当前位置:文档之家› 数据中心空调机会和解决方案

数据中心空调机会和解决方案

数据中心机房空调系统气流组织研究与分析

IDC机房空调系统气流组织研究与分析 摘要:本文阐述了IDC机房气流组织的设计对机房制冷效率有重要影响,叙述现有空调系统气流组织的常见形式。同时重点对IDC机房常见的几种气流组织进行了研究与分析,对比了几种气流组织的优缺点,从理论与实践中探讨各种气流组织情况下冷却的效率。 关键词:IDC、气流组织、空调系统 一、概述 在IDC机房中,运行着大量的计算机、服务器等电子设备,这些设备发热量大,对环境温湿度有着严格的要求,为了能够给IDC机房等提供一个长期稳定、合理、温湿度分布均匀的运行环境,在配置机房精密空调时,通常要求冷风循环次数大于30次,机房空调送风压力75Pa,目的是在冷量一定的情况下,通过大风量的循环使机房内运行设备发出的热量能够迅速得到消除,通过高送风压力使冷风能够送到较远的距离和加大送风速度;同时通过以上方式能够使机房内部的加湿和除湿过程缩短,湿度分布均匀。 大风量小焓差也是机房专用空调区别于普通空调的一个非常重要的方面,在做机房内部机房精密空调配置时,通常在考虑空调系统的冷负荷的同时要考虑机房的冷风循环次数,但在冷量相同的条件下,空调系统的空调房间气流组织是否合理对机房环境的温湿度均匀性有直接的影响。 空调房间气流组织是否合理,不仅直接影响房间的空调冷却效果,而且也影响空调系统的能耗量,气流组织设计的目的就是合理地组织室内空气的流动使室内工作区空气的温度、湿度、速度和洁净度能更好地满足要求。 影响气流组织的因素很多,如送风口位置及型式,回风口位置,房间几何形状及室内的各种扰动等。 二、气流组织常见种类及分析: 按照送、回风口布置位置和形式的不同,可以有各种各样的气流组织形式,大致可以归纳以下五种:上送下回、侧送侧回、中送上下回、上送上回及下送上回。 1) 投入能量利用系数 气流组织设计的任务,就是以投入能量为代价将一定数量经过处理成某种参数的空气送进房间,以消除室内某种有害影响。因此,作为评价气流组织的经济指标,就应能够反映投入能量的利用程度。 恒温空调系统的“投入能量利用系数”βt,定义: (2-1) 式中: t0一一送风温度, tn一一工作区设计温度, tp一一排风温度。 通常,送风量是根据排风温度等于工作区设计温度进行计算的.实际上,房间内的温度并不处处均匀相等,因此,排风口设置在不问部位,就会有不同的排风温度,投入能量利用系数也不相同。 从式(2—1)可以看出: 当tp = tn 时,βt =1.0,表明送风经热交换吸收余热量后达到室内温度,并进而排出室外。 当tp > tn时,βt >1.0,表明送风吸收部分余热达到室内温度、且能控制工作区的温度,而排风温度可以高于室内温度,经济性好。 当tp < tn时,βt <1.0,表明投入的能量没有得到完全利用,住住是由于短路而未能发挥送入风量的排热作用,经济性差。 2) 上送下回 孔板送风和散流器送风是常见的上送下回形式。如图2-1和图2-2所示.

