当前位置:文档之家› 模板法合成多级孔分子筛

模板法合成多级孔分子筛

模板法合成多级孔分子筛
模板法合成多级孔分子筛

沸石分子筛如何制备合成

沸石分子筛及其复合材料新型合成方法研究进展 沸石分子筛作为离子交换材料、吸附剂、催化剂等,在化学工业、石油化工等领域发挥着重要作用。随着新材料领域和电子、信息等行业的不断发展,其使用范围已经跳出传统行业,在诸如新型异形分子筛吸附剂、催化剂和催化蒸馏元件、气体和液体分离膜、气体传感器、非线性光学材料、荧光材料、低介电常数材料和防腐材料等方面得到应用或具有潜在的应用前景。因此,沸石分子筛的制备方法也越来越受到人们的关注。 沸石分子筛传统的制备方法主要包括水热法、高温合成法、蒸汽相体系合成法等,但随着组合化学技术在材料领域应用的不断扩大,20世纪90年代末人们将组合化学的概念与沸石分子筛水热法结合,建立了组合水热法。将组合化学技术应用到沸石分子筛水热合成之中,加快了合成条件的筛选与优化。除此之外,气相转移和干胶法等新型制备方法也被提出并应用于实践,本文对这些方法进展进行简单概述。 1. 组合化学水热法 组合化学是一种能建立化学库的合成方法,其大的优势是能在短时间内合成大量的化合物,从而达到快速、高效合成与筛选的目的。水热法合成沸石分子筛及相关材料,要考察的因素比较多,包括多种反应原料的选择及配比、反应温度及反应时间等。使用组合化学法可以减轻实验工作量和劳动强度,大大提高工作效率。 ·石墨烯·分子筛·碳纳米管·黑磷·类石墨烯·纳米材料 江苏先丰纳米材料科技有限公司是国际上提供石墨烯产品很早的公司之一,现专注于石墨烯、

利用组合化学水热法制备沸石分子筛,设计了一种组合反应釜,即在圆形聚四氟乙烯片上钻100个小孔,然后在其上、下表面分别用不锈钢片夹紧,形成100个水热反应器,将不同配比的水热合成液分别置于各反应器中。在一定条件下,和传统水热法一样合成沸石分子筛。他们对Na2O-Al2O3-SiO2-H2O的四组分体系进行了考察,比较了使用传统的水热法和组合水热法的差别,证实了组合化学的高效性和快速筛选性。在此基础上,科学家对组合水热法进行了改进,设计出易于自动化X射线衍射测定的装置,并用这种方法对TS-1分子筛的合成配方进行了筛选。 组合化学水热法在分子筛的制备和无机材料合成方面已有一定的应用,但其应用还很有限。同时,要利用组合化学水热法,具备以下特点:(1)每次合成要产生出尽可能多的平行结果;(2)减少每组试样量;(3)增加合成与表征过程中的自动化程度;(4)实验过程与计算机充分结合,提高实验效率。 2. 气相转移法 2.1 气相转移法制备分子筛粉末 气相转移法可用于制备MFI、FER、MOR等结构的沸石分子筛。Zhang等利用气相转移法合成了ZnAPO-34和SAPO-34分子筛,证明水是气相法合成磷铝分子筛不可缺少的组分。后来,也有人利用气相法合成了AFI和AEI的磷铝分子筛,验证了水在合成过程中的作用。在n(P2O5)/n(Al2O3)=1时,分别用三乙胺和二正丙胺与水作为模板剂合成了AlPO4-5和AlPO4-11分子筛。 ·石墨烯·分子筛·碳纳米管·黑磷·类石墨烯·纳米材料 江苏先丰纳米材料科技有限公司是国际上提供石墨烯产品很早的公司之一,现专注于石墨烯、

