当前位置:文档之家› 模拟电路实验讲义汇编

模拟电路实验讲义汇编

模拟电路实验讲义汇编
模拟电路实验讲义汇编

模拟电路实验讲义数理学院应用电子技术实验室

图2.1 二极管外型图

(a )符号 (b )外形

图2.2 发光二极管

实验二 常用半导体器件的识别与简单测试

一. 实验目的

1.掌握用万用表判别二极管的极性。测量二极管的正向压降及稳压管的稳压值。 2.掌握用万用表判别三极管的类型和e 、b 、c 三个管脚。

二. 预备知识

半导体二极管和三极管是组成分立元件电子电路的核心器件。二极管具有单向导电性,可用于整流、检波、稳压、混频电路中。三极管对信号具有放大作用和开关作用,它们的管壳上都印有规格和型号。

(一).二极管的识别与简单测试

1.普通二极管的识别与简单测试

普通二极管一般为塑料封装和金属封装两种,它们的外壳上均印有型号和标记。标记箭头所指方向为阴极,如图2.1 所示。国外的产品一般在阴极端印有一个标记。

若遇到型号标记不清或不能确定其极性时,我们可以借助数字万用表的档作简单判别。具体做法是:用红、黑两表笔分别接触二极管的两个引脚。假如先显示溢出数“1”(反向),再交换两表笔.必然为正向测试。我们得到的读数为537。这说明:①二极管是好的。②二极管的正向压降为O.537 V 。③显示正向压降时,红表笔所接的引脚为二极管的正极,黑表笔所接则为负极。假如两次测量均显示溢出数“1”或两次均有压降读数的话,表明该

二极管已损坏。在数字万用表中,红表笔带正电,黑表笔带负电,正好与指针式万用表相反。还有,不要把显示的正向压降0.537V 看成正向电阻537Ω。

2.特殊二极管的识别与简单测试

特殊二极管的种类较多,在此我们只介绍两种常用的特殊二极管。

①.发光二极管(LED)

发光二极管通常是用砷化镓、磷化镓等制成的一种新型器件。它具有工作电压低、耗电少、响应速度快、抗冲击、耐振动、性能好以及轻而小的特点,被

广泛应用于单个显示电路或作成七段矩阵式显示器。而在电路实验中,常用作逻辑显示器。发光二极管的电路符号如图2.2(a )所示。

发光二极管和普通二极管一样具有单向导电性,正向导通时才能发光。发光二极管发光颜色有多种,例如红、绿、黄等,形状有圆形和长方形等。发光二极管出厂时,一根引线做得比另一根引线长,通常,较长的引线表示阳极(+),另一根为阴极(-),如图2.2(b )所示。若辨别不出引线的长短,则可以用辨别普通二极管管脚的方法来辨别其阳极和阴极。发光二

极管正向工作电压一般在1.5~3V,允许通过的电流为2~20mA,电流的大小决定发光的亮度。电压、电流的大小依器件型号不同而稍有差异。若与TTL 电路相连接使用时,一般需串接一个470Ω的的降压电阻,以防止器件的损坏。

②.稳压管

稳压管有玻璃封装和金属外壳封装两种。前者外形与普通二极管相似,如2CW7,后者外形与小功率三极管相似,但内部为双稳压二极管,其本身有温度补偿作用,如2DW7。详见图2.3(a)。

稳压管在电路中一般是反向连接的,它能使稳压管所接电路两端的电压稳定在一个规定的电压范围内,我们称为稳压值。确定稳压管稳压值的方法有三种:(1)根据稳压管的型号查阅手册得知;(2)从晶体管特性测试仪上测出其伏安特性曲线获得;(3)通过一简单的实验电路测得。实验电路如图2.4所示。我们改变直流电源电压U,使之由零开始缓慢增加,同时稳压管两端用直流电压表监视。当U 增加到一定值,使稳压管反向击穿,直流电压表指示某一电压值。这时再增加直流电压U,稳压管两端的电压不再变化,则电压表所指示的电压值就是该稳压管的稳压值。

(a)金属外壳封装(b)玻璃封装图2.4 测试稳压管稳压值的实验电路图2.3 稳压二极管

(a)金属外壳封装(b)塑料外壳封装(a)F型大功率管(b)G型大功率管图2.5 三极管电极的识别图2.6 F型和G型管脚识别

(二)三极管的识别与简单测试

三极管主要有PNP型和NPN 型两大类。对于国产三极管,我们可以根据命名法从三极管的管壳上的符号辨别出它的型号和类型。例如,三极管的管壳上印的是3DG6,表明它是NPN型高频小功率硅三极管,3AK15则表明它是PNP型小功率开关锗三极管。同时,我们还可以从管壳上色点的颜色来判断管子的电流放大倍数s的大致范围。以3CG15为例,若色点

为红色,表明s值在30~60之间;绿色,表明s 在50~110 之间;兰色,表明s 值在90~160之间;白色,表明s 值大于150。但也有的厂家并非按此规定,使用时要注意。

当我们从管壳上知道了它们的类型后,还应该进一步辨别它们的三个电极。对于小功率三极管来说,有金属外壳封装和塑料外壳封装两种。

金属外壳封装如果管壳上带有定位销,那么,将管底朝上,从定位销起,按顺时针方向,三根电极依次为e、b、c。如果管壳上无定位销,且三根电极在半圆内,我们将有三根电极的半圆置于上方,按顺时针方向,三根电极依次为e、b、c。如图1.5(a)所示。塑料外壳封装的,我们面对平面,三根电极置于下方,从左到右,三根电极依次为e、b、c。如图2.5(b)所示。

对于大功率三极管,外形一般分为F型和G 型两种,如图2.6 所示。F型管,从外形上只能看到两根电极。我们将管底朝上,两根电极置于左侧,则上为e,下为b,底座为c。G 型管的三根电极一般在管壳的顶部,我们将管底朝下,三根电极置于左方,从最下电极起,顺时针方向,依次为e、b、c。

三极管的管脚必须正确确认,否则接入电路后不但不能正常工作,还可能烧坏管子。

对于进口的塑封管,管脚e、b、c的排列没有规律,使用时要注意。

当一个三极管没有任何标记时或有标记但不能确定其类型和三个电极时(比如进口管),我们可以用万用表来初步确定该三极管的好坏及其类型(NPN 型还是PNP型),并辨别出e、b、c三个电极。下面介绍数字万用表的测试方法。

①. 先判断基极b 和三极管类型

将数字万用表指针拨到档,先假定三极管的某极为“基极”,并将黑表笔接在假设的基极上,再将红表笔先后接到其余两个电极上,假如两次测量均显示溢出数“1”(或两次均有压降读数)的话,再将红表笔接在假设的基极上,将黑表笔先后接到其余两个电极上,假如两次测量均有压降读数(或均显示溢出数“1”),则可确定假设的基极是正确的。如果两次测量值是“1”和小的电压值,则可以肯定原假设的基极是错误的,这时就必须重新假设另一电极为“基极”,再重复上述测试过程。最多重复两次就可找出真正的基极。

当基极确定以后,将红表笔接基极,黑表笔分别接其它两极。此时,若测得的电压值都很大,则该三极管为PNP型管;反之,则为NPN 型管。

②.再判断集电极c 和发射极e

以NPN 型管为例。把红表笔接到假设的集电极c上,黑表笔接到假设的发射极e 上,并且用手捏住b 和c 极(不能使b、c 直接接触),通过人体,相当于在b、c 之间接入偏置电阻。读出表头所示c、e间的测量值,然后将黑、红两表笔反接重测。若第一次测量值比第二次小,说明原假设成立,红表笔所接为三极管集电极c,黑表笔所接为三极管发射极e。因为c、e 间显示值小说明通过万用表的电流大,偏置正常,三极管工作在放大状态。如图2.7所示。

(a)示意图(b)等效电路

图2.7 判别三极管c、e电极的原理图

对PNP 管,把红表笔接到假设的发射极e 上,黑表笔接到假设的集电极c 上,并且用手捏住b 和c极(不能使b、c直接接触),通过人体,相当于在b、c之间接入偏置电阻。读出表头所示c、e间的测量值,然后将红、黑两表笔反接重测。若第一次显示值比第二次小,说明原假设成立,红表笔所接为三极管发射极e,黑表笔所接为三极管集电极c。

