当前位置:文档之家› 2013高三数学总复习同步练习:5-4向量的应用及向量与其他知识的综合问题

2013高三数学总复习同步练习:5-4向量的应用及向量与其他知识的综合问题

2013高三数学总复习同步练习:5-4向量的应用及向量与其他知识的综合问题
2013高三数学总复习同步练习:5-4向量的应用及向量与其他知识的综合问题

5-4向量的应用及向量与其他知识的综合问题

基础巩固强化

1.(文)如图,在△ABC 中,AB =5,BC =3,CA =4,且O 是△ABC 的外心,则OC →·CA →

=( )

A .6

B .-6

C .8

D .-8 [答案] D

[解析] ∵AB 2=AC 2+BC 2,∴∠ACB 为直角, ∵O 为△ABC 外心,

∴OC →·CA →=-CO →·CA →=-12(CA →+CB →)·CA →

=-12|CA →|2-12CB →·CA →=-8.

(理)在直角梯形ABCD 中,AB ∥CD ,AD ⊥AB ,∠B =45°,AB =2CD =2,M 为腰BC 的中点,则MA →·MD →=( )

A .1

B .2

C .3

D .4 [答案] B

[解析] 由条件知AB =2,CD =1,BC =2, ∴MB =MC =2

2,

∴MC →·BA →=|MC →|·|BA →|·cos45°=22×2×22=1, MB →·CD →=|MB →|·|CD →|·cos135°

=22×1×?

????

-22=-12,

∴MA →·MD →=(MB →+BA →)·(MC →+CD →

) =MB →·MC →+MB →·CD →+BA →·MC →+BA →·CD →

=-? ??

??222+? ????

-12+1+2×1=2,故选B.

2.已知A 、B 、C 是锐角△ABC 的三个内角,向量p =(sin A,1),q =(1,-cos B ),则p 与q 的夹角是( )

A .锐角

B .钝角

C .直角

D .不确定

[答案] A

[解析] 解法1:p ·q =sin A -cos B ,若p 与q 夹角为直角,则p ·q =0,∴sin A =cos B ,∵A 、B ∈? ??

??0,π2,∴A =B =π4,则C =π

2,与条

件矛盾;若p 与q 夹角为钝角,则p ·q <0,∴sin A

??

π2-B ,

∵sin x 在? ????0,π2上为增函数,∴A <π2-B ,∴A +B <π2,∴C >π2这与条件矛盾,∴p 与q 的夹角为锐角.

解法2:由题意可知A +B >π2?A >π2-B ?sin A >sin(π

2-B )=cos B ?p ·q =sin A -cos B >0,又显然p 、q 不同向,故p 与q 夹角为锐角.

3.(2012·河北郑口中学模拟)已知P 是△ABC 所在平面内一点,PB →+PC →+2P A →

=0,现将一粒黄豆随机撒在△ABC 内,则黄豆落在△PBC 内的概率是( )

A.14

B.13

C.12

D.23

[答案] C

[解析] 如图,PB →+PC →=PE →=2PD →,∵PB →+PC →+2P A →=0,∴P A →

+PD →

=0,∴P 为AD 的中点,

∴所求概率为P =S △PBC S △ABC =1

2

.

4.(文)(2011·成都市玉林中学期末)已知向量OA →=(2,2),OB →

=(4,1),在x 轴上有一点P ,使AP →·BP →有最小值,则P 点坐标为( )

A .(-3,0)

B .(3,0)

C .(2,0)

D .(4,0)

[答案] B

[解析] 设P (x,0),则AP →=(x -2,-2),BP →=(x -4,-1),AP →·BP →

=(x -2)(x -4)+(-2)×(-1)=x 2-6x +10=(x -3)2+1,∴当x =3时AP →·BP →有最小值,

∴P (3,0).

(理)(2011·河南质量调研)直线ax +by +c =0与圆x 2+y 2=9相交于两点M 、N ,若c 2

=a 2

+b 2

,则OM →·ON →(O 为坐标原点)等于( )

A .-7

B .-14

C .7

D .14

[答案] A

[解析] 记OM →、ON →

的夹角为2θ.依题意得,圆心(0,0)到直线ax +by +c =0的距离等于|c |a 2+b 2=1,∴cos θ=1

3,∴cos2θ=2cos 2θ-1

=2×(13)2-1=-7

9,∴OM →·ON →=3×3cos2θ=-7,选A.

5.(2012·吉林实验中学模拟)如图,正方形ABCD 中,点E 、F 分别是DC 、BC 的中点,那么EF →

=( )

A.12AB →+12AD → B .-12AB →-12AD → C .-12AB →+12AD → D.12AB →-12AD →

[答案] D

[解析] EF →=AF →-AE →=(AB →+12BC →)-(AD →+12DC →

) =AB →+12AD →-AD →-12AB →=12AB →-12AD →.

6.(2012·浙江宁波市期末)在△ABC 中,D 为BC 边中点,若∠A =120°,AB →·AC →=-1,则|AD →|的最小值是( )

A.1

2 B.3

2 C. 2 D.22

[答案] D

[解析] ∵∠A =120°,AB →·AC →

=-1, ∴|AB →|·|AC →|·cos120°=-1, ∴|AB →|·|AC →|=2,

∴|AB →|2+|AC →|2≥2|AB →|·|AC →|=4,

∵D 为BC 边的中点,∴AD →=12(AB →+AC →),∴|AD →|2=1

4(|AB →|2+|AC →|2+2AB →·AC →)=14(|AB →|2+|AC →|2-2)≥14(4-2)=12,∴|AD →|≥22.

7.如图,半圆的直径AB =6,O 为圆心,C 为半圆上不同于A 、B 的任意一点,若P 为半径OC 上的动点,则(P A →+PB →)·PC →的最小值为________.

[答案] -9

2

[解析] 设PC =x ,则0≤x ≤3.(P A →+PB →)·PC →=2PO →·PC →

=-2x ×(3-x )=2x 2-6x =2(x -32)2-92,所以(P A →+PB →)·PC →的最小值为-92.

8.(2012·会昌月考)已知向量a 与b 的夹角为2π

3,且|a |=1,|b |=4,若(2a +λb )⊥a ,则实数λ=________.

[答案] 1

[解析] ∵〈a ,b 〉=2π

3,|a |=1,|b |=4,∴a ·b =|a |·|b |·cos 〈a ,b 〉=1×4×cos 2π

3=-2,∵(2a +λb )⊥a ,

∴a ·(2a +λb )=2|a |2+λa ·b =2-2λ=0,∴λ=1.

9.(2012·宁夏三市联考)在平行四边形ABCD 中,已知AB =2,AD =1,∠BAD =60°,E 为CD 的中点,则AE →·BD →=________.

[答案] -3

2

[解析] AE →·BD →=(AD →+12AB →)·(AD →-AB →)=|AD →|2-12|AB →|2-1

2AD →·AB →=1-2-12×1×2·cos60°=-32.

10.(文)(2012·豫南九校联考)已知向量OP →

=(2cos x +1,cos2x -sin x +1),OQ →=(cos x ,-1),f (x )=OP →·OQ →.

(1)求函数f (x )的最小正周期;

(2)当x ∈[0,π

2]时,求函数f (x )的最大值及取得最大值时的x 值. [解析] (1)∵OP →=(2cos x +1,cos2x -sin x +1),OQ →

=(cos x ,-1),

∴f (x )=OP →·OQ →

=(2cos x +1)cos x -(cos2x -sin x +1) =2cos 2x +cos x -cos2x +sin x -1 =cos x +sin x =2sin(x +π4),

∴函数f (x )最小正周期T =2π. (2)∵x ∈[0,π2],∴x +π4∈[π4,3π

4],

∴当x +π4=π2,即x =π4时,f (x )=2sin(x +π

4)取到最大值 2. (理)(2012·龙岩月考、河北衡水中学调研)△ABC 的三个内角A 、B 、C 所对的边分别为a 、b 、c ,向量m =(-1,1),n =(cos B cos C ,sin B sin C -3

2),且m ⊥n .

