当前位置:文档之家› 基于AT89C52单片机的温室控制系统

基于AT89C52单片机的温室控制系统

基于AT89C52单片机的温室控制系统
基于AT89C52单片机的温室控制系统

目录

1. 引言 (1)

1.1 温室控制系统设计背景 (1)

1.2 本设计的内容及意义 (2)

1.2.1本设计的主要内容 (2)

1.2.2本设计的意义 (3)

2. 温室控制系统总体设计 (4)

2.1 测控系统的设计要求 (4)

2.2 设计目标 (4)

2.3 测控系统的组成及控制原理 (4)

3. 硬件设计 (6)

3.1 单片机的选择及其特性 (6)

3.2 AT89C52系列单片机介绍 (6)

3.2.1 AT89C52基本特性 (6)

3.2.2 AT89C52单片机的内部组成结构 (7)

3.2.3 AT89C52的引脚功能 (8)

3.2.4 AT89C52的存储器 (10)

3.3 传感器的选型及其性能特征 (13)

3.3.1温度传感器AD590 (13)

3.3.2相对湿度传感器HIH3610 (15)

3.4 单片机外围控制电路设计 (17)

3.4.1电子狗电路 (17)

3.4.2电源电路 (18)

3.4.3信号采集电路 (18)

3.4.4 LED显示电路 (21)

3.4.5执行机构电路 (22)

3.4.6键盘输入与报警电路 (23)

3.4.7与上位机通信的接口电路 (25)

4. 温室控制系统软件设计 (28)

4.1 C语言 (28)

4.2 控制程序设计 (28)

4.2.1主控制程序设计 (28)

4.2.2信号数据采集子程序设计 (34)

总结 (38)

致谢 (39)

参考文献 (40)

1. 引言

1.1 温室控制系统设计背景

中国农业的发展必须走现代化农业这条道路,随着国民经济的迅速增长,农业的研究和应用技术越来越受到重视,特别是温室大棚已经成为高效农业的一个重要组成部分。现代化农业生产中的重要一环就是对农业生产环境的一些重要参数进行检测和控制。例如:空气的温度、湿度、二氧化碳含量、土壤的含水量等。在农业种植问题中,温室环境与生物的生长、发育、能量交换密切相关,进行环境测控是实现温室生产管理自动化、科学化的基本保证,通过对监测数据的分析,结合作物生长发育规律,控制环境条件,使作物达到优质、高产、高效的栽培目的。以蔬菜大棚为代表的现代农业设施在现代化农业生产中发挥着巨大的作用。大棚内的温度和湿度参数,直接关系到蔬菜和水果的生长。国外的温室设施己经发展到比较完备的程度,并形成了一定的标准,但是价格非常昂贵,缺乏与我国气候特点相适应的测控软件。而当今大多数对大棚温度、湿度的检测与控制都采用人工管理,这样不可避免的有测控精度低、劳动强度大及由于测控不及时等弊端,容易造成不可弥补的损失,结果不但大大增加了成本,浪费了人力资源,而且很难达到预期的效果。因此,为了实现高效农业生产的科学化并提高农业研究的准确性,推动我国农业的发展,必须大力发展农业设施与相应的农业工程,科学合理地调节大棚内温度、湿度,使大棚内形成有利于蔬菜,水果生长的环境,是大棚蔬菜和水果早熟、优质、高效益的重要环节。

影响作物生长发育的环境条件主要包括:温度、湿度、光照、CO2浓度、土壤等。所有这些环境条件之间是相互作用、相互联系、相互耦合的,某个控制变量发生改变,会影响其它控制变量的变化。作物的生长发育是所有这些环境条件综合作用的结果。温度和湿度一直是人类关注的对象,这两种环境因素时刻影响着人们的生产和生活,下面主要就温度和湿度对作物的影响进行简略说明。

1.温度温室内气温、地温对作物的光合作用、呼吸作用、根系的生长和水分、养分的吸收有着显著的影响,因此影响作物生长发育的环境条件中,以温度最为敏感,也最为重要,对温室环境控制的研究也是最先从温度控制开始的。不同种类的作物对温度的要求是不同的,同一作物在不同发育阶段对温度的要求亦有所不同,而且在同一发育期阶段内对温度的要求也会随着昼夜变化而呈周期性地变化。一般说来在白天作物进行光合作用需要的温度较高,晚上维持呼吸作用所需的温度要低一些。

作物生长发育适宜的温度,随种类、品种、生育阶段及生理活动的变化而变化。为了增加光合产物的生成,抑制不必要的呼吸消耗,在一天中,随着光照强度的变化,实行变温管理是一种很有效的管理方法。

2.湿度温室内作物对水分的要求体现为对温室内空气湿度和土壤湿度的要求。空气湿度用相对湿度来表示,因为相对湿度更能反应事实。根据有关研究记载,除了阴雨天以外,温室内午后过低的空气湿度会导致作物发生光合作用的午休现象,因此空气相对湿度的大小直接影响到作物的光合作用,这时就需要增加温室内的空气湿度。当温室内的空气

湿度较高时,可能会诱发一些病虫害。温室中空气湿度的管理包括增湿和降湿。

土壤湿度对作物的影响也很大。如果土壤中水分过剩,湿度过高,导致土壤中的氧气含量减少,作物根部呼吸困难,进而危害作物的生长发育。相反,当土壤中含水量减少时,作物根部吸收的水分就相应的减少,从而阻碍作物的生长,严重时作物出现萎蔫现象。不同的作物对湿度的要求不同,即使是同一种类在不同发育阶段对湿度的要求也不尽相同。

土壤湿度的管理就是把包括渗灌、滴灌、微灌等灌溉技术应用到温室中来。传统的大水漫灌既浪费水资源,又容易使土壤发生板结,提高了室内湿度。在温室中应用渗灌技术具有灌水均匀,提高地温,保持土壤疏松,降低室内湿度,减轻病害发生,生育期提前等优点。

从很久以前人类就想出各种方法控制温度和湿度,以满足人们生产生活的需要。从古代人们通过扇子、雨伞、毛巾等试图去控制温度和湿度到今天高科技发展迅速的社会所发明出的各种工具,如风扇、空调、加热器等,表明人类一直努力去控制这两种和人类密切相关的环境因素。现代科技的发展,使得温度和湿度的控制更容易,更高效,特别是传感器和单片机的应用,使得温度和湿度控制系统性能有了根本性的提高,精度更高,而且实现了自动化。

人们使用温度计、湿度计来采集温度和湿度,通过人工操作加热、加湿、通风和降温设备来控制温湿度,这样不但控制精度低、实时性差,而且操作人员的劳动强度大。即使有些用户采用半导体二极管作温度传感器,但由于其互换性差,效果也不理想。在某些行业中对温湿度的要求较高,特别是在大型的电力系统中,由于温度过高或过低引起的元器件失效或由于环境湿度过高而引起的漏电事故时有发生。对电力系统的可靠运行造成影响,甚至危及到电力系统局部及操作人员的安全。为了避免这些故障,需要在电力设备柜体内安装控温、除湿设备。

1.2 本设计的内容及意义

1.2.1本设计的主要内容

本设计以AT89C52单片机的温度、湿度测量和控制系统为核心来对温湿度进行实时巡检。单片机能独立完成各自功能,同时能根据主控机的指令对温度进行定时采集。测量结果不仅能在本地显示,而且可以利用单片机的串行口和 RS-232总线通信协议能把温室中的温度、湿度等参数及时上传至上位机,并与设定值进行比较,与设定值不符时采取相应的处理措施,以实现恒温恒湿环境。

在设计的过程中充分考虑到性价比和精度,在选用低价格、通用元件的的基础上,尽量满足设计要求,并使系统具有高的精度。本控制系统以单片机的控制为核心,实时监测环境的温度和湿度,并设定了这两个参数的上下限定值,并具有相应的报警系统,当超过设定的限定值时,单片机控制报警系统进行报警,而且同时驱动继电器打开相应的开关使相应的执行机构运行。当参数值恢复到设定值范围内时,单片机控制执行机构停止运行。从而使环境的温湿度在一定的范围内得到控制。

本设计主要内容包括以下几个方面:

1、选择适合的两种传感器,设计相应的信号采集和处理电路。

2、掌握AT89C52单片机的主要功能和特性,以其为核心设计控制系统。

3、设计简单的人机对话接口系统,如键盘、显示、报警等。

4、利用RS232实现单片机与上位机的通信。

5、实现系统的可靠性和抗干扰性。

1.2.2本设计的意义

传统的方法,人们主要采用温度计、湿度计来采集温度值和湿度值,通过人工操作加热、加湿、通风和降温设备来控制温湿度。但是由于温度计、湿度计精度比较低,以及人工读数的人为因素等原因,温湿度检测不仅速度慢,精度低,实时性差,而且操作人员的劳动强度大。随着科技的发展,采用各种传感器、模数转换器、报警器等组成的温湿度监测系统的出现,可对环境内的各个测点进行巡回检测,检测速度、精度有了一定的提高,降低了劳动强度,但由于所采用的传感器灵敏度比较低、稳定性比较差,致使检测精度、系统可靠性还不够理想,同时在农业生产和农业科研过程中的很多场合需要对上面提到的物理量进行精确的检测和控制。由于现在基本沿用人工的测控方法,这就不可避免的存在着劳动强度大、繁琐、测量精度低,并且由于检测报警不及时,给生产和科研工作造成了一定的损失。

近年来,随着单片机功能的日益强大和计算机的广泛应用,人们对参数监测的准确性、稳定性要求也越来越高。本设计就是针对此问题,设计相对精度高、性能稳定的、的温度湿度控制装置。该仪器可广泛应用于大棚、仓库、体育场等领域。

