T=2.8 mil Hu=3.9e+034 mil Cond=5.8E+08 Mur=1

Er=4.2 H=33.6 mil M Sub

sr_avx_CR_10_K_19960828R13

PART_NUM=CR10-150K 15 Ohm

sc_mrt_MC_GRM40C0G050_J_19960828C3

PART_NUM=GRM40C0G330J050 33pF

sr_avx_CR_10_K_19960828R12

PART_NUM=CR10-680K 68 Ohm

MLIN TL1

L=2194.444882 mil

W=63.670079 mil Subst="MSub1" MRF9045M_AMP X4

EEsof,Cheng-cheng,Xie

Feb,16,2006

Page 8

稳定性测试

VGG VDD VDD

VGG

MRF9045M_AMP X1

S_Param SP2

Step=1.0 MHz

Stop=3000 MHz Start=1 MHz S-PARAMETERS

I_Probe IDD I_Probe IGG

V_DC SRC2

Vdc=VGS

V_DC SRC1Vdc=VDS VAR VAR3

VGS =3.8 V

VDS =28 V Eqn

Var FSL_TECH_INCLUDE FTI

FSL_TECH_INCLUDE

MuPrime MuPrime1

MuPrime1=mu_prime(S)

MuPrime

Mu Mu1

Mu1=mu(S)Mu StabMeas StabMeas1

StabMeas1=stab_meas(S)StabMeas StabFact StabFact1

StabFact1=stab_fact(S)StabFact P_1Tone PORT1Freq=fss

P=polar(dbmtow (-60),0)Z=50 Ohm

Num=1Term R3Z=50 Ohm

Num=2两组稳定性判定函数任取一组即可

EEsof,Cheng-cheng,Xie

Feb,16,2006

Page 9稳定性判定

0.5

1.0

1.5

2.0

2.5

0.0

3.0

0.51.0

1.5

0.0

2.0

freq, GHz

S t a b M e a s 1

m2

freq=Mu1=1.000

0.5

1.0

1.5

2.0

2.5

0.0

3.0

1

2

3

04freq, GHz M u 1

m2

32.00MHz 0.5

1.0

1.5

2.0

2.5

0.0

3.0

1.00

1.051.101.151.20

0.95

1.25freq, GHz

M u P r i m e 1

m3

m3

freq=MuPrime1=0.996

50.00MHz 0.5

1.0

1.5

2.0

2.5

0.0

3.0

1234

05freq, GHz

S t a b F a c t 1

EEsof,Cheng-cheng,Xie

Feb,16,2006

Page 10

输出阻抗匹配电路要求

?损耗低?谐波抑制度高?改善驻波比?提高输出功率?增加放大器效率?改善非线性

EEsof,Cheng-cheng,Xie

Feb,16,2006

Page 11

LoadPull Setup

vload Vs_low

Vs_high

Refer to the PowerPoint (TM) presentation "LoadPullPres.ppt" within this example project directory for a detailed explanation of these load pull simulation setups.

Specif y desired Fundamental Load Tuner cov erage:

s11_rho is the radius of the circle of ref lection coef f icients simulated. Howev er, the radius of the circle will be reduced if it would otherwise go outside the Smith chart. If y ou want to ov erride this and allow

ref lection coef f icients outside the Smith chart, edit the SweepEquations VAR block, and set max_rho=mag(s11_rho)

s11_center is the center of the circle of simulated ref lection coef f icients pts is total number of ref lection coef f icients simulated Z0 is the sy stem ref erence impedance

Set these v alues:

Set Load and Source impedances at

harmonic frequencies

One Tone Load Pull Simulation; output power and PAE f ound at each f undamental load impedance

VAR VAR2

Z_s_5 =Z0 + j*0

Z_s_4 = Z0 + j*0Z_s_3 = Z0 + j*0Z_s_2 = Z0 + j*0Z_s_fund = 10 + j*0Z_l_5 = Z0 + j*0Z_l_4 = Z0 + j*0Z_l_3 = Z0 + j*0Z_l_2 =Z0 + j*0Eqn