(1)求A 的大小;

(2)现在给出下列三个条件:①a =1;②2c -(3+1)b =0;③B =45°,试从中选择两个条件以确定△ABC ,求出所确定的△ABC 的面积.

(注:只需要选择一种方案答题,如果用多种方案答题,则按第一方案给分).

[解析] (1)因为m ⊥n ,

所以-cos B cos C +sin B sin C -3

2=0,

即cos B cos C -sin B sin C =-32,所以cos(B +C )=-3

2, 因为A +B +C =π,所以cos(B +C )=-cos A , 所以cos A =3

2,A =30°.

(2)方案一:选择①②,可确定△ABC , 因为A =30°,a =1,2c -(3+1)b =0,

由余弦定理得,12

=b 2

+(3+12b )2-2b ·3+12b ·32

解得b =2,所以c =6+2

2,

所以S △ABC =12bc sin A =1

2·2·6+22·12=3+14, 方案二:选择①③,可确定△ABC , 因为A =30°,a =1,B =45°,C =105°,

又sin105°=sin(45°+60°)=sin45°cos60°+cos45°sin60°=6+24,

由正弦定理c =a sin C sin A =1·sin105°sin30°=6+2

2, 所以S △ABC =12ac sin B =1

2·1·6+22·22=3+14. (注意:选择②③不能确定三角形)

能力拓展提升

11.(文)(2012·浙江省样本学校测试)如图,△ABC 的外接圆的圆心为O ,AB =3,AC =5,BC =7,则AO →·BC →等于( )

A .-8

B .-1

C .1

D .8

[答案] D

[解析]

取BC 的中点M ,连接AM 、OM , AO →·BC →=(AM →+MO →)·BC →=AM →·BC →

=AC →+AB →2·(AC →-AB →)=|AC →|2

-|AB →

|22

=8,故选D. (理)(2011·福建理,8)已知O 是坐标原点,点A (-1,1),若点M (x ,y )为平面区域????

?

x +y ≥2,x ≤1,

y ≤2.上的一个动点,则OA →·OM →

的取值范围是

( )

A .[-1,0]

B .[0,1]

C .[0,2]

D .[-1,2]

[答案] C

[解析] OA →·OM →

=(-1,1)·(x ,y )=y -x ,画出线性约束条件????

?

x +y ≥2,x ≤1,y ≤2.

表示的平面区域如图所示.

可以看出当z =y -x 过点A (1,1)时有最小值0,过点C (0,2)时有最大值2,则OA →·OM →的取值范围是[0,2],故选C.

12.设F 1、F 2为椭圆x 24+y 2

=1的左、右焦点,过椭圆中心任作一直线与椭圆交于P 、Q 两点,当四边形PF 1QF 2面积最大时,PF 1→·PF 2→

的值等于( )

A .0

B .2

C .4

D .-2

[答案] D

[解析] 由题意得c =a 2-b 2=3,

又S 四边形PF 1QF 2=2S △PF 1F 2=2×1

2×F 1F 2·h (h 为F 1F 2边上的高),所以当h =b =1时,S 四边形PF 1QF 2取最大值,此时∠F 1PF 2=120°.

所以PF 1→·PF 2→=|PF 1→|·|PF 2→|·cos120° =2×2×(-1

2)=-2.

13.(2011·烟台质检)在平面直角坐标系xOy 中,i 、j 分别是与x

轴,y 轴平行的单位向量,若直角三角形ABC 中,AB →=i +j ,AC →

=2i +m j ,则实数m =________.

[答案] 0或-2

[解析] ∵△ABC 为直角三角形,

∴当A 为直角时,AB →·AC →

=(i +j )·(2i +m j )=2+m =0?m =-2; 当B 为直角时,AB →·BC →=AB →·(AC →-AB →)=(i +j )·[i +(m -1)j ]=1+m -1=0?m =0;

当C 为直角时,AC →·BC →=AC →·(AC →-AB →)=(2i +m j )·[i +(m -1)j ]=2+m 2-m =0,此方程无解.

∴实数m =0或m =-2.

14.(2012·苏北四市统考)已知△ABO 三顶点的坐标为A (1,0),B (0,2),O (0,0),P (x ,y )是坐标平面内一点,且满足AP →·OA →≤0,BP →·OB →≥0,则OP →·AB →的最小值为________.

[答案] 3

[解析] AP →=(x -1,y ),OA →

=(1,0), BP →=(x ,y -2),OB →

=(0,2), ∵?????

AP →·OA →≤0,BP →·OB →≥0,

∴????? x -1≤0,2(y -2)≥0,∴?

????

x ≤1,

y ≥2, ∴OP →·AB →=(x ,y )·(-1,2)=-x +2y ≥-1+2×2=3,∴OP →·AB →

最小值为3.

15.(文)已知向量a =1sin x ,-1

sin x ,b =(2,cos2x ),其中x ∈? ????0,π2.

(1)试判断向量a 与b 能否平行,并说明理由? (2)求函数f (x )=a ·b 的最小值.

[解析] (1)若a ∥b ,则有1sin x ·cos2x +1

sin x ·2=0. ∵x ∈?

?

?

??0,π2,∴cos2x =-2,这与|cos2x |≤1矛盾,

∴a 与b 不能平行. (2)∵f (x )=a ·b =2sin x -cos2x

sin x

=2-cos2x sin x =1+2sin 2x sin x =2sin x +1sin x , ∵x ∈? ?

???0,π2,∴sin x ∈(0,1],

∴f (x )=2sin x +1

sin x ≥2

2sin x ·1sin x =2 2.

当2sin x =1sin x ,即sin x =2

2时取等号, 故函数f (x )的最小值为2 2.

(理)已知点P (0,-3),点A 在x 轴上,点Q 在y 轴的正半轴上,点M 满足P A →·AM →=0,AM →=-32MQ →

,当点A 在x 轴上移动时,求动点M 的轨迹方程.

[解析] 设M (x ,y )为所求轨迹上任一点,设A (a,0),Q (0,b )(b >0), 则P A →=(a,3),AM →=(x -a ,y ),MQ →

=(-x ,b -y ), 由P A →·AM →=0,得a (x -a )+3y =0.①

由AM →=-32MQ →

得,

(x -a ,y )=-32(-x ,b -y )=(32x ,3

2(y -b )), ∴?????

x -a =32x ,

y =32y -32b ,

∴?????

a =-x 2,

b =y 3.

把a =-x 2代入①,得-x 2(x +x

2)+3y =0, 整理得y =14x 2

(x ≠0).

16.如图,在等腰直角三角形ABC 中,∠ACB =90°,CA =CB ,D 为BC 的中点,E 是AB 上的一点,且AE =2EB .求证:AD ⊥CE .

[证明] AD →·CE →

=(AC →+12CB →)·(CA →+23AB →)

=-|AC →|2

+12CB →·CA →+23AB →·AC →+13AB →·CB →

=-|AC →|2+12|CB →||CA →|cos90°+223|AC →|2cos45°+23|AC →|2cos45°=

-|AC →|2+|AC →

|2=0,

∴AD →⊥CE →

,即AD ⊥CE .