以上介绍的是比较简单的测试,要想进一步精确测试可以借助于晶体管特性图示仪。它能十分清晰地显示出三极管的输入特性和输出特性曲线以及电流放大系数s等。

三.测试内容

实验电路如图2.8 所示。

图2.8 实验电路

1.测试二极管的正反向特性填入表2.1。

2.将12V 直流电源接入1 到地之间。测量发光二极管D1、普通二极管D3的正向压降,稳压二极管D2的反向击穿电压、电阻R两端的电压,填入表2.2。

3.判断三极管的类型和管脚,读出三极管平面上标记的型号(D536、C2273、CG733等),判断其类型,确定e、b、c三个电极。将判别结果标在图2.9中。

四.预习内容及思考题

预习教科书中有关二极管和三极管的内容及仪器说明书。

实验记录:

表2.1

表2.2

1 号管型号:2号管型号:

类型:类型:

图2.9

实验三 晶体管单管放大电路

一、实验目的

1.学习放大电路静态工作点调试方法,分析静态工作点对放大电路性能的影响。

2.学习放大电路电压放大倍数及最大不失真输出电压的测量方法。 3.测量放大电路输入、输出电阻。 4.进一步熟悉各种电子仪器的使用。

二、实验原理

图3.1为电阻分压式静态工作点稳定放大电路,它的偏置电路采用R B1 = R W1 + R 3和R B2 = R W2 + R 4组成的分压电路,并在发射级中接有电阻R E = R 6,用来稳定静态工作点。当在放大电路输入端输入信号U i 后,在放大电路输出端便可得到与U i 相位相反、被放大了的输出信号U 0,实现了电压放大。R 1和R 2组成输入信号的分压电路,其目的是防止输入信号过大,损坏三极管。

图3.1

在电路中静态工作点为:

CC B B B B U R R R U 2

12

+=

E

E

E BE B E R U R U U I =

-= )(E C C CC CE R R I U U +-=

动态参数:

电压放大倍数k 3.3//50==-==R R R R U U A C be

L

C i U γβ

其中)

mA ()mv (26)1(300E be I r β++=

输入电阻:若开关合上,即R 7短接 be B B i r R R r ////21= 输出电阻:5R R r C o ==

放大电路输入电阻测试方法:若输入信号源U S 经R 1 = 5.1k 与C 1串联后再接

到三极管V 1的基极,测得U S 和'i

U ,即可计算出1''

R U U U r i

S i i ?-= 输出电阻可用下式计算:L R U U r )1(0

'00-= 其中'

0U 为R L 未接入时(R L = ∞)U 0之值,U 0为接入R L 时U 0之值。

1.静态工作点的测试 1)静态工作点的测量

放大电路的静态工作点是指在放大电路输入端不加输入信号U i 时,在电源电压V CC 作用下,三极管的基极电流I B ,集电极电流I C 以及集成极与发射极之间的电压U CE 等。测量静态工作点时,应使放大电路输入信号U i = 0,即将信号源输出旋钮旋至零(通常需将放大电路输入端与地短接)。然后测出I C ,或测出R E 两端电压,间接计算出I C 来,I B = I C / β, U BE , U CE 用数字式直流电压表进行测量,在测试中应注意:

a) 测量电压U BE 、U CE 时,为防止引入干扰,应采用先测量B 、C 、E 对地的电位后进行计算,即: U BE = U B – U E U CE = U C – U E

b) 为了测量I B 、I C 和I E ,为了方便起见,一般先直接测量出U E 后,再由计算得到: E

E

E C R U I I == β

C

B I I =

总之,为了测量静态工作点只需用直流电压表测出U C 、U B 、U E 即可推算出。

2)静态工作点的调试:

放大电路的基本任务是在不失真的前提下,对输入信号进行放大,故设置放大电路静态工作点的原则是:保证输出波形不失真并使放大电路具有较高的电压放大倍数。

改变电路参数U CC 、R C 、R B 都将引起静态工作点的变化,通常以调节上偏置电

阻取得一合适的静态工作点,如图3.1中调节R W1。R B1减小将引起I C 增加,使工作点偏高,放大电路容易产生饱和失真,如图3.2-a 所示,U 0负半周被削顶。当R B1增加,则I C 减小,使工作点偏低,放大电路容易产生截止失真,如图3.2-b 所示。U 0正半周被缩顶。适当调节R b1可得到合适的静态工作点。

图3.2

2.电压放大倍数的测量

测量电压放大倍数的前提是放大电路输出波形不应失真,在测量时应同时观察输出电压波形。在U 0不失真条件下分别测量输出电压U 0和输入电压U i 的值,则:i

U U U A 0 。

电压放大倍数大小和静态工作点位置有关,因此在测量前应先调试好一定的静态工作点。

3.最大不失真输出电压的测量

为了在动态时获得最大不失真输出电压,静态工作点应尽可能选在交流负载线中点,因此在上述调试静态工作点的基础上,应尽量加大U i ,同时适当调节偏置电阻R B1(R W1),若加大U i 先出现饱和失真,说明静态工作点太高,应将R B1增大,使I C 小下来,即静态工作点低下来。若加大U i 时先出现截止失真,则说明静态工作点太低,应减小R B1使I C 增大。直至当U i 增大时截止失真和饱和失真几乎同时出现,此时的静态工作点即在交流负载线中点。这时,再慢慢减小U i ,当刚刚出现输出电压不失真时,此时的输出电压即为最大不失真输出。 三、实验设备及所用组件箱

四、实验步骤

1静态工作点测试:

a) 将三极管V 1的信号输入端H 与地短接(即用一短线将H 端接地端连通)。

用线短接电位器R W2和电阻R 7。连接R6和C2的上面两端。 b) 调节R W1,使I C = 2mA ,测U C 、U B 、U E 值计入表3.1中。

2.电压放大倍数的测量

a) 将H 、K 点用一短线接通,保持I C = 2mA ,调节函数发生器,使其输出正弦波信号,频率为f = 1kHz ,信号加在U S 和接地端之间,逐渐加大输出信号幅度,使U i = 5mV ,(注意:U i 是H 端对地的电压),同时用示波器观察输出信号

U 0的波形,在U 0不失真情况下,测量下述二种情况下的U 0值。记入表3.2中

(1)R C = 3.3k R L = ∞ (2)R C = 3.3k R L = 2k Ω

b) 用示波器观察U i 、U 0间相位关系,描绘之。

3.输入电阻r i 的测量

最简单的办法是采用如图3.3所示的串联电阻法,在放大电路与信号源之间串入一个已知阻值的电阻R S ,通过测出U S 和U i 的电压来求得r i

S i

S i i R U U U r ?-='

' 本实验中,用R 1代替R S ,断开H 、K 间短线其余同前面实验,函数发生器输出信号电压U S 加于U S 和接地端之间其余同前面实验。测得U S 、U i ',记入表3.6,度计算出r i 。

图3.3

测试时注意U S 不应取得太大,以免晶体管工作在非线性区。

4.输出电阻r 0的测量

测量输出电阻时的电路如图3.3-b 所示,测出放大电路输出电压在接入负载R L 时的值U 0和不接负载(R L = ∞)时的输出电压U 0'的变化来求得输出电阻。具体方法是将图3.1又恢复原状,即H 、K 再次短接起来,函数发生器输出从U S 和地端输入,且将放大电路输入信号的频率调至1kHz ,幅度保持恒定(U i 约5mV )的正弦电压,用双踪示波器监视输入,输出波形不失真的前提下,测得负载电阻

R L 接入和不接入二种情况下放大电路的输出电压U 0和U 0'从而求得输出电阻

L R U U r )1(0

'

0-=

将测到的值记入表3.6,并计算出r 0。

5.静态工作点对电压放大倍数的影响

使R L = ∞,U i = 5mV ,用示波器监视U 0波形,在U 0不失真的范围内,测出数组I C 和U 0值。记入表3.3。

6.最大不失真输出电压的测量

使R L = ∞,尽量加大U i ,同时调节R W1改变静态工作点,使U 0波形同时出现削顶失真和缩顶失真,再稍许减小U i ,使U 0无明显失真,测量此时的U imax 和U omx 及I C 值。记入表3.4。