数据中心暖通空调选型

数据中心暖通空调选型 发表时间:2018-09-11T15:42:16.617Z 来源:《建筑学研究前沿》2018年第11期作者:龙志威 [导读] 由于数据中心内IT负载的电能最终都将转化为热能,所以为维持数据中心正常运行的空调解决方案就变得至关重要。 东莞深证通信息技术有限公司 523690 摘要:数据中心空调系统的主要任务是为数据处理设备提供合适的工作环境,保证数据通信设备运行的可靠性和有效性。本文结合工程实例浅析一下数据中心机房空调设计的特点和机房空调的节能措施。 关键词:数据中心;暖通空调;选型 引言:由于数据中心内IT负载的电能最终都将转化为热能,所以为维持数据中心正常运行的空调解决方案就变得至关重要。 1、工程项目概况 本工程为某市某企业数据中心机房,该企业数据中心位于一幢28层高层建筑的14层,15层为本高层建筑的消防避难层,14层为标准办公楼层,需利用14层的办公空间建设成为数据中心机房。本工程数据机房采用精密空调进行配置,因此我们需要对机房区域的热负荷进行计算,根据所得的热负荷才能选择所用的精密空调。由于机房的热负荷来源很多,且目前我们无法获知所有热负荷的数量,因此在没有确定各项热负荷具体数量之时,可以按照电子计算机机房通用的估计方法进行机房空调制冷量的预估。 2、机房区域内制冷量的计算及选配方案 在净空高度为2.5~3.7m时,其计算机房按300-400 kcal/h.m2来取值。由于主机房设备较多,在此我们建议取值为400kcal /h.m2 (1W=860kcal)根据上述计算公式,主机房面积为154m2,所需要的总制冷量即、:400kcal×265 m2÷860=71.6KW;根据以上计算,工程项目在数据机房内配置了4台制冷量为24.6KW,“艾默生”Liebert.PEX 系列P1025DD13JHS12K1D000PA000机房专用精密空调,采用冷却水加冷冻水双冷源空调,送风方式采用下送风方式。组成3+1冗余方式对机房区域保持环境的恒温恒湿,每台单机总制冷量为24.6 KW,3台精密空调总冷量为73.8KW。数据机房精密空调介绍: 2.1艾默生Liebert.PEX系列机房专用精密空调描述 Liebert.PEX─面向全球的高端精密空调系统,Liebert.PEX2机组是基于艾默生全球研发与设计平台的高端机组,产品系列完备,具有风冷、水冷、乙二醇冷、双冷源(风冷+冷冻水、水冷+冷冻水、风冷+Freecooling、水冷+Freecooling)、冷冻水和冷冻水双盘管机型制冷量范围宽,风冷、水冷、乙二醇冷机组20kW~100kW,冷冻水机组28~151kW。 2.2Liebert.PEX机组的特点 具有高可靠性、高节能性、全寿命低成本。在同等制冷量条件下,占地面积最小。侧面及背面不需要维护空间,前面只需要600mm维护空间可拆卸后搬运,保证重新组装与整机无差别,适合特殊场地搬运(如利用小电梯或狭小通道)艾默生Copeland高效涡旋式压缩机,直接适合环保制冷剂(R407C)室内EC风机标配,节能且满足不同机外余压需求,下出风机组EC风机下沉设计,使整机更节能大面积V型蒸发器,快速除湿设计,确保节能独特的高效远红外加湿系统,加湿速度快,适应恶劣水质,低维护量,全中文图形显示屏以及iCOM强大的群控与通讯功能(见图一)。 图一艾默生1Liebert.PEX机组 2.3Liebert.PEX机组的设计 Liebert.PEX风冷系统的室内机由压缩机、蒸发器、加热器、风机、控制器、远红外加湿器、热力膨胀阀、视液镜、干燥过滤器等主要部件组成。水冷系列还包括高效板式换热器、电动球阀。室内侧制冷系统和水系统中可能涉及维护、更换的器件全部采用易拆卸的Rotalock连接方式,使维护更方便。 2.4主机房冷负荷估算 主机房面积:270m2;主机房冷负荷主要包括服务器设备冷负荷、照明冷负荷、建筑围护结构冷负荷、新风冷负荷、以及操作人员冷负荷:服务器设备冷负荷估算:272.8KW=(64-7)*5KVA*0.8+7*8KVA*0.8;(功率因素取值0.8、服务器机柜设备散热量取值5KVA/台、小型机机柜设备散热量取值8KVA);照明冷负荷估算:6.75KW=25 W/ m2*270 m2,(照明冷负荷单位面积取值25 W/m2);建筑围护结构冷负荷估算:13.5KW=50 W/ m2*270 m2,(建筑围护结构冷负荷单位面积取值50 W/m2);新风冷负荷:13.5KW=50 W/ m2*270 m2,(新风风量按照维持机房正压,新风冷负荷取值为单位面积50 W/m2);操作人员冷负荷:1.3KW=0.13KW/人*10人,以10人计算;综上所述,主机房总的冷负荷为:307.85KW=272.8KW+6.75KW+13.5KW+13.5KW+1.3KW。 2.5空调选配方案 经过主机房的冷负荷进行估算后,根据Liebert.PEX机组空调显制冷量的技术参数及风量,可以选取相应的机房空调的型号。主机房空调按照N+1方式进行配置,即满足主机房的冷负荷,再预留出1台的冗余制冷量。空调机组可组网轮换运行,均衡每台机组运行时间,当某一台机组出现故障,备用机组自动启动,提高空调系统可靠性。 由于室内外空调机组分别安装在建筑的14、15层,在空调选配时,应注意空调机组的体积,如体积比较大,必须经过空调机的拆解,设备搬运到位后再进行组装。 3、新、排风系统 本工程新、排系统全部由大楼统一设计及施工,数据机房要求维持一定的正压,数据机房与其它房间、走廊间的压差不应小于4.9Pa,

绿色数据中心空调系统设计方案

绿色数据中心空调系统设计方案 北京中普瑞讯信息技术有限公司(以下简称中普瑞讯),是成立于北京中关村科技园区的一家高新技术企业,汇集了多名在硅谷工作过的专家,率先将机房制冷先进的氟泵热管空调系统引进到中国。 氟泵热管空调系统技术方案适用于各种IDC机房,通信机房核心网设备,核心机房PI路由器等大功率机架;中普瑞讯对原有的产品做了优化和改良,提高节能效率的同时大大降低成本。 中普瑞讯目前拥有实用专有技术4项、发明专有技术2项;北京市高新技术企业;合肥通用所、泰尔实验室检测报告;中国移动“绿色行动计划”节能创新合作伙伴,拥有国家高新企业资质。 中普瑞讯的氟泵热管空调系统技术融合了结构简单、安装维护便捷、高效安全、不受机房限制等诸多优点,目前已在多个电信机房得到实地应用,取得广大用户一致认可,并获得相关通信部门的多次嘉奖。 中普瑞讯的ZP-RAS氟泵热管背板空调系统专门用于解决IDC高热密度机房散热问题,降低机房PUE值,该系统为采用标准化设计的新型机房节能产品,由以下三部分组成。

第一部分,室内部分,ZP-RAS-BAG热管背板空调。 第二部分,室外部分,ZP-RAS-RDU制冷分配单元。 第三部分,数据机房环境与能效监控平台。 中普瑞讯的ZP-RAS氟泵热管背板空调体统工作原理:室外制冷分配单元(RDU)机组通过与系统冷凝器(风冷、水冷)完成热交换后,RDU通过氟泵将冷却后的液体冷媒送入机房热管背板空调(BGA)。 冷媒(氟利昂)在冷热温差作用下通过相变实现冷热交换,冷却服务器排风,将冷量送入机柜,同时冷媒受热汽化,把热量带到RDU,由室外制冷分配单元(RDU)与冷凝器换热冷却,完成制冷循环。 1.室外制冷分配单元(RDU)分为风冷型和水冷型两种。制冷分配单元可以灵活选择安装在室内或室外。室外RDU可以充分利用自然冷源自动切换工作模式,当室外温度低于一定温度时,可以利用氟泵制冷,这时压缩机不运行,充分利用自然免费冷源制冷,降低系统能耗,同时提高压缩机使用寿命。 北方地区以北京为例每年可利用自然冷源制冷的时间占全年一半以上左右。从而大大降低了机房整体PUE值,机房PUE值可控制在较低的数值。 2.热管背板空调(ZP-RAS-BGA)是一种新型空调末端系统,是利用分离式热管原理将空调室内机设计成机柜背板模