1.已知|a |=2|b |≠0,且关于x 的函数f (x )=13x 3+1

2|a |x 2+a ·b x 在R 上有极值,则a 与b 的夹角范围为( )

A .(0,π6)

B .(π

6,π] C .(π

3,π] D .(π3,2π3]

[答案] C

[解析] 设a 与b 的夹角为θ,f (x )=13x 3+1

2|a |x 2+a ·b x 在R 上有极值,即f ′(x )=x 2+|a |x +a ·b =0有两个不同的实数解,故Δ=|a |2-4a ·b >0?cos θ<12,又θ∈[0,π],所以θ∈(π3,π],故选C.

2.设F 为抛物线y 2=2px (p >0)的焦点,A 、B 、C 为该抛物线上三点,若F A →+FB →+FC →=0,|F A →|+|FB →|+|FC →

|=3,则该抛物线的方程是( )

A .y 2=2x

B .y 2=4x

C .y 2=6x

D .y 2=8x [答案] A

[解析] ∵F (p

2,0),设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3), 由F A →+FB →+FC →

=0得,

(x 1-p 2)+(x 2-p 2)+(x 3-p

2)=0, ∴x 1+x 2+x 3=3

2p . 又由抛物线定义知,

|F A →|+|FB →|+|FC →|=(x 1+p 2)+(x 2+p 2)+(x 3+p

2)=3p =3,∴p =1, 因此,所求抛物线的方程为y 2=2x ,故选A.

3.不共线向量OA →、OB →,且2OP →=xOA →+yOB →,若P A →=λAB →

(λ∈R ),则点(x ,y )的轨迹方程是( )

A .x +y -2=0

B .2x +y -1=0

C .x +2y -2=0

D .2x +y -2=0

[答案] A

[解析] 由P A →=λAB →得,OA →-OP →=λ(OB →-OA →

), 即OP →=(1+λ)OA →-λOB →. 又2OP →=xOA →+yOB →,

∴?????

x =2+2λ,y =-2λ.

消去λ得x +y =2,故选A. 4.已知O 为原点,点A 、B 的坐标分别为A (a,0)、B (0,a ),其中常数a >0,点P 在线段AB 上,且有AP →=tAB →(0≤t ≤1),则OA →·OP →的最大值为( )

A .a

B .2a

C .3a

D .a 2

[答案] D

[解析] ∵AP →=tAB →

∴OP →=OA →+AP →=OA →+t (OB →-OA →) =(1-t )OA →+tOB →

=(a -at ,at ), ∴OA →·OP →=a 2(1-t ), ∵0≤t ≤1,∴OA →·OP →≤a 2.

5.已知M 是△ABC 内的一点,且AB →·AC →=23,∠BAC =30°,若△MBC 、△MCA 和△MAB 的面积分别为12、x 、y ,则1x +4

y 的最小值是________.

[答案] 18

[解析] ∵AB →·AC →

=23,∴bc cos A =23, ∵∠BAC =30°,∴bc =4, ∴S △ABC =1,∴x +y =12,

1x +4y =2(x +y )x +8(x +y )y =(2y x +8x

y )+10≥18. 等号成立时,?????

2y x =8x y ,

x +y =1

2.∴x =16,y =1

3,

∴在?????

x =16,

y =1

3.

时,1x +4

y 取得最小值18.

6.过双曲线x 2a 2-y 2

b 2=1(a >0,b >0)的左焦点F (-c,0)(

c >0),作圆

x 2+y 2=a

24的切线,切点为E ,延长FE 交双曲线右支于点P ,若OE →=

12(OF →+OP →

),则双曲线的离心率为________.

[答案]

102

[解析] ∵PF 与圆x 2+y 2=a 24相切,∴OE ⊥PF ,且OE =a

2,∵OE

→=12(OF →+OP →),∴E 为PF 的中点,又O 为FF 2的中点,∴|PF 2|=2|OE |=a ,由双曲线定义知,|PF |=|PF 2|+2a =3a ,在Rt △PFF 2中,|PF |2+|PF 2|2

=|FF 2|2

,∴a 2

+9a 2

=4c 2

,∴e 2

=52,

∵e >1,∴e =10

2.

7.(2012·广东惠州二调)已知向量a =(sin θ,cos θ)与b =(3,1),其中θ∈(0,π2).

(1)若a ∥b ,求sin θ和cos θ的值; (2)若f (θ)=(a +b )2,求f (θ)的值域. [解析] (1)∵a ∥b ,∴sin θ·1-3cos θ=0, 求得tan θ= 3.

又∵θ∈(0,π2),∴θ=π3.∴sin θ=32,cos θ=12.

(注:本问也可以结合sin 2

θ+cos 2

θ=1或化为2sin(θ-π

3)=0来求

解)

(2)f (θ)=(sin θ+3)2+(cos θ+1)2 =23sin θ+2cos θ+5=4sin(θ+π

6)+5, 又∵θ∈(0,π2),θ+π6∈(π6,2π

3), 12

6)≤1,

∴7

2.5.2向量在物理中的应用举例(教学设计)

2.5 .2向量在物理中的应用举例(教学设计) [教学目标] 一、 知识与能力: 1. 运用向量方法解决某些简单的物理问题. 二、过程与方法: 经历用向量方法解决某些简单的物理问题的过程;体会向量是一种处理物理问题的工具;发展运算能力和解决实际问题的能力. 三、情感、态度与价值观: 培养对现实世界中的数学现象的好奇心,学习从数学角度发现和提出问题;树立学科之间相互联系、相互促进的辩证唯物主义观点. [教学重点] 运用向量方法解决某些简单的物理问题. [教学难点] 运用向量方法解决某些简单的物理问题. 一、新课引入 物理学家很早就在自己的研究中使用向量概念,并早已发现这些量之间可以进行某种运算。数学家在物理学家使用向量的基础上,对向量又进行了深入的研究,使向量成为研究数学和其他科学的有力工具.本节将举例说明向量在解决物理问题中的应用. 二、师生互动,新课讲解 ()() 1212122,457,020,151,2,. A B =+=-已知两个力(单位:牛)作用于同一质点,此质点在这两个力的共同作用下,由移动到(单位:米),试求: ()分别对质点所做的功; ()求的合力对质点所做的功例1f i j f i j f f f f ()()112212125,3, 13,15, ·43,23, ·20 4323AB W AB W AB W AB ==?+=-======--解:和所做功分别为焦和焦,它们的合力所做功为20所以焦.f f f f f f f f 变式训练1: ()()()12312333,42,5,. x y ==-=++=0已知三个力,,的合力, 求F F F F F F F ()33205,145051x x y y ++=?=-=-???-+=???=?解:由平面向量的加法的坐标运算,则 F .