V ar ADS_MOS ADSMOS1N=8*cells

Wtot=(704e-6)*cells Model=adsmos

ADS_MOS_Model adsmos

File="motorola_mosfet_h"

HarmonicBalance HB1

Order[1]=9

Freq[1]=RFfreq HARMONIC BALANCE

I_Probe

Iload

C C2

C=1.0 uF

C C1C=1.0 uF I_Probe Is_high

I_Probe Is_low

L L1

R=

L=1 uH L L2

R=L=1 uH S1P_Eqn S1

Z[1]=Z0

S[1,1]=LoadTuner P_1Tone

PORT1

Freq=RFfreq

P=dbmtow(Pavs)Z=Z_s

Num=1

V_DC SRC2Vdc=Vlow

V_DC SRC1

Vdc=Vhigh

VAR

global ImpedanceEquations

Eqn

V ar ParamSweep Sweep2PARAMETER SWEEP

VAR

SweepEquations Z0=50

pts=100s11_center =-0.6 +j*0.2s11_rho =0.75

Eqn

Var VAR VAR1cells=28

Eqn

V ar VAR

STIMULUS Vlow=2

Vhigh=5.8RFfreq=850 MHz Pavs=10 _dBm Eqn

Var 插入DesignGuide/LoadPull/One Tone LoadPull Simulation ,并替换放大器模型

EEsof,Cheng-cheng,Xie

Feb,16,2006

Page 12

综合PAE 、Pdel ,选取最佳输出匹配阻抗

m3

-0.903

real_indexs11 (-0.990 to -0.210)

s u r f a c e _s a m p l e s

m3

real_indexs11=surf ace_samples=0.914 / 171.215imag_indexs11=0.139568

impedance = Z0 * (0.045 + j0.077)

-0.90350.48

PAE, %

2.264 + j

3.833

Impedance at marker m3

44.44

Power Delivered (dBm)

Move Marker m3 to select impedance value and corresponding PAE and delivered power values.

Simulated Load Reflection Coefficients

EEsof,Cheng-cheng,Xie

Feb,16,2006

Page 13

在SmithChart 上进行输出阻抗匹配

2.3-j*

3.8

EEsof,Cheng-cheng,Xie

Feb,16,2006

Page 14

验证输出阻抗匹配

S_Param SP1

Step=0.025 GHz

Stop=3.0 GHz Start=0.11 GHz S-PARAMETERS

Term Term1Z=50 Ohm

Num=1DA_SmithChartMatch1_output_match_design

DA_SmithChartMatch1

Z0=50 Ohm

Zl=(2.300-j*3.900) Ohm

Zs=50 Ohm

F=760 MHz

Term Term2Z=2.3-j*3.8Num=2P ort P 2Num=2

Port P1Num=1

C C3

C=27.689016 pF

C C2

C=2.307137 pF

TLIN TL3

F=760 MHz

E =25.92Z=22.85 Ohm TLIN TL2

F=760 MHz

E=32.25Z=50 Ohm TLIN TL1

F=760 MHz

E =8.891Z=50 Ohm C C1

C=12.975203 pF

EEsof,Cheng-cheng,Xie

Feb,16,2006

Page 15

输出阻抗匹配仿真结果

freq (110.0MHz to 3.000GHz)

S (1,1)

S (2,2)m1

m1

freq=S(2,2)=0.013 / 136.415

impedance = 49.071 + j0.869

760.0MHz

0.5

1.0

1.5

2.0

2.5

0.0

3.0

-30-20

-10

-40

freq, GHz

d B (S (2,1))

可见,在760MHz 时,对已知的阻抗匹配良好

EEsof,Cheng-cheng,Xie

Feb,16,2006

Page 16

在输出阻抗匹配情况下进行SourcePull

m3

-0.959

real_indexs11 (-0.993 to -0.507)

s u r f a c e _s a m p l e s

m3

real_indexs11=surf ace_samples=0.964 / 174.044imag_indexs11=0.100000

impedance = Z0 * (0.018 + j0.052)

-0.95951.43

PAE, %

0.924 + j2.600

Impedance at marker m3

46.07

Power Delivered (dBm)

Move Marker m3 to select impedance value and corresponding PAE and delivered power values.