分子筛的结构应用说明

1.分子筛的概念 分子筛是结晶型的硅铝酸盐,具有均匀的孔隙结构。分子筛中含有大量的结晶水,加热时可汽化除去,故又称沸石。自然界存在的常称沸石,人工合成的称为分子筛。它们的化学组成可表示为 Mx/n ?ZH2O 式中M是金属阳离子,n是它的价数,x是AlO2的分子数,y是SiO2分子数,Z是水分子数,因为AlO2带负电荷,金属阳离子的存在可使分子筛保持电中性。当金属离子的化合价n = 1时,M的原子数等于Al的原子数;若n = 2,M的原子数为Al原子数的一半。 常用的分子筛主要有:方钠型沸石,如A型分子筛;八面型沸石,如X-型,Y-型分子筛;丝光型沸石(-M型);高硅型沸石,如ZSM-5等。分子筛在各种不同的酸性催化剂中能够提供很高的活性和不寻常的选择性,且绝大多数反应是由分子筛的酸性引起的,也属于固体酸类。近20年来在工业上得到了广泛应用,尤其在炼油工业和石油化工中作为工业催化剂占有重要地位。 2.分子筛的结构特征(1)四个方面、三种层次: 分子筛的结构特征可以分为四个方面、三种不同的结构层次。第一个结构层次也就是最基本的结构单元硅氧四面体(SiO4)和铝氧四面体(AlO4),它们构成分子筛的骨架。相邻的四面体由氧桥连结成环。环是分子筛结构的第二个层次,按成环的氧原子数划分,有四元氧环、五元氧环、六元氧环、八元氧环、十元氧环和十二元氧环等。环是分子筛的通道孔口,对通过分子起着筛分作用。氧环通过氧桥相互联结,形成具有三维空间的多面体。各种各样的多面体是分子筛结构的第三个层次。多面体有中空的笼,笼是分子筛结构的重要特征。笼分为α笼,八面沸石笼,β笼和γ笼等。 (2)分子筛的笼: α笼:是A型分子筛骨架结构的主要孔穴,它是由12个四元环,8个六元环及6个八元环组成的二十六面体。笼的平均孔径为1.14nm,空腔体积为7603。α笼的最大窗孔为八元环,孔径0.41nm。 八面沸石笼:是构成X-型和Y-型分子筛骨架的主要孔穴,由18个四元环、4个六元环和4个十二元环组成的二十六面体,笼的平均孔径为1.25nm,空腔体积为8503。最大孔窗为十二元环,孔径0.74nm。八面沸石笼也称超笼。 β笼:主要用于构成A型、X-型和Y型分子筛的骨架结构,是最重要的一种孔穴,它的形状宛如有关削顶的正八面体,空腔体积为1603,窗口孔径为约0.66nm,只允许NH3、H2O等尺寸较小的分子进入。 此外还有六方柱笼和γ笼,这两种笼体积较小,一般分子进不到笼里去。 不同结构的笼再通过氧桥互相联结形成各种不同结构的分子筛,主要有A-型、X型和Y型。(3)几种具有代表性的分子筛 A型分子筛 类似于NaCl的立方晶系结构。若将NaCl晶格中的Na+和Cl-全部换成β笼,并将相邻的β笼用γ笼联结起来就得到A-型分子筛的晶体结构。8个β笼联结后形成一个方钠石结构,如用γ笼做桥联结,就得到A-型分子筛结构。中心有一个大的α的笼。α笼之间通道有一个八元环窗口,其直径为4?,故称4A分子筛。若4A分子筛上70%的Na+为Ca2+交换,八元环可增至5?,对应的沸石称5A分子筛。反之,若70%的Na+为K+交换,八元环孔径缩小到3?,对应的沸石称3A分子筛。 X-型和Y-型分子筛 类似金刚石的密堆六方晶系结构。若以β笼为结构单元,取代金刚石的碳原子结点,且用六方柱笼将相邻的两个β笼联结,即用4个六方柱笼将5个β笼联结一起,其中一个β笼居

分子筛合成方法

有水热合成、水热转化和离子交换等法: ①水热合成法用于制取纯度较高的产品,以及合成自然界中不存在的分子筛。将含硅化合物(水玻璃、硅溶胶等)、含铝化合物(水合氧化铝、铝盐等)、碱(氢氧化钠、氢氧化钾等)和水按适当比例混合,在热压釜中加热一定时间,即析出分子筛晶体。合成过程可用下式表示: 工业生产流程中一般先合成Na-分子筛,如13X型与10X型分子筛的合成(见图)。在水热合成过程中添加某些添加剂可以改变最终产品的结构,如加入季胺盐可得到ZSM-5型分子筛。 分子筛 ②水热转化法在过量碱存在时,使固态铝硅酸盐水热转化成分子筛。所用原料有高岭土、膨润土、硅藻土等,也可用合成的硅铝凝胶颗粒。此法成本低,但产品纯度不及水热合成法。 ③离子交换法通常在水溶液中将Na-分子筛转变为含有所需阳离子的分子筛,

通式如下: 式中 Z-表示阴离子骨架,Me+表示需交换的阳离子,例如NH嬃、Ca2+、Mg2+、Zn2+等,原料通常为氯化物、硫酸盐、硝酸盐。溶液中不同性质的阳离子交换到分子筛上的难易程度不同,称为分子筛对阳离子的选择顺序,例如:13X型分子筛的选择顺序为Ag+、Cu2+、H+、Ba2+、Au3+、Th4+、Sr2+、Hg2+、Cd2+、Zn2+、Ni2+、Ca2+、Co2+、NH嬃、K+、Au2+、Na+、Mg2+、Li+。常用下列参数表示交换结果:交换度,即交换下来的Na+量占分子筛中原有Na+量的百分数;交换容量,为每100克分子筛中交换的阳离子毫克当量数;交换效率,表示溶液中阳离子交换到分子筛上的质量百分数。为了制取合适的分子筛催化剂,有时尚需将交换所得产物与其他组分调配,这些组分可能是其他催化活性组分、助催化剂、稀释剂或粘合剂等,调配好的物料经成型即可进行催化剂的活化。