7.静态工作点对放大电路失真的影响

取I C = 1.5mA,R L = ,调节U i,使之略小于U imax,此时U0波形不失真,测量U CE和I C值,并绘出U0波形,调节R W1,使I C减小,观察U0波形的变化,当U0波形出现失真后,绘出U0波形,然后将函数发生器输出信号幅度调节旋钮至零,测量此时的U C、U CE。

调节R W1,使I C增大,当U0波形产生失真后,绘出U0波形,然后将信号源输出旋钮旋至零,测量此时U CE、I C值,将上述结果记入表3.5

将实验值与理论估算值相比较,分析差异得:

1,元气件本身在制作过程中就存在精度等级,与理论值有偏差。

2,在测量过程中,测量仪器也有精度等级,也存在误差。

3,当加入输入信号以后,电路的稳定性不是很好,在测量的过程中,所测的数据与实际值有偏差,导致整个实验值与理论估算值存在误差。

实验四 晶体管多级放大电路

一、实验目的

1.掌握多级放大电路的电压放大倍数的测量方法。 2.测量多级放大电路的频率特性。 3.了解工作点对动态范围的影响。 二、实验原理

实验电路如图4.1所示。总的电压放大倍数

2

101

02

01020U U i i A A U U U U U U A ?=?==

图4.1

本实验电路输入端加入了一个1001

51101.5513

212≈+?=+R R R 的分压器,其目的

是为了使交流毫伏表可在同一量程下测US 和U02,以减少因仪表不同量程带来的附加误差。电阻R1、R2应选精密电阻,且R2<< ri1。接入C7 = 6800pF 是为了使放大电路的fh 下降,便于用一般实验室仪器进行测量。

必须指出,当改变信号源频率时,其输出电压的大小略有变化,测放大电路幅频特性时,应予以注意。

四、实验步骤

1.调节工作点

(1)按图4.1接线,图中H 、K 用线接起来,RW2两端用线短接,与R7并联的小开关合上,连接R6和C2的上面两端,将A 、D 两点接通,就组成了图4.1的两级阻容耦合放大电路。

(2)调节RW1和RW3,使I E1 ≈ 1.3mA ,I E3 = 4.9mA (通过测量R6、R12上电压求得),将V 1、V 3的工作点记入表4.1。

表中:U B1、U E1、U C1分别代表三极管V 1的基极对地电位,发射极对地及集电极对地电位。

U B3、U E3、U C3分别代表三极管V3的基极、发射极、集电极对地电位,I C1为V 1

的集电极电流

61

1R V I E C =

;I C3

的集电极电流123

3R V I E C =。 3.测量放大倍数

当输入信号Ui 的频率f = 1KHz ,Ui 的大小应使输出电压不失真,RL = 2k Ω时,测试各级放大倍数。测得的数据填入表4.2。但须注意,应在示波器监视输出波形不失真条件下,才能读取数据。

4.测量幅频特性

保持U S = 100mV (以输出波形不失真为前提)的条件下,改变输入信号的频率,先找出本放大电路的f L 和f h ,然后测试多级放大电路的幅频特性。

测放大电路下限频率f L 和上限频率f h 的方法是:在测量放大倍数实验(3.)中,已测出了中频段的电压放大倍数Au ,和此时放大电路的输出电压U 0 = U 02的值。调节函数发生器输出正弦波频率,若先降低频率,且保持U i 大小不变,测U 0的值,当输出电压的值降到中频段输出电压值的0.707倍时,此时对应的频率即为下限频率。再将信号源的频率升高,当f 升高到一定值,若输出电压值再度降到中频段输出电压的0.707倍时,此时对应的频率即为上限频率fh 。

表4.3 频率特性测试

(做此项时应注意无论f取何值都应保持输入信号保持不变)5.末级动态范围测试(R

L

= 2k )(此项选做)

用示波器观察U

02的波形,输入信号频率f = 1kHz,调节U

S

从100mV逐渐增

大,直到U

02的波形在正或负峰值附近开始产生削波,这时适当调节R

W3

,直到在

某一个U

S 下,U

02

的波形在正、负峰值附近同时开始削波,这表明V

3

的静态工作

点正好们于动态(交流)负载线的中点。再缓慢减小U

S 到U

02

无明显失真将V

3

工作点(U

B2、U

C2

、U

E2

)以及U

02PP

记入表4.4中。

实验五 多级放大负反馈电路

一、实验目的

1.验证负反馈对放大器性能(放大倍数,频率特性,输出阻抗等)的影响。 2.掌握射极跟随器基本性能及应用。 二、实验原理

图5.1

实验电路如图5.1所示。

(1)若H 接K ,RW2短接,K1合上,A 接D ,F 接地,电路就成为无级间电压负反馈的两级阻容耦合放大器,同前一实验电路。

(2)若H 接K ,RW2短接,K1断开,F 接G ,A 接D ,则电路成为有级间负反馈的放大器。

接入RL 是为了测量放大器输出电阻,其原理在实验一中已有。 负反馈放大器的一般表示式为

HAF A

A f =

A 为开环放大倍数,Af 为闭环放大倍数,F 为反馈系数。 若Am 表示中频开环放大倍数,则加负反馈后 fhf = fh (1 +AmF) fLf = fL (1 + AmF)

其中fhf 、fLf 为加负反馈后上、下限频率。

本实验中rif = ri (1 + AmF) rof F A r m +=

10

其中rif 、rof 为加负反馈后的输入、输出电阻。

模拟电子电路仿真和实测实验方案的设计实验报告111-副本

课程专题实验报告 (1) 课程名称:模拟电子技术基础 小组成员:涛,敏 学号:0,0 学院:信息工程学院 班级:电子12-1班 指导教师:房建东 成绩: 2014年5月25日

工业大学信息工程学院课程专题设计任务书(1)课程名称:模拟电子技术专业班级:电子12-1 指导教师(签名): 学生/学号:涛 0敏0

实验观察R B 、R C 等参数变化对晶体管共射放大电路放大倍数的影响 一、实验目的 1. 学会放大器静态工作点的调式方法和测量方法。 2.掌握放大器电压放大倍数的测试方法及R B 、R C 等参数对放大倍数的影响。 3. 熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图1为电阻分压式工作点稳定单管放大器实验电路图。偏置电阻R B1、R B2组成分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号后,在放大器的输出端便可得到一个与输入信号相位相反、幅值被放大了的输出信号,从而实现了电压放大。 三、实验设备 1、 信号发生器 2、 双踪示波器 SS —7802 3、 交流毫伏表 V76 4、 模拟电路实验箱 TPE —A4 5、 万用表 VC9205 四、实验容 1.测量静态工作点 实验电路如图1所示,它的静态工作点估算方法为: U B ≈ 2 11B B CC B R R U R +? I E =E BE B R U U -≈Ic U CE = U CC -I C (R C +R E )

图1 晶体管放大电路实验电路图 实验中测量放大器的静态工作点,应在输入信号为零的情况下进行。 根据实验结果可用:I C ≈I E = E E R U 或I C = C C CC R U U U BE =U B -U E U CE =U C -U E 计算出放大器的静态工作点。 五.晶体管共射放大电路Multisim仿真 在Multisim中构建单管共射放大电路如图1(a)所示,电路中晶体管采用FMMT5179 (1)测量静态工作点 可在仿真电路中接入虚拟数字万用表,分别设置为直流电流表或直流电压 表,以便测量I BQ 、I CQ 和U CEQ ,如图所示。

模拟电路实验报告.doc

模拟电路实验报告 实验题目:成绩:__________ 学生姓名:李发崇学号指导教师:陈志坚 学院名称:专业:年级: 实验时间:实验室: 一.实验目的: 1.熟悉电子器件和模拟电路试验箱; 2.掌握放大电路静态工作点的调试方法及其对放大电路性能的影 响; 3.学习测量放大电路Q点、A V、r i、r o的方法,了解公发射极电路特 性; 4.学习放大电路的动态性能。 二、实验仪器 1.示波器 2.信号发生器 3.数字万用表 三、预习要求 1.三极管及单管放大电路工作原理: 2.放大电路的静态和动态测量方法:

四.实验内容和步骤 1.按图连接好电路: (1)用万用表判断试验箱上三极管的好坏,并注意检查电解电容 C1,C2的极性和好坏。 (2)按图连接好电路,将Rp的阻值调到最大位置。(注:接线前先 测量电源+12V,关掉电源后再连接) 2.静态测量与调试 按图接好线,调整Rp,使得Ve=1.8V,计算并填表 心得体会:

3.动态研究 (一)、按图连接好电路 (二)将信号发生器的输入信号调到f=1kHz,幅值为500mVp,接至放大电路A点。观察Vi和V o端的波形,并比较相位。 (三)信号源频率不变,逐渐加大信号源输出幅度,观察V o不失真时的最大值,并填表: 基本结论及心得: Q点至关重要,找到Q点是实验的关键, (四)、保持Vi=5mVp不变,放大器接入负载R L,在改变Rc,R L数值的情况下测量,并将计算结果填入表中:

实验总结和体会: 输出电阻和输出电阻影响放大效果,输入电阻越大,输出电阻越小,放大效果越好。 (1)、输出电阻的阻值会影响放大电路的放大效果,阻值越大,放大的倍数也越大。 (2)、连在三极管集电极的电阻越大,电压的放大倍数越大。 (五)、Vi=5mVp,增大和减小Rp,观察V o波形变化,将结果填入表中: 实验总结和心得体会: 信号失真的时候找到合适Rp是产生输出较好信号关键。 (1)Rp只有在适合的位置,才能很好的放大输入信号,如果Rp阻值太大,会使信号失真,如果Rp阻值太小,则会使输入信号不能被

电子科技大学集成电路原理实验CMOS模拟集成电路设计与仿真王向展

实验报告 课程名称:集成电路原理 实验名称: CMOS模拟集成电路设计与仿真 小组成员: 实验地点:科技实验大楼606 实验时间: 2017年6月12日 2017年6月12日 微电子与固体电子学院

一、实验名称:CMOS模拟集成电路设计与仿真 二、实验学时:4 三、实验原理 1、转换速率(SR):也称压摆率,单位是V/μs。运放接成闭环条件下,将一个阶跃信号输入到运放的输入端,从运放的输出端测得运放的输出上升速率。 2、开环增益:当放大器中没有加入负反馈电路时的放大增益称为开环增益。 3、增益带宽积:放大器带宽和带宽增益的乘积,即运放增益下降为1时所对应的频率。 4、相位裕度:使得增益降为1时对应的频率点的相位与-180相位的差值。 5、输入共模范围:在差分放大电路中,二个输入端所加的是大小相等,极性相同的输入信号叫共模信号,此信号的范围叫共模输入信号范围。 6、输出电压摆幅:一般指输出电压最大值和最小值的差。 图 1两级共源CMOS运放电路图 实验所用原理图如图1所示。图中有多个电流镜结构,M1、M2构成源耦合对,做差分输入;M3、M4构成电流镜做M1、M2的有源负载;M5、M8构成电流镜提供恒流源;M8、M9为偏置电路提供偏置。M6、M7为二级放大电路,Cc为引入的米勒补偿电容。 其中主要技术指标与电路的电气参数及几何尺寸的关系:

转换速率:SR=I5 I I 第一级增益:I I1=?I I2 I II2+I II4=?2I I1 I5(I2+I3) 第二级增益:I I2=?I I6 I II6+I II7=?2I I6 I6(I6+I7) 单位增益带宽:GB=I I2 I I 输出级极点:I2=?I I6 I I 零点:I1=I I6 I I 正CMR:I II,III=I II?√5 I3 ?|I II3|(III)+I II1,III 负CMR:I II,III=√I5 I1+I II5,饱和 +I II1,III+I II 饱和电压:I II,饱和=√2I II I 功耗:I IIII=(I8+I5+I7)(I II+I II) 四、实验目的 本实验是基于微电子技术应用背景和《集成电路原理与设计》课程设置及其特点而设置,为IC设计性实验。其目的在于: 根据实验任务要求,综合运用课程所学知识自主完成相应的模拟集成电路设计,掌握基本的IC设计技巧。 学习并掌握国际流行的EDA仿真软件Cadence的使用方法,并进行电路的模拟仿真。 五、实验内容 1、根据设计指标要求,针对CMOS两级共源运放结构,分析计算各器件尺寸。 2、电路的仿真与分析,重点进行直流工作点、交流AC和瞬态Trans分析,能熟练掌握各种分析的参数设置方法与仿真结果的查看方法。 3、电路性能的优化与器件参数调试,要求达到预定的技术指标。

模拟电路自主设计实验

姓名_____________________班级_____________________学号_____________________ 日期_____________节次______________成绩__________教师签字__________________ 哈尔滨工业大学模拟电路自主设计实验 实验名称:运算放大器在限幅电路中的应用 一、实验目的 1、深入了解运算放大器的放大作用和深度负反馈; 2、灵活运用运算放大器的多种应用; 二、总体技术路线 2.1 当输入信号电压进入某一范围内,其输出信号的电压不再跟随输入信号电压的变化。 串联限幅电路:当输入电压U i <0或U i为数值较小的正电压时,D1截止,运算放大器的输出电压U0=0;仅当输入电压U i>0且U i为数值大于或等于某一个的正电压U th时,D1才正偏导通,电路有输出,且U0跟随输入信号U i变化。 并联限幅电路:当输入信号U i较小时,输出电压U0也较小,D1和D2没有击穿,U0跟随输入信号U i变化而变化,传输系数为:A uf=-R1 /R2;当U i幅值增大,使U0的幅值增大,并使D1和D2击穿,输出U0的幅度保持+(U z+U D)值不变,电路进入限幅工作状态。 2.2绝对值电路 当输入电压U i>0,则运算放大器的输出电压U1,D1导通,D2截止,输出电压U0 =0;当输入电压U i <0,则运算放大器的输出电压U1 >0,D2导通,D1截止,输出电压U0 =-R1 U i/R2。并通过反向放大器将整流信号放大两倍,再增加一个同相加法器,让输入信号的另一极性电

压不经整流,而直接送到加法器,与来自整流电路的输出电压相加,便构成了绝对值电路。 三、实验电路图 1、串联限幅电路: 2、并联限幅电路:

完整版模拟电子电路实验报告

. 实验一晶体管共射极单管放大器 一、实验目的 1、学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。 2、掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。 3、熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图2-1为电阻分压式工作点稳定单管放大器实验电路图。它的偏置电路采用R 和R组成的分压电路,并在发射极中接有电阻R,以稳定放大器的静态工EB1B2作点。当在放大器的输入端加入输入信号u后,在放大器的输出端便可得到一i个与u相位相反,幅值被放大了的输出信号u,从而实现了电压放大。0i 图2-1 共射极单管放大器实验电路 在图2-1电路中,当流过偏置电阻R和R 的电流远大于晶体管T 的 B2B1基极电流I时(一般5~10倍),则它的静态工作点可用下式估算B教育资料.. R B1U?U CCB R?R B2B1 U?U BEB I??I EC R E

