当前位置:文档之家› 航空发动机润滑系统通用分析软件

航空发动机润滑系统通用分析软件

航空发动机润滑系统通用分析软件
航空发动机润滑系统通用分析软件

集中润滑系统的原理及维护审批稿

集中润滑系统的原理及 维护 YKK standardization office【 YKK5AB- YKK08- YKK2C- YKK18】

集中润滑系统的原理及维护 前言: 什么是润滑? ?理想状态下的润滑:在相互运动的接触表面之间形成一层油膜,使得两表面之间的直接摩擦(干摩擦)转变为油液内部分子间的摩擦(液体摩擦)?边界润滑:在两个滑动摩擦表面之间,由于润滑剂供应不充足,无法建立液体摩擦,只能依靠润滑剂中的极性分子在摩擦表面上形成一层极薄的(~μm)“绒毛”状油膜润滑。这层油膜能很牢固地吸附在金属的摩擦表面上。 这时,相互接触的不是摩擦表面本身(或有个别点直接接触),而是表面的油膜 ?润滑的定义:在相互运动的接触表面之间形成一层油膜,使得两表面之间的直接摩擦(干摩擦)转变为油液内部分子间的摩擦(液体摩擦)或油膜之间的摩擦 润滑的主要作用 ?减磨抗磨:使运动零件表面之间形成油膜接触,以减少磨损和功率损失?冷却降温:通过润滑油的循环带走热量,防止烧结 ?清洗清洁:利用循环润滑油冲洗零件表面,带走磨损剥落下来的金属细屑 ?密封作用:依靠油膜提高零件的密封效果。

?防锈防蚀:能吸附在零件表面,防止水、空气、酸性物质及有害气体与零件的接触。 设备润滑的重要意义 ?设备上几乎所有相对运动的接触表面都需要润滑,设备润滑是防止和延缓零件磨损和其他形式失效的重要手段之一 ?60%以上的设备故障是由润滑不良和油变质引起的 引言: 润滑工作一直是设备管理的重中之重,现代设备的机械故障大部分是由于润滑引起。集中润滑的基本概念是从一个配有润滑剂的油泵装置给各个摩擦副集中提供适量的润滑剂。由于现代机械制造技术的高速发展,人工加油已不能满足各种机械的需要,越来越多的集中润滑系统被运用到机械设备中并在提高设备可靠性、降低润滑劳动强度、减少润滑油量消耗方面起到关键作用; 集中润滑系统分类: 集中润滑系统总体可分为全损耗型系统、循环系统;循环系统属于专用系统,要求高,润滑点少;全损耗系统涵盖了机床润滑点的绝大部分。全损耗系统按供油方式分为单线阻尼系统、容积式系统、递进式润滑系统 单线阻尼系统特点: ? 1 节流式供油(利用流体阻力 分配润滑剂) ? 2 系统工作压力低(1bar 到 10bar)

航空发动机附件传动系统研究

成都理工大学工程技术学院毕业论文 航空发动机附件传动系统研究 作者姓名:vvvvvv 专业名称:机械工程及自动化 指导老师:xxxxx 讲师

摘要 现代航空发动机功率和附件转速日益提高,需要高转速的附件传动系统与之匹配。高转速的附件传动系统,不仅能够传递更大的功率,而且减轻发动机的重量,提高推重比。 首先,论文阐述了附件传动设计的基本方法,对航空附件传动系统的特点进行分析,研究了将起动传动系统与高转速附件传动系统联结成一个传动系统的结构设计方法,并阐明了实现这种设计的关键是高速斜撑超越离合器。论文分析了将起动传动系统与附件传动系统联结成一个传动系统的关键件——超越离合器的工作原理。滑油系统是航空发动机机械系统的重要组成部分。随着中国航空发动机的发展,对其滑油系统的研究逐步深入,在系统的设计原理“系统热分析”系统组成部件“润滑油”系统检测等几个方面正在从仿制走向自行研制的道路。对发动机滑油系统的发展现状进行了分类描述,总结了未来发动机研制滑油系统的发展方向。 关键词:航空发动机高速附件传动超越离合器润滑油系统

Abstract Modern aviation engine power and accessories speed increasing, need high speed matching accessories for transmission system. High speed transmission of attachment, not only can deliver more power, and reduce the weight of the engine, increase in esteem. First of all, the thesis expounds the attachment transmission design, the basic method to analyze the characteristics of aviation accessory drive system; Will start transmission system is studied with high speed accessory drive system connected into the structure of a drive system design method, and illustrates the key is to realize the design of high-speed sprang overrunning clutch. Papers will start transmission system are analyzed and the accessory drive system connected into a transmission key-module, overrunning clutch working principle; Lubricating oil system is an important part of mechanical aircraft engine! With the development of China's aviation engine, the lubricating oil system of research gradually thorough, the design principle of the system “system thermal analysis system" compo nents “lubricating oil" system test and so on several aspects are developed by from imitation to road! Development status of engine lubricating oil system are classified description, summarizes the development direction of engine lubricating oil system in the future。 Keywords: aero-engine, high-speed, Thehigh-speedtrans missionat tachment, Lubricating oil system