多级孔沸石分子筛的制备与催化

多级孔沸石分子筛的制备与催化 当需要把大小不同的固体颗粒分开时,人们马上就会想到筛子。现在已经找到一类叫做分子筛的物质,它们可以将混合物中的分子按其大小加以筛分。分子筛又称沸石,它在自然界里就存在,但目前在工业上用的大多是人工合成的。在外观上,分子筛是粉末状的固体,有光泽,天然沸石有颜色,合成沸石一般呈白色。在化学结构上,分子筛是一种结晶型的硅铝酸盐,其晶体结构中具有许多空穴,空穴之间有孔道(又称窗口)相连,凡直径比孔径小的“瘦”分子可以通过窗口进入空穴,而直径大于孔径的“胖”分子就只能被挡在窗口外面“望筛兴叹”。 虽然分子筛主要是由氧化硅、氧化铝所组成,但是随着其中所含氧化硅与氧化铝比例的变化,和添加其它助剂的作用,它们可以构架组建成数目众多的、具有不同结构和性能特性的分子筛。不同类型的分子筛,它们的孔道形状和大小可以有很大差别。同一类型分子筛的孔径和结构,也可以有不同。按照国际纯粹和应用化学联合会(IUPAC)的定义,按照孔径大小可以将多孔材料分为三类:微孔(<2nm)、介孔(2~50nm)和大孔(>50nm)。微晶沸石,特别是硅铝酸盐沸石,以其均匀有序的微孔孔道(0.4~1.2nm)、丰富的酸性位、较大的比表面积、可交换的阳离子以及高的水热稳定性已被广泛地应用于吸附、分离、精细化工以及工业催化领域。

沸石作为一种绿色的非均相催化剂,目前超过90%的工业沸石已经应用到技术成熟的石化、炼油以及汽车尾气处理等行业。一方面,沸石较小的孔径在很多反应中提供了优异的择形性,丰富的L和B酸为催化反应提供了活性位,较大的比表面积有助于客体分子的吸附;另一方面,沸石较小的微孔尺寸严重阻碍了反应物的扩散和传质,因此在一些涉及大分子的催化反应中受到一定限制。为了解决这个问题,科研人员尝试合成孔径更大的催化材料。1992年,Mobile公司成功地合成出有序介孔材料,为制备介孔材料催化剂奠定了基础。它的出现突破了传统微孔沸石孔径对大分子的限制,很好地解决了分子扩散传质的问题,使其在大分子参与的催化反应中表现出一定的优势。尽管通过原位掺杂改性的方法可以进一步拓展介孔材料的应用,比如Cu掺杂在介孔Si材料中,可以制备无机的抗菌材料。但是由于介孔材料自身非晶化的骨架、较低的热稳定及水热稳定性、活性位点和酸性位的缺乏等,使 其在酸催化和高温反应中受到极大的限制。为了克服微孔沸石与介孔材料在催化领域所存在的问题,具有多级孔道结构沸石材料的研发成为备受关注的研究领域。 由于介孔材料的无定型孔壁的低水热稳定性和低酸性而严重地限制了其在催化反应中