2.5平面向量应用举例教案

2.5.1 平面向量应用举例 一.【教材分析】 前面已学习了向量的概念及向量的线性运算以及向量的数量积,本节课应用向量的知识来解决一些几何问题,例如利用向量解决平面内两条直线平行、垂直位置关系的判定等问题! 二.【教学目标】 1.通过应用举例,让学生会用平面向量知识解决几何问题的两种方法-----向量法和坐标法,可以用向量知识研究几何结论和生活中的实际问题; 2.通过本节的学习,让学生体验向量在解决几何问题中的工具作用,增强学生的积极主动的探究意识,培养创新精神. 三.【教学重难点】 重点:理解并能灵活运用向量加减法与向量数量积的法则解决几何问题. 难点:选择适当的方法,将几何问题转化为向量问题加以解决. 四.【教学过程】 (一). (二).【新课引入】 平移、全等、相似、长度、夹角等几何性质可以由向量线性运算及数量积表示出来,因此,可用向量方法解决平面几何中的一些问题.通过向量运算研究几何运算之间的关系,如距离、夹角等.本节课,我们就通过几个具体实例,来研讨 建议 说明向量方法在平面几何中的运用 (三)【典例精讲】 例1. 证明:平行四边形两条对角线的平方和等于相邻两条边的平方和. 已知:平行四边形ABCD. 求证:2222 2() AC BD AB BC +=+ 证明:不妨设AB=a,AD=b,则 AC=a+b,DB=a-b,2 || AB=|a|2,2 || AD=|b|2. 得2 || AC AC AC =?=( a+b)·( a+b) = a·a+ a·b+b·a+b·b =|a|2+2a·b+|b|2.① 同理,2 || DB=|a|2-2a·b+|b|2.② ①+②得2 || AC+2 || DB=2(|a|2+|b|2)=2(2 || AB+2 || AD). 所以,平行四边形两条对角线的平方和等于四条边的平方和. 对比其他方法: 建系设坐标法和做辅助线勾股定理等方法体验向量法的优越性. 跟踪练习应用上述结论解题 引导学生归纳,用向量方法解决平面几何问题“三步曲”: ⑴建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面 几何问题转化为向量问题; ⑵通过向量运算,研究几何元素之间的关系,如距离、夹角等问题; ⑶把运算结果“翻译”成几何关系. 简述为: 几何问题向量化向量运算关系化向量关系几何化

20高考数学平面向量的解题技巧

第二讲平面向量的解题技巧 【命题趋向】 由2007年高考题分析可知: 1.这部分内容高考中所占分数一般在10分左右. 2.题目类型为一个选择或填空题,一个与其他知识综合的解答题. 3.考查内容以向量的概念、运算、数量积和模的运算为主. 【考点透视】 “平面向量”是高中新课程新增加的内容之一,高考每年都考,题型主要有选择题、填空题,也可以与其他知识相结合在解答题中出现,试题多以低、中档题为主. 透析高考试题,知命题热点为: 1.向量的概念,几何表示,向量的加法、减法,实数与向量的积. 2.平面向量的坐标运算,平面向量的数量积及其几何意义. 3.两非零向量平行、垂直的充要条件. 4.图形平移、线段的定比分点坐标公式. 5.由于向量具有“数”与“形”双重身份,加之向量的工具性作用,向量经常与数列、三角、解析几何、立体几何等知识相结合,综合解决三角函数的化简、求值及三角形中的有关问题,处理有关长度、夹角、垂直与平行等问题以及圆锥曲线中的典型问题等. 6.利用化归思想处理共线、平行、垂直问题向向量的坐标运算方面转化,向量模的运算转化为向量的运算等;利用数形结合思想将几何问题代数化,通过代数运算解决几何问题.【例题解析】 1. 向量的概念,向量的基本运算 (1)理解向量的概念,掌握向量的几何意义,了解共线向量的概念. (2)掌握向量的加法和减法. (3)掌握实数与向量的积,理解两个向量共线的充要条件. (4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.

(5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件. (6)掌握平面两点间的距离公式. 例1(2007年北京卷理)已知O 是ABC △所在平面内一点,D 为BC 边中点,且 2OA OB OC ++=0u u u r u u u r u u u r ,那么( ) A.AO OD =u u u r u u u r B.2AO OD =u u u r u u u r C.3AO OD =u u u r u u u r D.2AO OD =u u u r u u u r 命题意图:本题考查能够结合图形进行向量计算的能力. 解: 22()(,22.OA OB OC OA DB OD DC OD DB DC OA OD AO OD ∴∴++=++++=-+==)=0,0,u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 故选A . 例2.(2006年安徽卷)在ABCD Y 中,,,3AB a AD b AN NC ===u u u r r u u u r r u u u r u u u r ,M 为BC 的中点,则MN =u u u u r ______.(用a b r r 、表示) 命题意图: 本题主要考查向量的加法和减法,以及实数与向量的积. 解:343A =3()AN NC AN C a b ==+u u u r u u u r u u u r u u u r r r 由得,12 AM a b =+u u u u r r r , 所以,3111()()4 2 4 4 MN a b a b a b =+-+=-+u u u u r r r r r r r . 例3.(2006年广东卷)如图1所示,D 是△ABC 的边AB 上的中点,则向量 =CD ( ) (A )BA BC 2 1+- (B ) BA BC 2 1-- (C ) BA BC 2 1- (D )BA BC 2 1+ 命题意图: 本题主要考查向量的加法和减法运算能力. 解:BA BC BD CB CD 2 1+-=+=,故选A. 例4. ( 2006年重庆卷)与向量a r =71,,22b ? ?= ???r ?? ? ??27,21的夹解相等,且模为1的向量是 ( ) (A) ?? ?- ??53,5 4 (B) ?? ?- ??53,5 4或?? ? ??-53,54 (C )?? ?- ??31,3 22 (D )?? ?- ??31,3 22或?? ? ? ?- 31,3 22 命题意图: 本题主要考查平面向量的坐标运算和用平面向量处理有关角度的问题. 解:设所求平面向量为,c r 由433,,, 1. 555c c ???? =-= ? ?????r 4或-时5 另一方面,当222274134312525,,cos ,. 55271432255a c c a c a c ?? ?+?- ?????? =-=== ????????????+++- ? ? ? ?????????r r r r r r r 时

平面向量的应用教学案 (5)

平面向量的应用 一、教学目标 1.能用向量方法解决某些简单的平面几何中的距离(线段长度)、夹角等问题. 2.能用向量方法解决物理中的有关力、速度等方面的问题 二、教学重点 1.能用向量方法解决某些简单的平面几何中的距离(线段长度)、夹角等问题. 2.能用向量方法解决物理中的有关力、速度等方面的问题 三、教学难点 能用向量方法解决物理中的有关力、速度等方面的问题 四、教学过程 知识提炼 1.用向量方法解决平面几何问题的“三步曲” 第一步,建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题; 第二步,通过向量运算,研究几何元素之间的关系; 第三步,把运算结果“翻译”成几何关系. 2.向量在物理中的应用 (1)物理问题中常见的向量有力,速度,加速度,位移等. (2)向量的加减法运算体现在力,速度,加速度,位移的合成与分解. (3)动量mv 是向量的数乘运算. (4)功是力F 与所产生的位移s 的数量积. 思考尝试 1.思考判断(正确的打“√”,错误的打“×”) (1)求力F 1和F 2的合力可按照向量加法的平行四边形法则.( ) (2)若△ABC 为直角三角形,则有AB →·BC → =0.( ) (3)若向量AB →∥CD → ,则AB ∥CD .( ) 解析:(1)正确.物理中的力既有大小又有方向,所以力可以看作向量,F 1,F 2的合力可按照向量加法的平行四边形法则求解. (2)错误.因为△ABC 为直角三角形,∠B 并不一定是直角,有可能是∠A 或∠C 为直角. (3)错误.向量AB →∥CD → 时,直线AB ∥CD 或AB ,CD 重合. 答案:(1)√ (2)× (3)×

高中数学:空间向量

空间向量 一、向量的基本概念与运算 1.定义:在空间内,把具有大小和方向的量叫空间向量,可用有向线段来表示.用同向且 等长的有向线段表示同一向量或相等的向量. 2.零向量:起点与终点重合的向量叫做零向量,记为0或0. 3.书写:在手写向量时,在字母上方加上箭头,如a ,AB . 4.模:表示向量a 的有向线段的长度叫做向量的长度或模,记作||a 5.方向:有向线段的方向表示向量的方向. 6.基线:有向线段所在的直线叫做向量的基线. 7.平行向量:如果空间中一些向量的基线互相平行或重合,则这些向量叫做共线向量或平 行向量.a 平行于b 记为a b ∥. 8.向量运算:与平面向量类似; 二、空间向量的基本定理 1.共线向量定理:对空间两个向量a ,b (0b ≠),a b ∥的充要条件是存在实数x ,使a xb =. 2.共面向量:通常我们把平行于同一平面的向量,叫做共面向量. 3.共面向量定理:如果两个向量a ,b 不共线,则向量c 与向量a ,b 共面的充要条件是, 存在唯一的一对实数x ,y ,使c xa yb =+. 4.空间向量分解定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在一 个唯一的有序实数组x ,y ,z ,使p xa yb zc =++.表达式xa yb zc ++,叫做向量a ,b ,c 的线性表示式或线性组合.