航空发动机燃油喷嘴实训和实验台技术要求

https://www.doczj.com/doc/c017149758.html, 航空发动机燃油喷嘴实训和实验台技术要求 为完成我院教学大纲中关于发动机燃油系统实训内容的教学要求,使机电维修专业的学生实训更加接近实际工作要求。学生可以通过对航空发动机燃油喷嘴的检测试验过程,对发动机附件维修的整个过程有更加深入的了解。我们拟建设一个燃油喷嘴实验台,该实验台的技术要求详述如下: 1、总体设计要求 拟以三种型号发动机的燃油喷嘴作为实训和实验的附件,型号分别为CFM56-3发动机、涡喷6发动机和斯贝515发动机。采用航空煤油为实验用油液,模拟真实的燃油喷射过程,通过检测固定工况下燃油喷嘴的喷射角度来说明喷嘴的检测是否合格。发动机燃油喷嘴由我方提供。 实验台共分两个区域,一个是操作工作区,一个是实验观察区。操作区内包含操作面板和相应的显示仪表,以便控制和调节供油压力;实验观察区则包含固定工装和观察窗口,以便于学生们能够拆装和更换不同型号燃油喷嘴并清晰地观察到喷嘴的实验结果。故整体实验台需要采用不锈钢板材制作,观察窗口需要采用钢化透明玻璃制作,以保证观察效果和实验台寿命。显示仪表包括三个燃油喷嘴的供油压力表和一个流量表等。 依据发动机燃油喷嘴实际的工作情况,燃油喷嘴的供油压力分别为两种工况:15PSI,和120PSI,这两种工况下分别对应两种燃油喷射角度:64度和125度(针对CFM56机型)。故燃油供给压力应该可以在0到150PSI 之间可以调节,燃油供给流量也是可调的且最大供油量为10L/MIN.。 2、外观设计要求 外观设计以方便学生操作和观察为主,结实耐用和安全。 3、主要附件技术要求 供油泵:为齿轮泵,供油压力和流量都可以调节,最大供油压力为150PSI,最大供油量为10L/MIN。符合航空煤油为油液的特殊供压要求。 电动机:功率根据供油泵的型号配套。 供油管:不锈钢供油管。 压力表:最大显示压力为200 PSI即可 调压阀:全部采用不锈钢球阀。

航空活塞式发动机组成及工作原理

航空活塞式发动机组成及工作原理 航空活塞式发动机是利用汽油与空气混合,在密闭的容器(气缸)内燃烧,膨胀作功的机械。活塞式发动机必须带动螺旋桨,由螺旋桨产生推(拉)力。所以,作为飞机的动力装置时,发动机与螺旋桨是不能分割的。(一)活塞式发动机的主要组成

主要由气缸、活塞、连杆、曲轴、气门机构、螺旋桨减速器、机匣等组成。气缸是混合气(汽油和空气)进行燃烧的地方。气缸内容纳活塞作往复运动。气缸头上装有点燃混合气的电火花塞(俗称电嘴),以及进、排气门。发动机时气缸温度很高,所以气缸外壁上有许多散热片,用以扩大散热面积。气缸在发动机壳体(机匣)上的排列形式多为星形或V形。常见的星形发动机有5个、7个、9个、

14个、18个或24个气缸不等。在单缸容积相同的情况下,气缸数目越多发动机功率越大。活塞承受燃气压力在气缸内作往复运动,并通过连杆将这种运动转变成曲轴的旋转运动。连杆用来连接活塞和曲轴。曲轴是发动机输出功率的部件。曲轴转动时,通过减速器带动螺旋桨转动而产生拉力。除此而外,曲轴还要带动一些附件(如各种油泵、发电机等)。气门机构用来控制进气门、排气门定时打开和关

闭。 (二)活塞式发动机的原理 活塞顶部在曲轴旋转中心最远的位置叫上死点、最近的位置叫下死点、从上死点到下死点的距离叫活塞冲程。活塞式航空发动机大多是四冲程发动机,即一个气缸完成一个循环,活塞在气缸内要经过四个冲程,依次是进气冲程、压缩冲程、膨胀

冲程和排气冲程。发动机开始时,首先进入“进气冲程”,气缸头上的进气门打开,排气门关闭,活塞从上死点向下滑动到下死点为止,气缸内的容积逐渐增大,气压降低——低于外面的大气压。于是新鲜的汽油和空气的混合气体,通过打开的进气门被吸入气缸内。混合气体中汽油和空气的比例,一般是1比15即燃烧一公斤的汽油需要15公斤的空气。

稀油集中润滑系统

稀油集中润滑系统 第一节稀油集中润滑系统特点和主要技术参数 稀油集中润滑系统具有以下特点: 1)供油点多、面广,适应大型设备和生产线上多设备的润滑要求; 2)压力供油,供油量充足; 3)采用各种自动测控元件和系统,可保证供油的连续性,工作可靠; 4)循环供油润滑,可将摩擦副产生的热量带走,提高润滑效果; 5)通过循环过滤将摩擦副上的机械杂质去除,降低磨损延长设备使用寿命 6)润滑操作方便,减轻润滑操作的劳动强度,节省人力。 稀油集中润滑系统的标准化和系列化(JB/ZQ4586—86)。 图8—1为该系列中、小型典型稀油集中润滑系统结构图。

稀油集中润滑系统的表示方法为:XHZ— (A)

XHZ表示稀油集中润滑系统; 后面阿拉伯数字表示系统公称流量; 有字母“A”表示系统设有压力筒。 表8—1为稀油集中润滑系统系列的主要技术参数和性能. 应用:根据所润滑设备各项力能参数,计算出所需润滑油的流量,然后从表4—1中选择适当型号的标准润滑系统. 当主机设备有特殊要求,标准润滑系统不能满足需要时,可单独设计稀油集中润滑系统。 第二节稀油集中润滑系统元件和工作原理 稀油集中润滑系统元件:油箱,油泵,过滤系统、冷却器,给油器、各种控制阀、测量仪器仪表、控制器等元件.