暖通空调设计毕业设计说明书

摘要 本设计为哈尔滨望江集团办公楼空调系统工程设计。哈尔滨望江集团办公楼属中小型办公建筑,本建筑总建筑面积4138m2,空调面积2833m2。地下一层,地上八层,建筑高度33.9m。全楼冷负荷为191千瓦,全楼采用水冷机组进行集中供给空调方式。 此设计中的建筑主要房间为办公室,大多面积较小,且各房间互不连通,应使所选空调系统能够实现对各个房间的独立控制,综合考虑各方面因素,确定选用风机盘管加新风系统。在房间内布置吊顶的风机盘管,采用暗装的形式。将该集中系统设为风机盘管加独立新风系统,新风机组从室外引入新风处理到室内空气焓值,不承担室内负荷。风机盘管承担室内全部冷负荷及部分的新风湿负荷。风机盘管加独立新风系统由百叶风口下送和侧送。水系统采用闭式双管同程式,冷水泵三台,两用一备;冷却水泵选三台,两用一备。 在冷负荷计算的基础上完成主机和风机盘管的选型,并通过风量、水量的计算确定风管路和水管路的规格,并校核最不利环路的阻力和压头用以确定新风机和水泵。 依据相关的空调设计手册所提供的参数,进一步完成新风机组、水泵、热水机组等的选型,从而将其反应在图纸上,最终完成整个空调系统设计。 关键词:风机盘管加独立新风系统;负荷;管路设计;制冷机组:冷水机组

Abstract The design for the Harbin Wangjiang Design Group office building air conditioning system. Harbin Wangjiang Group is a small and medium-sized office building office buildings, the total floor area of building is 4138m2, air-conditioned area is 2833m2. There are eight floor of the building, building height is 33.9m. Cooling load for the entire floor, 191 kilowatts, the whole floor using Central Cooling Chillers to focus on the way . This design of the main room of the building for office, most of them is very small, and the rooms are not connected, the selected air-conditioning system should be able to achieve independent control of each room, considering the various factors to determine the selection of fan-coil plus fresh air system. Arrangement in the room ceiling fan coil units, using the dark form of equipment. Set the focus on fan-coil system, plus an independent air system, fresh air from the outdoor unit to deal with the introduction of a new wind to the indoor air enthalpy value, do not bear the load of indoor. All bear the indoor fan-coil cooling load and part of its new rheumatoid load. Fan-coil plus an independent air system sent by the Venetian and the under side air delivery. Closed water system with a dual-track program, three cold-water pump, dual-use a prepared; cooling pumps three elections, one prepared by dual-use. In the cooling load calculation based on the completion of the selection of host and fan coil units, and air volume, the calculation of water, the wind pipe and water pipes to determine the specifications of the road and check the resistance to the most disadvantaged and the loop to determine the pressure head new fans and pumps. Based on the relevant manuals provided by air-conditioning design parameters, and further completion of the new air units, water pumps, hot water units, such as the selection, which will be reflected in their drawings, the final design of the entire air-conditioning system Key words: PAU+FCU systems; load; pipeline design; refrigeration machine; Chillers

数据中心空调设计浅析

数据中心空调设计浅析 数据中心空调设计浅析 摘要随着网络时代的发展,服务器集成度的提高,数据中心机房的能耗急剧增加,这就要求数据中心的空调设计必须高效、节能、合理、经济,本文结合某工程实例浅谈下数据中心空调的特点和设计思路。 关键词:数据中心气流组织机房专用空调节能措施 数据中心是容纳计算机房及其支持区域的一幢建筑物或是建筑 物中的一部分。数据中心空调系统的主要任务是为数据处理设备提供合适的工作环境,保证数据通信设备运行的可靠性和有效性。本文结合工程实例浅析一下数据中心机房空调设计的特点和机房空调的节 能措施。 一、冷源及冷却方式 数据中心的空调冷源有以下几种基本形式:直接膨胀风冷式系统、直接膨胀水冷式系统、冷冻水式系统、自然冷却式系统等。 数据中心空调按冷却方式主要为三种形式:风冷式机组、水冷式机组以及双冷源机组。 二、空调设备选型 (1)空气温度要求 我国《电子信息系统机房设计规范》(GB50174―2008 )中规定:电子信息系统机房划分成 3级。对于A级与B级电子信息系统机房,其主机房设计温度为2 3±1°C,C级机房的温度控制范围是1 8―2 8°C 。 (2)空气湿度要求 我国《电子信息系统机房设计规范》(GB50174―2008 )中规定:电子信息系统机房划分成3级。对于A级与B级电子信息系统机房,其主机房设计湿度度为40―55%,C级机房的温度控制范围是 40―60%。 (3)空气过滤要求

在进入数据中心机房设备前,室外新风必须经过滤和预处理,去除尘粒和腐蚀性气体。空气中的尘粒将影响数据机房设备运行。 (4)新风要求 数据中心空调系统必须提供适量的室外新风。数据通信机房保持正压可防止污染物渗入室内。 三、气流组织合理布置 数据中心的气流组织形有下送上回、上送侧回、弥漫式送风方式。 1.下送上回 下送上回是大型数据中心机房常用的方式,空调机组送出的低温空气迅速冷却设备,利用热力环流能有效利用冷空气冷却率,如图1所示为地板下送风示意图: 图1地板下送风示意图 数据中心内计算机设备及机架采用“冷热通道”的安装方式。将机柜采用“背靠背,面对面”摆放。在热空气上方布置回风口到空调系统,进一步提高制冷效果。 2.上送侧回 上送侧回通常是采用全室空调送回风的方式,适用于中小型机房。空调机组送风出口处宜安装送风管道或送风帽。回风可通过室内直接回风。如图2所示为上送侧回示意图: 图2上送侧回示意图 四、节能措施 1、选择合理的空调冷源系统方式 在节能型数据中心空调冷源形式的选择过程中,除了要考虑冷源系统形式的节能性以外,还要综合考虑数据中心的规模、数据中心的功率密度、数据中心的投资规模、工作人员的维护能力、数据中心所在地的气候条件以及数据中心的基础条件等。 2、设计合理的室内空气温湿度 越低的送风温度意味着越低的空调系统能量利用效率。笔者认为冷通道设计温度为l5―22℃,热通道为25―32℃。 3、提高气流组织的效率 数据中心空调气流组织应尽量避免扩散和混合。在数据中心机房