2. 温室控制系统总体设计

2.1 测控系统的设计要求

1. 能够实时采集与显示室内环境温度、湿度等参数。主要参数的监测范围和检测精度如表

2.1所示:

2. 能够根据每天各个阶段以及季节等的外部环境变化通过键盘输入改变对参数的设置,以满足不同的要求达到最佳效益;

3. 声音报警功能;

4. 根据检测到的信号,实时控制执行机构的开启与关断。

5. 自带+5 V和+12 V直流稳压电源。

2.2 设计目标

本设计是基于AT89C52单片机的温湿度智能控制采集系统,主要完成一下主要任务:

①选择AT89C52单片机,了解其基本特性和功能,使用AT89C52实现对温湿度的智能控制。

②使用温度传感器测量环境的温度,进行数据的采集并传送到单片机进行数据处理,实现范围为-55℃~+125℃温度采集和控制。

③使用湿度传感器对现场环境湿度数据采集,由单片机进行数据处理和控制,实现范围为1%~99%RH的湿度控制。

④采用串行总线RS-232实现单片机和上位机通讯。

⑤设计人机对话接口,键盘、显示和报警系统。

⑥设计执行机构电路,使单片机能自动控制执行机构工作。

使系统完成特定功能的同时,要保证系统的可靠性和稳定性,使系统能够长期稳定的工作。还要尽量实现系统的低成本、低功耗和高精度。

2.3 测控系统的组成及控制原理

本设计是以AT89C52单片机为核心的自动控制系统,硬件系统由键盘输入电路、LED 显示电路、传感器和A/D转换电路、光电隔离和执行电路、报警电路等组成。

硬件系统原理框图如图2.1所示:

图2.1 测控系统硬件组成原理框图

传感器一般输出的为模拟量,需要通过A/D转换,转换为单片机能够接收的数字信号,若模拟信号太弱,还需经过运算放大器放大信号。键盘输入的是系统参数的上、下限极限值,若检测到的信号值出现不在此极限区间的情况,单片机就会驱动蜂鸣器产生报警,此时就需要执行机构控制室内环境相应的改变,使得环境参数重新回到设定的理想区间。

3. 硬件设计

硬件元器件的选择,必须考虑到功能的实现、器件的适时性、价格和通用性等几个方面。在电路的设计中,在实现所要求功能的基础上,尽量使电路简单。

3.1 单片机的选择及其特性

计算机的产生加快了人类改造世界的步伐,但是它毕竟体积庞大。单片机(微控制器)就是在这种情况下诞生的。微控制器,亦称单片机或者单片微型计算机。它是把中央处理器(CPU)、随机存取存储器(RAM)、只读存储器(ROM)、输入/输出端口(1/0) 等主要计算机功能部件都集成在一块集成电路芯片上的微型计算机。它的结构与指令功能都是按照工业控制的要求设计的,在智能控制系统中,微控制器得到了广泛的应用。

单片机目前己被广泛地应用于家电、医疗、仪器仪表、工业自动化、航空航天等领域。市场上比较流行的单片机种类主要有Intel公司、Atmel公司和Philip公司的8051系列单片机,Motorola公司的M6800系列单片机,Intel公司的MCS96系列单片机,Microchip 公司的PIC系列单片机等。各个系列的单片机各有所长,在处理速度、稳定性、I/O能力、功耗、功能、价格等方面各有优劣。这些种类繁多的单片机家族,给我们单片机的选择也提供了很大的余地。本设计选用AT89C52单片机,它是一种低功耗、低价格,高性能8位微处理器。

3.2 AT89C52系列单片机介绍

AT89C52 是美国ATMEL 公司生产的低电压,高性能CMOS 8 位单片机,片内含8k bytes 的可反复擦写的Flash 只读程序存储器和256 bytes 的随机存取数据存储器(RAM),器件采用ATMEL 公司的高密度、非易失性存储技术生产,与标准MCS-51 指令系统及8052产品引脚兼容,片内置通用8 位中央处理器(CPU)和Flash 存储单元,功能强大的AT89C52 单片机适合于许多较为复杂控制应用场合。

3.2.1 AT89C52基本特性

AT89C52系列单片机主要性能参数如下:

2与MCS-51产品指令和引脚完全兼容

28k字节可重擦写Flash闪速存储器

21000次擦写周期

2全静态操作:0Hz-24MHz

2三级加密程序存储器

2256字节内部RAM

232个可编程I/O口线

23个16位定时/计数器

28个中断源

2可编程串行UART通道

2低功耗空闲和掉电模式。

AT89C52 提供以下标准功能:

8k字节Flash 闪速存储器,256字节内部RAM,32 个I/O 口线,3 个16 位定时/计数器,一个6 向量两级中断结构,一个全双工串行通信口,片内振荡器及时钟电路。同时,AT89C52 可降至0Hz的静态逻辑操作,并支持两种软件可选的节电工作模式。空闲方式停止CPU 的工作,但允许RAM,定时/计数器,串行通信口及中断系统继续工作。掉电方式保存RAM 中的内容,但振荡器停止工作并禁止其它所有部件工作直到下一个硬件复位。

3.2.2 AT89C52单片机的内部组成结构

AT89C52单片机的内部结构如图3.1所示:

图3.1 AT89C52 内部结构

3.2.3 AT89C52的引脚功能

引脚功能说明如图3.2:

2Vcc:电源电压

2GND:地

2P0口:P0口是一组8位漏极开路型双向I/O口,也即地址/数据总线复用口。作为输出口用时,每位能吸收电流的方式驱动8个TTL逻辑门电路,对端口P0写“1”时,可作为高阻抗输入端用。在访问外部数据存储器或程序存储器时,这组口线分时转换地址(低8 位)和数据总线复用,在访问期间激活内部上拉电阻。

在Flash 编程时,P0口接收指令字节,而在程序校验时,输出指令字节,校验时,要求外接上拉电阻。

图3.2 AT89C52单片机封装图

2P1口:P1口是一个带内部上拉电阻的8位双向I/O口,P1的输出缓冲级可驱动(吸收或输出电流)4个TTL 逻辑门电路。对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口。作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(IIL)。与AT89C51 不同之处是,P1.0 和P1.1 还可分别作为定时/计数器2 的外部计数输入(P1.0/T2)和输入(P1.1/T2EX),参见表3.1。

Flash 编程和程序校验期间,P1 接收低8位地址。

2P2口:P2是一个带有内部上拉电阻的8位双向I/O口,P2的输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。对端口P2写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口,作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉

)。

低时会输出一个电流(I

IL

在访问外部程序存储器或16 位地址的外部数据存储器(例如执行MOVX @DPTR 指令)时,P2口送出高8 位地址数据。在访问8 位地址的外部数据存储器(如执行MOVX @RI 指令)时,P2口输出P2 锁存器的内容。

Flash 编程或校验时,P2亦接收高位地址和一些控制信号。

2P3口:P3口是一组带有内部上拉电阻的8位双向I/O口。P3口输出缓冲级可驱动(吸收或输出电流)4个TTL 逻辑门电路。对P3口写入“1”时,它们被内部上拉电阻拉高并可

)。

作为输入端口。此时,被外部拉低的P3口将用上拉电阻输出电流(I

IL

P3口除了作为一般的I/O口线外,更重要的用途是它的第二功能,如表3.2所示:

表3.2 引脚P3口的第二功能Array

此外,P3 口还接收一些用于Flash闪速存储器编程和程序校验的控制信号。

2RST:复位输入。当振荡器工作时,RST引脚出现两个机器周期以上高电平将使单片机复位。

2ALE/PROG:当访问外部程序存储器或数据存储器时,ALE(地址锁存允许)输出脉冲用于锁存地址的低8位字节。一般情况下,ALE仍以时钟振荡频率的1/6 输出固定的脉冲信号,因此它可对外输出时钟或用于定时目的。要注意的是:每当访问外部数据存储器时将跳过一个ALE脉冲。对Flash 存储器编程期间,该引脚还用于输入编程脉冲(PROG)。如有必要,可通过对特殊功能寄存器(SFR)区中的8EH 单元的D0 位置位,可禁止ALE 操作。该位置位后,只有一条MOVX 和MOVC指令才能将ALE 激活。此外,该引脚会被微弱拉高,单片机执行外部程序时,应设置ALE 禁止位无效。

2PSEN:程序储存允许(PSEN)输出是外部程序存储器的读选通信号,当AT89C52 由外部程序存储器取指令(或数据)时,每个机器周期两次PSEN有效,即输出两个脉冲。此

期间,当访问外部数据存储器,将跳过两次PSEN信号。

2EA/VPP:外部访问允许。欲使CPU 仅访问外部程序存储器(地址为0000H—FFFFH),EA 端必须保持低电平(接地)。需注意的是:如果加密位LB1 被编程,复位时内部会锁存EA端状态。如EA端为高电平(接Vcc端),CPU 则执行内部程序存储器中的指令。Flash 存储器编程时,该引脚加上+12V 的编程允许电源Vpp,当然这必须是该器件是使用12V 编程电压Vpp。

2XTAL1:振荡器反相放大器的及内部时钟发生器的输入端。

2XTAL2:振荡器反相放大器的输出端。

3.2.4 AT89C52的存储器

2中断寄存器:

AT89C52有6个中断源,2个中断优先级,IE寄存器控制各中断位,IP寄存器中6个中断源的每一个可定为2个优先级。

2数据存储器:

AT89C52有256个字节的内部RAM,80H-FFH高128个字节与特殊功能寄存器(SFR)地址是重叠的,也就是高128字节的RAM和特殊功能寄存器的地址是相同的,但物理上它们是分开的。当一条指令访问7FH 以上的内部地址单元时,指令中使用的寻址方式是不同的,也即寻址方式决定是访问高128 字节RAM还是访问特殊功能寄存器。如果指令是直接寻址方式则为访问特殊功能寄存器。

例如,下面的直接寻址指令访问特殊功能寄存器0A0H(即P2 口)地址单元。

MOV 0A0H,#data

间接寻址指令访问高128 字节RAM,例如,下面的间接寻址指令中,R0 的内容为0A0H,则访问数据字节地址为0A0H,而不是P2口(0A0H)。

MOV @R0,#data

堆栈操作也是间接寻址方式,所以,高128 位数据RAM 亦可作为堆栈区使用。

2定时器0和定时器1:

AT89C52的定时器0和定时器1的工作方式与AT89C51的相同。

2定时器2:

定时器2 是一个16 位定时/计数器。它既可当定时器使用,也可作为外部事件计数器使用,其工作方式由特殊功能寄存器T2CON的C/T2 位选择。定时器2 有三种工作方式:捕获方式,自动重装载(向上或向下计数)方式和波特率发生器方式,工作方式由T2CON 的控制位来选择。

2波特率发生器:

当T2CON中的TCLK 和RCLK 置位时,定时/计数器2 作为波特率发生器使用。如果定时/计数器2 作为发送器或接收器,其发送和接收的波特率可以是不同的,定时器1 用于其它功能。若RCLK 和TCLK 置位,则定时器2工作于波特率发生器方式。

波特率发生器的方式与自动重装载方式相仿,在此方式下,TH2 翻转使定时器2 的寄

存器用RCAP2H 和RCAP2L 中的16位数值重新装载,该数值由软件设置。

2中断:

AT89C52 共有6 个中断向量:两个外中断(INT0 和INT1),3 个定时器中断(定时器0、1、2)和串行口中断。这些中断源可通过分别设置专用寄存器IE 的置位或清0 来控制每一个中断的允许或禁止。IE 也有一个总禁止位EA,它能控制所有中断的允许或禁止。定时器2 的中断是由T2CON 中的TF2 和EXF2 逻辑或产生的,当转向中断服务程序时,这些标志位不能被硬件清除,事实上,服务程序需确定是TF2 或EXF2 产生中断,而由软件清除中断标志位。定时器0 和定时器1 的标志位TF0 和TF1 在定时器溢出那个机器周期的S5P2 状态置位,而会在下一个机器周期才查询到该中断标志。然而,定时器2 的标志位TF2 在定时器溢出的那个机器周期的S2P2 状态置位,并在同一个机器周期内查询到该标志。

2AT89C52的直流参数有一定的温度适用范围,见表3.3:

阵列出厂时已处于擦除状态(即所有存储单元的内容均为FFH),用户随时可对其进行编程。

编程接口可接收高电压(+12V )或低电压(Vcc )的允许编程信号。低电压编程模式适合于用户在线编程系统,而高电压编程模式可与通用EPROM 编程器兼容。AT89C52单片机中,有些属于低电压编程方式,而有些则是高电压编程方式,用户可从芯片上的型号和读取芯片内的签名字节获得该信息,见表3.4。

AT89C52的程序存储器阵列是采用字节写入方式编程的,每次写入一个字节,要对整

个芯片内的PEROM 程序存储器写入一个非空字节,必须使用片擦除的方式将整个存储器的内容清除

图3.3 AT89C52编程电路

2程程序序校验:如果加密位LB1、LB2没有进行编程,则代码数据可通过地址和数据线读回原编写的数据,采用如图3.3的电路。加密位不可直接校验,加密位的校验可通过对存储器的校验和写入状态来验证。

2编程方法:

1.在地址线上加上要编程单元的地址信号。 2.在数据线上加上要写入的数据字节。 3.激活相应的控制信号。

4.在高电压编程方式时,将EA/Vpp 端加上+12V 编程电压。

5.每对Flash 存储阵列写入一个字节或每写入一个程序加密位,加上一个ALE/PROG

编程脉冲。每个字节写入周期是自身定时的,通常约为1.5ms。重复1—5步骤,改变编程单元的地址和写入的数据,直到全部文件编程结束。

2Ready/Busy:字节编程的进度可通过“RDY/BSY输出信号监测,编程期间,ALE变为高电平“H”后,P3.4(RDY/BSY)端电平被拉低,表示正在编程状态(忙状态)。编程完成后,P3.4变为高电平表示准备就绪状态。

2芯片擦除:利用控制信号的正确组合并保持ALE/PROG引脚10mS的低电平脉冲宽度即可将PEROM阵列(4k字节)和三个加密位整片擦除,代码阵列在片擦除操作中将任何非空单元写入“1”,这步骤需再编程之前进行。

3.3 传感器的选型及其性能特征

用于测温的传感器种类繁多,但大多是模拟传感器,在以往组建温度采集系统时,由于经传感器输出的是模拟信号,系统必须接入A/D转换器,由此增加了构件系统的复杂性且成本较高。

温度的检测方法,一般采用热电偶、热敏电阻以及集成温度传感器等测温元件。热电偶的工作原理: 两种不同成份的导体两端经焊接,形成回路,直接测温端叫工作端,接线端叫冷端,也称参比端。当工作端和参比端之间存在温差时,就会在回路中产生热电动势,接上显示仪表,仪表上就会指示出热电偶所产生的热电动势的对应温度值。热敏电阻的工作原理:热敏电阻的阻值随温度的升高而成非线性急剧变化,一般具有负的温度系数,其阻值随温度升高而急剧减小,只有少数具有正的温度系数。集成温度传感器的工作原理:集成温度传感器实质上是一种半导体集成电路,它是利用晶体管的b一e结压降的不饱和值Vbe与热力学温度T和通过发射极电流I的关系实现对温度的检测。

热电偶和热敏电阻的测量精度都比较高,成本比较低,而且测量的范围也比较宽,但是它容易受到测量场所以及环境的限制,高温或长期使用时由于环境的影响会使其性能下降,需要定期检查与更换,给实际应用带来了很大不便。经过论证及多次实验,本设计决定采用由AD公司生产的AD590集成温度传感器,它具有线性好、精度适中、灵敏度高、体积小、使用方便、价格比较低,并且具有长期稳定性等优点,因此,得到广泛应用。所以,经过论证及多次实验,本设计决定采用AD 公司生产的AD590 集成温度传感器。

3.3.1温度传感器AD590

一、温度传感器AD590简介

AD590是美国模拟器件公司生产的单片集成两端感温电流源。是利用PN结正向电流与温度的关系制成的电流输出型两端温度传感器。AD590具有线性好、性能稳定、灵敏度高、无需补偿、热容量小,抗干扰能力强、可远距离测温并且使用方便等优点。这种器件在被测温度一定时,相当于一个恒流源,测量精度高,并具有消除电源波动的特性。它的电源电压可以在4V~6V范围变化,电流Ir变化luA,相当于温度变化1K。AD590可以承受44V

正向电压和20V反向电压,因而器件反接也不会被损坏。

集成温度传感器实质上是一种半导体集成电路,它是利用晶体管的b一e结压降的不饱和值V be与热力学温度T和通过发射极电流I的下述关系实现对温度的检测:

V

be =

q

KIT

?lnI ,K-波尔兹常数; q-电子电荷绝对值 (3.1)

集成温度传感器的输出形式分为电压输出和电流输出两种。电压输出型的灵敏度一般为10mV/K,温度0℃时输出为0,温度25℃时输出 2.982v;电流输出型的灵敏度一般为luA/K,本文选用的是电流输出型温度传感器。

AD59O的主要特性如下:

①流过器件的电流(uA)等于器件所处环境的热力学温度(开尔文)度数,即:Ir/T=luA/K;

② AD590的测温范围为-55~+150℃;

③ AD590的保存温度为-65~+175℃;

④ AD590的电源电压范围为4V~30V

⑤输出电阻为710MΩ;

⑥响应时间仅为20us;

⑦精度高。AD590共有I、J、K、L、M五档,其中M档精度最高,在-5℃~+l50℃范围内,非线性误差为±0.3℃。

二、温度测量电路

1、基本应用电路

图3.4(a)是AD59O的封装形式,图3.4(b)是AD590用于测量热力学温度的基本应用电路。因为流过AD590的电流与热力学温度成正比,当电阻R1和电位器R2的电阻之和为1KΩ时,输出电压V0随温度的变化为1mV/K。

图3.4 AD590的封装形式及基本应用电路

2、温度测量电路

要想克服简单电路的缺陷,就要使得增益调整和补偿调整相互独立。本文设计了具有独立调节功能的测温电路,电路图见图3.5。AD59O的输出电流I=(273+T)uA (T为摄氏温度),因此测得电压UO1=(273+T)uA?l0KΩ=(273+T)?0.01V。但由于AD590的增益有偏差,电阻也有误差,因此应对电路进行调整。调整的方法为:把AD590放于冰水混合物中,调整电位器R1,使UO1=2.732V;或者在室温(25℃) 的条件下通过调节电位器R2,使电压Uoz=-2.73V,调整电位器R3,使U0=l.25v。这种调整的方法,可以保证在0℃或25℃附近有较高精度。

图3.5 温度测量电路

3.3.2相对湿度传感器HIH3610

本系统的湿度传感器选用Honeywell公司的集成湿度传感器HIH3610,该传感器内部集成了信号处理功能电路,可完成将相对湿度值变换成电容值,再将电容值转换成线性电压输出的任务.输出电压为:

V =V [0.0062(sensor%RH)+0.16](3.2)out supply

V 固定为+5V,则其输出电压值正比于湿度测量值,因此可由测试现在本系统中supply

场的温度值决定。送LM258,在此处LM258起电压跟随作用,以与采集现场隔离和提高带负载能力。然后信号送带8路开关以及微处理机兼容的控制逻辑的CMOS组件A/D转换器ADC0809,经转换后送单片机I/O口。

在该设计中温度的极限参数为:-5O℃≤T≤7O℃;

湿度的极限参数为l%≤H≤99%;

温度的显示分度为0.1℃;湿度的显示分度为0.5%;芯片特点:

●低成本,大批量OEM设计

●精度2%,激光修正互换性至5%

●线性电压输出对应%RH

●低功耗设计:200μA驱动电流

●快速反应:15秒

●稳定性好、低漂移、抗化学腐蚀性能

●HIH-3610有许多性能指标,能性能指标见表3.5

3.4 单片机外围控制电路设计

在本系统中单片机的外围电路较多,可分为以下几部分:看门狗电路、系统电源、温湿度信号采集电路、执行机构电路LED显示电路、键盘输入及报警电路、与上位机通信的接口电路图等。

3.4.1电子狗电路

工控系统在运行时,通常都会遇到各种各样的现场干扰,抗干扰能力是衡量工控系统性能的一个重要指标。看门狗(Watchdog)电路是自行监测系统运行的重要保证,几乎所有的工控系统都包含看门狗电路。在8096系列单片机和增强型8051系列单片机中,该系统已经做在芯片内部,用户只要用软件开放它就可以,使用很方便。但目前工控系统仍在使用廉价的普通型8051系列单片机,则看门狗电路必须由用户自己建立。

看门狗电路一般有软件看门狗和硬件看门狗两种。软件看门狗不需外接硬件电路,但系统需要出让一个定时器资源,这在许多系统中很难办到,而且若系统软件运行不正常,可能导致看门狗系统也瘫痪。硬件看门狗是真正意义上的“程序运行监视器”,如计数型的看门狗电路通常由555多谐振荡器、计数器以及一些电阻、电容等组成,分立元件组成的系统电路较为复杂,运行不够可靠。

本设计电子狗电路采用单片机开关复位电路,开关复位电路包含了上点复位电路。其电路图如图3.6:

图3.6 开关复位电路

3.4.2电源电路

在本设计中主要用到+5V,+12V,15V。为得到所需电压,系统采用了电压转换芯片LM7815、LM7805和LM7812,三个芯片的输入分别取+19V、+23V和+12V,经转换后输出端输出分别为系统所需的+15V、+5V和+12V电压,电源电路图见图3.7.

图3.7 电源电路

3.4.3信号采集电路

1.温度信号采集

AD590的输出电流I=(273+T)μA(T为摄氏温度),因此量测的电压V为(273+T)μA310K= (2.73+T/100)V。为了将电压量测出来又需使输出电流I不分流出来,我们使用电压跟随器,其输出电压V2等于输入电压V。

图3.8 温度信号采集

由于一般电源供应较多零件后,电源是带杂讯的,因此我们使用齐纳二极管作为稳压零件,再利用可变电阻分压,其输出电压V1需调整至2.73V。接下来我们使用差动放大器其输出V0为(200K/10K)3(V2-V1)=T/10V。如果现在为摄氏28度,输出电压为1.4V,电路图见图3.8.

这个电路的主要作用是把温度传感器的感应信号经过放大处理后输出,关系是当环境温度是100°C时电压输出为5v。

2.湿度信号采集

图3.9为湿度信号采集图,在此处LM258起电压跟随作用,以与采集现场隔离和提高带负载能力。输出模拟电压信号OUT1信号送A/D转换器ADC0809。图中电容103即10000皮法。

图3.9 湿度信号采集

4. A/D转换电路

ADC0809是带有8位A/D转换器、8路多路开关以及微处理机兼容的控制逻辑的CMOS 组件。它是逐次逼近式A/D转换器,可以和单片机直接接口。

(一)ADC0809的内部逻辑结构见图3.10。

由图可知,ADC0809由一个8路模拟开关、一个地址锁存与译码器、一个A/D转换器和一个三态输出锁存器组成。多路开关可选通8个模拟通道,允许8路模拟量分时输入,共用A/D转换器进行转换。三态输出锁器用于锁存A/D转换完的数字量,当OE端为高电平时,才可以从三态输出锁存器取走转换完的数据。

温室大棚湿度控制系统

温室大棚湿度控制系统 ——加湿设备及除湿设备的选择依据及应用领域 1、前言 1.1、课题背景 设施农业是外来词汇,在我国也称“工厂化农业”,目前学术界和经济界还没有一个统一和权威的定义。一般来说,所谓设施农业是具有一定的设施、能在局部范围改善或创造出适宜的气象环境因素、为动植物生长发育提供良好的环境条件而进行有效生产的农业。具体地说,设施农业是指利用人工建造的设施,通过调节和控制局部范围内环境、气象因素,为作物生长提供最适宜的温度、湿度、光照、水和肥等环境条件,使作物处于最佳生长状态,从而获得高产优质的农产品。但随着经济的发展和科技的进步,高新技术在设施农业中的应用的趋势日趋明显。 1.2、国内外温室控制技术发展概况 1.2.1我国温室产业发展现状与发展趋势 我国是温室栽培起源最早的国家,在2000多年前就已经能利用保护设施(温室的雏形)栽培多种蔬菜,至20世纪60年代,中国的设施农业始终徘徊在小规模、低水平、发展速度缓慢的状态,70年代初期地膜覆盖技术引入中国,对保温保墒起到一定的作用。随着经济的发展和科技的进步,70~80年代,相继出现了塑料大棚和日光温室。90年代开始,中国设施农业逐步向规模化、集约化和科学化方向发展,技术水平有了大幅度提高。随着近年来国家相关科研项目的启动,在学习借鉴、吸收消化国外先进技术成果的基础上,中国的设施农业有了较快发展,设施面积和设施水平不断提高。近代温室的发展经历了改良型日光温室、大型玻璃温室和现代化温室三个阶段,但由于各地区生产状况、经济条件和利用目的的差异,至今各阶段不同类型的温室依然并存。 我国在“九五”、“十五”期间,在科技部领导和组织下,实施了“工厂化高效农业研究与示范”项目,利用引进的现代化温室设备及配套技术,通过消化吸收与技术创新,进行了品 CO等环境因素综合调控技术的研究与种选育、设施栽培、配套设备及温室中温度、湿度和 2

基于PLC的温室控制系统的设计开题报告

郑州科技学院毕业设计(论文)开题报告

年代。先是采用模拟式的组合仪表,采集现场信息并进行指示、记录和控制。80年代代末开始出现了分布式控制系统。目前正开发和研制计算机数据采集控制系统的多因子综合控制系统。现在世界各国的温室控制技术发展很快,一些国家在实现自动化的基础上正向着完全自动化无人化的方向发展。 目前,一些经济发达的国家和地区已经研制并实现计算机自动化控制的现代高科技温室,并形成了令人惊险的植物工厂。而我国的温室系统属于半开放系统,温室内环境控制水平较低,仍靠人工根据经验来管理。而且,国内的控制系统主要用于单因子控制,因而设施现代化水平低,对温室环境的调控能力差,产品的质量难以得到保证。正是这些塑料大棚和日光温室对于解决城乡人民的蔬菜供应发挥着主力军的作用。 3.温室控制系统研制与开发的意义 温室是植物栽培生产中必不可少的设施之一,温度是影响植物生长发育最重要的因子之一。它的作用是用来改变植物的生长环境,避免外界四季变化和恶劣气候对作物生长的不利影响,为植物生长创造适宜的良好条件。 虽然有些温室也安装有各种加热、通风和降温的设备,但其主要操作大多仍是由人工来完成的当温室面积较大或数量较多时,操作人员的劳动强度很大,而且也无法达到对温湿度的准确控制。本文介绍一种基于PLC和数字式温度传感器的温室控制系统。该系统实现了室内温度的自动测量和调节,大大降低了操作人员的劳动强度。 二、主要设计(研究)内容、设计(研究)思想、解决的关键问题、拟采用的技术方案及工作流程 1.研究内容: 温室的作用是用来改变植物的生长环境,避免外界四季变化和恶劣气候对作物生长的不利影响,为植物生长创造适宜的良好条件。温室一般以采光和覆盖材料作为主要结构材料,它可以在冬季或其他不适宜植物露地生长的季节栽培植物,从而达到对农作物调节产期、促进生长发育、防治病虫害及提高产量的目的。温室环境指的是作物在地面上的生长空间,它是由光照、温度、湿度、二氧化碳浓度等因素构成的。温室控制主要是控制温室内的温度、湿度、通风与光照。

农业温室大棚智能控制系统详解

随着温室大棚近年来的发展,农业智能温室大棚控制系统也被广泛的应用,该监控系统充分应用现代信息技术,集成软件、物联网技术、音视频技术、智能控制、3S技术、无线通信技术及专家智慧与知识,实现大棚控制各关键环节的信息化、标准化,是云计算、物联网、地理信息系统等多种信息技术在大棚控制中综合、的应用,实现更完备的信息化基础支撑、更透彻的农业信息感知、更集中的数据资源、更广泛的互联互通、更深入的智能控制、更贴心的公众服务。 【温室大棚控制系统作用】 (农业温室大棚智能控制系统构架-图例) 农业智能温室大棚控制系统可以实时远程获取温室大棚内部的空气温湿度、土壤水分温度、二氧化碳浓度、光照强度及视频图像、通过模型分析,自动控制温室湿帘风机、喷淋灌溉、内外遮阳、顶窗侧窗、加温补光等设备。同时,系统还可以通过手机、计算机等信息终端向管理者发送实时监测信息、