)R+R=UU-I(ECCCCEC电压放大倍数 RR // LCβA??V r be输入电阻 r R/// R=R/beiB1 B2 输出电阻 R R≈CO由于电子器件性能的分散性比较大,因此在设计和制作晶 体管放大电路时, 为电路设计提供必离不开测量和调试技术。在设计前应测量所用元器件的参数,还必须测量和调试放大器的静态工作点和各要的依据,在完成设计和装配以后,因此,一个优质放大器,必定是理论设计与实验调整相结合的产物。项性能指标。除了学习放大器的理论知识和设计方法外,还必须掌握必要的测量和调试技术。消除干扰放大器静态工作点的测量与调试,放大器的测量和调试一般包括:与自激振荡及放大器各项动态参数的测量与调试等。、放大器静态工作点的测量 与调试 1 静态工作点的测量1) 即将放大的情况下进行,=u 测量放大器的静态工作点,应在输入信号0 i教育资料. . 器输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流I以及各电极对地的电位U、U和U。一般实验中,为了避 ECCB免断开集电极,所以采用测量电压U或U,然后算出I的方法,例如,只要 测CEC出U,即可用E UU?U CECC??II?I,由U确定I(也可根据I),算出CCC CEC RR CE同时也能算出U=U-U,U=U-U。EBEECBCE为了减小误差,提高测量精度,应选用内阻较高的直流电压表。 2) 静态工作点的调试 放大器静态工作点的调试是指对管子集电极电流I(或U)的调整与测试。 CEC静态工作点是否合适,对放大器的性能和输出波形都有很大影响。如工作点偏高,放大器在加入交流信号以后易产生饱和失真,此时u的负半周将被削底,O 如图2-2(a)所示;如工作点偏低则易产生截止失真,即u的正半周被缩顶(一 O般截止失真不如饱和失真明显),如图2-2(b)所示。这些情况都不符合不失真放大的要求。所以在选定工作点以后还必须进行动态调试,即在放大器的输入端 加入一定的输入电压u,检查输出电压u的大小和波形是否满足要求。如不满Oi

cmos模拟集成电路设计实验报告

北京邮电大学 实验报告 实验题目:cmos模拟集成电路实验 姓名:何明枢 班级:2013211207 班内序号:19 学号:2013211007 指导老师:韩可 日期:2016 年 1 月16 日星期六

目录 实验一:共源级放大器性能分析 (1) 一、实验目的 (1) 二、实验内容 (1) 三、实验结果 (1) 四、实验结果分析 (3) 实验二:差分放大器设计 (4) 一、实验目的 (4) 二、实验要求 (4) 三、实验原理 (4) 四、实验结果 (5) 五、思考题 (6) 实验三:电流源负载差分放大器设计 (7) 一、实验目的 (7) 二、实验内容 (7) 三、差分放大器的设计方法 (7) 四、实验原理 (7) 五、实验结果 (9) 六、实验分析 (10) 实验五:共源共栅电流镜设计 (11) 一、实验目的 (11) 二、实验题目及要求 (11) 三、实验内容 (11) 四、实验原理 (11) 五、实验结果 (14) 六、电路工作状态分析 (15) 实验六:两级运算放大器设计 (17) 一、实验目的 (17) 二、实验要求 (17) 三、实验内容 (17) 四、实验原理 (21) 五、实验结果 (23) 六、思考题 (24) 七、实验结果分析 (24) 实验总结与体会 (26) 一、实验中遇到的的问题 (26) 二、实验体会 (26) 三、对课程的一些建议 (27)

实验一:共源级放大器性能分析 一、实验目的 1、掌握synopsys软件启动和电路原理图(schematic)设计输入方法; 2、掌握使用synopsys电路仿真软件custom designer对原理图进行电路特性仿真; 3、输入共源级放大器电路并对其进行DC、AC分析,绘制曲线; 4、深入理解共源级放大器的工作原理以及mos管参数的改变对放大器性能的影响 二、实验内容 1、启动synopsys,建立库及Cellview文件。 2、输入共源级放大器电路图。 3、设置仿真环境。 4、仿真并查看仿真结果,绘制曲线。 三、实验结果 1、实验电路图

Multisim模拟电路仿真实验

实验19 Multisim 数字电路仿真实验 1.实验目的 用Multisim 的仿真软件对数字电路进行仿真研究。 2.实验内容 实验19.1 交通灯报警电路仿真 交通灯故障报警电路工作要求如下:红、黄、绿三种颜色的指示灯在下 列情况下属正常工作,即单独的红灯指示、黄灯指示、绿灯指示及黄、绿灯 同时指示,而其他情况下均属于故障状态。出故障时报警灯亮。 设字母R 、Y 、G 分别表示红、黄、绿三个交通灯,高电平表示灯亮, 低电平表示灯灭。字母Z 表示报警灯,高电平表示报警。则真值表如表 19.1所示。 逻辑表达式为:RY RG G Y R Z ++= 若用与非门实现,则表达式可化为:RY RG G Y R Z ??= Multisim 仿真设计图如图19.1所示: 图19.1的电路图中分别用开关A 、B 、C 模拟控制红、黄、绿灯的亮暗,开关接向高电平时表示灯亮,接向低电平时表示灯灭。用发光二极管LED1的亮暗模拟报警灯的亮暗。另外用了一个5V 直流电源、一个7400四2输入与非门、一个7404六反相器、一个7420双4输入与非门、一个500 表19.1 LED_red LED1 图19.1

欧姆电阻。 在模拟实验中可以看出,当开关A、B、C中只有一个拨向高电平,以及B、C同时拨向高电平而A拨向低电平时报警灯不亮,其余情况下报警灯均亮。 实验19.2数字频率计电路仿真 数字频率计电路(实验13.3)的工作要求如下:能测出某一未知数字信号的频率,并用数码管显示测量结果。如果用2位数码管,则测量的最大频率是99Hz。 数字频率计电路Multisim仿真设计图如图19.2所示。其电路结构是: 用二片74LS90(U1和U2)组成BCD码100进制计数器,二个数码管U3和U4分别显示十位数和个位数。四D触发器74LS175(U5)与三输入与非门7410(U6B)组成可自启动的环形计数器,产生闸门控制信号和计数器清0信号。信号发生器XFG1产生频率为1Hz、占空比为50%的连续脉冲信号,信号发生器XFG2产生频率为1-99Hz(人为设置)、占空比为50%的连续脉冲信号作为被测脉冲。三输入与非门7410(U6A)为控制闸门。 运行后该频率计进行如下自动循环测量: 计数1秒→显示3秒→清零1秒→…… 改变被测脉冲频率,重新运行。

模拟电路实验讲义..

实验一 单级交流放大电路 一、实验目的 1、 学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。 2、 掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。 3、 熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图1-1为电阻分压式工作点稳定单管放大器实验电路图。它的偏置电路采用R B1和R B2组成的分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号u i 后,在放大器的输出端便可得到一个与u i 相位相反,幅值被放大了的输出信号u 0,从而实现了电压放大。 图1-1 共射极单管放大器实验电路 在图1-1电路中,当流过偏置电阻R B1和R B2 的电流远大于晶体管T 的 基极电流I B 时(一般5~10倍),则它的静态工作点可用下式估算 CC B2 B1B1 B U R R R U +≈ U CE =U CC -I C (R C +R E ) 电压放大倍数 C E BE B E I R U U I ≈-≈

be L C V r R R β A // -= 输入电阻 R i =R B1 // R B2 // r be 输出电阻 R O ≈R C 由于电子器件性能的分散性比较大,因此在设计和制作晶体管放大电路时,离不开测量和调试技术。在设计前应测量所用元器件的参数,为电路设计提供必要的依据,在完成设计和装配以后,还必须测量和调试放大器的静态工作点和各项性能指标。一个优质放大器,必定是理论设计与实验调整相结合的产物。因此,除了学习放大器的理论知识和设计方法外,还必须掌握必要的测量和调试技术。 放大器的测量和调试一般包括:放大器静态工作点的测量与调试,消除干扰与自激振荡及放大器各项动态参数的测量与调试等。 1、 放大器静态工作点的测量与调试 1) 静态工作点的测量 测量放大器的静态工作点,应在输入信号u i =0的情况下进行, 即将放大器输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流I C 以及各电极对地的电位U B 、U C 和U E 。一般实验中,为了避免断开集电极,所以采用测量电压U E 或U C ,然后算出I C 的方法,例如,只要测出U E ,即可用 E E E C R U I I = ≈算出I C (也可根据C C CC C R U U I -=,由U C 确定I C ), 同时也能算出U BE =U B -U E ,U CE =U C -U E 。 为了减小误差,提高测量精度,应选用内阻较高的直流电压表。 2) 静态工作点的调试 放大器静态工作点的调试是指对管子集电极电流I C (或U CE )的调整与测试。静态工作点是否合适,对放大器的性能和输出波形都有很大影响。如工作点偏高,放大器在加入交流信号以后易产生饱和失真,此时u O 的负半周将被削底,如图1-2(a)所示;如工作点偏低则易产生截止失真,即u O 的正半周被缩顶(一般截止失真不如饱和失真明显),如图1-2(b)所示。这些情况都不符合不失真放大

