当前位置:文档之家› 04电源的等效变换

04电源的等效变换

(完整版)电阻电路的等效变换习题及答案

第2章 习题与解答 2-1试求题2-1图所示各电路ab 端的等效电阻ab R 。 2Ω 3Ω (a) (b) 题2-1图 解:(a )14//(26//3)3ab R =++=Ω (b )4//(6//36//3)2ab R =+=Ω 2-2试求题2-2图所示各电路a b 、两点间的等效电阻ab R 。 a b 8Ω a b 8Ω (a) (b) 题2-2图 解:(a )3[(84)//6(15)]//108ab R =++++=Ω (b )[(4//48)//104]//94 1.510ab R =++++=Ω 2-3试计算题2-3图所示电路在开关K 打开和闭合两种状态时的等效电阻ab R 。

8Ω a b (a) (b) 题2-3图 解:(a )开关打开时(84)//43ab R =+=Ω 开关闭合时4//42ab R ==Ω (b )开关打开时(612)//(612)9ab R =++=Ω 开关闭合时6//126//128ab R =+=Ω 2-4试求题2-4图(a )所示电路的电流I 及题2-4图(b )所示电路的电压U 。 6Ω6Ω (a) (b) 题2-4图 解:(a )从左往右流过1Ω电阻的电流为 1I 21/(16//123//621/(142)3A =++++=)= 从上往下流过3Ω电阻的电流为36 I 32A 36 = ?=+ 从上往下流过12Ω电阻的电流为126 I 31A 126 = ?=+ 所以 312I I -I =1A = (b )从下往上流过6V 电压源的电流为 66 I 4A 1.5 = ==(1+2)//(1+2)

电源的等效变换练习题

电源的等效变换 一. 填空题 1.电源可分 和 . 2.实际电压源的电路模型由 与 二者联而成,我们把内阻R 0=0的电压源叫做 或 . 3.实际电流源的电路模型由 与 二者联而成。我们把内阻R 0=0的电压源叫做, 或 . 4.恒压源与恒流源 等效变换.只有 电压源与 电流源之间才能等效变换,条件是 ,公式是 和 .这里的所谓“等效”,是对 电路 而言的,对于 电路并不等效。 5.恒压源是输出 不随负载改变;恒流源的输出 不随负载改变。 6.理想电压源不允许 ,理想电流源不允许 ,否则可能引发事故。 二.选择题 1.理想电压源是内阻为( ) A .零 B.无穷大 C.任意值 2.实际电流源是恒流源与内阻( ) 的方式 A.串联 B.并联 C.混联 3.若一电压源U S =5V,r S =1Ω,则I S ,r S 为( ) A. 5A,1Ω B.1/5A,1 Ω C.1Ω, 5A. 4.电压源与电流源等效变换时应保证( ) A.电压源的正极端与电流源的电流流出端一致 B.电压源的正极端与电流源的电流流入端一致 C.电压源与电流源等效变换时不用考虑极性 5.多个电压源的串联可简化为( ) A.一个电压源 B.一个电流源 C.任何电源即可 三.判断题 1.电压源是恒压源与内阻串联的电路( ) 2.恒流源是没有内阻的理想电路模型( ) 3.电压源与电流源等效变换时不需要重要重要条件( ) 4.理想电压源与理想电流源可等效 变换( ) 5.电压源与电流源等效变换是对外电路等效( ) 四.计算题 1.如图电源U S =6V ,r 0=0.4Ω,当接上R=5.6Ω的负载电阻时,用电压源与电流源两种方法,计算负载电阻上流过电流的大小. 2.如图,E 1=17V,R 1=1Ω,E 2=34V .R 2=2Ω,R 3=5Ω.试用电压源与电流源等效变换的方法求流过R 的电流 R1 R2 E2E1

电阻电路的等效变换习题解答第2章

第二章(电阻电路的等效变换)习题解答 一、选择题 1.在图2—1所示电路中,电压源发出的功率为 B 。 A .4W ; B .3-W ; C .3W ; D .4-W 2.在图2—2所示电路中,电阻2R 增加时,电流I 将 A 。 A .增加; B .减小; C .不变; D .不能确定 3.在图2—3所示电路中,1I = D 。 A .5.0A ; B .1-A ; C .5.1A ; D .2A 4.对于图2—4所示电路,就外特性而言,则 D 。 A . a 、b 等效; B . a 、d 等效; C . a 、b 、c 、d 均等效; D . b 、c 等效 5.在图2—5所示电路中,N 为纯电阻网络,对于此电路,有 C 。 A .S S I U 、 都发出功率; B .S S I U 、都吸收功率; C .S I 发出功率,S U 不一定; D .S U 发出功率,S I 不一定 二、填空题 1. 图2—6(a )所示电路与图2—6(b )所示电路等效,则在图2—6(b )所示电路 中,6= S U V ,Ω=2R 。 2.图2—7(a )所示电路与图2—7(b )所示电路等效,则在图2—7(b )所示电路中, 1= S I A ,Ω=2R 。 3.在图2—8所示电路中,输入电阻Ω=2 ab R 。 4.在图2—9所示电路中,受控源发出的功率是30-W 。 5.在图2—10所示电路中,2A 电流源吸收的功率是20-W 。 三、计算题 1.对于图2—11所示电路,试求:1).电压1U 、2U ;2).各电源的功率, 并指出是 吸收还是发出。