一、主要元件的功能和特点 1)油箱 储存润滑油; 杂质沉淀,油水分离; 消除泡沫、冷却、加热; 油箱应具有足够的容积实现功能; 结构:滤网;隔板.防尘密封、人孔、泄油口。 油箱应具有足够的刚度,安装泵和一些阀类元件。 对于工作环境恶劣,污染严重的设备,为了保证润滑油中机械杂质充分地沉淀,油水充分地分离,可采用两个油箱交替使用的方法。 2)油泵 动力元件向系统提供一定压力和流量的润滑油.0.3~0.6 MPa低压范围。 动压润滑系统和静压润滑系统:工作压力,中压或高压.

航空发动机状态监控在试车台滑油系统上的应用研究

航空发动机状态监控在试车台滑油系统上的应用研究 作者:任忠朝 来源:《科技创新导报》2012年第10期 摘要:本文主要通过对航空发动机滑油系统的工作原理和常见的滑油系统故障的分析,以某型航空发动机为例,初步探讨状态监视系统在航空发动机试车台上的应用。 关键词:状态监视航空发动机试车台滑油系统 中图分类号:V23 文献标识码:A 文章编号:1674-098X(2012)04(a)-0081-01 航空发动机是飞机的心脏,其结构复杂,工作条件苛刻,同时受到各种外部因素的干扰。飞机发动机故障监控系统的设计就是为了保障及时有效的监控发动机性能和可靠性状态,诊断故障。通过监控来调整发动机性能,分析故障,最终达到提高发动机使用质量的目的。目前在国际上已经具有很多成熟的飞机发动机故障诊断的专家系统,如XMAN和JET-X等等。但在航空发动机试车台上应用状态监视系统却仍然较为少见。 发动机在工作过程中,滑油系统的工作状况不仅影响发动机的工作性能和寿命,而且滑油系统故障可以导致严重的飞行事故也屡见不鲜。本文主要以某型航空发动机为例,探讨状态监视系统在试车台滑油系统上的应用,分别从航空发动机滑油系统的工作原理,常见的滑油系统故障原因分析,试车台滑油系统状态监视系统的建立等三个方面进行探讨。 1 航空发动机滑油系统工作原理 滑油系统是保证航空发动机正常工作的一个重要组成部分,其主要功能是保障发动机摩擦件的润滑、散热.发动机内部有摩擦件的地方就有滑油,如转子轴承、齿轮、封严装置。滑油系统中的滑油具有循环使用的特点,因此在滑油油路中会携带大量发动机运动状态的信息,如磨损物的数量、形状、粒度成分等,它在一定程度上反映了发动机内部可能存在的故障隐患,如润滑油系统本身故障(管路阻塞、滑油泵卡滞、封严装置失效)和发动机杂音、振动、抱轴等故障。这些信息为监控与技术诊断提供了良好的条件。 2 航空发动机滑油系统常见故障 对于航空发动机滑油系统来说,主要常见故障主要有以下几种。 2.1 滑油消耗量过大

ZDRH-2000智能集中润滑系统说明书

目录 一、系统简介------------------------------------2 二、系统工作原理------------------------------3 三、系统主要部件的基本配置与技术 参数-----------------------------------------11 四、润滑系统工作制度-----------------------13 五、润滑系统操作规程-----------------------14 六、系统维护与注意事项--------------------22

一、系统简介 ZDRH-2000型智能集中润滑系统是我公司研制开发的新一代高新润滑技术产品(专利号:012402260.5),系国内首创。该润滑系统可根椐设备现场温度、环境等不同条件或设备各部位润滑要求的不同,而采用不同油脂,适应单台设备或多台设备的各种润滑要求。 润滑系统突出优点是在设备配置、工作原理、结构布置上都做了最大的改进,改变了以往以单线或双线为主的传统润滑方式,采用微电脑技术与可编程控制器相结合的方式,使设备润滑进入一个新的里程。系统中主控设备、高压电动油泵、电磁给油器、流量传感器、压力传感器等每一个部件都是经过精心研制并专为智能润滑系统所设计的。 设备采用SIEMENS S7-200系列可编程控制器作为主要控制系统,为润滑智能控制需求提供了最恰当的解决办法,可网络挂接与上位机计算机系统进行连接以实时监控,使得润滑状态一目了然;现场供油分配直接受可编程控制器的控制,供油量大小,供油循环时间的长短都由主控系统来完成;流量传感器实时检测每个润滑点的运行状态,如有故障及时报警,且能准确判断出故障点所在,便于操作工的维护与维修。操作员可根据设备各点润滑要求的不同,通过文本显示器远程调整供油参数,以适应烧结机的润滑要求。整个润滑系统的供油部分,通过公司最新研制的