报警信息,以实现温室大棚智能化远程管理,充分发挥物联网技术在设施农业生产中的作用,保证温室大棚内环境适宜作物生长,实现精细化的管理,为作物的高产、生态、安全创造条件,帮助客户提率、降低成本、增加收益。 【温室大棚控制系统组成部分】 (农业温室大棚智能控制系统-图例) 一、智能控制 通过控制系统,可以对农业生产区域内各种设备运行条件进行设定,当传感器采集的实时数据结果超出设定的阈值时,系统会自动通过继电器控制设备或模拟输出模块对温室大棚自动化设备进行控制操作,如自动喷洒系统、自动换气系统等,确保温室内为植物生长适宜环境。 常用的现场设备包括灌溉设备、风机、水帘、遮阳板等,这些设备均可以通过信号线进行控制,服务

器发送的指令被转化成控制信号后即可实现远程启动/关闭现场设备的运转。 用户通过点击界面上的按钮即可完成启动/关闭现场设备的指令发送。 除了手工进行指令的发送之外,系统还能够根据检测到的环境指标进行自动控制现场设备的启动/关闭。用户可以自定义温湿度、光照、CO2浓度等指标的上限值、下限值,并定义当指标超过上限或者下限时,现场设备如何响应(启动/关闭);此外,用户可以设置触发后的设备工作时间。 建立手机系统,客户直接采用微信客户端就可以控制和查看实时数据,手机端具有手动启动、关闭电磁阀,水泵等设备功能。 二、视频监控 (农业温室大棚智能控制系统-图例) 通过在农业生产区域内安装高清摄像机置,对包括种植作物的生长情况、投入品使用情况、病虫害状况情况进行实时视频监控,实现现场无人职守情况下,种植者对作物生长状况的远程在线监控,农业专家远程在线病虫害作物图像信息获取,质量监督检验检疫部门及上主管部门对生产过程的有效监督和及时干预,以及信息技术管理人员对现场数据信息和图像信息的获取、备份和分析处理。

基于单片机的智能温室大棚控制系统

摘要 温室是现代农业生产所必需的基本设备,用它有效地控制温度、光照、湿度、二氧化碳浓度等是改变植物生长环境、为植物生长创造最佳条件、避免外界四季变化和恶劣气候对其影响的前提。本设计以STC89C52单片机为核心完成了对空气温度、土壤湿度、光照度进行数据的采集、处理、显示等系统的基本框图、工作原理和继电器控制的设计的工作。主要内容有:(1)通过单片双端集成温度传感器AD590采集实时温度。(2)通过湿度传感器HS1100采集实时湿度。(3)通过固态电化学性二氧化碳传感器TGS4160采集二氧化碳浓度。(4)判断采集到的参数值与设置值是否一致,并进行继电器控制。 通过以上设计可以对植物生长过程中的土壤湿度、环境温度、光照度以及二氧化碳浓度进行了实时地、连续地检测、直观地显示并进行自动地控制。克服了传统的人工测量方法不能进行连续测量的弊端,节省了工作量,并避免了人为的疏漏或错误造成的不必要的损失。 关键词:单片机温度传感器湿度传感器二氧化碳传感器

In this paper Greenhouse is essential for modern agriculture basic equipment, use it to effectively control, such as temperature, light, humidity, carbon dioxide concentration is to change the plant growth environment, create the best condition for plant growth, avoid the seasons change and the influence of bad weather. This design to STC89C52 single-chip microcomputer as the core to complete the air temperature, soil moisture, and light for data acquisition, processing and display system of the basic block diagram, working principle and the design of relay control work. Main contents are: (1) by monolithic integrated temperature sensor AD590 to collect real-time temperature. (2) by the humidity sensor HS1100 gathering real-time humidity. (3) through solid electric chemical carbon dioxide sensor TGS4160 collecting carbon dioxide concentrations. (4) determine whether collected parameter value and set value, and relay control. Through the above can be designed for plants to grow in the process of soil humidity, environment temperature, light and co2 concentration in real time, continuous detection, display visually and automatically control. Overcomes the traditional continuous measurement of the shortcomings of manual measurement method does not, and save the workload, and avoid the unnecessary loss caused by the omission or human error. Key words:SCM temperature sensor humidity sensor carbon dioxide sensor

智能温室大棚整体控制设计报告

智能温室大棚整体控制设计报告设计人员:

目录 一、智能温室大棚简介 (3) 二、智能温室大棚结构设计 (3) 一、温室结构设计 (3) 1.温室结构布局 (3) 2.温室覆盖材料 (3) 3.温室的通风 (4) 二、温室运行机构 (4) 1.电力系统 (4) 2.降温增湿系统 (4) 3.遮阳系统 (4) 4.增温系统 (4) 5.浇灌系统 (4) 三、智能温室大棚控制系统 (5) 一、控制系统的主要构成 (5) 1、传感器 (5) 2、控制器 (5) 3、执行器件 (6) 4、上位机 (6) 二、具体控制过程 (6)

一、智能温室大棚简介 智能温室也称作自动化温室,是指由计算机控制温室内的执行器件来改善温室内的环境,营造适合农作物生长的环境。温室内的主要系统主要有可移动天窗、遮阳系统、保温系统、升温系统、降温系统、浇灌系统、移动苗床等自动化设施系统。 智能温室的控制一般有信号采集系统、中心计算机和控制系统三大部分组成。 二、智能温室大棚结构设计 一、温室结构设计 首先应进行温室建筑布局、形式、尺寸等方面设计,应考虑结构、机械、覆盖与支撑材料、荷载、通风、保温、给排水以及环境调控设备等多种因素,同时还应该考虑本地的地理气候条件,充分利用自然资源,力图降低制造成本和运行费用。 其结构框架设计的基本特点 1.温室结构布局尽量采用南北栋方式建筑可使太阳直射光 平均日总量透过率最高。 2.温室覆盖材料温室材料透光率对温室的光照总量有着重 要影响,可采用浮法玻璃其透光率可达90%以上。亦可采用超 长塑料薄膜(阳光穿透率85%)为覆盖材料。但其耐用性不高。 PC塑料板在造价、使用年限、透光率等方面是一个不错的选

大棚温室自动控制系统毕业设计(精)

本设计为一闭环控制系统,由89C51单片机,A/D转换电路,温度检测电路,湿度检测电路、控制系统组成。温度检测电路将检测到的温度转换成电压,该模拟电压经ADC0809转换后,进入89C51单片机,单片机通过比较输入温度与设定温度来控制风扇或电炉驱动电路,当棚内温度在设定范围内时,单片机不对风扇或电炉发出动作。实现了对大棚里植物生长温度及土壤和空气湿度的检测,监控,并能对超过正常温度、湿度范围的状况进行实时处理,使大棚环境得到了良好的控制。 该设计还具有对温度的实时显示功能,对棚内环境温度的预设功能。 第一章概述 大棚、中棚及日光温室为我国主要的设施结构类型。其主要功能是采用电路来自动控制室内的温度,以利于植物的生长。温室的性能指标: 1.温室的透光性能 温室是采光建筑,因而透光率是评价温室透光性能的一项最基本指标。透光率是指透进温室内的光照量与室外光照量的百分比。温室透光率受温室透光覆盖材料透光性能和温室骨架阴影率的影响,而且随着不同季节太阳辐射角度的不同,温室的透光率也在随时变化。温室透光率的高低就成为作物生长和选择种植作物品种的直接影响因素。一般,连栋塑料温室在 50%~60%,玻璃温室的透光率在60%~70%,日光温室可达到70%以上。 2.温室的保温性能 加温耗能是温室冬季运行的主要障碍。提高温室的保温性能,降低能耗,是提高温室生产效益的最直接手段。温室的保温比是衡量温室保温性能的一项基本指标。温室保温比是指热阻较小的温室透光材料覆盖面积与热阻较大的温室围护结构覆盖面积同地面积之和的比。保温比越大,说明温室的保温性能越好。 3.温室的耐久性

温室建设必须要考虑其耐久性。温室耐久性受温室材料耐老化性能、温室主体结构的承载能力等因素的影响。透光材料的耐久性除了自身的强度外,还表现在材料透光率随着时间的延长而不断衰减,而透光率的衰减程度是影响透光材料使用寿命的决定性因素。一般钢结构温室使用寿命在15年以上。要求设计风、雪荷载用25年一遇最大荷载;竹木结构简易温室使用寿命5~10年,设计风、雪荷载用15年一遇最大荷载。 由于温室运行长期处于高温、高湿环境下,构件的表面防腐就成为影响温室使用寿命的重要因素之一。钢结构温室,受力主体结构一般采用薄壁型钢,自身抗腐蚀能力较差,在温室中采用必须用热浸镀锌表面防腐处 理,镀层厚度达到150~200微米以上,可保证15年的使用寿命。对于木结构或钢筋焊接桁架结构温室,必须保证每年作一次表面防腐处理。 第二章比例微积分控制原理 3.1 比例积分调节器(PD 比例调节器具有误差,为解决此问题,可引入积分(Inte6raI环节,其方块图见图4—33l 比例微分调节器对误差的任何变化,都产生一个控制作用比,阻止误差的变化。c变化越快,pd越大,输出校正量也越大。它有助于减少超调,克服振荡,使系统趋于稳定;同时加快系统的响应速度,减小调整时间,从而改善了系统的动态特性。它的缺点是抗干扰能力变差。 3.2 PID调节器 积分器能消除镕差,提高精度,但使系统的响应速度变慢、稳定性变环。微分器能增加稳定性,加快响应速度。比例器为基本环节。三者合用,选择适当的参数,可实现稳定的控制。 图4—37为PID调节器的方块图。 第三章自动控制系统的设计