大学《模拟电子线路实验》实验报告

大连理工大学网络高等教育《模拟电子线路》实验报告 学习中心:奥鹏教育中心 层次:高中起点专科 专业:电力系统自动化 年级: 学号: 学生姓名:杨

实验一常用电子仪器的使用 一、实验目的 答:1.了解并掌握模拟电子技术实验箱的主要功能及使用方法。 2.了解并掌握数字万用表的主要功能及使用方法。 3.学习并掌握TDS1002型数字存储示波器和信号源的基本操作方法。 二、基本知识 1.简述模拟电子技术实验箱布线区的结构及导电机制。 答:布线区面板以大焊孔为主,其周围以十字花小孔结构相结合,构成接点的连接形式,每个大焊孔与它周围的小孔都是相通的。 2.试述NEEL-03A型信号源的主要技术特性。 答:1.输出波形:三角波、正弦波、方波、二脉、四脉、八脉、单次脉冲信号; 2.输出频率:10HZ~1HZ连续可调; 3.幅值调节范围:0~10Vp-p连续可调; 4.波形衰减:20db、40db; 5.带有6位数字频率计,即可作为信号源的输出监视仪表,也可以作为外侧频率计使用。 3.试述使用万用表时应注意的问题。 答:使用万用表进行测量时,应先确定所需测量功能和量程。 确定量程的原则: 1.若已知被测参数大致范围,所选量程应“大于被测值,且最接近被测值”。 2.如果被测参数的范围未知,则选择所需功能的最大量程测量,根据粗侧结果逐步把量程下调到最接近于被测值的量程,以便测量出更加精准的数值。 如屏幕显示“1”,表明以超过量程范围,需将量程开关转至相应档位上。 3.在测量间歇期和实验结束后,不要忘记关闭电源。 三、预习题 1.正弦交流信号的峰-峰值=__2__×峰值,峰值=__√2__×有效值。 2.交流信号的周期和频率是什么关系? 答:周期和频率互为倒数。T=1/f f=1/T

模拟电路仿真实验

模拟电路仿真实验 实验报告 班级: 学号: 姓名:

多级负反馈放大器的研究 一、实验目的 (1)掌握用仿真软件研究多级负反馈放大电路。 (2)学习集成运算放大器的应用,掌握多级集成运放电路的工作特点。 (3)研究负反馈对放大器性能的影响,掌握负反馈放大器性能指标的测试方法。 1.测试开环和闭环的电压放大倍数、输入电阻、反馈网络的电压反馈系数的通频带; 2.比较电压放大倍数、输入电阻、输出电阻和通频带在开环和闭环时的差别; 3.观察负反馈对非线性失真的改善。 二、实验原理及电路 (1)基本概念: 1.在电子电路中,将输出量(输出电压或输出电流)的一部分或全部通过一定的电路形式作用到输入回路,用来影响其输入量(放大电路的输入电压或输入电流)的措施称为反馈。 若反馈的结果使净输入量减小,则称之为负反馈;反之,称之为正反馈。若反馈存在于直流通路,则称为直流反馈;若反馈存在于交流通路,则称为交流反馈。 2.交流负反馈有四种组态:电压串联负反馈;电压并联负反馈;电流串联负反馈;电流并联负反馈。若反馈量取自输出电压,则称之为电压反馈;若反馈量取自输出电流,则称之为电流反馈。输入量、反馈量和净输入量以电压形式相叠加,称为串联反馈;以电流形式相叠加,称为并联反馈。 3.在分析反馈放大电路时,“有无反馈”决定于输出回路和输入回路是否存在反馈支路。“直流反馈或交流反馈”决定于反馈支路存在于直流通路还是交流通路;“正负反馈”的判断可采用瞬时极性法,反馈的结果使净输入量减小的为负反馈,使净输入量增大的为正反馈;“电压反馈或电流反馈”的判断可以看反馈支路与输出支路是否有直接接点,如果反馈支路与输出支路有直接接点则为电压反馈,否则为电流反馈;“串联反馈或并联反馈”的判断可以看反馈支路与输入支路是否有直接接点,如果反馈支路与输入支路有直接接点则为并联反馈,否则为串联反馈。 4.引入交流负反馈后,可以改善放大电路多方面的性能:提高放大倍数的稳定性、改变输入电阻和输出电阻、展宽通频带、减小非线性失真等。实验电路如图所示。该放大电路由两级运放构成的反相比例器组成,在末级的输出端引入了反馈网路C f 、R f2和R f1,构成了交流电压串联负反馈电路。 R110kΩ R2100kΩ R3 10kΩ R43.9kΩ R53.9kΩ R63.9kΩ R7200kΩ R81kΩ R94.7kΩR10300kΩ U1A LM324N 3 2 11 41 U1C LM324N 10 9 11 4 8 C110uF C210uF C3 10uF J1 Key = Space J2 Key = A VCC 10V VEE -10V 1 4 10 8 11 12 13 7 3 6 5VEE VCC 2 9

模拟电子技术实验报告

姓名:赵晓磊学号:1120130376 班级:02311301 科目:模拟电子技术实验B 实验二:EDA实验 一、实验目的 1.了解EDA技术的发展、应用概述。 2. 掌握Multisim 1 3.0 软件的使用,完成对电路图的仿真测试。 二、实验电路

三、试验软件与环境 Multisim 13.0 Windows 7 (x64) 四、实验内容与步骤 1.实验内容 了解元件工具箱中常用的器件的调用、参数选择。 调用各类仿真仪表,掌握各类仿真仪表控制面板的功能。 完成实验指导书中实验四两级放大电路实验(不带负反馈)。 2.实验步骤 测量两级放大电路静态工作点,要求调整后Uc1 = 10V。 测定空载和带载两种情况下的电压放大倍数,用示波器观察输入电压和输出电压的相位关系。 测输入电阻Ri,其中Rs = 2kΩ。 测输出电阻Ro。 测量两级放大电路的通频带。 五、实验结果 1. 两级放大电路静态工作点 断开us,Ui+端对地短路

2. 空载和带载两种情况下的电压放大倍数接入us,Rs = 0 带载: 负载: 经过比较,输入电压和输出电压同相。 3. 测输入电阻Ri Rs = 2kΩ,RL = ∞ Ui = 1.701mV

Ri = Ui/(Us-Ui)*Rs = 11.38kΩ 4. 测输出电阻Ro Rs = 0 RL = ∞,Uo’=979.3mV RL = 4.7kΩ,Uo = 716.7mV Ro = (Uo’/Uo - 1)*R = 1.72kΩ 5. 测量两级放大电路的通频带电路最大增益49.77dB 下限截止频率fL = 75.704Hz 上限截止频率fH = 54.483kHz 六、实验收获、体会与建议

模拟电路实验讲义 (1)

模拟电路实验讲义 本讲义与实验参考书《电子线路设计·实验·测试(第三版)》(谢自美主编)配合使用,预习时以本讲义为线索,重点参考上述实验教材的相关内容。 实验要求 1.实验前必须充分预习,完成指定的预习任务。预习要求如下: 1)认真阅读实验指导书,分析、掌握实验电路的工作原理, 并进行必要的估算。 2)完成各实验“预习要求”中指定的内容。 3)熟悉实验任务。 4)复习实验中所用各仪器的使用方法及注意事项。 2.使用仪器和实验箱前必须了解其性能、操作方法及注意事项,在使用时应严格遵守。 3.实验时接线要认真,相互仔细检查,确定无误才能接通电源,初学或没有把握应经指导教师审查同意后再接通电源。4.实验时应注意观察,若发现有破坏性异常现象(例如有元件冒烟、发烫或有异味)应立即关断电源,保持现场,报告指