中微双孔分子筛SBA_15的合成_罗劭娟

第25卷第6期化学反应工程与工艺Vol25,No6 2009年12月Chemical Reaction Engineering and Technology Dec.2009 文章编号:1001-7631(2009)06-0538-07 中微双孔分子筛SBA215的合成 罗劭娟 奚红霞 陈汇勇 李 忠 夏启斌 (华南理工大学化学与化工学院,广东广州 510640) 摘要:采用P123(PEO20PPO70PEO20)为模板剂,正硅酸乙酯(TEOS)为硅源试剂,在强酸溶液中采 用水热晶化法合成中微双孔分子筛SBA215,并考察模板剂浓度、反应温度,离子导向剂和共溶剂对中微 双孔分子筛SBA215的影响。结果表明:控制合成温度可以精确调控SBA215的介孔孔径;引入离子导向 剂后合成的SBA215具有更好的介孔有序性;加入共溶剂N,N2二甲基酰胺(DMF)会破坏SBA215孔道 的有序性,孔壁变薄,但可以提高分子筛的比表面积和孔容,大幅度提高孔径;采用乙醇后处理分子筛 SBA215有利于保持分子筛骨架。合成中微双孔分子筛SBA215的合适条件为P123,TEOS,NaCl,HCl 与H2O物质的量之比0.017∶1∶1.5∶9.86∶137,反应温度40℃,P123自组装反应时间4h,与硅源组 装老化时间24h,晶化温度100℃,晶化48h,在此条件下得到高质量的中微双孔分子筛SBA215对苯吸 附量接近1000mg/g。 关键词:中微双孔分子筛;水热晶化法;形貌;吸附 中图分类号:TQ424.25;O641 文献标识码:A 中微双孔分子筛具有微孔与中孔双重孔道体系,微孔结构的存在大大提高了分子筛的吸附性能,而中孔孔径分布狭窄且可调,有利于大分子的多级反应,因此可用于重油的催化裂化、水质净化[1]、汽车尾气处理[2],酶和蛋白质固定与分离[3,4]、药物控释[5]等领域,而且可作为选择性吸附材料,用于脱除挥发性有机化合物(VOCs)[2,6],此外,在新材料加工及合成领域中,SBA215亦可作为介孔炭材料[7],功能材料[8]以及传感器材料等[9]。赵东元等[10]在酸合成体系中利用双亲性非离子高分子表面活性剂为模板剂合成出不同于M41S类型的介孔材料SBA215。SBA215为高有序程度的平面六方相,500℃焙烧后得到多孔材料,也可以通过溶剂萃取除去聚合物模板剂。由于SBA215的介孔孔径较大,所有样品的低温氮气吸附等温线都含有H1迟滞环。S BA215的热稳定性高于900℃,在除去模板剂之后具有较高的热稳定性(耐高温)和水(冷水或热水)稳定性。SBA215分子筛的耐酸性和水热稳定性与介孔分子筛相比有所提高,但与沸石分子筛相比还有一定的差距,如何进一步提高S BA215的耐酸性和水热稳定性成为各国科学家研究的热点。国际著名的分子筛化学家Davis[11]指出,以组装为特征的多级孔分子筛材料的成功制备和多样化模式将在更多的领域具有广阔的应用前景。本研究考察了中微双孔分子筛S BA215合成条件,探索中微双孔分子筛S BA215合成的合适路线,为分子筛的多级组装和晶化孔壁提供基础。 1 实验部分 1.1 中微双孔分子筛 以三嵌段共聚物P123(PEO20PPO70PEO20,平均分子量为5800,Aldrich)为模板剂,正硅酸乙酯(TEOS)为硅源试剂,采用水热合成的方法制备中微双孔分子筛SBA215。合成步骤如下:称取一定量的P123放入锥形瓶中,加入25mL去离子水,在一定的温度下剧烈搅拌,依次缓慢加入 收稿日期:2009206219;修订日期:2009211217 作者简介:罗劭娟(1985-),女,硕士研究生。奚红霞(1968-),女,教授,通讯联系人。E2mail:cehxxi@https://www.doczj.com/doc/c917157571.html, 基金项目:国家自然科学基金(20536020;20876061);863计划(2006AA06A310)

分子筛孔径与吸附物质的类型

分子筛是一种具有立方晶格的硅铝酸盐化合物,主要由硅铝通过氧桥连接组成空旷的骨架结构,在结构中有很多孔径均匀的孔道和排列整齐、内表面积很大的空穴。此外还含有电价较低而离子半径较大的金属离子和化合态的水。由于水分子在加热后连续地失去,但晶体骨架结构不变,形成了许多大小相同的空腔,空腔又有许多直径相同的微孔相连,这些微小的孔穴直径大小均匀,能把比孔道直径小的分子吸附到孔穴的内部中来,而把比孔道大得分子排斥在外,因而能把形状直径大小不同的分子,极性程度不同的分子,沸点不同的分子,饱和程度不同的分子分离开来,即具有“筛分”分子的作用,故称为分子筛。 气体行业常用的分子筛型号; A型: 钾A(3A),钠A(4A),钙A(5A) X型: 钙X(10X),钠X(13X) Y型: ,钠Y,钙Y 分子筛吸湿能力极强,用于气体的纯化处理,保存时应避免直接暴露在空气中。存放时间较长并已经吸湿的分子筛使用前应进行再生。分子筛忌油和液态水。使用时应尽量避免与油及液态水接触。干燥器在8-12℃下工作,在加温至350℃下冲气再生。 其化学组成通式为: [M2(Ⅰ)M(Ⅱ)]O.Al2O3.nSiO2.mH2O式中M2(Ⅰ)和M(Ⅱ)分别为为一价和二价金属离子,多半是钠和钙,n称为沸石的硅铝比,硅主要来自于硅酸钠和硅胶,铝则来自于铝酸钠和Al(HO)3等,它们与氢氧化钠水溶液反应制得的胶体物,经干燥后便成沸石,一般n=2~10,m=0~9。