数据中心维护_精密空调CRAC

为什么需要精密空调? 现在,恒温恒湿环境控制要求已经远远超出了传统数据中心或计算机室的围,包括更大的一套应用,称为“技术室”。典型的技术室应用包括: ?医疗设备套件(MRI、CAT 扫描) ?洁净室 ?实验室 ?打印机/复印机/CAD 中心 ?服务器室 ?医疗设施(手术室、隔离室) ?电信(交换机室、发射区) 为什么需要精密空调? 在许多重要的工作息处理是不可或缺的一个环节。因此,贵公司的正常运转离不开恒温恒湿的技术室。 IT硬件产生不寻常的集中热负荷,同时,对温度或湿度的变化又非常敏感。温度和/或湿度的波动可能会产生一些问题,例如,处理时出现乱码,严重时甚至系统彻底停机。这会给公司带来大量的损失,具体数额取决于系统中断时间以及所损失数据和时间的价值。标准舒适型空调的设计并非为了处理技术室的热负荷集中和热负荷组成,也不是为了向这些应用提供所需的精确的温度和湿度设定点。精密空调系统的设计是为了进行精确的温度和湿度控制。精密空调系统具有高可靠性,保证系统终年连续运行,并且具有可维修性、组装灵活性和冗余性,可以保证技术室四季空调正常运行。 温度和湿度设计条件 保持温度和湿度设计条件对于技术室的平稳运行至关重要。设计条件应在72-75°F (22-24°C)以及 35-50% 的相对湿度 (R.H.)。与环境条件不合适可能造成损坏一样,温度的快速波动也可能会对硬件运行产生负面影响。这就是即使硬件未在处理数据也要使其保持运行状态的一个原因。相反,舒适型空调系统的设计只是为了在夏天 95°F

(35°C)的气温和48% R.H.的外界条件下,使室的温度和湿度分别保持80°F (27°C)和 50% R.H.的水平。相对而言,舒适型空调系统的设计只是为了在夏天95°F (35°C)的条件和48% R.H.的外界条件下,保持80°F (27°C)和50% R.H.。舒适空调没有专用的加湿及控制系统,简单的控制器无法保持温度所需的设定点的整定值(23±2°C),因此,可能会出现高温、高湿而导致环境温湿度场大围的波动。 环境不适合所造成的问题 如果技术室的环境运行不当,将对数据处理和存储工作产生负面影响。结果,可能使数据运行出错、宕机,甚至使系统故障频繁而彻底关机。 1、高温和低温 高温、低温或温度快速波动都有可能会破坏数据处理并关闭整个系统。温度波动可能会改变电子芯片和其他板卡元件的电子和物理特性,造成运行出错或故障。这些问题可能是暂时的,也可能会持续多天。即使是暂时的问题,也可能很难诊断和解决。 2、高湿度 高湿度可能会造成磁带物理变形、磁盘划伤、机架结露、纸粘连、MOS 电路击穿等故障发生。 3、低湿度 低湿度不仅产生静电,同时还加大了静电的释放。此类静电释放将会导致系统运行不稳定甚至数据出错。 欲了解更多APC相关容,请登录.apc./cn 技巧:精密空调系统工作原理及维护过程解析 精密空调的构成除了前面介绍的压缩机、冷凝器、膨胀阀和蒸发器外,还包括:风机、空气过滤器、加湿器、加热器、排水器等。因此我们在日常的机房管理工作中对空调的管理和维护,主要是针对以上部件去维护的。精密空调的构成除了前面介绍的压缩机、冷凝器、膨胀阀和蒸发器外,还包括:风机、空气过滤器、加湿器、加热器、排水器等。因此我们在日常的机房管理工作中对空调的管理和维护,主要是针对以上部件去维护的。 一、精密空调的结构及工作原理 精密空调主要由压缩机、冷凝器、膨胀阀和蒸发器组成。

数据中心空调系统应用白皮书

数据中心空调系统应用白皮书

目录 一引言 (5) 1.1目的和范围 (5) 1.2编制依据 (5) 1.3编制原则 (6) 二术语 (6) 三数据中心分级 (8) 3.1概述 (9) 3.2 数据中心的分类和分级 (9) 四:数据中心的环境要求 (10) 4.1 数据中心的功能分区 (10) 4.2 数据中心的温、湿度环境要求 (11) 4.2.1 数据中心环境特点 (11) 4.2.2 国标对数据中心环境的规定和要求 (12) 4.3 数据中心的其它相关要求 (16) 五: 数据中心的机柜和空调设备布局 (18) 5.1 机柜散热 (19) 5.1.1数据中心机柜 (19) 5.1.2 机柜的布局 (21) 5.2 机房空调及其布置 (23) 5.2.1 机房空调概述 (23) 5.2.2 机房空调送回风方式 (25) 5.2.3 机房空调布局 (25) 六:数据中心空调方案设计 (26) 6.1 数据中心的制冷量需求确定 (26) 6.2 数据中心的气流组织 (29) 6.2.1 下送上回气流组织 (29) 6.2.2 上送下(侧)回气流组织 (33) 6.2.3 局部区域送回风方式 (36) 6.3 空调系统的冷却方式选择 (37) 6.4 空调设备的选择 (46) 七: 数据中心中高热密度解决方案 (48) 7.1 区域高热密度解决方案 (48) 7.2 局部热点解决方式 (50) 7.3高热密度封闭机柜 (52) 7.4其它高热密度制冷方式 (54) 八: 数据中心制冷系统发展趋势 (54) 8.1数据中心发展趋势: (54) 8.2 数据中心制冷系统发展趋势 (57) 九机房环境评估和优化 (58) 附件一:数据中心要求控制环境参数的原因 (62) 附件二:机房专用空调机组 (70)