导教师。找出原因、排除故障,经指导教师同意再继续实验。 5.实验过程中需要改接线时,应关断电源后才能拆、接线。 6.实验过程中应仔细观察实验现象,认真记录实验结果(数据波形、现象)。所记录的实验结果经指导教师审阅签字后再拆除实验线路。7.实验结束后,必须关断电源、拔出电源插头,并将仪器、设备、工具、导线等按规定整理。 8.实验后每个同学必须按要求独立完成实验报告。

实验一基本仪器的使用 一、实验目的 1. 信号源的使用; 2. 示波器的使用; 3. 万用表的使用; 二、实验步骤 1. 用信号源输出频率1KHz,幅值0.5V,偏置电压为0.0V; 2. 用示波器观察上述波形,验证频率、幅度和偏置电压。 3. 用万用表测试电压、电流、电阻、电容和二极管。

实验一 典型环节的电路模拟与数字仿真实验

实验一典型环节的电路模拟与数字仿真实验 一实验目的 通过实验熟悉各种典型环节传递函数及其特性,掌握电路模拟和数字仿真研究方法。 二实验内容 1.设计各种典型环节的模拟电路。 2.编制获得各种典型环节阶跃特性的数字仿真程序。 3.完成各种典型环节模拟电路的阶跃特性测试,并研究参数变化对典型环节阶跃特性的影响。 4.运行所编制的程序,完成典型环节阶跃特性的数字仿真研究,并与电路模拟研究的结果作比较。 三实验步骤 1.熟悉实验设备,设计并连接各种典型环节的模拟电路; 2.利用实验设备完成各典型环节模拟电路的阶跃特性测试,并研究参数变化对典型环节阶跃特性的影响; 3.用MATLAB编写计算各典型环节阶跃特性的数字仿真研究,并与电路模拟测试结果作比较。分析实验结果,完成实验报告。 四实验结果 1.积分环节模拟电路、阶跃响应

仿真结果: 2.比例积分环节模拟电路、阶跃响应 仿真结果:

3.比例微分环节模拟电路、阶跃响应 仿真结果: 4.惯性环节模拟电路、阶跃响应

仿真结果: 5.实验结果分析: 积分环节的传递函数为G=1/Ts(T为积分时间常数),惯性环节的传递函数为G=1/(Ts+1)(T为惯性环节时间常数)。 当时间常数T趋近于无穷小,惯性环节可视为比例环节, 当时间常数T趋近于无穷大,惯性环节可视为积分环节。

实验二典型系统动态性能和稳定性分析的电路模拟与数 字仿真研究 一实验目的 1.学习和掌握动态性能指标的测试方法。 2.研究典型系统参数对系统动态性能和稳定性的影响。 二实验内容 1.观测二阶系统的阶跃响应,测出其超调量和调节时间,并研究其参数变化对动态性能和稳定性的影响。 三实验步骤 1.熟悉实验设备,设计并连接由一个积分环节和一个惯性环节组成的二阶闭环系统的模拟电路; 2.利用实验设备观测该二阶系统模拟电路的阶跃特性,并测出其超调量和调节时间; 3.二阶系统模拟电路的参数观测参数对系统的动态性能的影响; 4.分析结果,完成实验报告。 四实验结果 典型二阶系统 仿真结果:1)过阻尼

模拟电路实验报告

单级放大电路 1、实验内容 1、掌握放大器静态工作点的调试方法及其对放大电路性能的影响。 2、测量放大器的β值与静态工作点Q、Av、等,了解共射极电路特性。 3、学习放大器的动态性能。 2、实验步骤与分析 1、测量β值 按实验指导书图2.1所示连接电路,将R p 的阻值调到最大位置。连线完毕仔 细检查,无误后接通电源。改变R p ,记录I c 分别为0.8mA、1 mA、1.2 mA时三 极管V的β值。 2、测量Q点 信号源频率f=500Hz时,逐渐加大u i 幅度,观察uo不失真时的最大输入值 u i 值和最大输出u o 值,并测量I B 、V CE 。 3、测量A v 点 (1)将信号发生器调到频率f=500Hz、幅值为5mV,接到放大器输入端u i ,观 察u i 和u o1 端的波形,用示波器进行测量,并将测得的u i 、u o 和实测计算的值Av 及理论估算的值Av 1 填入表内。

. (2)保持Vi=5mV不变,放大器接入负载R L ,在改变R C 数值情况下测量,并将 结果填入表中。 3、实验结果与总结 测量了放大器的β值与静态工作点Q、Av、等,实验数据如上表所示,更加深入了解了单级放大电路。 实验总结: 1、测量β值时,接线前先测量12V电源,然后关断电源后再连线 2、控制单一变量,如Av值测量时保持Vi保持不变 3、要熟练掌握示波器的使用 4、实验读数应读多次再取平均值 5、接线尽可能简单

差动放大电路 1、实验内容 1、熟悉差动放大器工作原理。 2、掌握差动放大器的基本测试方法。 2、实验步骤与分析 1、按实验指导书图5.1所示连接电路。 2、测量静态工作点 (1)调零:将输入端V I1和V I2 接地,接通直流电源,调节电位器R P1 使双端 输出电压V O =0 (2)测量静态工作点:测量V 1、V 2 、V 3 各极对地电压。 3、测量差模电压放大倍数 在两个输入端各自加入直流电压信号U id1=+0.1V和U id2 =-0.1V,按下表要求测 量并记录,由测量结果得到的数据计算出单端和双端输出的电压放大倍数。(注 意:先调好实验台上的直流输出信号OUT1和OUT2,接入到V i1和V i2 ,接入到V i1 和Vi2,调节DC信号源,使其输出为+0.1V和-0.1V。) 3、实验结果与总结

模拟电子线路multisim仿真实验报告

MULTISIM 仿真实验报告

实验一单级放大电路 一、实验目的 1、熟悉multisim软件的使用方法 2、掌握放大器的静态工作点的仿真方法,及对放大器性能的影响。 3、学习放大器静态工作点、电压放大倍数,输入电阻、输出电阻的仿真方法,了解共 射级电路的特性。 二、虚拟实验仪器及器材 双踪示波器信号发生器交流毫伏表数字万用表 三、实验步骤 1.仿真电路图 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 1 R7 5.1kΩ 9 XMM1 6 E级对地电压25.静态数据仿真

仿真数据(对地数据)单位;V计算数据单位;V 基级集电极发射级Vbe Vce RP 2.834 6.126 2.2040.63 3.92210k 26.动态仿真一 1.单击仪表工具栏的第四个,放置如图,并连接电路。 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 R7 5.1kΩ XSC1 A B Ext Trig + + _ _+_ 6 1 9

2.双击示波器,得到如下波形 5.他们的相位相差180度。 27.动态仿真二 1.删除负载电阻R6 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 XSC1 A B Ext Trig + + _ _+_ 6 1 9 2.重启仿真。

电子教案-《模拟电子技术》(冯泽虎)教学课件知识点5:分压偏置共射极放大电路-电子教案 电子课件

《电工电子技术》课程电子教案 教师:宋静序号:05

知识引导 图7-22 温度对静态点的影响 2.基极分压式偏置电路 具有稳定工作点功能的典型分压式偏置电路如图 7-23所示。 a)电路原理图 b)直流通路图 图7-23压式偏置放大电路 1)稳定静态工作点的原理 温度的变化会导致三极管的性能发生变化,致使放 大器的工作点发生变化,影响放大器的正常工作。如图 7-23 所示电路中是通过增加下偏置电阻和射极电阻来 改善直流工作点的稳定性的,其工作原理如下: (1)利用R B1和R B2的分压作用固定基极电压U B。 由图 7-23可知,当R B1、R B2选择适当,满足I2远 大于I B时,则有 PPT、动画演 示、图片

知识引导 中R B1、R B2和U CC都是固定的,不随温度变化,所以基极电位基本上为一定值。 (2)通过I E的负反馈作用,限制I C的改变,使工作点保持稳定。具体稳定过程如下: 从上述稳定过程可以看出,R E愈大,则在R E上产生的压降愈大,对I C变化的抑制能力愈强,电路稳定性愈好。 2)动态分析 首先画出7-23所示的射极偏置电路的微变等效电路如图7-24 a)交流通路图 b) )微变等效电路 图7-24分压式偏置电路交流通路图及微变等效电路 CC B B B B U R R R U 2 1 2 + = E BEQ B E CQ R U U I I - = ≈ ) ( E C C CC CEQ R R I U U+ - =β/ CQ BQ I I=