为什么要做温室自动控制系统

为什么要做温室自动控制系统? 温室大棚种植大家都知道吧,可以说是常见的一种种植方式了,主要是因为随着社会的不断发展,人们生活水平普遍提高,对生活的品质的追求越来越高,反季节蔬菜、花卉种植等需求量也在不断地上升,因此也促进了温室大棚的广泛应用。而且随着这几年农业种植的快速发展,慢慢的自动化控制系统,受到越来越多种植者的关注,其中温室自动控制系统比较具有大棚种植自动化的代表性。 那么,在温室大棚中为什么要做温室自动控制系统呢? 传统的温室大棚种植模式已经不能满足现代化的需求,尤其是对温室大棚内环境监测时,农业工作人员不可能24小时时时刻刻的坚守在岗位上。为此,温室自动控制系统的应用,有效的解决了这一难题,温室中细微参数变化情况,农业工作人员通过电脑或者手机端都可以看得到,不用再天天钻棚就能了解大棚内的实时情况,既提高了生产效益,也提高温室大棚的种植效益。 温室自动控制系统是由浙江托普物联网专门研发的一种温室环境智能监测控制系统。温室自动控制系统可在线实时采集和记录监测点的温度、湿度、土壤酸碱度、二氧化碳浓度、光照度等各项参数情况,以数字、图形和图像等多种方式进行实时显示和记录存储,监测点可扩充多达几千个。并且当可设定各监控点的参数报警限值,当出现被监控点位数据异常时,温室自动控制系统可以自动发出报警信号。报警方式主要有现场多媒体声光报警、网络客户端报警、电话语音报警、手机短信息报警等。上传报警信息并进行本地及远程监测,系统可在不同的时刻通知不同的农业工作人员。 利用智慧和科技,提高农业种植效益一直以来是很多种植人员的一个目标和愿望,而温室自动控制系统在现代温室大棚种植中的应用,可以实现智能化的高效栽培,提高温室大棚的种植效益,帮助人们达成这种目标和愿望。托普的智能温室物联网系统,配备智慧云管理平台,从而实现了温室种植的综合化整体管理,不止提高了种植效益,还减少了人工成本。如今温室自动控制系统广泛应用于农业、园艺、畜牧业等领域。

农业大棚远程智能监控与PLC自动化控制系统项目解决方案

农业大棚远程智能监控与PLC自动化控制系统解决方案 目录 1 前言 (2) 1.1 智能农业远程智能监控系统的概念 (2) 1.2 实施农业远程智能监控系统的必要性 (2) 2 背景分析 (3) 3 大棚温湿度光照采集与自动化控制设计 (5) 3.1 系统设备组成 (9) 3.2 网络架构 (10) 3.3 采集原理 (11) 3.4 数据架构 (13) 3.5 设计原则 (14) 4 系统功能 (16) 4.1 功能架构 (16) 4.2 功能特点 (17) 4.2.1 数据采集 (17) 4.2.2 数据查询 (18) 4.2.3 数据分析与诊断 (18) 4.2.4 数据报警 (18) 4.2.5 视频监控 (19) 4.3 设备参数 (19) 4.3.1 数据采集与传输设备 (19) 4.3.2 温/湿度测试仪昆仑海岸 (20) 4.3.3 光照测试仪昆仑海岸 (25) 5 施工组织方案 (25) 5.1 施工方案介绍 (25) 5.2 施工计划安排 (26) 5.3 资源准备 (27) 5.4 施工内容 (27) 6 售后服务及承诺 (28) 7施工与验收时间表 (28)

1前言 1.1智能农业远程智能监控系统的概念 智能农业是采用比较先进、系统的人工设施,改善农作物生产环境,进行优质高效生产的一种农业生产方式,20世纪80年代以来,智能农业发展很快,特别是欧美、日本等一些发达国家,目前已经普遍采用计算机控制的大型工厂化设施,进行恒定条件下全年候生产,效益大为提高;在社会主义市场经济条件下,我国的智能农业以其较高的科技含量、市场取向的新机制、短平快的产销特点、效益显著的竞争力,取得了快速发展,改善了传统农业的生产方式、组织方式和运行机制,提高了农业科技含量和物质装备水平,成为现代农业重要的生产方式。 深圳市信立科技有限公司智能农业远程智能监控系统是指利用现代电子技术、移动网络通信技术、计算机及网络技术相结合,将农业生产最密切相关的空气的温度、湿度及土壤水分等数据通过各种传感器以无线ZigBee技术动态采集,并利用中国电信的4G,4G CDMA网络通讯技术,将数据及时传送到智能专家平台,使智能农业管理人员、农业专家通过手机或手持终端就可以及时掌握农作物的生长环境,及时发现农作物生长症结,及时采取控制措施,及时调度指挥,及时操作,达到最大限度的提高农作物生长环境,降低运营成本,提高生产产量,降低劳动量,增加收益。 1.2实施农业远程智能监控系统的必要性 江苏智能农业发展,已经初步形成了政府引导、社会支持、市场推动和农民

温室大棚控制系统-设计报告详解

哈尔滨师范大学 物联网感知综合课程设计报告 题目:温室大棚控制系统 年级: 2013级专业:物联网工程姓名:高英亮袁昊慈指导教师:李世明杜军

温室大棚控制系统 高英亮、袁昊慈 摘要中国农业的发展必须走现代化农业这条道路,随着国民经济的迅速增长,农业的研究和应用技术越来越受到重视,特别是温室大棚已经成为高效农业的一个重要组成部分。现代化农业生产中的重要一环就是对农业生产环境的一些重要参数进行检测和控制。利用物联网的传感器技术实时采集温室环境的空气温湿度、土壤水分和光照度等因素,单片机将数据进行分析处理做出合理的控制决策,控制执行器进行自动喷灌,实现了计算机自动控制,按需、按期和按量喷灌。系统主要由温室环境信息采集模块、单片机模块和控制模块组成,采集模块包括光照度传感器和空气温湿度传感器。该系统采用传感器技术和单片机相结合,由上位机和下位机( 都用单片机实现) 构成,采用接口进行通讯,实现温室大棚自动化控制。本系统环保节能、节水、省力,具有很好的实用性和推广性。 1 引言 中国农业的发展必须走现代化农业这条道路,随着国民经济的迅速增长,农业的研究和应用技术越来越受到重视,特别是温室大棚已经成为高效农业的一个重要组成部分。现代化农业生产中的重要一环就是对农业生产环境的一些重要参数进行检测和控制。例如:空气的温度、湿度、二氧化碳含量、土壤的含水量等。在农业种植问题中,温室环境与生物的生长、发育、能量交换密切相关,进行环境测控是实现温室生产管理自动化、科学化的基本保证,通过对监测数据的分析,结合作物生长发育规律,控制环境条件,使作物达到优质、高产、高效的栽培目的。以蔬菜大棚为代表的现代农业设施在现代化农业生产中发挥着巨大的作用。大棚内的温度、湿度与二氧化碳含量等参数,直接关系到蔬菜和水果的生长。国外的温室设施己经发展到比较完备的程度,并形成了一定的标准,但是价格非常昂贵,缺乏与我国气候特点相适应的测控软件。而当今大多数对大棚温度、湿度、二氧化碳含量的检测与控制都采用人工管理,这样不可避免的有测控精度低、劳动强度大及由于测控不及时等弊端,容易造成不可弥补的损失,结果不但大大增加了成本,浪费了人力资源,而且很难达到预期的效果。因此,为了实现高效农业生产的科学化并提高农业研究的准确性,推动我国农业的发展,必须大力发展农业设施与相应的农业工程,科学合理地调节大棚内温度、湿度以及二氧化碳的含量,使大棚内形成有利于蔬菜、水果生长的环境,是大棚蔬菜和水果早熟、优质、高效益的重要环节。 目前,随着蔬菜大棚的迅速增多,人们对其性能要求也越来越高,特别是为了提高生产效率,对大棚的自动化程度要求也越来越高。由于单片机及各种电子器件性价比的迅速提高,使得这种要求变为可能。

农业大棚远程智能监控与PLC自动化控制系统解决方案

农业大棚远程智能监控与P L C自动化控制系统解决方案 目录

1前言 1.1 智能农业远程智能监控系统的概念 智能农业是采用比较先进、系统的人工设施,改善农作物生产环境,进行优质高效生产的一种农业生产方式,20世纪80年代以来,智能农业发展很快,特别是欧美、日本等一些发达国家,目前已经普遍采用计算机控制的大型工厂化设施,进行恒定条件下全年候生产,效益大为提高;在社会主义市场经济条件下,我国的智能农业以其较高的科技含量、市场取向的新机制、短平快的产销特点、效益显着的竞争力,取得了快速发展,改善了传统农业的生产方式、组织方式和运行机制,提高了农业科技含量和物质装备水平,成为现代农业重要的生产方式。 深圳市信立科技有限公司智能农业远程智能监控系统是指利用现代电子技术、移动网络通信技术、计算机及网络技术相结合,将农业生产最密切相关的空气的温度、湿度及土壤水分等数据通过各种传感器以无线ZigBee技术动态采集,并利用中国电信的4G,4G CDMA网络通讯技术,将数据及时传送到智能专家平台,使智能农业管理人员、农业专家通过手机或手持终端就可以及时掌握农作物的生长环境,及时发现农作物生长症结,及时采取控制措施,及时调度指挥,及时操作,达到最大限度的提高农作物生长环境,