数据中心空调系统节能设计分析及方法探究

数据中心空调系统节能设计分析及方法探究 发表时间:2019-08-06T15:46:25.110Z 来源:《建筑学研究前沿》2019年8期作者:傅永洪 [导读] 空调系统作为保证数据中心的稳定高效运转必不可少的措施,经过专业研究有着极大的节能减排的挖掘余地。 浙江新大新暖通设备有限公司浙江金华 321000 摘要:伴随着大数据时代的到来,我国的数据中心的数量与日俱增。但是数据中心的高能耗问题也成为了我国节能减排工作需要关注的一个重点问题,本文以大型数据中心空调系统作为研究对象,在分析大型数据中心空调系统的设置和特点的基础上,提出具有可实施性的节能措施,进而提高大数据中心空调系统的节能减排和能源利用率。 关键词:数据中心;空调系统;节能;分析研究 一、引言 进入大数据时代,各行各业的发展越来越离不开能够集中处理、存储和交换数据的专业数据中心,因此,各领域的数据中心建设和改造数量越来越多,规模越来越大。可以说我国的数据中心发展迅猛。但是通过系列的调查研究,可以发现我国当前的数据中心年耗电量很大,这也就意味着我国大多数的数据中心的平均电能使用效率(简称PUE=数据中心总能耗 / IT设备能耗)高,这并符合当前节能减排的发展原则。因此,我们需要通过多种形式的策略减少大数据中新的高耗能问题。其中,空调系统作为保证数据中心的稳定高效运转必不可少的措施,经过专业研究有着极大的节能减排的挖掘余地。 二、数据中心空调系统的组成 数据中心空调系统主要有制冷系统、散热系统及降温辅助系统三部分组成。 (一)制冷系统 主要是冷水机组,制冷系统的工作原理是通过转变制冷剂的高压、低压的形态,利用空气的流动性,迫使数据中心机房内部的热量流出室内。制冷系统作为保证机房温度的基础保障,是空调系统高耗能的部分之一,影响空调系统中制冷系统能源消耗的因素有机房环境温湿度、室外环境温湿度、受负载率等。 (二)散热系统 主体是风机或泵,工作原理是利用空气或水把热量从数据中心内部搬运到数据中的室外。排热系统产生足够的风量或水量以带走巨大的热量,但同时散热系统也是数据中空调系统耗能高的部分之一。影响散热能源消耗的因素是机房内部的气流组织。 (三)降温辅助 工作原理是通过冷却塔、喷头或湿式过滤器,利用水的蒸发在热量排到室外的工作过程中提供帮助。降温辅助系统可以提高换热效率,帮助空调系统把热量散发地更快。降温辅助系统的耗能比例占空调系统整体耗能比例较小。 三、数据中心空调系统高耗能解析 (一)空调系统配置不合理 由于数据中心对内部环境的恒定温湿度和空气质量都有很高的要求,但限于一些外部环境和技术升级的原因,大部分数据中心的空调系统都不引入室外新风,而采用循环风带走室内高密度的显热量。一般情况下,在室内没有湿源的条件下采用循环风的送风方式,空调系统是不用除湿的。但在数据中心空调系统的实际运行中,机房空调仍会流出冷凝水,这是因为空调在冷量输出时,冷凝水会携带冷量。因此数据中心在严格空气湿度的情况下,机房空调系统通常会一边对机房内部降温回风、冷凝除湿,另一方面又同时加湿,这种设备工作方式并不不合理,会造成大量不必要的能量浪费。 (二)机房气流组织不合理 数据中心机房内部的气流组织会对整体的散热排风效率产生极大的影响,当前的多数数据中心的气流组织都存在一些不合理的现象,主要体现在以下三方面:一是机柜排列方式不合理,把机柜面向同一个方向摆放,造成的结果就是前面服务器排出的热空气直接被后排服务器吸收,使得冷热气流混合在一起,大大拉低了空调制冷效率;二是送风通道设计不合理。一些数据中心建设规划不专业,送风管道等不符合标准,影响了空调系统的制冷能力,为了满足制冷要求会选用超出设备发热量的空调,提高了耗电量;三是地板出风口位置和空调出风口的距离设置不合理,甚至在二者之间摆放机柜,造成出风量不足、局部过热的问题。 四、数据中心空调系统的节能措施 (一)采用自然冷却技术 传统的常规制冷系统,需要制冷系统全年不间断地制冷,冷水机组全年运行运行,占据了空调系统的极大的耗电量。因此,采用自然冷却技术,可以在低温环境下,优先利用低温的自然水或风做冷源,免除了冷水机组的耗电成本。目前的自然冷却技术,主要有水侧自然冷却技术和风侧自然冷却技术两种。 (1)水侧自然冷却技术 水侧自然冷却技术,顾名思义就是在符合标准的情况下利用自然水做冷源供水。采用水侧自然冷却技术,一般需要把冷水和冷却水系统串联在板式换热器中,并把冷水的供回水温度设置成三段式:当冷却水供水温度≥16℃时,冷水机组和平时一样常规制冷,单独承担数据中心的全部冷负荷;当冷却水供水温度降到10—16℃,系统可以开始使用部分的冷水作为免费冷源,由冷水机组和免费冷源共同为空调系统提供冷负荷;当冷却水供水温度<10℃以下时,冷水机组可以在技术设置后自动停止运行,空调系统的全部冷负荷由免费冷源提供。通过自然冷却技术,在过渡季和冬季减少了压缩机工作,这种技术十分适合在我国北方沿海范围内的寒冷湿润性气候里使用,可以大大降低数据中心空调系统的PUE值。 (2)风侧自然冷却技术 风侧自然冷却技术包括和间接利用室外新风两种方式。直接利用室外新风,是指把室外低温冷空气运用过滤、除硫等方式净化处理后,直接引进数据机房内,作为冷源冷却设备,实现节能。如全年PUE仅1.07的FACEBOOK数据中心,采用的就是直接利用新风供冷。间接利用室外新风,又称“京都制冷”,东京很多的数据中心都采用这种方式,具体是指室外低温空气不直接进机房,而是通过转轮式换热器吸