电路原理习题答案第二章电阻电路的等效变换练习

第二章电阻电路的等效变换 等效变换”在电路理论中是很重要的概念,电路等效 变换的方法是电路问题分析中经常使用的方法。 所谓两个电路是互为等效的,是指(1)两个结构参数 不同的电路再端子上有相同的电压、电流关系,因而可以互代换的部分)中的电压、电流和功率。 相代换;(2)代换的效果是不改变外电路(或电路中未由此得出电路等效变换的条件是相互代换的两部分电 路具有相同的伏安特性。等效的对象是外接电路(或电路未变化部分)中的电压、电流和功率。等效变换的目的是简化电路,方便地求出需要求的结果。 深刻地理解“等效变换” 的思想,熟练掌握“等效变换” 的方法在电路分析中是重要的。 2-1 电路如图所示,已知。若:(1);(2);(3)。试求以上3 种情况下电压和电流。 解:(1)和为并联,其等效电阻, 则总电流分流有 2)当,有

3),有 2-2 电路如图所示,其中电阻、电压源和电流源均为已知,且为正值。求:(1)电压和电流;(2)若电阻增大,对哪些元件的电压、电流有影响?影响如何? 解:(1)对于和来说,其余部分的电路可以用电流源 等效代换,如题解图(a)所示。因此有 2)由于和电流源串接支路对其余电路来说可以等效为 个电流源,如题解图(b)所示。因此当增大,对及的电 流和端电压都没有影响。 但增大,上的电压增大,将影响电流源两端的电压, 因为 显然随的增大而增大。 注:任意电路元件与理想电流源串联,均可将其等效 为理想电压源,如本题中题解图(a)和(b)o但应该注意等效是对外部电路的等效。图(a)和图b) 中电流源两端 的电压就不等于原电路中电流源两端的电压。同时,任意电

电源的等效变换

第二章电阻电路的等效变换2 讲授板书 1、掌握电压源、电流源的串联和并联; 2、掌握实际电源的两种模型及其等效变换; 3、掌握输入电阻的概念及计算。 1、电压源、电流源的串联和并联 2、输入电阻的概念及计算 实际电源的两种模型及其等效变换 1.组织教学5分钟 3.讲授新课70分钟1)电源的串并联20 2)实际电源的等效变换25 3)输入电阻的计算352.复习旧课5分钟电阻的等效 4.巩固新课5分钟 5.布置作业5分钟

一、学时:2 二、班级:06电气工程(本)/06数控技术(本) 三、教学内容: [讲授新课]: 第二章电阻电路的等效变换 (电压源、电流源等效变换) §2-5电压源、电流源的串联和并联 电压源、电流源的串联和并联问题的分析是以电压源和电流源的定义及外特性为基础,结合电路等效的概念进行的。 1.理想电压源的串联和并联 (1)串联 图示为n个电压源的串联,根据KVL得总电压为: 注意:式中u sk的参考方向与u s的参考方向一致时, u sk在式中取“+”号,不一致时取“-”号。 根据电路等效的概念,可以用图(b)所示电压为Us的单个电压源等效替代图(a)中的n个串联的电压源。通过电压源的串联可以得到一个高的输出电压。 (2)并联 (a)(b) 图示为2个电压源的并联,根据KVL得: 上式说明只有电压相等且极性一致的电压源才能并联,此时并联电压源的对外 特性与单个电压源一样,根据电路等效概念,可以用(b)图的单个电压源替代(a)图的电压源并联电路。 注意: (1)不同值或不同极性的电压源是不允许串联的,否则违反KVL。 (2)电压源并联时,每个电压源中的电流是不确定的。 2.电压源与支路的串、并联等效 (1)串联 图(a)为2个电压源和电阻支路的串联,根据KVL得端口电压、电流关系为:

(完整版)电阻电路的等效变换习题及答案.docx

第 2 章 习题与解答 2- 1 试求题 2-1 图所示各电路 ab 端的等效电阻 R ab 。 1 4 3 a a 6 R ab 4 3 R ab 4 2 6 b 2 b 3 (a) (b) 题 2- 1 图 解:(a ) R ab 1 4 / /( 2 6 / /3) 3 (b ) R ab 4 / /(6 / /3 6 / /3) 2 2- 2 试求题 2-2 图所示各电路 a 、b 两点间的等效电阻 R ab 。 1 5 1.5 4 a 6 10 a 4 9 8 8 3 10 4 b b 4 4 (a) (b) 题 2- 2 图 解:(a ) R ab 3 [(8 4) / /6 (1 5)] / /10 8 (b ) R ab [(4 / /4 8) / /10 4] / /9 4 1.5 10 2- 3 试计算题 2-3 图所示电路在开关 K 打开和闭合两种状态时的等效电阻 R ab 。

4612 a a 48 b 6 K12 b K (a)(b) 题 2- 3 图 解:(a)开关打开时R ab(8 4) / /43 开关闭合时 R ab 4 / /42 (b)开关打开时R ab(6 12) / /(612) 9 开关闭合时 R ab 6 / /12 6 / /12 8 2- 4 试求题 2-4 图(a)所示电路的电流 I 及题 2- 4 图( b)所示电路的电压 U 。 13612 21V I 6V U 12621 (a)(b) 题2- 4 图 解:(a)从左往右流过 1电阻的电流为 I1 21/ (1 6 / /12 3 / /6) =21/ (1 4 2)3A 从上往下流过 3电阻的电流为I 3 6 32A 36 从上往下流过 12电阻的电流为 I12 6 3 1A 126 所以 I I 3 -I12 =1A (b)从下往上流过 6V 电压源的电流为I 66 4A ( 1+2) //( 1+2) 1.5

△形与Y形电阻电路等效变换

(a) △形电路 (b) Y形电路

△形和Y形电路之间的相互变换也应满足外部特性相同的原则,直观地说:就是必须使任意两对应端钮间的电阻相等。具体地说,就是当第三端钮断开时,两种电路中每一对相对应的端钮间的总电阻应当相等。例如上图(a)和(b)中,当端钮3断开时,两种电路中端钮1、2间的总电阻相等,即 R1+R2=R12(R23+R31)/(R12+R23+R31) (1) 同理有 R2+R3=R23(R31+R12)/(R12+R23+R31) (2) R3+R1=R31(R12+R23)/(R12+R23+R31) (3) 将△形变换成Y形,即已知△形电路的R12、R23、R31,求Y形电路的R1、R2、R3。为此,将式(1)、(2)、(3)相加后除以2,可得 R1+ R2+ R3=( R23R12+ R23R31+ R12R31)/(R12+R23+R31) (4) 从式(4)中分别减去式(1)、(2)和式(3),可得 R1=R12R31/(R12+R23+R31) (5) R2=R12R23/(R12+R23+R31) (6) R3=R23R31/(R12+R23+R31) (7) 以上三式就是△形电路变换为等效Y形电路的公式。三个公式可概括为 R Y=△形中相邻两电阻的乘积/△形中电阻之和 当R12=R23=R31=R△时,则

R1= R2= R3=1/3 R△ 将Y形变换成△形,即已知Y形电路的R1、R2、R3,求△形电路的R12、R23、R31。为此,将式(5)、(6)和式(7)两两相乘后再相加,经化简后可得 R1R2+ R2R3+ R3R1= R12R23R31/(R12+R23+R31) (8) 将式(8)分别除以式(7)、(5)和式(6),可得 R12=R1+R2+ R1R2/R3 (9) R23=R2+R3+ R2R3/R1 (10) R31=R3+R1+ R3R1/R2 (11) 以上三式就是Y形电路变换为等效△形电路的公式。三个公式可概括为 R△=Y形中两两电阻的乘积之和/Y形中对面的电阻 当R12=R23=R31=R Y时,则 R12= R23= R31=3 R Y 应当指出,上述等效变换公式仅适用于无源三端式电路。