降低运营成本,提高生产产量,降低劳动量,增加收益。 1.2 实施农业远程智能监控系统的必要性 江苏智能农业发展,已经初步形成了政府引导、社会支持、市场推动和农民投入的良性运行机制,当前,全省发展智能农业,有丰富的资源、成熟的技术和广阔的市场,具备了进一步发展的基础,也蕴藏着巨大的潜力。 智能农业远程监控管理系统融合先进的信息技术、自动化控制、无线通讯技术等高新技术和农业科技专家为一体的综合平台,实现资金、技术、人才和信息的有效调配,改善农民的传统作业和手工操作,将产生巨大的经济和社会效益,推动农业和农村经济发展,成为江苏统筹城乡经济发展,建设现代化农业的重要内容和全面建设小康社会的强势产业。 2背景分析 江苏省在“十二五”期间加大智慧城市建设,将智能农业纳入六大智慧产业之一,突出显示了农业信息化在智慧城市建设中的重要地位。智慧农业建设较好地适应了市场经济发展要求和农业增效、农民增收的需要,取得了突破性进展,生产规模稳步扩大,突破了光热水气资源的限制,基本实现了淡季不淡、全年生产、保障供应;科技含量较快提高,无立柱日光温室、二氧化碳气肥、病虫害生物防治、无公害栽培、组织培养、工厂化育苗等先进技术得到推广应用,科技进步贡献率达到65%以上,成为种植业中科技含量较高的产业;智能农业以其病虫害相对较轻、用药量少、标准化程度高的优势,成为全省无公害蔬菜的骨干,质量安全水平明显提高。 随着自动化农业、精准农业、绿色农业的发展需求,迫切需要在农业领域引入物联网、4G等技术,进一步深化农业各环节的信息化水平,结合ZigBee技术、CDMA网络数据传输和传感器技术组成无线传感网络,通过ZigBee无线网络实时采集温室内温度、湿度信号以及光照、土壤湿度、CO2浓度、叶面湿度、露点温度等环境参数,自动开启或者关闭指定设备。可以根据用户需求,随时进行处理,为智能农业综合生态信息自动监测、对环境进行自动控制和智能化管理提供科学依

基于PLC的大棚温度自动控制系统设计

清华大学 毕业设计(论文) 题目基于PLC的大棚温度自动控制 系统设计 系(院)自动化系 专业电气工程与自动化班级2009级3班 学生姓名雷大锋 学号2009022321 指导教师王晓峰 职称副教授 二〇一三年六月二十日

独创声明 本人郑重声明:所呈交的毕业设计(论文),是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议。据我所知,除文中已经注明引用的内容外,本设计(论文)不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。 本声明的法律后果由本人承担。 作者签名: 年月日 毕业设计(论文)使用授权声明 本人完全了解滨州学院关于收集、保存、使用毕业设计(论文)的规定。 本人愿意按照学校要求提交学位论文的印刷本和电子版,同意学校保存学位论文的印刷本和电子版,或采用影印、数字化或其它复制手段保存设计(论文);同意学校在不以营利为目的的前提下,建立目录检索与阅览服务系统,公布设计(论文)的部分或全部内容,允许他人依法合理使用。 (保密论文在解密后遵守此规定) 作者签名: 年月日

基于PLC的大棚温度自动控制系统设计 摘要 大棚温度自动控制系统是一种为作物提供最好环境、避免各种棚内外环境变化对其影响的控制系统。该系统采用FX2N系列PLC作为下位机,PC机作为上位机,采用三菱D-720通用变频器,采用温度、湿度、光照传感器采集现场信号,这些模拟量经PLC转化为数字信号,把转化来的数据与设定值比较,PLC经处理后给出相应的控制信号使环流风机、遮阴帘、微雾加湿机等设备动作,大棚温度就能实现自动控制。这种技术不但实现了生产自动化,而且非常适合规模化生产,劳动生产率也得到了相应的提高,通过种植者对设定值的改变,可以实现对大棚内温度的自动调节。 关键词:大棚,温度控制,PLC

PLC温室大棚控制系统设计开题报告

滨州学院 毕业设计(论文)开题报告题目基于PLC温室大棚控制系统设计 系(院)自动化系年级2010级 专业电气自动化技术班级4班 学生姓名石瑞学号1023091219 指导教师王国明职称助教 滨州学院教务处 二〇一三年三月 开题报告填表说明 1.开题报告是毕业设计(论文)过程规范管理的重要环节,是培养学生严谨务实工作作风的重要手段,是学生进行毕业设计(论文)的工作方案,是学生进行毕业设计(论文)工作的依据。 2.学生选定毕业设计(论文)题目后,与指导教师进行充分讨论协商,对题意进行较为深入的了解,基本确定工作过程思路,并根据课题要求查阅、收集文献资料,进行毕业实习(社会调查、现场考察、实验室试验等),在此基础上进行开题报告。 3.课题的目的意义,应说明对某一学科发展的意义以及某些理论研究所带来的经济、社会效益等。 4.文献综述是开题报告的重要组成部分,是在广泛查阅国内外有关文献资料后,对与本人所承担课题研究有关方面已取得的成就及尚存的问题进行简要综述,并提出自己对一些问题的看法。 5.研究的内容,要具体写出在哪些方面开展研究,要突出重点,实事求是,所规定的内容经过努力在规定的时间内可以完成。 6.在开始工作前,学生应在指导教师帮助下确定并熟悉研究方法。 7.在研究过程中如要做社会调查、实验或在计算机上进行工作,应详细说明使用

的仪器设备、耗材及使用的时间及数量。 8.课题分阶段进度计划,应按研究内容分阶段落实具体时间、地点、工作内容和阶段成果等,以便于有计划地开展工作。 9.开题报告应在指导教师指导下进行填写,指导教师不能包办代替。 10.开题报告要按学生所在系规定的方式进行报告,经系主任批准后方可进行下

农业智能大棚控制溯源系统设计方案

农业智能大棚控制溯源系统设计方案

生态农业智能温室大棚监测、溯源及控制系统 设 计 方 案xxxxxxxx有限公司

目录 背景......................................................................错误!未定义书签。一:客户需求 ......................................................错误!未定义书签。二:系统结构及控制模式 ..................................错误!未定义书签。三:现场数据采集与控制功能...........................错误!未定义书签。四:监测软件数据平台 ......................................错误!未定义书签。五:功能应用 ......................................................错误!未定义书签。六:农产品溯源系统 ..........................................错误!未定义书签。 七、条码仓储管理系统(WMS) ...........................错误!未定义书签。 八、商品盘点 ......................................................错误!未定义书签。

背景 温室智能控制系统是利用环境数据与作物信息,指导用户进行正确的栽培管理。物联网温室环境监测系统可广泛应用于农业、园艺、畜牧业等领域,在需要特殊环境要求的场所实施监控和管理,为实现对生态作物的健康成长和及时调整栽培、管理等措施提供及时的科学的依据,同时实现监管自动化。 近年来,随着温室大棚化种植、工厂化育秧和设施栽培等农业生产技术的广泛应用,快速准确地环境参数的收集和分析就成为现实的需求,利用计算机技术对相应的农业气象参数进行采集,则一方面可及时了解作物生长的环境参数,另一方面也可根据采集的参数控制大棚环境的调节从而为农作物的生长提供适宜的生长环境。由于温室内的湿度、温度等环境条件不适合于普通PC 机工作,故这里选用单片机进行数据采集,而采集的数据可经过串口发射接收设备传送给上位PC 机进行分析处理。 一:客户需求 (1)智能温室大棚控制系统 随着国民经济的迅速发展,现代农业得到了长足的进步,全国各地根据需要普遍建设了日光温室、塑料大棚等为农作物创造出良好的生长环境。温室工程成为高效农业的重要组成。

大棚自动控制系统设计

摘要 本课题运用STC89C52单片机、DS-18B20 数字温度传感器、继电器和M4QA045电动机、ULN-2003A集成芯片、湿敏电阻,以及四位八段数码管等元器件,设计了温湿度报警电路、M4QA045电机驱动电路、电热器驱动电路,实现了温室大棚中温度和湿度的控制和报警系统,解决了温室大棚人工控制测试的温度及湿度误差大,且费时费力、效率低等问题。该系统运行可靠,成本低。系统通过对温室内的温度与湿度参量的采集,并根据获得参数实现对温度和湿度的自动调节,达到了温室大棚自动控制的目的。促进了农作物的生长,从而提高温室大棚的产量,带来很好的经济效益和社会效益。 关键词:STC89C52单片机、DS-18B20 数字温度传感器、ULN-2003A集成芯片、温室、自动控制、自动检测

目录第1章绪论 §1.1选题背景 §1.2选题的现实意义 第2章系统硬件电路的设计 §2.1系统硬件电路构成系统整体框图 §2.1.2系统整体电路图 §2.1.3系统工作原理 §2.2温度传感器的选择 §2.2.1 DS18B20简介 §2.2.2 DS18B20的性能特点 §2.3单片机的选择 §2.3.1单片机概述 §2.3.2 AT89C2051芯片的主要性能 §2.4 RS-485通信设计 §2.5小结 第3章系统软件的设计 §3.1系统主程序 §3.2系统部分子程序 §3.2.1 DS18B20初始化子程序 §3.2.2 DS18B20读子程序 第4章总结 参考文献 附录