沸石的特点是具有分子筛的作用,它有均匀的孔径,如 3A、4A、 5A、10A细孔。有4A孔径的4A沸石可吸附甲烷、乙烷,而不吸附三个碳以上的正烷烃。它已广泛用于气体吸附分离、气体和液体干燥以及正异烷烃的分离。 3A分子筛 裂解气中一般含有400~700PPm的水份,这些水份在深冷分离操作时会结成冰,另外在高压和低温条件下,水还能与低碳烷烃(如: CH 4、C2H6及C3H8等)生成白色结晶的烃水合物。而冰与烃水合物的晶体均可导致辞管道及设备堵塞,以至造成停车。因此,石油裂解气在深冷分离之前必须进行深度脱水干燥,使裂解气中的水含量降低到小于5PPm(即其露点低于-60℃)。目前国内处公认并普通采用的最为理想的深度干燥吸附剂为3A沸石分子筛。 不吸附较大的烃类分子(如: C2H 6、C2H 4、C3H8及C3H6等),因而可以避免烯烃化合物在分子筛孔道内部结焦,从而延长吸附剂的使用寿命。 3A分子筛的孔径是3A,主要用于吸附水,不吸附直径大于3A的任何分子。 4A分子筛 吸附水,甲醇、乙醇、硫化氢、二氧化硫、二氧化碳、乙烯、丙烯,不吸附直径大于4A的任何分子(包括丙烷),对水的选择吸附性能高于任何其他分

9高效多级孔共结晶分子筛催化材料创制和工业应用-中国科学院院刊

院刊 81(1)特色、水平与突破点 针对我国“全球第四代新型环保农药”关键中间体 (吡啶碱)生产技术的空白以及我国对油品质量升级和 高品质清洁汽油生产技术的迫切需求,中科院大连化物 所发明了系列原创性共结晶分子筛材料,澄清了共结晶 分子筛结构、晶化机理和多级孔结构的构建等关键科学 问题。成功开发出系列高效多级孔共结晶分子筛催化剂 及成套技术,打破国外垄断,突破了制约行业发展的诸 多关键技术瓶颈:开发的醛氨合成吡啶共结晶分子筛 催化剂及成套技术,打破国外垄断,投产全球最大规 模吡啶装置在内的多套装置(图 1),使我国建成全球 最大的杂环类农药及医药中间体生产基地,依托该技 术,实施单位负责制定产品国家标准两项,行业标准两 项,引领和带动下游产业发展;开发的液化气芳构化、 低碳烃与轻芳烃烷基化生产高辛烷值清洁汽油(调和组 分)高效催化剂及技术,投产兰州石化、恒源石化多套 工业生产装置(图 2),技术经济指标优于同类技术, 为石油资源高效利用和我国紧缺的高品质清洁汽油生产 提供了新的技术路线。申请中国、国际 PCT 等发明专 利 26 件,已获授权 16 件(含中国台湾地区 2 件);获 中国专利优秀奖、中国产学研合作创新成果奖、辽宁省 科技进步一等奖等奖励。 (2)已形成的产值、规模和效益 实现了高效多级孔共结晶分子筛催化剂及成套技术 的规模化工业应用,推动了行业科技进步和核心竞争力 的大幅提升,为低碳烃资源高效利用、高品质清洁燃料 生产以及大宗关键化学品的生产提供了关键科技支撑,促进了石油和化学工业的可持续发展,近3 年实现产值超过 45 亿元,利税 10 余亿元,创造了重大的经济和社会效益。 9 高效多级孔共结晶分子筛催化材料创制和工业应用 图1 安徽国星全球最大规模吡啶装置图2 恒源石化高辛烷值汽油调和组分生产装置

微孔分子筛催化剂的制备及应用

2 银川能源学院 工业催化 学生姓名席坤 学号 1310140108 指导教师王伟 院系石油化工学院 专业班级能源化工1302班 微孔分子筛催化剂的制备及应用 (银川能源学院能源化工1302班1310140108 席坤) 摘要:微孔分子筛具有表面积大、水热稳定性高、微孔丰富均一、表面性质可调等性能,被广泛地用作催化剂。分子筛作为催化剂常应用在石油化工、有机中间体的合成和物质的分离中。本文主要是简述了一下微孔分子筛催化剂及对微孔分子筛的改进方法和分子