电阻电路的等效变换

第2章电阻电路的等效变换 主要内容: 1.等效变换概念; 2.电阻的串联、并联、混联等效变换与 形连接、Y形连接之间的等效变换; 3.实际电源的两种等效模型及独立电源的串并联等效变换; 4.无源单口网络的等效电路; 学习要求: 本章内容以第一章阐述的元件特性、基尔霍夫定律为基础,等效变换的思想和几种等效变换对所有线性电路都具有普遍意义,在后面章节中都要用到。具体要求做到: 1.深刻理解电路等效变换概念; 2.掌握电阻不同连接方式下的等效变换方法; 3.掌握实际电源的两种等效模型及独立电源不同连接方式下的等效变换; 4.理解无源单口网络的等效电路,熟练掌握其等效电阻的求取方法; 本章重点: 1. 电路等效的概念; 2. 电阻的串、并联; 3. 实际电源的两种模型及其等效变换。 本章难点: 1. 等效变换的条件和等效变换的目的; 2. 含有受控源的一端口电阻网络的输入电阻的求解。 计划课时:6 引言 1.电阻电路 仅由电源和线性电阻构成的电路称为线性电阻电路(或简称电阻电路)。 2.分析方法 (1)欧姆定律和基尔霍夫定律是分析电阻电路的依据; (2)对简单电阻电路常采用等效变换的方法,也称化简的方法。 本章着重介绍等效变换的概念。等效变换的概念在电路理论中广泛应用。所谓等效变换,是指将电路中的某部分用另一种电路结构与元件参数代替后,不影响原电路中未作变换的任何一条支路中的电压和电流。在学习中首先弄清等效变换的概念是什么这个概念是根据什么引出的然后再研究各种具体情况下的等效变换方法。 电路等效变换概念 一、单口网络 1.单口网络:又称二端网络或一端口网络,它指向外引出两个端钮,且从一个端子流入的电流等于从另一端子流出的电流的任意复杂电路。 2.单口网络的种类:根据单口网络内部是否包含独立电源,可以将单口网络分为无源单口网络(用N表示)和有源单口网络(用P表示)。

2电阻电路的等效变换

2电阻电路的等效变换 本章重点:等效电路及网络的化简。实际电压源、电流源的等效互换 本章难点:输入电阻 《 第 四 讲 》 2.1 引言 线性电路: 时不变的线性元件 R,L,C(必须都是常数) 受控源的系数必须为常数 线性电阻电路: (纯电阻电路) 电路中的无源元件只有R, 没有L 和C 2.2 电路的等效变换 将电路中某一复杂部分用一个简单的电路替代,替代之后的电路要与原电路保持相等的效用.即两个伏安特性完全相同.(也称为对外等效) 2.3 电阻的串联和并联 电路元件中最基本的联接方式就是串联和并联。 一、电阻的串联 当元件与元件首尾相联时称其为串联,如下图(a)所示。串联电路的特点是流过各元件的电流为同一电流。 + U _ + U _ 目的: 使电路分析和计算更为方便.

根据KVL知,电阻串联电路的端口电压等于各电阻电压的叠加。即 称R为n个电阻串联时的等效电阻Req。 由上式可知,串联电路中各电阻上电压的大小与其电阻值的大小成正比。 电路吸收的总功率为 即电阻串联电路消耗的总功率等于各电阻消耗功率的总和。 二、电阻的并联 当n个电阻并联联接时,其电路如下图(c)所示。并联电路的特点是各元件上的电压相等,均为u。

根据KCL知: 电导G是n个电阻并联时的等效电导,又称为端口的输入电导。 分配到第k个电阻上的电流为 上式说明并联电路中各电阻上分配到的电流与其电导值的大小成正比。 电路吸收的总功率为 即电阻并联电路消耗的总功率等于各电阻消耗功率的总和。 电路如下图所示。求:(1)ab两端的等效电阻R ab。(2)cd两端的等效电阻R cd。

电路实验:实验三电源的等效变换

实验三项目名称:电源的等效变换 一、实验目的 1、验证电压源与电流源等效变换的条件。 2、掌握电源外特性的测试方法。 二、实验原理 一个实际的电源,就其外部特性而言,既可以看成是一个电压源,又可看成是一个电流源。若视为电压源,则可用一个理想的电压源E S与一个电阻R0相串联的组合来表示;若视为电流源,则可用一个理想电流源I S与一电导G0相并联来表示。若它们向同样大小的负载供出同样大小的电流和端电压,则称这两个电源是等效的,即具有同样的外特性。 四、实验内容 (A)(B) 图3-1 实验线路图 1、按照图3-1(A)接线,其中E S=6V,R0 = 1KΩ,改变电阻器R L的阻值将I和U记录于 2、按照图3-1(B)接线,其中I S = E S / R0=6V/1KΩ= 6mA,R0 = 1KΩ,改变电阻器R L的 阻值将I和U记录于表(2)中。 )