浅谈数据中心建设设计

浅谈现代化数据中心设计 作者:李书 工作单位:北京捷通机房设备工程有限公司专业方向:数据中心装饰设计 日期:2011年6月

浅谈现代化数据中心设计 【摘要】本文从数据中心建设的必备要素入手,从装饰装修、供配电、空气调节、新风系统以及建筑智能系统等诸多方面阐述了作为一个现代化可持续发展的绿色机房的设计理念,为常规、常态的数据中心的建设提供了最基本的设计参考和指导。同时本文致力于推崇绿色设计理念在计算机机房设计中的应用,顺应社会发展的基本潮流,倡导绿色奥运的人文精神。 【关键词】数据中心绿色设计 【引言】数据中心基础设施的建设,很重要的一个环节就是计算机机房的建设。计算机机房工程不仅集建筑、电气、安装、网络等多个专业技术于一体,更需要丰富的工程实施和管理经验。计算机房设计与施工的优劣直接关系到机房内计算机系统是否能稳定可靠地运行,是否能保证各类信息通讯畅通无阻。由于计算机机房的环境必须满足计算机等各种微机电子设备和工作人员对温度、湿度、洁净度、电磁场强度、噪音干扰、安全保安、防漏、电源质量、振动、防雷和接地等的要求。所以,一个合格的现代化计算机机房,应该是一个安全可靠、舒适实用、节能高效和具有可扩充性的具有绿色理念的现代化机房。 【正文】一个现代化的数据中心建设一般包括以下几个系统:装饰装修系统工程;供配电系统工程;空调和新风系统工程、建筑智能化系统工程、防雷系统工程以及消防系统工程等。而每个系统工程又由若干个子系统构成,每个子系统又由若干个单项工程组成。正是由这些不可再分的单项工程共同组成了一个复杂的数据中心的有机体。下面从数据中心的基本系统设计逐一分析。 一、装饰装修系统 1、设计理念 机房内的装饰设计从风格上一般力求简洁、明快;从使用功能上吊顶和地板可拆卸以便维护,甚至有的客户要求墙面也要做到可拆卸。从功能分区上要遵循机房使用的一些基本需求。如更衣室、缓冲间、主机房、维修间、备品备件室、监控中心、参观走廊等等都是必备的功能划分。从平面布局上力求合理和实用。从层高的考虑上不可一味追求大空间这样会加大空调的配置,也不能太过低矮会造成压抑等不适感,同时过矮的情况下如果摆放机柜过密还会影响机柜操作区域的照度不够。层高一般宜在2400MM左右,不宜高于3000MM,不宜低于2200MM。 2、设计要点 隔断的设计:为了保证机房内不出现内柱,机房建筑常采用大跨度结构。 针对计算机系统的不同设备对环境的不同要求,便于空调控制、灰尘控制、噪音控制和机房管理,往往采用玻璃隔断墙将大的机房空间分隔成较小的功能区域。机房外门窗多采用防火防盗门窗,机房内门窗一般采用无框大玻璃门,这样既保证机房的安全,又保证机房内有通透、明亮的效果。 地面设计:机房工程的技术施工中,机房地面工程是一个很重要的组成部分。机房地板一般采用防静电活动地板。活动地板具有可拆卸的特点,因此,所有设备的导线电缆的连接、管道的连接及检修更换都很方便。随着材

数据中心机房制冷空调系统运维技术考核题目答案参考

数据中心(机房)制冷空调系统运维技术考核题目答案参考 类数据机房温湿度范围?单点温湿度波动范围? A类机房温湿度要求:23±1℃,40--55% ;单点温度波动小于5℃/h,湿度波动小于5%/h 参考:GB50174《电子信息系统机房设计规范》 2.空调回风参数:温度25℃,相对湿度50%;求露点温度? ℃参考:标准大气压湿空气焓湿图;此题关注会查空气状态点对应的露点温度和湿球温度 3.自然冷却模式、预冷模式、普通制冷模式的切换依据,对应的环境湿球温度值是多少? 湿球温度<10℃适合自然冷却模式,10--15℃之间适合预冷模式,>15℃适合普通制冷模式 参考:水冷自控系统供冷模式转换控制逻辑 4.机房空调送风距离多少米为宜?6-10m为宜 5.数据机房采用地板送风,风速范围多少m/s为宜? ( m/s最佳)参考:GB50174《电子信息系统机房设计规范》 6.数据机房新风正压要求数值? 机房与走廊;机房与室外参考:GB50174《电子信息系统机房设计规范》 7.数据机房新风量:人均参考值?每平米参考值?按机房换气次数每小时几次为宜? 按工作人员每人40m3/h;每平米25--30 m3/h;机房换气次数次/h(人员进出的机房取4次/h) 8.计算:900个标准机柜(13A)需要多大面积的机房合适?如选用艾默生冷水型机房空调P3150G至少需要多少台?按4-5台以上备份1台的标准,最多需要多少台?需要多大冷量的冷水机组提供冷源?需要多大风量的新风空调提供机房正压? 每个机柜加上冷热通道,平均面积取;×900=2070㎡(可分成4个㎡模块间,每个模块225台机柜) 每平米可用制冷量不能小于+每平米维护结构热负荷=每平米冷量需求 总冷量需求:×2070=3312KW 查艾默生冷水型空调样本:P3150G标准冷量为;需留有20%的预留(使用系数取) 艾默生P3150G冷水型空调单机净冷量:×= ○标准需求台数:3312÷≈28台;冗余配置(4+1):28÷4=7台(需配备机7台);含备机需28+7=35台 ○IT设备功耗转换成热量系数(取计算);13A机柜功耗,转换为热量÷≈ 总热负荷:×900=3429KW,除以P3150G空调单机净冷量≈29台,按冗余配置(4+1),需配备机7台;含备机需29+7=36台 ○空调系统制冷量取IT负载的倍;IT总负载:×900=2574KW;空调系统总制冷量:2574×= 除以P3150G空调单机净冷量≈28台,按冗余配置(4+1),需配备机7台;含备机需28+7=35台 ●需要冷量为3429KW(约1000RT)的冷水机组(离心式)1台提供冷源 新风量每平米25--30 m3/h(取30 m3/h);总新风需求30×2070=62100 m3/h,建议规划4个模块间单独提供新风62100÷4=15525 m3/h,需要新风量15525 m3/h的组合空调4台 9.制冷设备能效比EER是如何计算的? EER即制冷设备的制冷性能系数,也称能效比,表示制冷设备的单位功率制冷量。EER值越高,表示制冷设备中蒸发吸收的热量较多,压缩机耗电较少。数学计算公式:EER=制冷量(KW)/制冷消耗功率(KW) 单位:W/W或KW/h/W 10.冷站(动力站)COP是如何计算的? 冷水机组实际制冷量和配套设备(压缩机-马达+冷冻水循环泵+冷却水循环泵+冷却塔风机-马达)实际输入功率之比 11.数据机房PUE是如何计算的?绿色节能机房PUE标准? PUE是评价数据中心能源效率的指标,是数据中心消耗的所有能源(电能)与IT负载使用的能源(电能)之比PUE=数据中心总设备能耗/IT设备能耗;基准是2,越接近1表明能效水平越好 绿色节能机房PUE标准:以下 12.接题目8,匹配适合该冷水机组的冷却塔参数(流量)?冷却塔设在楼顶距冷站(动力站)20米,匹配适合该冷水机组的冷却循环泵参数(扬程和流量)?匹配适合该冷水机组和机房空调的冷冻循环泵参数(扬程和流量)(注:水泵出口至管网最高点垂直高度15米)? 水量需求:冷凝器()/RT 蒸发器(3/h)/RT