1. 求电压放大倍数Au 与单偏置共射极放大电路的公式一样. 2.求输入电阻 3.求输出 教学步骤教学内容学生活动时间分配操作训练 仿真练习分压式偏置共射放大电路的静态值及电压 放大倍数 仿真验证:运行Multisim9.0软件制作仿真电路,如图 7-25所示,启动仿真,所得静态值为:I BQ= 10.223uA,I CQ=1.398mA,U EQ=2.535V。由测量值可算出 三极管的放大倍数约为140。从示波器上可得输入与 输出电压波形,如图所示。输入电压的幅值约为l0mv, 输出电压的幅值约为 2.15V,并且两者相位相反,电 压放大倍数约为215 Multisim9.0 仿真软件的 使用 5 be ' L i o r R U U A u β - = =& & & be b2 b1 i r R R R∥ ∥ = c o R R=

模拟电路实验课件

目录 实验一常用电子仪器使用 实验二比例求和运算电路 实验三微分积分电路 实验四电压比较器 实验五差动放大电路 实验六单级共射放大电路 实验七射级跟随电路 实验八集成电路RC正弦波振荡器

实验一常用电子仪器的使用 一、实验目的 1、学习电子电路实验中常用的电子仪器——示波器、函数信号发生器、直流稳压电源、交流毫伏表、频率计等的主要技术指标、性能及正确使用方法。 2、初步掌握用双踪示波器观察正弦信号波形和读取波形参数的方法。 二、预习要求 1、阅读实验附录中有关示波器部分内容。 2、已知C=0.01μf、R=10K,计算图1-2 RC移相网络的阻抗角θ。 三、实验原理 在模拟电子电路实验中,经常使用的电子仪器有示波器、函数信号发生器、直流稳压电源、交流毫伏表及频率计等。它们和万用电表一起,可以完成对模拟电子电路的静态和动态工作情况的测试。 实验中要对各种电子仪器进行综合使用,可按照信号流向,以连线简捷,调节顺手,观察与读数方便等原则进行合理布局,各仪器与被测实验装置之间的布局与连接如图1-1所示。接线时应注意,为防止外界干扰,各仪器的共公接地端应连接在一起,称共地。信号源和交流毫伏表的引线通常用屏蔽线或专用电缆线,示波器接线使用专用电缆线,直流电源的接线用普通导线。 图1-1 模拟电子电路中常用电子仪器布局图 1、示波器 示波器是一种用途很广的电子测量仪器,它既能直接显示电信号的波形,又能对电信号进行各种参数的测量。现着重指出下列几点:

1)、寻找扫描光迹 将示波器Y轴显示方式置“Y1”或“Y2”,输入耦合方式置“GND”,开机预热后,若在显示屏上不出现光点和扫描基线,可按下列操作去找到扫描线:①适当调节亮度旋钮。②触发方式开关置“自动”。③适当调节垂直()、水平()“位移”旋钮,使扫描光迹位于屏幕中央。(若示波器设有“寻迹”按键,可按下“寻迹”按键,判断光迹偏移基线的方向。) 2)、双踪示波器一般有五种显示方式,即“Y1”、“Y2”、“Y1+Y2”三种单 踪显示方式和“交替”“断续”二种双踪显示方式。“交替”显示一般适宜于输入信号频率较高时使用。“断续”显示一般适宜于输入信号频率较底时使用。 3)、为了显示稳定的被测信号波形,“触发源选择”开关一般选为“内”触发,使扫描触发信号取自示波器内部的Y通道。 4)、触发方式开关通常先置于“自动”调出波形后,若被显示的波形不稳定,可置触发方式开关于“常态”,通过调节“触发电平”旋钮找到合适的触发电压,使被测试的波形稳定地显示在示波器屏幕上。 有时,由于选择了较慢的扫描速率,显示屏上将会出现闪烁的光迹,但被 测信号的波形不在X轴方向左右移动,这样的现象仍属于稳定显示。 5)、适当调节“扫描速率”开关及“Y轴灵敏度”开关使屏幕上显示 一~二个周期的被测信号波形。在测量幅值时,应注意将“Y轴灵敏度微调”旋钮置于“校准”位置,即顺时针旋到底,且听到关的声音。在测量周期时,应注意将“X轴扫速微调”旋钮置于“校准”位置,即顺时针旋到底,且听到关的声音。还要注意“扩展”旋钮的位置。 根据被测波形在屏幕坐标刻度上垂直方向所占的格数(div或cm)与“Y轴灵敏度”开关指示值(v/div)的乘积,即可算得信号幅值的实测值。 根据被测信号波形一个周期在屏幕坐标刻度水平方向所占的格数(div或 cm)与“扫速”开关指示值(t/div)的乘积,即可算得信号频率的实测值。 2、函数信号发生器 函数信号发生器按需要输出正弦波、方波、三角波三种信号波形。输出电压最大可。通过输出衰减开关和输出幅度调节旋钮,可使输出电压在毫伏级到伏级范围达20V P-P 内连续调节。函数信号发生器的输出信号频率可以通过频率分档开关进行调节。 函数信号发生器作为信号源,它的输出端不允许短路。

(完整版)模拟电子电路实验报告

实验一晶体管共射极单管放大器 一、实验目的 1、学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。 2、掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。 3、熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图2-1为电阻分压式工作点稳定单管放大器实验电路图。它的偏置电路采用R B1和R B2组成的分压电路,并在发射极中接有电阻R E,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号u i后,在放大器的输出端便可得到一个与u i相位相反,幅值被放大了的输出信号u0,从而实现了电压放大。 图2-1 共射极单管放大器实验电路 在图2-1电路中,当流过偏置电阻R B1和R B2的电流远大于晶体管T 的 基极电流I B时(一般5~10倍),则它的静态工作点可用下式估算

CC B2 B1B1 B U R R R U +≈ U CE =U CC -I C (R C +R E ) 电压放大倍数 be L C V r R R βA // -= 输入电阻 R i =R B1 // R B2 // r be 输出电阻 R O ≈R C 由于电子器件性能的分散性比较大,因此在设计和制作晶体管放大电路时,离不开测量和调试技术。在设计前应测量所用元器件的参数,为电路设计提供必要的依据,在完成设计和装配以后,还必须测量和调试放大器的静态工作点和各项性能指标。一个优质放大器,必定是理论设计与实验调整相结合的产物。因此,除了学习放大器的理论知识和设计方法外,还必须掌握必要的测量和调试技术。 放大器的测量和调试一般包括:放大器静态工作点的测量与调试,消除干扰与自激振荡及放大器各项动态参数的测量与调试等。 1、 放大器静态工作点的测量与调试 1) 静态工作点的测量 测量放大器的静态工作点,应在输入信号u i =0的情况下进行, 即将放大 C E BE B E I R U U I ≈-≈

模拟电子线路multisim仿真实验报告

MULTISIM 仿真实验报告 实验一单级放大电路 一、实验目的 1、熟悉multisim软件的使用方法 2、掌握放大器的静态工作点的仿真方法,及对放大器性能的影响。 3、学习放大器静态工作点、电压放大倍数,输入电阻、输出电阻的仿真方法,了

解共射级电路的特性。 二、虚拟实验仪器及器材 双踪示波器信号发生器交流毫伏表数字万用表 三、实验步骤 1.仿真电路图 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 1 R7 5.1kΩ 9 XMM1 6 E级对地电压25.静态数据仿真

仿真数据(对地数据)单位;V计算数据单位;V 基级集电极发射级Vbe Vce RP 10k 26.动态仿真一 1.单击仪表工具栏的第四个,放置如图,并连接电路。 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 R7 5.1kΩ XSC1 A B Ext Trig + + _ _+_ 6 1 9

2.双击示波器,得到如下波形 5.他们的相位相差180度。 27.动态仿真二 1.删除负载电阻R6 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 XSC1 A B Ext Trig + + _ _+_ 6 1 9 2.重启仿真。

相关主题
文本预览
相关文档 最新文档