航空发动机的一种新型主燃油泵设计

航空发动机的一种新型主燃油泵设计 离心泵是航空发动机燃油系统应用最多的增压泵,结构简单,体积小,质量轻,抗污染能力强,寿命长。具有同样优点的齿轮泵已成为采用最多的主燃油泵。若将离心泵和齿轮泵合为一体,设计成组合泵,既简化了传动机匣的设计,又减轻了质量,因此,这种组合泵的应用很有前途,尤其是在民航领域。但是,随着航空发动机推重比(或功质比)的不断增高,对泵的要求也在提篼,为此,在不断挖掘各种泵的潜力的同时,还要对新型燃油泵进行研究。 2航空发动机对主燃油泵的新要求寿命增压温升可靠性进口压力7Zm为满足上述要求,在泵的组合形式、设计计算、材料选择等方面均需有新的思路和创新。 3选型的创新众所周知,提高泵的转速是减轻泵的质量的主要途径,对现有广泛采用的离心-齿轮组合泵来说,离心增压泵提高转速的潜力很大,转速提高后,若要改善泵的吸人性能、提高汽蚀比转速,在其叶轮进口设置诱导轮即可。而齿轮泵则难以满足要求,其原因:一是齿轮栗在高速、高压、长寿命时值过大,滑动轴承设计困难,所以齿轮泵对转速的提高有一定的限制;二是在高流量比时,齿轮泵的大量回油将使低的温升目标难以实现。 经过俄罗斯和美国专家的共同研究试验,试制成功一种由带诱导轮的低压离心栗、变流量的高压离心泵和三级旋涡泵组合而成的新型

的主燃油泵,简称离心-高压变流量旋涡泵,如所示。这种泵的最大转速为27000r/min.为满足发动机对泵的新要求,这种组合泵中的离心泵在其设计思想上有着大胆的创新。 4.2航空发动机用离心泵的工作特点由于航空发动机有慢车、巡航、额定、最大(起飞)等工作状态,离心泵亦有与之相对应的不同的供油量,在这种情况下,传统设计把最大流量定为设计流量显然不合理,因为发动机在该状态下工作的时间短,高效率状态未充分显示出优越性。为了减少功率消耗,减轻泵的质量,应该选择发动机工作时间最长的巡航状态的流量作为设计流量。 4.3离心泵设计流量的确定发动机巡航状态的需油量约为最大流量的70%,这时离心泵的效率曲线如所示。在这种情况下,发动机最大状态时泵的效率还是比较高的,但由于设计流量是原来的70%,泵的体积就可明显减小,以利于泵的功质比的提高;而在发动机巡航状态,由于泵的效率的提高,则又可减少发动机的功率消耗。 4设计思想的创新设计思想的创新主要表现在离心泵设计点流量的选择与传统设计不同。 4.1民用泵的运行区间离心泵的特性曲线一般是指转速一定时,泵的扬程H(AP)、效率7、温升At、消耗的功率N与流量Q的关系曲线,心=/(<3)及JV=/(Q),如所示。设计理想的离心泵应该在设计流量Qd运行时,扬程达到设计要求Hd,同时效率要最高。为了扩大泵的使用范围,又不使效率过低,一般将设计流量的80% ~120%定为离心泵的运行区间。

航空发动机滑油系统常见故障分析

- 31 - 高 新 技 术 性,把轴承安装位设置为固定约束,由于巴哈赛车运行工况恶劣,有可能在某一时刻会发生3种极限同时出现的情况,因此将3种工况下的受力合并后统一乘以1.5倍的安全系数施加在轮毂上,以保证在各种工况下轮毂都能满足其使用要求。最后将显示选项设置为非平均值,优化目标为减重50 %,运行ANSYS 软件得到轮毂拓扑优化结果。 从3种极限工况下50 %拓扑减重图中可以看出,原设计下的轮毂在3种极限工况下的拓扑优化结果各不相同,在综合考虑3种极限工况下的应力图以及3种极限工况下的50 %拓扑减重图后发现,其需要减重的主要部位在于安装轮辋以及制动盘安装的法兰支撑臂中,因此,在安装轮辋的法兰支撑臂以及安装制动盘的法兰支撑臂处,采用数铣加工工艺进行轻量化处理以降低质量。 3.2 轮毂结构设计校核 为使最终优化完成的轮毂能满足其刚度、强度要求,再 次将最终设计的轮毂导入ANSYS Workbench 中进行静力学仿真,并利用3种工况下的载荷进行强度校核。轮毂受力在乘以安全系数后仿真出的最大应力均低于材料屈服强度320 MPa,应变也没有变大。优化结果见表1。 表1 优化结果对比表 优化前优化后变化率紧急制动工况下的最大应力/MPa25.67743.12259.54 %越过不平路面工况下的最大应力/MPa5.209817.12930.41 %急转向工况下的最大应力/MPa 22.61438.64558.51 %轮毂质量/kg 0.49 0.327 66.73 % 4 结语 该文分析得出轮毂法兰的最大应力制动盘安装位处,且均小于材料的许用应力,因此认为该轮毂满足静力强度的要求,其安装轮辋以及制动盘安装的法兰支撑臂中存在较大的冗余量。而后结合拓扑优化模块对轮毂进行了轻量化设计。最后对设计的轮毂进行了结构静力学分析的效验,结果显示该轮毂满足其设计的强度、轻量化及其使用要求。参考文献 [1]吴国瑞,陈晓鹏,张世琪.铝合金轮毂的优势与热处理[J].内燃机与配件,2018(23):105-106.[2]王新建,张蕊,耿杰,等.巴哈赛车转向节结构优化设计[J].天津职业技术师范大学学报,2018,28(3):42-46. [3]吴国瑞,陈晓鹏,张世琪.汽车铝合金轮毂铸造技术工艺应用研究[J].内燃机与配件,2018(24):81-82. 1 滑油系统基本组成1.1 滑油箱 滑油箱分为干槽式和湿槽式2种。干槽式滑油箱的特点是拥有独立的外部油箱。如果滑油存在于发动机内集油槽或集油池中,则称为湿槽式滑油箱。现在的涡扇发动机绝大部分是干槽式。加油可以是重力加油或压力加油。加油口应标注“Oil”和油箱容量。通过目视检查口盖可以清楚地看到滑油箱中的实际滑油存储量,为重力或压力加油提供依据。油箱应留有容量为10 %或0.5 gal 的膨胀空间。油箱中的传感器用来测量油箱滑油量,并在驾驶舱仪表上显示出来。 1.2 滑油冷却器 燃油/滑油热交换器的功能是使滑油在任何操作情况下都能保持足够的温度。不过燃油温必须保持在1.7 ℃~143 ℃以防燃油结冰和燃油气化。滑油绕着燃油流过的管路流动。滑油需要循环使用,因此必须将滑油的热量散掉。温度控制活门决定了滑油是否通过散热器。滑油温度低时,不需要散热,温度控制活门打开,滑油旁通,不进行热交换;滑油温 度高时,温度控制活门关闭,迫使滑油同燃油或者空气进行热交换。 1.3 滑油滤 在供油路和回油路上都装有滑油滤以保证滑油清洁。油滤有旁通活门,一旦油滤堵塞,旁通活门打开。用油滤压差电门监视油滤是否堵塞。当油滤前、后压差过大时,给驾驶舱信号,显示油滤堵塞。 1.4 其他各类部附件 磁屑探测器又称磁性堵塞,安装在回油路上探测金属粒子,判断发动机内部机件工作状态。其内部的永久磁铁和滤网吸附含铁及不含铁的粒子、碎块。磁屑探测器应定期拆下检查,在高倍放大镜下观察分析。磁屑探测器有自封活门,防止磁性堵塞拆下时滑油流出;接通驾驶舱告警系统,提供指示;油气分离器;为防止滑油箱、齿轮箱和轴承腔中的压力过高,在滑油系统中有通大气的通风口。在空气通往机外之前,空气中的油滴被油气分离器分离出来。通过油气分离器,去除气泡、蒸汽,防止供油中断或破坏油膜,减少滑油 航空发动机滑油系统常见故障分析 张 椋 (上海工程技术大学,上海 201600) 摘 要:该文运用可靠性维修理论对飞机滑油系统故障进行分析和研究,并详细叙述了处理故障的方法。飞机滑油系统故障分析的内容是运用AMM(飞机维护手册)手册对飞机滑油系统的工作原理、结构、内部系统以及飞机滑油系统故障原因进行分析研究。关键词:航空发动机;滑油系统;故障分析中图分类号:TP18 文献标志码:A