某云数据中心空调系统架构及运行调优

第32卷第5期 万葛亮,等:空气源热泵外机低频噪声源识别及优化 ·49· 文章编号:1671-6612(2019)01-049-7 某云数据中心空调系统架构及运行调优 冯瑞军 (北京世纪互联宽带数据中心有限公司 北京 100015) 【摘 要】 概述了北京某大型云数据中心的基本情况和暖通空调系统架构,深入分析了系统形式、设备选型 配置、节能技术措施等;通过系统研究及设计数据测算,评估能效水平。在运行管理阶段,理论分析结合运行经验对设计架构及运行模式进行了优化。实现了系统架构高稳定性并极大提高了能效指标,保障了云数据中心的稳定高效运行。最后利用一个整运营年度运行数据进一步验证了该项优化改造的合理性。 【关键词】 云数据中心;空调系统架构;管理策略优化;节能降耗 中图分类号 TU831 文献标识码 A HV AC System Architecture and Operation Optimization of a Cloud Data Center Feng Ruijun ( Beijing Century Interconnection Broad Band Data Center Co, Ltd, Beijing, 100015 ) 【Abstract 】 This paper introduces the basic situation of a large cloud data center in Beijing and the HV AC system architecture, and deeply analyzes the system form, equipment selection and configuration, energy-saving technical measures, etc.; In the operational management phase, theoretical analysis combined with operational experience to optimize the design architecture and operating mode. It achieves high stability of the system architecture and greatly improves energy efficiency indicators, ensuring stable and efficient operation of the cloud data center. Finally, the rationality of the optimization and transformation was further verified by using the operational data of the whole operation. 【Keywords 】 cloud data center; HV AC system architecture; management strategy optimization; energy saving 作者(通讯作者)简介:冯瑞军(1986.04),男,硕士,工程师,E-mail :fengruijun421@https://www.doczj.com/doc/cb16060182.html, 收稿日期:2018-11-30 0 引言 近年来,由于AI 、大数据、区块链、云计算等蓬勃发展,云数据中心处于高速发展阶段。随着中大型云数据中心的日益增多,作为重点用能单位,日益引起国家相关部门及社会高度关注,对已运营云数据中心进行节能改造,对新建云数据中心提出更高的能效指标及技术等级要求,成为行业及国家的政策鼓励方向。云数据中心的能耗主要包括:IT 能耗、暖通系统能耗、配电系统能耗[1]。作为云数据中心核心基础设施的空调系统,其能耗在云数据中心总能耗中约占35%以上。在当前能源短缺,电力资源日益紧缺的大环境下,提高空调系统的能效势在必行。作为发展下一代绿色云数据中心的前提 就是要在云数据中心全生命周期内对节能降耗贯彻执行。 规划设计和运行管理是云数据中心全生命周期中最重要的两个环节。规划设计的水平直接影响着云数据中心的架构和能耗水平,运行管理的能力关系到设计目标的实现及进一步超越。如何保证云数据中心在高可用性的前提下,以最高效的方式不间断运行成为了暖通工程师的重大挑战。本文以北京某云数据中心暖通空调系统设计及采用的节能优化措施为例进行分析研究,并通过运行管理中的优化调整完善了设计缺陷,提高了能效水平。 第33卷第1期 2019年2月 制冷与空调 Refrigeration and Air Conditioning V ol.33 No.1 Feb. 2019.049~055 万方数据