注:上述定理中,a ,b ,c 叫做空间的一个基底,记作{}a b c , ,,其中a b c ,,都叫做基向量. 由此定理知,空间任意三个不共面的向量都可以构成空间的一个基底. 三、向量的数量积 1.两个向量的夹角 已知两个非零向量a b ,,在空间任取一点O ,作OA a =,OB b =,则AOB ∠叫做向量a 与b 的夹角,记作a b ??, .通常规定0πa b ??≤,≤.在这个规定下,两个向量的夹角就被唯一确定了,并且a b b a ??=??, ,.如果90a b ??=,°,则称a 与b 互相垂直,记作a b ⊥. 2.两个向量的数量积 已知空间两个向量a ,b ,定义它们的数量积(或内积)为:||||cos a b a b a b ?=??, 空间两个向量的数量积具有如下性质: 1)||cos a e a a e ?=??,;(2)0a b a b ??=; (3)2||a a a =?;(4)a b a b ?||≤||||. 空间两个向量的数量积满足如下运算律: 1)()()a b a b λλ?=?;(2)a b b a ?=?;(3)()a b c a c b c +?=?+?. 四、空间向量的直角坐标运算 前提:建立空间直角坐标系Oxyz ,分别沿x 轴,y 轴,z 轴的正方向引单位向量i j k ,,,这三个互相垂直的单位向量构成空间向量的一个基底{}i j k ,,,这个基底叫做单位正交基底. 空间直角坐标系Oxyz ,也常说成空间直角坐标系[]O i j k ;, ,. 1.坐标 在空间直角坐标系中,已知任一向量a ,根据空间向量分解定理,存在唯一数组123()a a a ,,,使123a a i a j a k =++,1a i ,2a j ,3a k 分别叫做向量a 在i j k ,, 方向上的分量,有序实数组123()a a a ,,叫做向量a 在此直角坐标系中的坐标.上式可以简记作123()a a a a =,,. 若123()a a a a =, ,,123()b b b b =,,, 则:112233()a b a b a b a b +=+++, ,;112233()a b a b a b a b -=---,,;

高三数学平面向量知识点与题型总结(文科)

知识点归纳 一.向量的基本概念与基本运算 1、向量的概念: ①向量:既有大小又有方向的量 向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行 ③单位向量:模为1个单位长度的向量 ④平行向量(共线向量):方向相同或相反的非零向量 ⑤相等向量:长度相等且方向相同的向量 2、向量加法:设,AB a BC b == ,则a +b =AB BC + =AC (1)a a a =+=+00;(2)向量加法满足交换律与结合律; AB BC CD PQ QR AR +++++= ,但这时必须“首尾相连” . 3、向量的减法: ① 相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量 ②向量减法:向量a 加上b 的相反向量叫做a 与b 的差,③作图法:b a -可以表示为从b 的终点指向a 的终点的向量(a 、b 有共同起点) 4、实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度与方向规定如下: (Ⅰ)a a ?=λλ; (Ⅱ)当0>λ时,λa 的方向与a 的方向相同;当0<λ时,λa 的方向与a 的 方向相反;当0=λ时,0 =a λ,方向是任意的 5、两个向量共线定理:向量b 与非零向量a 共线?有且只有一个实数λ,使得b =a λ 6、平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数21,λλ使:2211e e a λλ+=,其中不共线的向量21,e e 叫做表示这一平面内所有向量的一组基底 二.平面向量的坐标表示 1平面向量的坐标表示:平面内的任一向量a 可表示成a xi yj =+ ,记作a =(x,y)。 2平面向量的坐标运算: (1) 若()()1122,,,a x y b x y == ,则()1212,a b x x y y ±=±± (2) 若()()2211,,,y x B y x A ,则()2121,AB x x y y =-- (3) 若a =(x,y),则λa =(λx, λy) (4) 若()()1122,,,a x y b x y == ,则1221//0a b x y x y ?-= (5) 若()()1122,,,a x y b x y == ,则1212a b x x y y ?=?+? 若a b ⊥ ,则02121=?+?y y x x

2.5 平面向量应用举例(3课时)

第一课时 2.5.1 平面几何中的向量方法 教学要求:理解向量加减法与向量数量积的运算法则;会用向量知识解决几何问题;能通过向量运算研 究几何问题中点、线段、夹角之间的关系. 教学过程: 一、复习准备: 1.提问:向量的加减运算和数量积运算是怎样的? 2.讨论:① 若o 为ABC ?的重心,则OA +OB +OC =0; ②水渠横断面是四边形ABCD ,DC =12 AB ,且|AD |=|BC |,则这个四边形为等腰梯形。类比几何元素之间的关系,你会想到向量运算之间都有什么关系? 二、讲授新课: 1.教学平面几何的向量: (1). 平移、全等、相似、长度、夹角等几何性质可以由向量线性运算及数量积表示出来。例如,向量数量积对应着几何中的长度.如图: 平行四边行ABCD 中,设AB =,AD =, 则+=+= (平移) ,-=-=, 2 2 b AD ==(长度) .向量AD ,AB 的夹角为DAB ∠ (2). 讨论:①向量运算与几何中的结论“若b a =,则 =,且,所在直线平行或重合”相类比,你 有什么体会? ②由学生举出几个具有线性运算的几何实例. (3). 用向量方法解平面几何问题的步骤(一般步骤) ① 建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量. ② 通过向量运算研究几何运算之间的关系,如距离、夹角等. ③ 把运算结果“翻译”成几何关系. 2.教学例题: ①例1:求证:平行四边形两条对角线的平方和等于四条边的平方和. 分析:由向量的数量积的性质,线段的长的平方可看做相应向量自身的内积. ② 例2:如图,平行四边行ABCD 中,点E 、F 分别是AD 、 DC 边的中点,BE 、 BF 分别与AC 交于R 、 T 两点,你能发现AR 、 RT 、TC 之间的关系吗? 分析:设,,,,n m ====分别 求向量,,即可。 ③ 例3、如图,在OBCA 中,b OB a OA ==,-=+,求证四边形OBCA 为矩形 分析:要证四边形OBCA 为矩形,只需证一角为直角. C F