航空发动机原理复习题

发动机原理部分 进气道 1.进气道的功用: 在各种状态下, 将足够量的空气, 以最小的流动损失, 顺利地引入压气机; 2.涡轮发动机进气道功能 冲压恢复—尽可能多的恢复自由气流的总压并输入该压力到压气机。提供均匀的气流到压气机使压气机有效的工作.当压气机进口处的气流马赫数小于飞行马赫数时, 通过冲压压缩空气, 提高空气的压力 3.进气道类型: 亚音进气道:扩张型、收敛型;超音速:内压式、外压式、混合式 4.冲压比:进气道出口处的总压与远前方气流静压的比值∏i=P1*/P0*。 影响进气道冲压比的因素:流动损失、飞行速度、大气温度。 5.空气流量:单位时间流入进气道的空气质量称为空气流量。 影响因素:大气密度, 飞行速度、压气机的转速 压气机 6.压气机功用:对流过它的空气进行压缩,提高空气的压力。供给发动机工作时所需 要的压缩空气,也可以为坐舱增压、涡轮散热和其他发动机的起动提供压缩空气。7.压气机分类及其原理、特点和应用 (1)离心式压气机:空气在工作叶轮内沿远离叶轮旋转中心的方向流动. (2)轴流式压气机:空气在工作叶轮内基本沿发动机的轴线方向流动. (3)混合式压气机: 8.阻尼台和宽叶片功用 阻尼台:对于长叶片,为了避免发生危险的共振或颤振,在叶身中部带一个减振凸台。 宽弦叶片:大大改善叶片减振特性。与带减振凸台的窄弦风扇叶片比,具有流道面积大,喘振裕度宽,及效率高和减振性好的优点。 9.压气机喘振: 是气流沿压气机轴向发生的低频率、高振幅的气流振荡现象。 10.喘振的表现: 发动机声音由尖锐转为低沉,出现强烈机械振动. 压气机出口压力和流量大幅度波动,出现发动机熄火. 发动机进口处有明显的气流吞吐现象,并伴有放炮声. 11.造成喘振的原因 气流攻角过大,使气流在大多数叶片的叶背处发生分离。 燃烧室 12.燃烧室的功用及有几种基本类型 功用:用来将燃油中的化学能转变为热能,将压气机增压后的高压空气加热到涡轮前允许的温度,以便进入涡轮和排气装置内膨胀做功。 分类:单管(多个单管)、环管和环形三种基本类型 13.简述燃烧室的主要要求点火可靠、燃烧稳定、燃烧完全、燃烧室出口温度场符合要 求、压力损失小、尺寸小、重量轻、排气污染少 14.环形燃烧室的结构特点、优缺点 结构特点:火焰筒和壳体都是同心环形结构,无需联焰管 优点:与压气机配合获得最佳的气动设计,压力损失最小;空间利用率最高,迎风面积最小;可得到均匀的出口周向温度场;无需联焰管,点火时容易传焰。 缺点:调试时需要大型气源; 采用单个燃油喷嘴,燃油—空气匹配不够好; 火焰筒刚性差;

风力发电集中润滑系统(总体介绍)