第一章绪论 1.1选题背景 在人类的生活环境中,温湿度扮演着极其重要的角色。无论你生活在哪里,从事什么工作,无时无刻不在与温度和湿度打着交道。自18世纪工业革命以来,工业发展与是否能掌握温湿度有着密切的联系。在冶金、钢铁、石化、水泥、玻璃、医药等行业,可以说几乎80%的工业部门都不得不考虑着温湿度的因素。温湿度不但对于工业如此重要,在农业生产中温度的监测与控制也有着十分重要的意义。我国人多地少,人均占有耕地面积更少。因此,要改变这种局面,只靠增加耕地面积是不可能实现的,因此我们要另辟蹊径,想办法来提高单位亩产量。温室大棚技术就是其中一个好的方法。温室大棚就是建立一个模拟适合生物生长的气候条件,创造一个人工气象环境,来消除温度对生物生长的约束。而且,温室大棚能克服环境对生物生长的限制,能使不同的农作物在不适合生长的季节产出,使季节对农作物的生长不再产生过度影响,部分或完全摆脱了农作物对自然条件的依赖。由于温室大棚能带来可观的经济效益,所以温室大棚技术越来越普及,并且已成为农民增收的主要手段。 随着大棚技术的普及,温室大棚数量不断增多,温室大棚的温湿度控制便成为一个十分重要的课题。传统的温湿度控制是在温室大棚内部悬挂温度计和湿度计,通过读取温度值和湿度值了解实际温湿度,然后根据现有温湿度与额定温湿度进行比较,看温湿度是否过高或过低,然后进行相应的通风或者洒水。这些操作都是在人工情况下进行的,耗费了大量的人力物力。现在,随着国家经济的快速发展,农业产业规模的不断提高,农产品在大棚中培育的品种越来越多,对于数量较多的大棚,传统的温度控制措施就显现出很大的局限性。温室大棚的建设对温湿度检测与控制技术也提出了越来越高的要求。 今天,我们的生活环境和工作环境有越来越多称之为单片机的小电脑在为我们服务。单片机在工业控制、尖端武器、通信设备、信息处理、家用电器等各测控领域的应用中独占鳌头。时下,家用电器和办公设备的智能化、遥控化、模糊控制化已成为世界潮流,而这些高性能无一不是靠单片机来实现的。采用单片机来对温湿度进行控制,不仅具有控制方便、组态简单和灵活性大等优点,而且可以大幅度提高被控温湿度的技术指标,从而能够大大提高产品的质量和数量。单片机以其功能强、体积小、可靠性高、造价低和开发周期短等优点,成为自动化和各个测控领域中必不可少且广泛应用的器件,尤其在日常生活中也发挥越来越大的作用。因此,单片机对温湿度的控制问题是一个工农业生产中经常会遇到的问题。因此,本课题围绕基于单片机的温室大棚控制系统展开了应用研究工作。

温室自动控制系统设计方案

(此文档为word格式,下载后您可任意编辑修改!) 参赛题目:温室自动控制系统 队长:朱继田 队员:杨建成 陶文波

温室自动控制系统 摘要:(300字以内) 温度是一种环境参数,温度自动控制在工农业生产中具有非常重要的作用。半导体制冷器(TEC)是一种比较先进的制冷装置,因为其小型化、无噪声、无污染的特点,在各种温度控制领域得到了广泛的应用,因此研究半导体制冷器温度的测量方法和设计灵活精确的温度自动控制系统具有重要的意义。 文章介绍了一种温度自动控制系统,该系统采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,AT89C52低电压、高性能半导体制冷器等元件。单片机通过温度传感器获取当前温度,进而控制半导体制冷器工作。 一、方案设计和论证 本系统由四大部分组成:1、温度检测装置;2、控制系统;3、执行机构; 4、显示同步。在其中2部分控制系统中,由于ATMEL公司的AT89C52单片机具有高密度、非易失性、低电压、高性能等优点,且满足本系统和电子设计大赛的两方面要求,因此采用AT89C52作为微控制器,该部分方案设计将在文章第三、四部分详细介绍。以下主要针对温度检测系统及执行机构两方面的内容进行方案设计和论证。 模块1 温度检测装置方案设计 对于温度的自动控制系统而言,温度检测是整个系统设计的第一步。如何选择温度传感器是这块电路的关键,它是直接影响整个系统的性能与效果的关键因素之一。 方案:选用数字式温度传感器DS18B20 论证: 数字温度传感器DS18B20最大特点之一是采用了单总线的数据传输,直接输出数字信号。与传统的热敏电阻等测温元件相比,它能直接读出被测温度,并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。因此便于单片机处理及控制,节省硬件电路。该系统可以由数字温度计DS18B20和 AT89C52单片机直接构成的温度测量装置。不仅如此,DS18B20最小分辨率为0.0625℃,满足该题温度分辨率为0.1℃的要求,因此温度传感器选用DS18B20。 模块2 执行机构 对于温度的自动控制系统而言,温度执行机构是整个系统设计最核心的一步。温度执行机构的构建直接影响整个控制模块的工作方式和效率。 方案一:可控硅调功器电路 论证 可控硅调控器电路是利用双向可控硅管和加热丝串接在交流220V、50Hz回路。在给定周期T内,AT89C52只要改变可控硅管的接通时间便可改变加热丝功率,以达到调节温度的目的。显然可控硅在给定周期T的100%时间内接通时间的功率最大。显然,对功率的调节从而调节温度达不到制冷效果,即使是通过外加风扇来带走外部热量也达不到,故不用此方案。

物联网温室智能控制系统的应用案例

物联网温室智能控制系统的应用案例 在全国各地区,现代化的农场种引进物联网技术是时代发展的需要,也是现代科技农业的重要体现。在乌拉特中旗海流图镇设施农业科技示范园区的温室内,物联网温室智能控制系统正在在紧罗密鼓的安装中。 物联网温室智能控制系统通过基于物联网技术对温室内外监测数据的分析,结合作物生长发育规律,利用相关设备,对温室进行实时监控,实现对作物优质、高产、高效的栽培目的。该套智能监控系统具有自动开启关闭卷帘、补光、滴灌等功能,并凭借智能化、自动化控制技术,调节作物的最佳生长环境。种植户可通过电脑、手机等信息终端随时随地查看温室内实时环境监测、预警信息,实现对温室大棚的网络智能化远程管理,充分发挥物联网技术在设施农业生产中的作用。 在地区农业的发展中,引进物联网温室智能控制系统有利于建设该地区的科技农业设施,起到示范作用,也有利于提高地区设施农业生产的科技含量和综合生产水平,促进设施农业现代化发展。另外通过农产品的安全质量追溯,可以改善市民的食品安全条件,增强市民的购买信心,提升农产品的市场竞争力。目前来看,农业物联网技术是现代农业逐步实现智能化、精确化、信息化的有力保障,而随着种植规模的扩大和温室大棚的普及推广,物联网温室智能控制系统将会得到越来越多的应用。 对于规模化的温室种植而言,借助人工管理需要大量人手和时间,并且存在难以避免的 人工误差。物联网技术的应用,真正实现了农业信息数字化、农业生产自动化、农业管理智能化,使温室大棚种植可达到提高产量、改善品质、节省人力、降低人工误差、提高经济效益的目的,实现温室种植的高效和精准化管理。托普温室种植监控系统,改变了传统温室种植管理在技术上的桎梏状态。

智能大棚控制系统的设计与构想

龙源期刊网 https://www.doczj.com/doc/cc17390302.html, 智能大棚控制系统的设计与构想 作者:赵杨 来源:《乡村科技》2017年第18期 [摘要] 本文介绍一种智能大棚控制系统的设计与构想。其是将智能化控制系统应用到大 棚种植上,利用最先进的生物模拟技术,模拟出最适合棚内植物生长的环境,采用温度、湿度、CO2、光照度传感器等感知大棚的各项环境指标,并通过微机进行数据分析,由微机对棚内的水帘、风机、遮阳板等设施实施监控,从而改变大棚内部的生物生长环境。 [关键词] 智能大棚;控制系统;STC89C52 [中图分类号] TP273.5 [文献标识码] A [文章编号] 1674-7909(2017)18-85-2 1 智能大棚控制系统概述 智能大棚,可以使传统农作物的种植不再受自然环境、地域、气候等多方面不可控因素的影响,对推动农业生产、提高农业生产力有着积极的作用。智能大棚的控制系统是实现这一切自动化、高效化的关键。 相比存在诸多问题的传统人工控制大棚,运用控制系统的智能大棚有着显著的优势,如可以在准确测量大棚温湿度等多种环境数据,并根据所得到的环境数据进行自动调节,达到节省人力物力,提高生产资源的使用效率,降低生产成本等多个目的。而且智能控制系统运行可靠、成本低,有着极强的功能扩展性,其直接结果就是促进农作物的生长,提高产量,在为农民带来良好经济效益的同时带来显著的社会效益。 基于单片机的智能控制系统是通过一种微处理器进行系统控制,以单片机作为控制器以实现控制功能。该系统的特点是小体积、低成本、低功耗、扩展性强及适用范围广。本构想采用目前市场应用最为广泛的STC89C52单片机作为控制器,其被广泛应用于生产生活中,有着良好的口碑和成熟的设计。 2 智能大棚控制系统的优点 ①节省人工成本,降低因人为原因导致减产等不利后果的可能性。 ②采用智能化的控制系统,能够对环境条件的改变作出及时反馈,使得大棚内的环境参数始终处于合理的范围内。 ③提高生产资源的利用效率。 ④提高农作物的产量,增加种植者的收入。

相关主题
文本预览
相关文档 最新文档