高一数学平面向量应用举例教案

高一数学平面向量应用举例教案 一、教学分析 1.本节的目的是让学生加深对向量的认识,更好地体会向量这个工具的优越性.对于向量方法,就思路而言,几何中的向量方法完全与几何中的代数方法一致,不同的只是用“向量和向量运算”来代替“数和数的运算”.这就是把点、线、面等几何要素直接归结为向量,对这些向量借助于它们之间的运算进行讨论,然后把这些计算结果翻译成关于点、线、面的相应结果.代数方法的流程图可以简单地表述为: 则向量方法的流程图可以简单地表述为: 这就是本节给出的用向量方法解决几何问题的“三步曲”,也是本节的重点. 2.研究几何可以采取不同的方法,这些方法包括: 综合方法——不使用其他工具,对几何元素及其关系直接进行讨论; 解析方法——以数(代数式)和数(代数式)的运算为工具,对几何元素及其关系进行讨论; 向量方法——以向量和向量的运算为工具,对几何元素及其关系进行讨论; 分析方法——以微积分为工具,对几何元素及其关系进行讨论,等等. 前三种方法都是中学数学中出现的内容. 有些平面几何问题,利用向量方法求解比较容易.使用向量方法要点在于用向量表示线段或点,根据点与线之间的关系,建立向量等式,再根据向量的线性相关与无关的性质,得出向量的系数应满足的方程组,求出方程组的解,从而解决问题.使用向量方法时,要注意向量起点的选取,选取得当可使计算过程大大简化. 二、教学目标 1.知识与技能: 通过平行四边形这个几何模型,归纳总结出用向量方法解决平面几何问题的“三步曲”. 2.过程与方法: 明了平面几何图形中的有关性质,如平移、全等、相似、长度、夹角等可以由向量的线性运算及数量积表示. 3.情感态度与价值观: 通过本节学习,让学生深刻理解向量在处理有关平面几何问题中的优越性,活跃学生的思维,发展学生的创新意识,激发学生的学习积极性,并体会向量在几何和现实生活中的意义.教学中要求尽量引导学生使用信息技术这个现代化手段. 三、重点难点 教学重点:用向量方法解决实际问题的基本方法;向量法解决几何问题的“三步曲”. 教学难点:如何将几何等实际问题化归为向量问题. 四、教学设想 (一)导入新课

空间向量及其运算练习题

空间向量及其运算 基础知识梳理 1.空间向量的有关概念 (1)空间向量:在空间中,具有________和________的量叫做空间向量. (2)相等向量:方向________且模________的向量. (3)共线向量:表示空间向量的有向线段所在的直线互相______________的向量. (4)共面向量:________________________________的向量. 2.共线向量、共面向量定理和空间向量基本定理 (1)共线向量定理 对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是________________________. 推论 如图所示,点P 在l 上的充要条件是: OP →=OA →+t a ①其中a 叫直线l 的方向向量,t ∈R ,在l 上取AB →=a , 则①可化为OP →=________或OP →=(1-t )OA →+tOB →. (2)共面向量定理的向量表达式:p =____________,其中x ,y ∈R ,a , b 为不共线向量,推论的表达式为MP →=xMA →+yMB →或对空间任意一点 O ,有OP →=____________或OP →=xOM →+yOA →+zOB →,其中x +y +z = ______. (3)空间向量基本定理 如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =____________,把{a ,b ,c }叫做空间的一个基底. 3.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角 已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向 量a 与b 的夹角,记作____________,其范围是____________,若〈a ,b 〉=π2 ,则称a 与b __________,记作a ⊥b . ②两向量的数量积 已知空间两个非零向量a ,b ,则____________叫做向量a ,b 的数量积,记作__________,即__________________. (2)空间向量数量积的运算律 ①结合律:(λa )·b =____________;②交换律:a·b =__________; ③分配律:a·(b +c )=__________. 4.空间向量的坐标表示及应用 (1)数量积的坐标运算 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a·b =________________. (2)共线与垂直的坐标表示 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a ∥b ?______________?____________,____________,______________, a ⊥b ?__________?________________________(a ,b 均为非零向量). (3)模、夹角和距离公式 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则|a |=a·a =__________________,

高考数学平面向量及其应用习题及答案 百度文库

一、多选题 1.在ABC ?中,内角,,A B C 的对边分别为,,,a b c 若,2,6 A a c π ===则角C 的大小 是( ) A . 6 π B . 3 π C . 56 π D . 23 π 2.已知点()4,6A ,33,2 B ??- ?? ? ,与向量AB 平行的向量的坐标可以是( ) A .14,33?? ??? B .97,2?? ??? C .14,33?? - - ??? D .(7,9) 3.在ABC 中,AB =1AC =,6 B π =,则角A 的可能取值为( ) A . 6 π B . 3 π C . 23 π D . 2 π 4.已知向量()1,0a =,()2,2b =,则下列结论正确的是( ) A .()25,4a b += B .2b = C .a 与b 的夹角为45° D .() //2a a b + 5.已知ABC ?是边长为2的等边三角形,D ,E 分别是AC 、AB 上的两点,且 AE EB =,2AD DC =,BD 与CE 交于点O ,则下列说法正确的是( ) A .1A B CE ?=- B .0OE O C += C .3OA OB OC ++= D .ED 在BC 方向上的投影为 76 6.ABC 中,2AB =,30ACB ∠=?,则下列叙述正确的是( ) A .ABC 的外接圆的直径为4. B .若4A C =,则满足条件的ABC 有且只有1个 C .若满足条件的ABC 有且只有1个,则4AC = D .若满足条件的ABC 有两个,则24AC << 7.在△ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,b =15,c =16,B =60°,则a 边为( ) A . B . C .8 D . 8.ABC 中,4a =,5b =,面积S =c =( ) A B C D .9.八卦是中国文化的基本哲学概念,如图1是八卦模型图,其平面图形记为图2中的正八

平面向量的应用(教学设计)

平面向量的应用 一、江苏省高考说明对平面向量的要求 平面向量的概念,平面向量的加法、减法及数乘运算,平面向量的坐标表示,平面向量的平行与垂直这几个方面都是B 级要求,平面向量的应用是A 级要求,仅平面向量的数量积是C 级要求. 二、高考命题规律 1、高考对向量的考查主要是向量的概念及其运算(坐标运算、几何运算),平面向量的加、减法的几何意义,数量积及运算律,两个非零向量平行及垂直的充要条件; 2、常在大题中兼顾对向量的考查,主要涉及向量在三角函数、解析几何、函数及数列中的应用; 3、题目大都是容易题和中等题,题型多为一道填空题或一道大题. 三、复习目标 1、通过本节课的复习,进一步掌握向量数量积的几何运算法则和坐标运算法则; 2、使学生正确掌握向量的具体应用,并能通过解题体验平面向量应用问题的常规解法. 四、复习重点 1、平面向量的概念、加减法、数量积的灵活应用; 2、平面向量的具体应用. 五、复习过程 (一)小题训练 1、(高考题改编)已知两点M (-2,0)、N (2,0),点P 为坐标平 面内的动点,满足||||MN MP MN NP ?+?u u u u r u u u r u u u u r u u u r =0,则动点P (x ,y )的轨迹方程为 . 28y x =- 2、若向量a ρ ,b ρ满足2=a ρ ,1=b ρ ,()1=+?b a a ρ ρ ρ,则向量a ρ ,b ρ 的夹角 的大小为 . 34 π 3、已知向量2 (,1)a x x =+r ,(1,)b x t =-r ,若函数()f x a b =r r g 在区间(-1,1) 上是增函数,则t 的取值范围是 . 4、在△ABC 中,π 6 A ∠=,D 是BC 边上任意一点(D 与 B 、 C 不重合),且 22||||AB AD BD DC =+?u u u r u u u r u u u r u u u r ,则B ∠等于 . 512 π (二)典型例题 例1:已知向量(cos ,sin )a αα=r , sin ,cos )b αα=r ,(,)22 ππ α∈-.