您可 依赖的 技术
X

风力发电机组加装集中润滑系统的必要性
因:风力发电机受很高的机械载荷的制约,工作要求具 有绝对的可靠性,因缺乏润滑而导致的故障是可以避免 的。 所以:操作方、投资方和保险公司要求发电机具有确实 可靠的维护理念,其中包括自动润滑系统。
集中润滑系统应用于风力发电机 集中润滑系统适时、源源不断地给相关的润滑点 提供适量新鲜的润滑剂。这就是为什么只有自动 润滑系统才能为风力发电机提供可靠的润滑。
X

BEKA – wind
BEKA-wind 设计适用于各类型的风力发电机润滑; BEKA-wind 集中润滑系统的设计依风电机及其工作环境的不同而进行调整; BEKA-wind 所有的重要部件,如:轴承和调整装置都是定量精确、适时润滑; BEKA-wind 集中润滑系统可靠性高、耗油量小; BEKA-wind 集中润滑系统的部件可靠性已久经全球润滑行业的检验; BEKA 品牌在集中润滑行业已有超过80年的润滑经验。
X

风力发电机润滑方式:
单 线 润 滑 系 统
主轴承润滑
易于安装、操作和维护 使用全新的分配器UE 推荐采用单线系统,递进式系统进行润 滑.
电机部分润滑
可靠,灵活,按需要进行组合 易于监控
递 进 式 润 滑 系 统
推荐采用多线系统、单线系统和递进式系 统进行润滑.
带有堵塞监控,可靠性高
偏航部分润滑
润滑小齿轮用于润滑齿面 接触面出油,防止油飞溅 推荐采用单线系统和递进式系统对偏航轴 承进行润滑;采用带有润滑小齿轮的递进 式系统和喷射系统对偏航齿轮进行润滑.
喷 射 润 滑 系 统
使用带有高固成份的特殊润滑剂 高效,使用无接触技术 啮合时也能进行润滑 干净,润滑各类齿轮
变桨部分润滑
推荐采用单线系统和递进式系统对变桨轴 承进行润滑;采用带有润滑小齿轮的递进 式系统和喷射系统对变桨齿轮进行润滑.
X

航空发动机设计的总体强度

航空发动机设计的总体强度 众所周知,航空发动机是一种高温、高压、高转速的精密机械,那强度,必须刚刚的!!上一期的总体结构想必大家还念念不忘,本期借着结构的东风讲讲发动机的总体强度。 第一个问题,强度专业是干啥滴?通俗地讲,“大发”作为一个干得多吃得少的新时代好青年,没有一个强健的身体可不行呢,这个强健,既体现在普通意义的强度上面(抗拉抗弯还要抗扭),还体现在抗疲劳能力(怎么折腾都不坏)和抗打击能力(无知的小鸟呼啦啦地撞上来)等方方面面,总的来说,生活在 航空发动机这样一个地狱般的工作环境里,没有一副打不坏、耐力好、贼扛揍 的好身板是不行的。为了确保发动机方方面面的零组件都能符合这样变态的标准,我们的强度攻城狮们可谓是殚精竭虑。 今天,我们首先为大家介绍的是总体强度专业。 在国内,很少有总体强度这样一个概念,那总体强度是干什么的呢?其主要有三个方面:用洋文来说分别为Load, WEM and Rotor Dynamics。发动机行业内有句名言,载荷先行活看结构,这个载荷呢就是这里的Load;WEM作为一个 洋小伙,其全称为Whole Engine Model,凡是和整机模型相关的各种任务都 找他;最后一位就是本期的主角,RotorDynamics,转子动力学。 下面客官请听我娓娓道来。 1转子动力学的前生后世 为满足航空器日益增长的舒适性、经济性、高效率等要求,现代民用航空发动机被设计为带涡轮和压气机的旋转机械。为保障不同涡轮和压气机的工作性能,发动机主要采用双轴和三轴的结构布局,而转速往往达到每分钟几千(低压部件)或几万转(高压部件)。在这种严酷的工作条件下,发动机转子动力学设计就显得尤为重要了。 发动机转子动力学设计的优劣,直接影响着发动机整机振动的好坏与否。 如果将航空发动机拟化为一个人,涡轮、压气机、燃烧室等部件结构代表 着发动机的骨骼与肌肉,燃油和空气代表着食物与血液,性能等代表着物理特