筛催化剂在不同反应中的应用。 关键词:催化剂;微孔;分子筛;应用 一、引言 分子筛是一种具有立方晶格的硅铝酸盐化合物,具有均匀的微孔结构,这些孔穴能把比其直径小的分子吸附到孔腔的内部,并对极性分子和饱和分子具有优先吸附能力,因而能把极性程度不同,饱和程度不同,分子大小不同及沸点不同的分子分离开来,即具有“筛”分子的作用,故称分子筛。根据形成的孔径的大小,国际纯粹与应用化学协会(IUPAC)定义:微孔(小于2nm),介孔(2~50nm),大孔(大于50nm)三类。自1756年,瑞典科学家 A.F.Cronstedt 在研究矿物时发现了最早的天然沸石分子筛到现在通过各种方法合成的新型分子筛,人们已经从结构,性质,作用原理等各个方面全面认识了分子筛。根据不同的需要合成具有不同功能的分子筛材料,不同种多性能的分子筛被越来越多的人研究[1]。因此分子筛也不再局限于由硅氧四面体和铝氧四面体组成的阴离子骨架硅铝酸盐体系 ,而是泛指一类具有规则孔结构的结晶无机固体。这些具有新型组成和结构的分子筛进一步扩大了微孔分子筛的应用和发展空间。分子筛作为催化剂特别具有活性高,选择性好,稳定性和抗毒能力强等优点。近年来,它作为一种化工新材料发展得很快,应用也日益广泛。特别是在石油的炼制和石油化工方面作为工业催化剂发挥了很重要的作用[2]。 二、微孔分子筛的合成方法[3] 传统的微孔分子筛合成方法有:水热体系合成法,非水体系合成法,蒸汽相体系合成法,干粉体系合成法,微波法,高温焙烧法,向导剂法等等。 1、水热体系合成法 又称水热晶化法,是将硅源、铝源、碱(有机碱和无机碱)和水按一定比例合,放入反应釜中,在一定温度下晶化而制备沸石晶体。通常低硅铝比沸石是在低温水热体系中合成的,而高硅铝比的沸石于高温水热体系中合成。 2、非水体系合成法 非水体系合成法于本世纪八十年代初期由Bibbq和Dale[19]开创。它不以水为溶剂,而代之以有机物作为溶剂进行沸石的合成。开辟了一条沸石合成的新途径,并为沸石的固相转变机理提供了有力的佐证。 3、蒸汽相体系合成法 蒸汽相体系合成法区别于水热体系合成法和非水体系合成法,蒸汽相体系合成法是

分子筛

分子筛的科学和工学 分子筛是少见的具有广泛应用领域的机能性物质,分子筛具有吸附作用,离子交换作用,催化作用,被广泛应用于化工和其他工程领域。 多孔材料的孔道大小分类:

分子筛的构造: Zeolite: 结晶型多孔质硅铝酸盐的总称。1756年从天然矿物中发现的 基本结构单位是四面体构造的(SiO 4)4-或者(AlO 4)5-单位(统称 TO 4) 。一个TO 4单位有四个顶点氧,这四个顶点氧分别和相邻的四 个TO 4单位的顶点氧共享,逐步连成三维结构,形成结晶。 这种结晶物质具有多孔性,孔道入口处直径为0.4-0.8nm .由于比孔道口小的分子可以进入孔道内,而比孔道口大的分子无法进入孔 道.所以这种物质具有筛分分子的作用,称为分子筛. 1.除Al 3+之外,3价或4价元素引入硅酸盐 的骨骼,可以形成和硅铝酸盐具有同样 结晶构造的金属硅酸盐. 2.组成为AlPO 4的与分子筛同样多孔构造 的磷铝酸盐多孔结晶体. 分子筛是硅铝酸盐特有的构造,其他多种氧化物可以构成同样 的结晶型多孔构造. 组成

一个TO 4单位有四个顶点氧,这四个顶点氧分别和相邻的四个TO 4 单位的 顶点氧共享,逐步连成三维结构,形成结晶。Tectosilicate: 网硅酸盐.SiO 2 以Al3+置换骨骼中的部分Si4+时, 骨架结构呈负电性,必须在结构中引入其他阳离子如Na+,H+, Ca2+等, 补足正电荷,组成为M n Al n Si1-n O2(M为1价阳离子). International Zeolite Association, IZA 分子筛或分子筛类似物的必要条件:形成敞开3维网络 体系的化合物,组成为AB n (n≈2), A成4根键,B成2根键,骨 骼密度在20.5(TO 4 单位)以下的物质. 骨骼密度:1nm3内T(含Si和Al)原子数总合. 骨骼密度在21以上的物质被称为致密网硅酸盐. 氧化物以外的物质也可以放在分子筛类似物的范畴.