2020-2021年高考数学试题汇编平面向量(精华总结)

2021年高考数学试题汇编平面向量 (北京4) 已知O 是ABC △所在平面内一点,D 为BC 边中点,且2OA OB OC ++=0u u u r u u u r u u u r , 那么( A ) A.AO OD =u u u r u u u r B.2AO OD =u u u r u u u r C.3AO OD =u u u r u u u r D.2AO OD =u u u r u u u r (辽宁3) 若向量a 与b 不共线,0≠g a b ,且?? ??? g g a a c =a -b a b ,则向量a 与c 的夹角为( D ) A .0 B .π 6 C .π3 D .π2 (辽宁6) 若函数()y f x =的图象按向量a 平移后,得到函数(1)2y f x =+-的图象,则向量a =( A ) A .(12)--, B .(12)-, C .(12)-, D .(12), (宁夏,海南4) 已知平面向量(11) (11)==-,,,a b ,则向量1322 -=a b ( D ) A.(21)--, B.(21)-, C.(10)-, D.(12), (福建4)

对于向量,,a b c 和实数λ,下列命题中真命题是( B ) A .若=0g a b ,则0a =或0b = B .若λ0a =,则0λ=或=0a C .若22=a b ,则=a b 或-a =b D .若g g a b =a c ,则b =c (湖北2) 将π2cos 3 6x y ??=+ ??? 的图象按向量π24 ?? =-- ??? , a 平移,则平移后所得图象的解析式为( A ) A.π2cos 234x y ??=+- ??? B.π2cos 234x y ?? =-+ ??? C.π2cos 2312x y ?? =-- ??? D.π2cos 2312x y ?? =++ ??? (湖北文9) 设(43)=,a ,a 在b 上的投影为52 2 ,b 在x 轴上的投影为2,且||14≤b ,则b 为( B ) A .(214), B .227??- ?? ? , C .227? ?- ?? ? , D .(28), (湖南4) 设,a b 是非零向量,若函数()()()f x x x =+-g a b a b 的图象是一条直线,则必有( A ) A .⊥a b B .∥a b C .||||=a b D .||||≠a b (湖南文2) 若O E F ,,是不共线的任意三点,则以下各式中成立的是( B ) A .EF OF OE =+u u u r u u u r u u u r B .EF OF OE =-u u u r u u u r u u u r

数学:平面向量应用举例教案北师大版必修

7.2平面向量应用举例 一.教学目标: 1.知识与技能 (1)经历用向量的方法解决某些简单的平面几何问题、力学问题与其它一些实际问题的过程,体会向量是一种处理几何问题、物理问题等的工具. (2)揭示知识背景,创设问题情景,强化学生的参与意识;发展运算能力和解决实际问题的能力. 2.过程与方法 通过本节课的学习,让学生体会应用向量知识处理平面几何问题、力学问题与其它一些实际问题是一种行之有效的工具;和同学一起总结方法,巩固强化. 3.情感态度价值观 通过本节的学习,使同学们对用向量研究几何以及其它学科有了一个初步的认识;提高学生迁移知识的能力、运算能力和解决实际问题的能力. 二.教学重、难点 重点:(体现向量的工具作用),用向量的方法解决某些简单的平面几何问题、力学问题与其它一些实际问题,体会向量在几何、物理中的应用. 难点:(体现向量的工具作用),用向量的方法解决某些简单的平面几何问题、力学问题与其它一些实际问题,体会向量在几何、物理中的应用. 三.学法与教学用具 学法:(1)自主性学习法+探究式学习法 (2)反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的差距. 教学用具:电脑、投影机. 四.教学设想 【探究新知】

[展示投影] 同学们阅读教材的相关内容思考: 1.直线的向量方程是怎么来的? 2.什么是直线的法向量? 【巩固深化,发展思维】 教材P 103练习1、2、3题 [展示投影]例题讲评(教师引导学生去做) 例1.如图,AD 、BE 、CF 是△ABC 的三条高,求证:AD 、BE 、CF 相交于一点。 证:设BE 、CF 交于一点H , ?→ ?AB = a , ?→?AC = b , ?→ ?AH = h , 则?→ ?BH = h a , ?→ ?CH = h b , ?→ ?BC = b a ∵?→ ?BH ?→ ?AC , ?→?CH ?→ ?AB ∴ 0)()()(0)(0)(=-???-=?-?? ?? =?-=?-a b h a b h b a h a a h b a h ∴?→ ?AH ?→ ?BC 又∵点D 在AH 的延长线上,∴AD 、BE 、CF 相交于一点 [展示投影]预备知识: 1.设P 1, P 2是直线l 上的两点,P 是l 上不同于P 1, P 2的任一点,存在实数λ,使?→ ?P P 1=λ?→ ?2PP ,λ叫做点P 分?→ ?21P P 所成的比, 有三种情况: λ>0(内分) (外分) λ<0 (λ<—1) ( 外分)λ<0 (—1<λ<0) A B C E F H P P P 222P P P

高三数学空间向量一轮复习

第十三章空间向量 1.理解空间向量的概念;掌握空间向量的加法、减法和数乘. 2.了解空间向量的基本定理;理解空间向量坐标的概念;掌握空间向量的坐标运算. 3.掌握空间向量的数量积的定义及其性质;掌握用直角坐标计算空间向量数量积的公式;掌握空间两点间的距离公式. 理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;掌握空间向量的数量积的坐标形式;能用向量的数量积判断向量的共线与垂直 第1课时 空间向量及其运算 空间向量是平面向量的推广.在空间,任意两个向量都可以通过平移转化为平面向量.因此,空间向量的加减、数乘向量运算也是平面向量对应运算的推广. 本节知识点是: 1.空间向量的概念,空间向量的加法、减法、数乘运算和数量积; (1) 向量:具有和的量. (2) 向量相等:方向且长度. (3) 向量加法法则:. (4) 向量减法法则:. (5) 数乘向量法则:. 2.线性运算律 (1) 加法交换律:a +b =. (2) 加法结合律:(a +b )+c =. (3) 数乘分配律:λ(a +b )=. 3.共线向量 (1)共线向量:表示空间向量的有向线段所在的直线互相或. (2) 共线向量定理:对空间任意两个向量a 、b (b ≠0),a ∥b 等价于存在实数λ,使. 基础过关 知识网络 考纲导读 高考导航 空间向量 定义、加法、减法、数乘运算 数量积 坐标表示:夹角和距离公式 求距离 求空间角 证明平行与垂直

(3) 直线的向量参数方程:设直线l 过定点A 且平行于非零向量a ,则对于空间中任意一点O ,点P 在l 上等价于存在R t ∈,使. 4.共面向量 (1) 共面向量:平行于的向量. (2) 共面向量定理:两个向量a 、b 不共线,则向量P 与向量a 、b 共面的充要条件是存在实数对(y x ,),使P . 共面向量定理的推论:. 5.空间向量基本定理 (1) 空间向量的基底:的三个向量. (2) 空间向量基本定理:如果a ,b ,c 三个向量不共面,那么对空间中任意一个向量p ,存在一个唯一的有序实数组z y x ,,,使. 空间向量基本定理的推论:设O ,A ,B ,C 是不共面的的四点,则对空间中任意一点P ,都存在唯一的有序实数组z y x ,,,使. 6.空间向量的数量积 (1) 空间向量的夹角:. (2) 空间向量的长度或模:. (3) 空间向量的数量积:已知空间中任意两个向量a 、b ,则a ·b =. 空间向量的数量积的常用结论: (a) cos 〈a 、b 〉=; (b) ?a ?2=; (c) a ⊥b ?. (4) 空间向量的数量积的运算律: (a ) 交换律a ·b =; (b ) 分配律a ·(b +c )=. ABCD —A 1B 1C 1D 1中,点F 是侧面CDD 1C 1的中心,若1AA y x ++=,求x -y 的值. 解:易求得0,2 1 =-∴==y x y x 变式训练1.在平行六面体1111D C B A ABCD -中,M 为AC 与BD 的交点,若=11B A a ,=11D A b , =A 1c ,则下列向量中与B 1相等的向量是 ( ) A .-2 1a +2 1b +c B .2 1a +2 1b +c C .2 1a -2 1b +c D .-2 1a -2 1b +c 解:A 例2.底面为正三角形的斜棱柱ABC -A 1B 1C 1中,D 为AC 的中点, 求证:AB 1∥平面C 1BD. 证明:记,,,1c AA b AC a AB ===则 A B C D A 1 B 1