某型航空发动机滑油系统故障分析

某型航空发动机滑油系统故障分析 发表时间:2018-10-30T11:19:25.287Z 来源:《防护工程》2018年第17期作者:罗崴[导读] 某型航空发动机滑油系统主要功能是对发动机进行润滑和散热,保证发动机的正常工作。 中国航发哈尔滨东安发动机有限公司黑龙江哈尔滨 150066 摘要:某型航空发动机滑油系统主要功能是对发动机进行润滑和散热,保证发动机的正常工作。某型号发动机使用过程中,滑油系统的故障,是比较常见的。本文介绍了某型号发动机滑油系统的组成、结构及工作原理,分析常见故障,并从原理上进行分析。 关键词:航空发动机滑油系统故障处理方法 1 引言 航空发动机空中飞行时滑油消耗量大故障近年来在外场屡有发生,对飞行安全的影响较为严重。这类故障表现的特点往往有:(1)地面试车时,发动机滑油消耗量正常,滑油无外漏现象;(2)飞行时滑油消耗量大,尤其是连续飞行时;(3)飞行后,发动机下部蒙皮有较多滑油痕迹。本文简要的介绍了该型发动机滑油系统,总结了滑油系统常见故障发生机理,分析了其原因,并给出了排故方案。 2 发动机滑油系统 该型发动机滑油系统为封闭式反向循环系统,主要作用是向发动机主轴轴承、接触式密封装置、中央传动齿轮、附件传动机匣的齿轮、轴承提供用于润滑及冷却的滑油,从而保证其正常工作。 2.1 航空发动机附件封严装置和漏油放油系统结构特点 对航空发动机附件机匣而言,其附件转接座有两种结构(见图1),一种带一道封严装置,如主泵转接座,加力泵转接座;一种不带封严装置,如左右液压泵转接座,离心增压泵转接座。对飞机和发动机附件而言,其传动腔安装座也有两种结构,一种带一道封严装置,如主泵和加力泵安装座。当附件安装到附件机匣上后,不论对哪种结构的附件和附件机匣转接座,附件机匣内腔和附件内腔之间就都存在两道封严装置,一是用来封严燃油外漏,二是用来封严滑油外漏。这两道封严装置之间形成一个空腔,再通过漏油管连接到漏放油系统的前漏油收集器。发动机漏油放油系统的一个作用就是排出发动机附件的密封装置渗漏的燃油、滑油和液压油。当发动机工作时,从附件机匣一侧封严装置泄漏出来的滑油和从附件一侧封严装置泄漏出来的燃油(或液压油)进入两道封严装置之间的空腔内,再通过漏油管进入前漏油收集器,最后由P2空气引射至机外。如果这些封严装置中的某一道存在缺陷,当发动机工作时,就可能会造成滑油消耗量大故障。 2.2 滑油系统工作原理 发动机滑油系统由四大子系统组成,分别是供油系统、回油系统、通气系统、密封装置增压系统。 (1)供油系统。本系统的作用是将滑油增压并提供给发动机,对轴承、齿轮等进行冷却和润滑。供油系统的组成附件为:滑油箱、增压泵、主燃滑油散热器、供油滤、转换活门、加力燃滑油散热器、单向活门及各喷嘴。当发动机未接通加力时,滑油供油流路是:滑油箱→增压泵→主燃滑油散热器→供油滤→转换活门→单向活门→各喷嘴→润滑部位。当发动机接通加力时,滑油供油流路是:滑油箱→增压泵→主燃滑油散热器→供油滤→转换活门→加力燃滑油散热器→单向活门→各喷嘴→润滑部位。 (2)回油系统。本系统的作用是将润滑发动机各部件后的滑油抽回到油箱中,并分离油中的空气,以便循环使用。回油系统的组成为:3个主轴承腔、飞机附件机匣、发动机附件机匣、四级回油泵、飞机附件机匣回油泵、金属屑末信号器、动压式油气分离器、滑油箱。滑油回油流路是:3个主轴承腔、发动机附件机匣、飞机附件机匣→四级回油泵、飞机附件机匣回油泵→金属屑末信号器→动压式油气分离器→滑油箱。 (3)通气系统。本系统的作用是将发动机各密封漏入滑油系统的空气在与滑油分离之后排出发动机。通气系统的组成为:各轴承腔、离心通风器、前通风器、后通风器、滑油箱、油气分离器(在滑油箱中)、通风管组件(在滑油箱中)、高空活门。滑油系统的通气系统有两种方式:一种是前轴承腔、发动机附件机匣、飞机附件机匣及滑油箱的空气管路相连通,从一支点密封装置漏入前轴承腔的空气及中、后轴承腔回油泵抽回的空气经发动机附件机匣内的离心通风器和高空活门排入大气;另一种通气方式是采用轴心通风,即经密封装置漏入中、后轴承腔的空气由低压涡轮轴内的前后轴心通风器从低压涡轮轴轴心排入发动机尾锥后的加力燃烧室。 (4)密封装置增压系统。本系统的作用是对发动机各轴承腔进行密封及各密封装置外增压。密封增压系统的组成为:No.1圆周石墨密封、No.2双联圆周石墨密封、No.3圆周石墨密封、No.4篦齿密封、No.5圆周石墨密封及后盖。前轴承腔No.1轴承后采用一道石墨密封,中轴承腔No.2轴承前采用双联石墨密封,No.3轴承后采用一道石墨密封。后轴承腔No.4轴承前为篦齿密封,No.5轴承前为石墨密封,后通风器与后盖间采用篦齿密封。前轴承腔密封外增压采用风扇后的空气,中轴承腔密封外增压采用高压三级后空气。后轴承腔密封外增压采用高压二级后空气。 3 常见故障浅析 该型发动机使用过程中滑油系统主要有三类故障,分别为滑油压力不合格、滑油温度不合格和滑油消耗量大,以下主要针对三种情况从原理上进行简单的分析,供对从事发动机使用维护的同仁有所借鉴。 3.1 滑油压力不合格 该型发动机使用过程中,滑油压力常出现压力不合格。从滑油系统原理可以知道,滑油压力不正常,问题出现在供油系统上。再看看供油系统,有两个可能造成滑油压力低。第一种是滑油箱滑油少供应不足,但是开车前必须保证滑油箱油位不低于允许最低值,除非漏油,否则不可能造成滑油箱油量少。 3.2 滑油温度不合格 从发动机滑油系统原理知道,滑油系统温度主要有前腔、中腔、后腔和散热器能够影响滑油温度。当出现某腔滑油温度高,可能是轴承齿轮啮合的阻力大,摩擦产生的热量多而造成温度升高,可以通过增加滑油压力来增加某腔的供油和加大某腔的回油能力来达到加速循环降低温度。如果某腔温度还高,可能是燃滑油散热器芯体损坏或脏污造成阻力过大,导致一部分燃油或滑油从旁路活门流过,造成滑油得不到充分冷却。