最新分子筛的合成、表征及性能研究

分子筛的合成、表征及性能研究

设计型化学实验 分子筛的合成、表征及性能研究 dd

分子筛的合成、表征及性能研究 分子筛材料,广义上指结构中有规整而均匀的孔道,孔径为分子大小的数量级,它只允许直径比孔径小的分子进入,因此能将混合物中的分子按大小加以筛分;狭义上分子筛是结晶态的硅酸盐或硅铝酸盐,由硅氧四面体或铝氧四面体通过氧桥键相连而形成。 分子筛按骨架元素组成可分为硅铝类分子筛、磷铝类分子筛和骨架杂原子分子筛。按孔道大小划分,小于2 nm称为微孔分子筛,2~50 nm称为介孔分子筛,大于50 nm称为大孔分子筛。按照分子筛中硅铝比的不同,可以分为A 型(1.5~2.0) ,X 型(2.1~3.0),Y 型(3.1~6.0),丝光沸石(9~11),高硅型沸石(如Z S M-5) 等,其通式为:MO.Al2O3.xSiO2.yH2O,其中M代表K、Na、Ca等。商品分子筛常用前缀数码将晶体结构不同的分子筛加以分类,如3A 型、4A型、5A型分子筛等。4A型即孔径约为4A;含Na+的A型分子筛记作Na-A,若其中Na+被K+置换,孔径约为3A,即为3A型分子筛;如Na-A中有1/3以上的Na+被Ca2+置换,孔径约为5A,即为5A型分子筛。X型分子筛称为 13X(又称Na-X型)分子筛;用Ca2+交换13X分子筛中的Na+,形成孔径为9A的分子筛晶体,称为 10X(又称Ca-X型)分子筛。 A型分子筛结构,类似于NaCl的立方晶系结构,如将NaCl晶格中的Na+和Cl-全部换成β笼,并将相邻的β笼用γ笼联结起来,就会得到A型分子筛的晶体结构;X型和Y型分子筛结构类似于金刚石的密堆立方晶系结构,如以β笼这种结构单元取代金刚石的碳原子结点,且用六方柱笼将相邻的两个β笼联结,就得到了X和Y型分子筛结构;丝光沸石型分子筛结构,没有笼,是层状结构,结

分子筛分类及应用

狭义上讲,分子筛是结晶态的硅酸盐或硅铝酸盐,由硅氧四面体或铝氧四面体通过氧桥键相连而形成分子尺寸大小(通常为0.3~2.0 nm)的孔道和空腔体系,从而具有筛分分子的特性。然而随着分子筛合成与应用研究的深入,研究者发现了磷铝酸盐类分子筛,并且分子筛的骨架元素(硅或铝或磷)也可以由B、Ga、Fe、Cr、Ge、Ti、V、Mn、Co、Zn、Be和Cu等取代,其孔道和空腔的大小也可达到2 nm以上,因此分子筛按骨架元素组成可分为硅铝类分子筛、磷铝类分子筛和骨架杂原子分子筛;按孔道大小划分,孔道尺寸小于2 nm、2~50 nm和大于50 nm的分子筛分别称为微孔、介孔和大孔分子筛。由于具有较大的孔径,成为较大尺寸分子反应的良好载体,但介孔材料的孔壁为非晶态,致使其水热稳定性和热稳定性尚不能满足石油化工应用所需的苛刻条件。由于含有电价较低而离子半径较大的金属离子和化合态的水,水分子在加热后连续地失去,但晶体骨架结构不变,形成了许多大小相同的空腔,空腔又有许多直径相同的微孔相连,这些微小的孔穴直径大小均匀,能把比孔道直径小的分子吸附到孔穴的内部中来,而把比孔道大的分子排斥在外,因而能把形状直径大小不同的分子,极性程度不同的分子,沸点不同的分子,饱和程度不同的分子分离开来,即具有“筛分”分子的作用,故称为分子筛。目前分子筛在冶金,化工,电子,石油化工,天然气等工业中广泛使用。 常用分子筛 气体行业常用的分子筛型号; A型:钾A(3A),钠A(4A),钙A(5A), X型:钙X(10X),钠X(13X) Y型:,钠Y,钙Y 分子筛特点 分子筛吸湿能力极强,用于气体的纯化处理,保存时应避免直接暴露在空气中。存放时间较长并已经吸湿的分子筛使用前应进行再生。分子筛忌油和液态水。使用时应尽量避免与油及液态水接触。工业生产中干燥处理的气体有,空气,氢气,氧气,氮气,氩气等.用两只吸附干燥器并联,一只工作,同时另一只可以进行再生处理。相互交替工作和再生,以保证设备连续运行。干燥器在8-12℃下工作,在加温至350℃下冲气再生。不同规格的分子筛再生温度略有不同。分子筛对某些有机气相反应具有良好的催化作用。 又称泡沸石或沸石,是一种结晶型的铝硅酸盐,其晶体结构中有规整而均匀的孔道,孔径为分子大小的数量级,它只允许直径比孔径小的分子进入,因此能将混合物中的分子按大小加以筛分。故称分子筛。早在200多年前,B.克龙施泰特第一个把铝硅酸盐命名为泡沸石,化学组成通式为式中M 与n是金属离子及其价数;x是二氧化硅的分子数;y是水的分子数;p是铝的原子数;q是硅的原子数。分子筛在化学工业中作为固体吸附剂,被其吸附的物质可以解吸,分子筛用后可以再生。还用于气体和液体的干燥、纯化、分离和回收。20世纪60年代开始,在石油炼制工业中用作裂化催化剂,现在已开发多种适用于不同催化过程的分子筛催化剂。 分子筛种类 分子筛有天然沸石和合成沸石两种。①天然沸石大部分由火山凝灰岩和凝灰质沉积岩在海相或湖相环境中发生反应而形成。目前已发现有1000多种沸石矿,较为重要的有35种,常见的有斜发沸石、丝光沸石、毛沸石和菱沸石等。主要分布于美、日、法等国,中国也发现有大量丝光沸石和斜发沸石矿床,日本是天然沸石开采量最大的国家。②因天然沸石受资源限制,从20世纪50年代开始,大量采用合成沸石(见表)。商品分子筛常用前缀数码将晶体结构不同的分子筛加以分类,