BIM新技术在数据中心暖通空调领域的应用解析

BIM新技术在数据中心暖通空调领域的应用解析 发表时间:2019-07-09T17:04:49.147Z 来源:《建筑实践》2019年第07期作者:于杰 [导读] 在数据中心行业的发展中,暖通空调有越来越复杂的趋势,很多问题用传统方式去解决效率低又浪费资源, 中国建筑技术集团有限公司北京 100013 摘要:在数据中心行业的发展中,暖通空调有越来越复杂的趋势,很多问题用传统方式去解决效率低又浪费资源,BIM技术的发展可以充分利用三维建模的优势,同时资源数据的共享可以有效的避免不必要的重复劳动。建立准确高效的BIM模型更好的控制成本,更好的保证工程的建设。 关键词:BIM技术;暖通空调;应用 1BIM技术介绍 BIM技术简单来说就是建筑信息模型,它可以在设计、施工、运维等不同的工程阶段实现对建筑物的模拟、分析、可视化、施工图、工程量统计,直观的将建筑各个阶段的施工流程以及进度全部立体的展现出来,使数据实时精确,在整个数据中心施工过程中都可以起到很大的作用。BIM技术由于在国内推广使用时间还较短,相关经验还有待摸索,但在数据中心暖通空调领域有强大的市场价值。 2BIM技术普遍优势 2.1可实现设计、施工及运营各阶段信息共享 相较于传统的CAD二维设计模式而言,BIM设计不仅对三维空调设计质量进一步提高,还能够切实保证后续的落地施工工作做到有依据可循,高效、安全且准确地进行。BIM技术依托于其独立的差异化三维图像模式,能够明显地使得施工人员理解暖通空调系统从设计至安装的整个系统过程,同时能够在同一纬度下呈现包括施工信息、设备信息以及材料价格等。将所有的施工进度有效展示,使得建筑人员的安全系数有效提升,并且最大程度上保证数据中心工程的安全。 2.2使各专业具备有效的协同性 通过BIM三维模型的建设,能够在最大程度上保证包括建筑、排水、电气、空调、消防等不同建筑需求在同一时刻进行,从而最大程度上提升施工效率,降低施工成本。BIM技术能够将整个建筑系统的设计细节与节点加以保存,一旦发生意外事故或建筑失误,能够做到第一时间的反馈并优化,提前预防发生故障的潜在可能。 3暖通空调设计中的BIM技术应用研究 3.1BIM技术在冷热源设计中的应用 通常,数据中心机房项目机电专业涉及范围广,管线错综复杂,尤其是制冷站房、变配电室、机房层及屋面机电管线密集、建筑空间要求较高,通过BIM建筑主体与机电设备模型的搭建,直观反应设备安装所需空间,准确提出制冷站房、数据机房、供配电室、走廊等关键部位的净高要求,结合数据中心的特殊性,达到相关的工艺需求。传统的工作模式是用系统说明、系统图、平面图、剖面图和大样图等来表达设计意图,各个环节上是相互独立的,存在的问题都很隐蔽,很难发现。而在BIM技术的应用下,各种设备和管线都会在一个模型中表达,相互的空间位置关系一目了然,存在的问题也就会暴露出来。 3.2BIM技术在方案辅助设计中的应用 在方案辅助设计中应用BIM技术能够使方案的科学性得到有效的提高,设计人员在进行方案设计的过程中,可以应用BIM技术进行设计方案仿真模型的建立,然后将各个设计方案进行直观的性能对比,使不同设计方案的可行性更为明确,从而在众多设计方案中选择一个最为明确合理、科学、可行性最高的设计方案。设计人员需要注意的是,在进行方案选择的期间,应该对建筑的地理环境、气候、场址等进行科学分析,以此作为设计方案的外部选择条件,从而实现方案的科学性。 3.3BIM技术在图纸绘制中的应用 图纸绘制在当前的暖通空调设计中是一个极为重要的工作流程,设计人员在进行暖通空调的图纸绘制过程中,需要绘制暖通空调的系统水泵和冷机冷塔等设备运行图,此过程应用BIM技术能够在BIM技术软件的数据库中调取暖通空调内部各个构件的参数和性能相匹配的空调原件,使图纸绘制的工作效率得到显著提高,同时设计人员在绘制图纸期间可以应用BIM技术的仿真模型对暖通空调不同的设计需要进行模型设计的调整,使图纸设计更为科学合理。相关的空调设计检验人员还能够应用BIM技术对模型的不同剖面进行查看,使设计中存在的问题更为清晰的显现出来,减少了在施工期间进行图纸变更的程序,加快数据中心暖通空调加装的整体工作效率。 4BIM技术在暖通空调施工当中的具体应用 4.1应用流程 (1)建模。BIM技术建模需要根据数据中心建筑的实际情况确定工程负荷负载报告,然后开始输入模型。(2)进行风管模型的设计。利用BIM技术进行三维建模并利用BIM软件进行优化,以便于排除故障。(3)对水和排水管网进行三维建模。由于水系统比较复杂,水管网各式各样,在狭窄的地方容易发生碰撞,可以通过利用BIM软件对其位置进行设计以避免发生碰撞。(4)模拟现场。利用BIM软件对数据进行修改,通过模拟现场情况不断做出修改不断完善,以便于实际施工的完成。 4.2碰撞检查 由于暖通空调设备安装复杂,但施工的空间比较小所以在安装时经常会发生管线交叉的现象,所以要利用BIM技术对模型进行调整,通过BIM技术对管道进行排查,并与实际施工相联系,大大减少了返工的次数,同时也减少了工程的成本投入与时间,节省了大量的人力物力财力。 4.3安装方案的优化 在方案实施之前,利用BIM和MagiCAD软件进行模型试验以及协调施工中可能出现的问题,以减少返工次数,并利用相关系统对工程的安全性可靠性进行检验,以保证工程既美观又可靠,利用MagiCAD设计软件对图纸不断优化,对管线进行综合的检查,以保证环通空调以及各系统功能完善,坚持从小到大,从强到弱的顺序进行。 结束语 近年来,BIM技术因为能集中地对数据中心工程信息进行管理而受到国内外建筑行业的广泛欢迎,尤其在暖通空调项目设计中,运用BIM技术对整个的工程速度、工程质量等都有了明显的提升,对工人的安全、成本的投入等都有了保障。综上所述,以上内容就是对BIM新

相关主题
文本预览
相关文档 最新文档