航空发动机控制系统浅析

航空发动机控制系统浅析 【摘要】航空发动机控制系统是一个多变量、时变、非线性、多功能的复杂系统,其性能的优劣直接影响发动机及飞机的性能。本文主要论述了航空发动机控制系统的发展历程、相关技术及其技术优缺点,并预测了国际发动机控制技术的未来发展。 【关键词】航空发动机控制系统;机械液压;FADEC;分布式;综合控制 1.概述 发动机的工作过程是极其复杂的气动热力过程,在其工作范围内随着发动机的工作条件和工作状态(如巡航、加速及减速等)的变化,它的气动热力过程将发生很大的变化,对于这样一个复杂而且多变的过程如果不加以控制,可以想象系统不但达不到设计的性能要求,而且根本无法正常工作。所以,航空发动机控制系统的目的就是使其在允许的环境条件和工作状态下都能稳定、可靠地运行,充分发挥其性能效益。 2.发展历程 随着航空发动机技术的不断进步和性能不断提高,其控制系统也由简单到复杂。航空发动机控制系统发展阶段的分类方法有很多种,目前,按发动机控制技术的发展和应用阶段大致分为以下4种,作简要介绍:(1)机械液压控制;(2)数字电子式控制;(3)分布式控制;(4)综合控制。 2.1 机械液压控制系统 机械液压控制系统:是使用基于开环控制或单输入单输出(SISO)闭环反馈控制等经典控制理论,采用由凸轮和机械液压装置组成的机械液压控制器即可成功地对发动机进行控制。 机械液压控制系统典型应用的机种:最典型的就是俄罗斯AN-*系列飞机。 这种简单的单输入单输出控制系统优点:(1)方法简单;(2)易于实现;(3)能保证发动机在一定使用范围内具有较好的性能。因此这种控制方法目前仍然应用于许多发动机的控制中。目前,国内运输机飞机上,发动机控制仍然用的是凸轮和机械液压装置组成的机械液压控制器。 随着发动机控制功能的增加,控制系统的复杂度也越来越大。这种简单的液压机械控制系统的缺点就显现了出来:(1)仅适用于:飞行速度比较小、飞行高度比较低、发动机的推力不大的飞机。(2)机械液压流量控制和伺服部件变得越来越大、越来越重、越来越昂贵。

对航空发动机研究和发展规律的认识

收稿日期:2001-07- 18 对航空发动机研究和发展规律的认识 江和甫 蔡 毅 斯永华 (中国燃气涡轮研究院 成都#610500) 摘要:探讨了世界上航空发达国家航空发动机技术加速发展的态势。分析了我国航空动力技术预先研究的现状及存在的问题。加深了对航空发动机发展规律的认识。对如何振兴航空、动力先行,把我国航空发动机搞上去,走自主创新的发展道路提出了建议。关键词:航空发动机;研究;发展 Understanding the Law of aero -engine Research and Development JIANG He -fu &CAI Yi &SI Yong -hua (China Gas Turbine Establishment,Chengdu 610500)Abstract:T his paper discusses the accelerated developing trend of aero -eng ine technolog ies in developed countries.The present situation and existing problems in China aero -propulsion technology research have been introduced.A deeper understanding of the law of aero -engine development has been made.Also,suggestions to v italize China aviation industry w ith putting propulsion in the first place in a manner of /creating and acting on our ow n 0is put forward. Key words:aero -engine;research;development 1 引言 航空发动机研制涉及众多专业的前沿技术成果,是一种属于多学科综合技术的/高科技产品0。世界上能研制飞机的国家很多,真正能独立研制先进航空发动机的只有美国、英国、法国、俄罗斯等四个国家。因此,它是一个国家科学技术水平和综合 技术能力的标志,甚至是综合国力的象征。 2 现状分析 世界上航空发达国家诸如美国等都十分重视航 空动力技术的发展,倾注了巨大的人力、物力、财力,执行了一系列旨在促进航空动力技术进步的研究计划。如:美军方从20世纪50年代开始实施的航空推进技术探索发展计划以及70年代实施的先进战术战斗机发动机计划(ATFE );先进涡轮发动机燃气发生器计划(AT EGG)和飞机推进分系统综合计划。此外,NASA 在70年代末还实施了发动机部件改进计划,高效节能发动机计划(E 3),先进螺旋桨计划和发动机热端部件技术计划(HOST )。这些计划为各种先进军民用发动机提供了坚实的技术基础,并使美国达到了当今世界领先的水平,推出了一代又一代先进军民用发动机,跨上了一个又一个技术

航空发动机滑油系统1实验 -实验报告 (自动保存的)

BASICS ON AIRBREATHING ENGINES

Figure1 2D engineering drawing Figure2 2D engineering drawing

Figure3 3D engine view This engine is a twin-spool single-stage centrifugal high-bypass turbofan engine. Reasons: There are two shafts: HP and LP shaft; The HP compressor is centrifugal and only one compressor; There is two gas streams and the ratio of mass flow is high(>7.4 at design point); There is a fan in front of the engine. 3) What are the three operating phases that will be founded in any type of propulsion? What are the mechanic parts that will be used for the realization of these three phases? Provide a schematic of these three phases and the mechanics parts associated. Answers : The three operating phases in any type of propulsion is: air compress, fuel combust, gas expansion. The mechanical parts for these phases are: compressor, combustion chamber, turbines.

相关主题
文本预览
相关文档 最新文档