3、按照图3-1(A)接线,其中E S=6V,R0 = 200Ω,改变电阻器R L的阻值将I和U记录于 4、按照图3-1(B)接线,其中I S = E S / R0=6V/200Ω= 30mA,R0 = 200Ω,改变电阻器R L 的阻值将I和U记录于表(4)中。 五、实验注意事项 1.在测试电压源外特性时,不要忘记测空载时的电压值:在改变负载时,不容许负载 短路。测试电流源外特性时,不要忘记测短路时的电流值:在改变负载时,不容许负载开路。 2. 换接线路时,必须关闭电源开关。。 3. 直流仪表的接入应注意极性与量程。 六、实验总结及数据分析(留一面) 1.根据表(1)、表(2)、表(3)、表(4)的实验数据,绘出其电源的外特性。 2. 并且通过绘制其电源的外特性曲线相互重合,从而验证电源等效变换条件I S = E S / R0的正确性。 如有侵权请联系告知删除,感谢你们的配合!

第章电阻电路的等效变换习题及参考答案

精心整理 第2章习题与解答2-1试求题2-1图所示各电路ab 端的等效电阻ab R 。 (a) (b) 题2-1图 解:(a )14//(26//3)3ab R =++=Ω (b 2-2解:(a (b 2-3(a)(b) 解:(a (b 2-4(a) (b) 题2-4图 解:(a )从左往右流过1Ω电阻的电流为 从上往下流过3Ω电阻的电流为36I 32A 36 = ?=+ 从上往下流过12Ω电阻的电流为126I 31A 126=?=+ 所以312I I -I =1A =

(b )从下往上流过6V 电压源的电流为66I 4A 1.5 ===(1+2)//(1+2) 从上往下流过两条并联支路的电流分别为2A 所以U 22-12=2V =?? 2-5试求题2-5图所示各电路ab 端的等效电阻ab R ,其中121R R ==Ω。 (a) (b) 题2-5图 解:(a (b 即得 所以ab R 2-6解:(a 所以ab R (b 所以ab R 2-7U 及总电压ab U 题2-7图 解:将图中的Y 形变成△形,如图所示 所以(32.5//526//2)//2655510ab R =++=+=Ω 回到原图 已知128I I +=348I I +=1310840I I +=245240I I += 联立解得1 2.4I A =2 5.6I A =32I A =46I A = 所以121054U I I V =-+=

2-8试求题2-8图所示电路的输入电阻in R 。 (a)(b) 题2-8图 解:(a )如图所示,在电路端口加电压源U ,求I 所以21(1)in U R R R I μ==+- (b )如图所示,在电路端口加电压源U ,求I 12R R U 2-(b 2-6 2-题2-11图 解:先化简电路,如图所示 43Ω所以有41(2933 i i +-=3i A = 2-12题2-12图所示电路中全部电阻均为1Ω,试求电路中的电流i 。

电源等效变换教案

授课班级计算机专业计算机授课教师 授课时间编号课时课时使用教具多媒体 授课目标能力目标 知识目标 1、熟知两种电源 1、掌握两种电源的等效变换 2、能灵活运用两种电源的等效变换求解复杂电路情感目标 教学重点知识目标1、2、3 教学难点运用两种电源的等效变换求解复杂电路学情分析 课外作业 教学后记

授课过程 教学内容 教师活动学生活动 时间 分配 复习提问 1、戴维宁定理的内容 2、利用戴维宁定理解题的步骤 新授课 两种电源模型的等效变换 一、电压源 通常所说的电压源一般是指理想电压源,其基本特性是其电动势(或两端电压)保持固定不变E或是一定的时间函数e(t),但电压源输出的电流却与外电路有关。 实际电压源是含有一定内阻r0的电压源。 二、电流源 通常所说的电流源一般是指理想电流源,其基本特性是所发出的电流固定不变(I s)或是一定的时间函数i s(t),但电流源的两端电压却与外电路有关。 实际电流源是含有一定内阻r S的电流源。 三、两种实 际电源模型 之间的等效 变换 实际电 源可用一个 理想电压源 E和一个电 阻r0串联的电路模型表示,其输出电压U与输出电流I之间关系为 U= E r0I 实际电源也可用一个理想电流源I S和一个电阻r S并联的电路模型表示,其输出电压U与输出电流I之间关系为提问回答 图3-18电压源模型 图3-19电流源模型