高三数学复习专题平面向量

高三数学复习专题平面向量 一、考点透视 本章考试内容及要求: 平面向量的有关概念B级 平面向量的线性运算(即平面向量的加法与减法,实数与平面向量的积)C级 平面向量的数量积C级(老教材为D级) 向量的坐标表示C级 向量运算的坐标表示C级 平行向量及垂直向量的坐标关系C级 向量的度量计算C级 注: B水平:对所学数学知识有理性的认识,能用自已的语言进行叙述和解释,并能据此进行判断;知道它们的由来及其与其他知识之间的联系;知道它们的用途。对所学技能会进行独立的尝试性操作。 C水平:对所学数学知识有实质性的认识并能与已有知识建立联系,掌握其内容与形式的变化;有关技能已经形成,能用它们来解决简单的有关问题。 二、复习要求 1.理解向量、向量的模、相等向量、负向量、零向量、单位向量、平行向量等概念; 2.掌握向量的向量表示形式、几何表示形式和坐标表示形式; 3.掌握向量的加法、减法及实数与向量的乘积、数量积等运算的向量表示形式、几何表示形式和坐标表示形式; 4.能应用向量的数量积的有关知识求向量的模及两个向量的夹角,并能解决某些与垂直、平行有关简单几何问题。 概括地说,即理解向量有关概念,掌握向量基本形式(3种)及基本运算(4种),关注向量简单应用。 三、复习建议 向量是近代数学中的一个重要概念,它是沟通代数、几何与三角的一种工具。向量在数学和物理学中应用很广,在解析几何里应用更为直接,用向量方法特别便于研究空间里涉及直线和平面的各种问题。从数学发展史来看,在历史上很长一段时间,空间的向量结构并未被数学家所认识。直到19世纪末20世纪初,人们才把空间的性质与向量运算联系起来,使向量成为具有一套优良运算通性的数学体系。 向量是高中数学的必修内容,也是研究其它数学问题的重要工具,利用向量知识去研究几何问题中的垂直、平行关系,计算角度和距离问题将变得简单易行,其特点兼有几何的直观性、表述的简洁性和方法的一般性,因而它也是高考必考内容。每年的平面向量的高考,除了以小题形式考查一些简单的概念之外,还常与解析几何、三角等内容结合以解答题形式进行综合考查,试题的难度一般在中、低档题水平,复习时应重视向量基本知识的掌握和运用,难度不要拔高。

平面向量应用举例(教学案)

2.5平面向量应用举例 一、教材分析 向量概念有明确的物理背景和几何背景,物理背景是力、速度、加速度等,几何背景是有向线段,可以说向量概念是从物理背景、几何背景中抽象而来的,正因为如此,运用向量可以解决一些物理和几何问题,例如利用向量计算力沿某方向所做的功,利用向量解决平面内两条直线平行、垂直位置关系的判定等问题。 二、教案目标 1.通过应用举例,让学生会用平面向量知识解决几何问题的两种方法-----向量法和坐标法,可以用向量知识研究物理中的相关问题的“四环节”和生活中的实际问题 2.通过本节的学习,让学生体验向量在解决几何和物理问题中的工具作用,增强学生的积极主动的探究意识,培养创新精神。 三、教案重点难点 重点:理解并能灵活运用向量加减法与向量数量积的法则解决几何和物理问题. 难点:选择适当的方法,将几何问题或者物理问题转化为向量问题加以解决. 四、学情分析 在平面几何中,平行四边形是学生熟悉的重要的几何图形,而在物理中,受力分析则是其中最基本的基础知识,那么在本节的学习中,借助这些对于学生来说,非常熟悉的内容来讲解向量在几何与物理问题中的应用。 五、教案方法 1.例题教案,要让学生体会思路的形成过程,体会数学思想方法的应用。 2.学案导学:见后面的学案 3.新授课教案基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习 六、课前准备 1.学生的学习准备:预习本节课本上的基本内容,初步理解向量在平面几何和物理中的应用 2.教师的教案准备:课前预习学案,课内探究学案,课后延伸拓展学案。 七、课时安排:1课时 八、教案过程 (一)预习检查、总结疑惑 检查落实了学生的预习情况并了解了学生的疑惑,使教案具有了针对性。 (二)情景导入、展示目标 教师首先提问:(1)若O为ABC 重心,则OA+OB+OC=0 (2)水渠横断面是四边形ABCD,DC=1 2 AB,且|AD|=|BC|,则这个四边形 为等腰梯形.类比几何元素之间的关系,你会想到向量运算之间都有什么关系? (3)两个人提一个旅行包,夹角越大越费力.为什么? 教师:本节主要研究了用向量知识解决平面几何和物理问题;掌握向量法和坐标法,以及用向量解决平面几何和物理问题的步骤,已经布置学生们课前预习了这部分,检查学生预习情况并让学生把预习过程中的疑惑说出来。 (设计意图:步步导入,吸引学生的注意力,明确学习目标。) (三)合作探究、精讲点拨。

高中数学--空间向量之法向量求法及应用方法

高中数学空间向量之--平面法向量的求法及其应用 一、 平面的法向量 1、定义:如果α⊥→ a ,那么向量→ a 叫做平面α的法向量。平面α的法向量共有两大类(从方向上分),无数条。 2、平面法向量的求法 方法一(内积法):在给定的空间直角坐标系中,设平面α的法向量(,,1)n x y =[或(,1,)n x z =,或( 1,,)n y z =],在平面α内任找两个不共线的向量,a b 。由n α⊥,得0n a ?=且0n b ?=,由此得到关于,x y 的方程组,解此方程组即可得到n 。 方法二:任何一个z y x ,,的一次次方程的图形是平面;反之,任何一个平面的方程是z y x ,,的一次方程。 0=+++D Cz By Ax )0,,(不同时为C B A ,称为平面的一般方程。其法向量),,(C B A n =→ ;若平面与3个坐 标轴的交点为),0,0(),0,,0(),0,0,(321c P b P a P ,如图所示,则平面方程为:1=++c z b y a x ,称此方程为平面的截距式方程,把它化为一般式即可求出它的法向量。 方法三(外积法): 设 , 为空间中两个不平行的非零向量,其外积→ → ?b a 为一长度等于θsin ||||→ → b a ,(θ 为 ,两者交角,且πθ<<0),而与 , 皆垂直的向量。通常我们采取「右手定则」,也就是右手四指由 的方向转为 的方向时,大拇指所指的方向规定为→→?b a 的方向,→ →→→?-=?a b b a 。 :),,,(),,,(222111则设z y x b z y x a ==→ → ??=?→ → 21y y b a ,2 1z z 21x x - ,21z z 21x x ???? 21y y (注:1、二阶行列式:c a M = cb ad d b -=;2、适合右手定则。 ) 例1、 已知,)1,2,1(),0,1,2(-==→ → b a , 试求(1):;→ → ?b a (2):.→ →?a b Key: (1) )5,2,1(-=?→ → b a ;)5,2,1()2(-=?→ → a b 例2、如图1-1,在棱长为2的正方体1111ABCD A B C D -中, 求平面AEF 的一个法向量n 。 )2,2,1(:=?=→ →→AE AF n key 法向量

相关主题
文本预览
相关文档 最新文档