Simulated Source Impedances

EEsof,Cheng-cheng,Xie

Feb,16,2006

Page 17

将输入输出匹配网络替换为真实值

MSUB MSub1Rough=0 mil

TanD=0.002 T=2.8 mil Hu=3.9e+034 mil Cond=5.8E+08 Mur=1

Er=4.2 H=33.6 mil MSub

sc_mrt_MC_GRM40C0G050_D_19960828C24

PART_NUM=GRM40C0G090D050 9pF

Port P1Num=1

MLIN TL16

L=205.546063 mil W=63.670079 mil Subst="MSub1" Port P2Num=2

MLIN TL17

L=414.385827 mil

W=199.971654 mil Subst="MSub1" MLIN TL18

L=802.433071 mil W=63.670079 mil Subst="MSub1" sc_mrt_MC_GRM40C0G050_C_19960828C25

PART_NUM=GRM40C0G020C050 2pF sc_mrt_MC_GRM40C0G050_J_19960828C26

PART_NUM=GRM40C0G220J050 22pF

TLIN TL3

F=760 MHz E=18.00

Z=22.85 Ohm

C

C3C=42.80523 pF

TLIN TL2

F=760 MHz E=32.91

Z=50 Ohm

C

C2C=2.047247 pF

TLIN TL1

F=760 MHz

E=8.430Z=50 Ohm C C20

C=12.117875 pF

TLIN TL11

F=760 MHz E=32.91Z=50 Ohm TLIN TL10

F=760 MHz

E=18.00Z=22.85 Ohm sc_mrt_MC_GRM40C0G050_J_19960828C21

PART_NUM=GRM40C0G220J050 22pF

sc_mrt_MC_GRM40C0G050_C_19960828C22

PART_NUM=GRM40C0G020C050 2pF sc_mrt_MC_GRM40C0G050_D_19960828C23

PART_NUM=GRM40C0G090D050 9pF

TLIN TL12

F=760 MHz E=8.430Z=50 Ohm

EEsof,Cheng-cheng,Xie

Feb,16,2006

Page 18

扫描输入功率

Vin

Vload input_match X 5

MRF9045M_AMP X 4

output_match

X 3V_DC SRC1Vdc=VDS

I_Probe Iload

R R1

R=50 Ohm

VAR VAR1

Pin=30

VGS =3.8 V VDS =28 V Eqn

Var VAR VAR2

fo=760.0 MHz

Eqn

Var FSL_TECH_INCLUDE FTI

FSL_TECH_INCLUDE HarmonicBalance HB1

Step=1

Stop=40Start=-30SweepVar="Pin"Order[1]=15

Freq[1]=fo HARMONIC BALANCE

P_1Tone PORT1Vdc=

Freq=fo P=dbmtow(Pin)Z=50.0 Ohm Num=1

I_Probe Iin

V_DC SRC2Vdc=VGS

EEsof,Cheng-cheng,Xie

Feb,16,2006

Page 19输出功率曲线

Eqn Pdel_Watts=real(0.5*Vload[1]*conj(Iload.i[1]))Eqn Pdel_dBm = 10*log10(Pdel_Watts)+30

-20

-10

0102030-3040

20

40

-20

60

Pin

P d e l _d B m

Output

Output

Pin=Pdel_dBm=45.570

30.000

输出功率尚未

达到指标要求

相关主题
文本预览
相关文档 最新文档