U = r S I S - r S I 对外电路来说,实际电压源和实际电流源是相互等效的,等效变换条件是 r 0 = r S , E = r S I S 或 I S = E /r 0 例题 【例3-7】如图3-18所示的电路,已知电源电动势E = 6 V ,内阻r 0 = 0.2 Ω,当接上R = 5.8 Ω 负载时,分别用电压源模型和电流源模型计算负载消耗的功率和内阻消耗的功率。 解:(1) 用电压源模型计算: A 10=+=R r E I ,负载消耗的功率P L = I 2R = 5.8 W ,内 阻的功率P r = I 2r 0 = 0.2 W (2) 用电流源模型计算: 电流源的电流I S = E /r 0 = 30 A ,内阻r S = r 0 = 0.2 Ω 负载中的电流 A 1S S S =+= I R r r I ,负载消耗的功率 P L = I 2R = 5.8 W , 内阻中的电流 A 29S S =+= I R r R I r ,内阻 的功 率 P r = I r 2r 0 = 168.2 W 两种计算方法对负载是等效的,对电源内部是不等效的。 【例3-8】如图3-19所示的电路,已知:E 1 = 12 V ,E 2 = 6 V ,R 1 = 3 Ω,R 2 = 6 Ω,R 3 = 10 Ω,试应用电源等效变换法求电阻R 3中的电流。

电路 第2章习题 电阻电路的等效变换

2-1、求电路的入端电阻R AB 。 R = 2//2+4//6 AB 答案Ω 2-2、求各电路的入端电阻R AB。 (6//6+9)//10 2-3、求各电路的入端电阻R AB。 →解:(a)(3//6+1)//6=2Ω (b) 等效电路如图所示:即

2-4、试求下图所示电路中的电流I。 答案 2-5、求图示电路中的电流i。 答案:- 2-6、电路如图所示,求B点的电位V B。解:该电路图可以改变成如下图所示的形式

2-7、电路如图所示,求电流I和电压U AB。 解:原电路可以等效变换为如下电路 15 2-8、电路如图所示,求AB端的等效电阻R AB。 解:在AB端外加电源,使u、i对二端电路来说是关联参考方向。由图可得:得到 2-9、求图 (a) 和 (b) 所示两电路的输入电阻。 2-10、用电源等效变换法求图示电路中负载R L上的电压U。

2-11、化简为一个等效的电压源支路。 (a) (b) (c) (d)其中,,,,。 恒流源与恒压源的串联和并联两种情况 (1) (2) 2-12、化简图示电路。 (a) (b) (c) (d) 2-13、在图(a)所示电路中,已知,,,,试求支路中的电流。 (a) (b) (c) 解: A

2-14、在图示电路中,为一个实际的直流电源。当开关S断开时,电压表读数为;当开关S 闭合时,电流表读数为。试求该直流电源的电压源模型与电流源模型。 解:等效电路如图: ,

2-15、电路如图所示。已知Ω=61R ,Ω=1.02R ,98.0=α,Ω=53R ,V U 9.4=。求?=S U 解:因为电流控制的电流源3R I 与α串联,所以 3R U I =α,所以 A R U I 1598.09.43=?==α A I I I I 02.01)98.01()1(2=?-=-=-=αα =-+=+=21221)1(IR IR R I IR U S α[][]V I R R 002.611.0)98.01(6)1(21=??-+=-+α I α U U S I 2 I R 3 R 2 R 1 - - + +

天津理工电路习题及答案 第二章电阻电路的等效变换

第二章电阻电路的等效变换 1、重点和难点 (1) 等效与近似概念的认识 ①等效:同一物体在不同的场合(情况)下,其作用效果相同,称之为等效。在电路分析中有两种形式的等效:其一:站在电源立场,等效负载(电阻)。即求等效电阻。如图2.1所示。其二:站在负载(电阻)立场,等效电源。即求等效电源。如图2.2所示。图2.3所示的电路不是等效。 图2.1 站在电源立场等效负载 图2.2 站在负载(电阻)立场,等效电源。即求等效电源 等效的多样性:等效可以是非同类元件之间进行,如交流电的有效值。等效也可以是虚拟元件之间进行,如实际电压源与实际电流源之间等效,戴维南定理与诺顿定理之间等效,晶体三极管的小信号模型等。

图2.3 ②近似:在对一个复杂的电路进行分析时,影响该问题的因素较多,因此,忽略一些次要因素,而保留主要影响因素。即抓主要矛盾或矛盾的主要方面。称为近似处理。尤其在模拟电子技术课程中应用极为广泛。如图2.4所示。 图2.4 近似处理实例 (2) 电阻、理想电压源、理想电流源的组合 表2—1 单一类型元件的组合 元件类型组合类 型 组合电路图 等效结果 等效类型等效电路图两个元件组合N个元件组合 电阻的组合电阻的 串联 等效电阻2 1 R R R eq+ = N个电阻串联 的等效电阻 为: ∑ = = N k k eq R R 1 电阻的 并联 等效电阻 2 1 2 1 R R R R R eq + ? = N个电阻串联 的等效电阻 为: ∑ = = N k k eq R R 1 1 1 电压源的组合电压源 的串联 等效电压 源2 1S S eq U U U+ = 其等效电源为 N个串联电压 源的代数 和:∑ = = N k k eq U U 1