分子筛催化剂及其作用机理

分子筛催化剂及其作用机理 1.分子筛的概念 2.分子筛是结晶型的硅铝酸盐,具有均匀的孔隙结构。分子筛中含有大量的结晶水,加热 时可汽化除去,故又称沸石。自然界存在的常称沸石,人工合成的称为分子筛。它们的化学组成可表示为 3.Mx/n[(AlO2)x?(SiO2)y] ?ZH2O 4.式中M是金属阳离子,n是它的价数,x是AlO2的分子数,y是SiO2分子数,Z是水分 子数,因为AlO2带负电荷,金属阳离子的存在可使分子筛保持电中性。当金属离子的化合价n = 1时,M的原子数等于Al的原子数;若n = 2,M的原子数为Al原子数的一半。 5.常用的分子筛主要有:方钠型沸石,如A型分子筛;八面型沸石,如X-型,Y-型分子筛; 丝光型沸石(-M型);高硅型沸石,如ZSM-5等。分子筛在各种不同的酸性催化剂中能够提供很高的活性和不寻常的选择性,且绝大多数反应是由分子筛的酸性引起的,也属于固体酸类。近20年来在工业上得到了广泛应用,尤其在炼油工业和石油化工中作为工业催化剂占有重要地位。 6. 2.分子筛的结构特征 7.(1)四个方面、三种层次: 8.分子筛的结构特征可以分为四个方面、三种不同的结构层次。第一个结构层次也就是最 基本的结构单元硅氧四面体(SiO4)和铝氧四面体(AlO4),它们构成分子筛的骨架。 相邻的四面体由氧桥连结成环。环是分子筛结构的第二个层次,按成环的氧原子数划分,有四元氧环、五元氧环、六元氧环、八元氧环、十元氧环和十二元氧环等。环是分子筛的通道孔口,对通过分子起着筛分作用。氧环通过氧桥相互联结,形成具有三维空间的多面体。各种各样的多面体是分子筛结构的第三个层次。多面体有中空的笼,笼是分子筛结构的重要特征。笼分为α笼,八面沸石笼,β笼和γ笼等。 9.(2)分子筛的笼: 10.α笼:是A型分子筛骨架结构的主要孔穴,它是由12个四元环,8个六元环及6个八元 环组成的二十六面体。笼的平均孔径为,空腔体积为760[?]3。α笼的最大窗孔为八元环,孔径。 11.八面沸石笼:是构成X-型和Y-型分子筛骨架的主要孔穴,由18个四元环、4个六元环 和4个十二元环组成的二十六面体,笼的平均孔径为,空腔体积为850[?]3。最大孔窗为十二元环,孔径。八面沸石笼也称超笼。 12.β笼:主要用于构成A型、X-型和Y型分子筛的骨架结构,是最重要的一种孔穴,它的 形状宛如有关削顶的正八面体,空腔体积为160[?]3,窗口孔径为约,只允许NH3、H2O 等尺寸较小的分子进入。 13.此外还有六方柱笼和γ笼,这两种笼体积较小,一般分子进不到笼里去。 14.不同结构的笼再通过氧桥互相联结形成各种不同结构的分子筛,主要有A-型、X型和Y 型。 15.(3)几种具有代表性的分子筛 16.A型分子筛 17.类似于NaCl的立方晶系结构。若将NaCl晶格中的Na+和Cl-全部换成β笼,并将相邻的 β笼用γ笼联结起来就得到A-型分子筛的晶体结构。8个β笼联结后形成一个方钠石结构,如用γ笼做桥联结,就得到A-型分子筛结构。中心有一个大的α的笼。α笼之间通道有一个八元环窗口,其直径为4?,故称4A分子筛。若4A分子筛上70%的Na+为Ca2+

相关主题
文本预览
相关文档 最新文档