电阻电路的等效变换

第二章 电阻电路的等效变换 本章重点: 1、 等效变换的概念、串联和并联的等效电阻、分流及分压 2、 实际电源模型及等效变换 3、 一端口网络的输入电阻 本章难点: 求含源网络的等效电阻. 主要内容: 一、电路的等效变换 1. 等效的原则:端口具有相同的伏安特性。 2. 等效是对外电路等效,对内部不一定等效。 二、 电阻的串联和并联 1.串联: (1) 串联分压 u R R u eq k k = (2) 串联的等效电阻 ∑==n k k eq R R 1 2.电阻的并联 (1) 并联分流 i G G i eq k k = (2)并联的等效电导 ∑==n k k eq G G 1 三、电阻的星接与角接的等效变换 角变星: Y 形电阻= 三角形中各电阻之和三角形中相邻电阻之积 星变角: 星形中不相邻电阻 和 星形中电阻两两乘积之型电阻= ? 四、电压源和电流源的串并联 1.电压源支路串联 ∑==n k sk s u u 1 2.电流源支路并联 ∑==n k sk s i i 1

注意:电压源与电阻或电流源并联可以等效成一个电压源;电流源与电阻或电压源串联可以等效成一个电流源。 五、 实际电源的两种模型及其等效变换 1.实际电源的两种模型 电压源和电阻串联的组合 Ri u u s -= 电流源与电导并联的组合 Gu i i s -= 2.两种电源模型的等效变换 R u i i s sc s /== R G /1= 六、输入电阻 2.当二端网络(一端口)中不含有受控源时,由电阻的串并联和Y/△变换,求等效电阻。 3.当二端网络(一端口)中含有受控源时,在端口外加一个电压s u ,计算端口的电流i ,则 i u R s in = 试验的方法,测出或计算出端口的开路电压OC u 和短路电流SC i SC OC in i u R = 典型习题: 习题2-5 :在图2-23电路中, Ω=Ω=Ω===2,6,12,6,2432121R R R V u V u s s 。图2-24为经电源变换后的等效电路。 (1)、求等效电路的s i 和R ; (2)、根据等效电路求3R 中电流和消耗功率; (3)、分别在图2-23、图2-24中求出321,R R R 及消耗的功率;

2-2电源的等效变换

精心整理 精心整理 第二章 电阻电路的等效变换2 讲授板书 1、掌握电压源、电流源的串联和并联; 2、掌握实际电源的两种模型及其等效变换; 3、掌握输入电阻的概念及计算。 1、电压源、电流源的串联和并联 2、输入电阻的概念及计算 实际电源的两种模型及其等效变换

1.组织教学5分钟 3.讲授新课70分钟 1)电源的串并联20 2)实际电源的等效变换25 3)输入电阻的计算35 2.复习旧课5分钟 电阻的等效 4.巩固新课5分钟 5.布置作业5分钟 精心整理

一、学时:2 二、班级:06电气工程(本)/06数控技术(本) 三、教学内容: [讲授新课]: 第二章电阻电路的等效变换 精心整理

图(a)为2个电压源和电阻支路的串联,根据KVL得端口电压、电流关系为: 根据电路等效的概念,图(a)电路可以用图(b)所示电压为u s的单个电压源和电阻为R的单个电阻的串联组合等效替代图(a),其中 (2)并联 串联电路。 注意:(1)不同值或不同流向的电流源是不允许串联的,否则违反KCL。 (2)电流源串联时,每个电流源上的电压是不确定的。 4.电流源与支路的串、并联等效 1)并联 图(a)为2个电流源和电阻支路的并联,根据KCL得端口电压、电流关系为: 精心整理

精心整理 上式说明图(a)电路的对外特性与图(b)所示电流为i s 的单个电流源和电阻为R 的单个电阻的并联组合一样,因此,图(a)可以用图(b)等效替代,其中 (2)串联 图(a)为电流源和任意元件的串联,设外电路接电阻R , 和欧姆定律得端口电压、电流为: 电流源变换为电压源: 其中 需要注意的是:

电源的等效变换实验报告数据

篇一:实验一电压源与电流源的等效变换 电子信息测量基础实验报告 实验一电压源与电流源的等效变换 学号:132021520 姓名:XXX 班级:13通信X班 指导老师:X老师实验组号:5 实验地点:1实203 实验日期:20xx年5月18日 一、实验目的和要求: 1.掌握电源外特性的测试方法; 2.验证电压源与电流源等效变换的条件。 二、实验仪器: 一、可调直流稳压电源1台 二、直流恒流源1台 三、直流数字电压表1只 四、直流数字毫安表1只 五、电阻器1个 三、实验原理: 1、一个直流稳压电源在一定的电流范围内,具有很小的内阻,故在实用中,常将它视为一个理想的电压源,即其输出电压不随负载电流而变,其外特性,即其伏安特性U=f(I)是一条平行于I轴的直线。一个恒流源在使用中,在一定的电压范围内,可视为一个理想的电流源,即其输出电流不随负载的改变而改变。 2.一个实际的电压源(或电流源),其端电压(或输出电压)不可

能不随负载而变,因它具有一定的内组值。故在实验中,用一个小阻值的电阻(或大电阻)与稳压源(或恒流源)相串联(或并联)来模拟一个电压源(或电流源)的情况。 3.一个实际的电源,就其外部特性而言,既可以看成是一个电压源,又可以看成是一个电流源。若视为电压源,则可用一个理想的电压源ES与一个电导gO相并联的组合来表示,若它们向同样大小的负载供出同样大小的电流和端电压,则称这两个电源是等效的,即具有相同的外特性。 一个电压源与一个电流源等效变换条件为 电子信息测量基础实验报告 Is? 或 Es1 gO= RoRo Es? 如下图6-1所示: Is1 RO=

电源等效变换

西南石油大学实验报告 课程电路原理实验项目电源的等效变换成绩 专业年级计科11级学号1105010241 指导老师唐老师 姓名张念康同组人姓名实验日期2012.3.21 一、实验目的 1.通过实验了解什么是电流源及外特性。 2.掌握电流源和电压源进行等效变换的条件。 二、实验原理及说明 电流源是除电压源以外的另一种形式的电源。它可以产生一个电流提供给外电路。理想电流源可以向外电路提供一个恒值电流,而不论外电路电阻的大小如何。理想电流源具有两个基本性质:第一,它的电流是恒值的,或是一定的时间函数i(t),而与其端电压的大小无关;第二,理想电流源的端电压并不能由它 的本身决定,而是由与之相联接的外电路确定的。其伏安特性曲线如图2-1所示: 图2-1 图2-2 实际电流源当其端电压增加时,通过外电路的电流并非恒定值而是要减小。 端电压越高,电流下降得越多;反之,端电压越低通过外电路的电流越大,当端电压为零时,流过外电路的电流最大,为I s。实际电流源可以用一个理想电流源I 和一个内阻R s相并联的电路模型表示。实际电流源的电路模型及伏安特性如图 s 2-2所示。 某些器件的伏安特性具有近似理想电流源的性质,如硅光电池,晶体三极管输出特性等。本实验中的电流源是用晶体管来实现的。晶体三极管在共基极联接时,集电极电流I c和集电极与基极间的电压U CB的关系如图2-3所示。由图可见I = f(U CB) 关系曲线的平坦部分具有恒流特性,当U CB在一定范围变化时。集电 c 极电流I c近乎恒定值,可以近似地将其视为理想电流源。 图2-3 图2-4

电源的等效变换: 一个实际的电源,就其外部特性而言,既可以看成是一个电压源,也可以看成是一个电流源。原理证明如下:设有一个电压源和一个电流源分别与相同阻值的外电阻R 相接,如图2-4所示。对于电压源来说,电阻R 两端的电压U 和流过R 的电流I 间的关系可表示为: s s IR U U -= 以及s s R U U I -= (2--1、2) 对于电流源电路来说,电阻R 两端的电压U 和流过它的电流I 间的关系可表 示为: 以及 (2--3、4) 如果两种电源的参数满足以下关系: 以及 (2--5、6) 则电压源电路的两个表达式可以写成: 以及 可见表达式与电流源电路的表达式是完全相同的,也就是说在满足(2—5)式和(2—6)式的条件下,两种电源对外电路电阻R 是完全等效的。两种电源互相替换对外电路将不发生任何影响。 (2—5)式和(2—6)式为电源等效互换的条件。利用它可以很方便地把一个参数为Us 和Rs 的电压源变换为一个参数为I s = U s / Rs 和Rs 的等效电流源;反之,也可以很容易地把一个电流源转化成一个等效的电压源。如图2-5所示。 图2--5 三、实验内容及步骤 1.测试理想电流源的伏安特性 参考电路如图2-6(a )、2-6(b )所示。图中电源由双路直流稳压电源提供,调节电位器使I c =10mA,其中R s = 200Ω。按表(一)中的数值从小到大依次调节 I RL R0 + – E U + – 电压源 RL R0 U R0 U IS I + – 电流源

相关主题
相关文档 最新文档