当前位置:文档之家› 航空发动机叶片关键制造技术

航空发动机叶片关键制造技术

航空发动机叶片关键制造技术
航空发动机叶片关键制造技术

航空发动机涡扇叶片及其成形工艺

航空发动机涡扇叶片及其成形工艺 涡扇发动机具有耗油率低、起飞动力大、噪音低和迎风面积大等特点。60年代中期,它只应用于客机和轰炸机,当时人们普遍认为,它很难在高速歼击机上应用。自70年代以来,带加力的高推比涡扇发动机的相继问世,使战斗机的性能提高到了一个新的水平,从而彻底改变了人们对涡扇发动机的偏见。90年代中期,又为第四代战斗机成功研制了推重比10带加力的涡扇发动机。与此同时,为满足发展巨型、远程运输机、宽机身客机的需要,国外先进的发动机厂家又研制成功了大推力、低耗油率、大流量比的涡扇发动机。时至今日,涡扇发动机已是应用数量最多、范围最广和最有发展前景的航空发动机。 风扇叶片是涡扇发动机最具代表性的重要零件,涡扇发动机的性能与它的发展密切相关。初期的风扇叶片材料为钛合金,具有实心、窄弦、带阻尼凸台结构。现今,风扇叶片在材料、结构方面已改进许多。为了增强刚性,防止振动或颤振,提高风扇叶片的气动效率,用宽弦结构代表了窄弦、带阻尼凸台结构;为了减轻重量,用夹芯或空心结构取代了实心结构;为了增大流量比,提高大推力涡扇发动机推进效率,风扇转子直径已增大到了3242mm,风扇叶尖速度已高达457m/s。而这些材料新、叶身长、叶弦宽、结构复杂的风扇叶片的成形工艺是非常复杂的。因此,风扇叶片的成形工艺始终是涡扇发动机的关键制造技术之一。 1早期风扇叶片 早期风扇叶片为大尺寸实心结构,为防止共振及颤振,它的叶身中部常带有一个阻尼凸台(又称减振凸台)。所有叶片的凸台连成一环状,既增强了刚性又改变了叶片固有频率,减小了叶根弯曲和扭转应力。阻尼凸台接合面喷涂有耐磨合金,当叶片振动时,接合面相互摩擦可起阻尼作用。阻尼凸台一般位于距叶根约整个叶片长度的50%~70%处。阻尼凸台的存在带来一系列问题,如:由于它的存在及它与叶身连接处的局部加厚,使流道面积减少约2%,使空气流量降低,造成气流压力损失,使压气机效率下降,发动机耗油率增加;增加了叶身重量,使叶片离心力负荷加大;使叶片制造工艺更加复杂。在有些风扇叶片上,为了增强抗外物撞击损伤能力,叶身上除了阻尼凸台以外,还有较厚的加强筋。 CFM56-3和CFM56-5发动机风扇转子直径约1700mm,风扇叶片长约600mm,由整体钛合金锻件经机械加工而成。风扇叶片毛坯先镦锻出叶根和阻尼凸台,经预锻成形,再精锻、切边。叶身成形可用数控铣、数控仿形磨、电解加工和抛光等工艺。随着叶片批量生产的增加,应尽量采用精锻法生产出钛合金风扇叶片的锻坯,以提高材料的利用率,减少机械加工工作量和提高风扇叶片的使用寿命。但生产这样大的风扇叶片精锻毛坯,需要使用昂贵的高精度的万吨级机械压力机或螺旋压力机,所需模具的尺寸大、精度也高。因此,精锻工序的成本很高。4钛合金宽弦无凸台空心风扇叶片5高韧性环氧复合材料风扇叶片

航空发动机研制难点

航空发动机研制难点 目前,在各行各业众多工业产品中,能够称得上是“工业王冠”的大概只有喷气航空发动机和微电子芯片了。“工业王冠”不单单反应的是喷气式航空发动机在技术层面的研制难度,也不仅仅说明了航空发动机在飞机设计中属于“心脏”一样的核心地位,更说明了在国家发展过程中航空发动机如同“王权”一般高端的战略位置。但是我国偏偏在航空发动机研制过程中,长期处于“慢性心脏病”的状态,在追求“工业王权”的过程中,长期处于“知其然,不知其所以然”的境地。不过,在对航空发动机研制客观规律进行总结和对于国家发展有了更深层次的认识之后,我国在当今航空发动机技术发展的战略机遇期,不仅可以与航空强国齐头并进,还要创立属于中华民族的“动力王朝”。 现代涡扇发动机结构极其复杂,图为GE90大涵道比涡扇发动机结构剖视图 采用三维气动算法进行理论计算的压气机叶片 如何组织燃料高效的燃烧而又不伤及自身,是燃烧室设计的核心问题 带有冷却孔的涡轮叶片,采用了激光熔接技术,号称是世界上最难制造的零件之一。 我国直到上世纪八十年代才开始的高推比核心机预研计划F119-PW-100堪称是世界第一发动机,可是只是美国第四代核心机的衍生产品而已,后面还有三代…… 用于民航的大涵道比涡扇发动机,我国目前在这个领域没有自己的发动机型号。 精心雕琢的工业王冠 喷气式航空发动机的性能优势是建立在精巧的连续回旋转子结构上的,其研制难点也基本围绕这一个核心展开。现代飞机不断提高的战术技术指标对航空发动机提出了非常高的要求。高温、高压、高转速而又要求高可靠性、耐久性和维护性是其基本特点。在这些高而又相互矛盾的要求的推动促进下,航空发动机经过长时间的发展已经成为人类有史以来最复杂最精密的工业产品。 压气机的作用是利用来自涡轮的能量对发动机进气进行压缩和增温。一方面提高了进气分子活跃程度,更有利于提高燃烧效率。另外一方面,增加了单位体积内的氧气含量,因为大气尤其是高空大气的单位体积含氧量太低,远小于燃烧室中的燃油充分燃烧所需的耗氧量。压气机的主要设计难点在于要保证效率、增压比和喘振裕度这三大主要性能参数满足发动机的设计要求。一个世纪以来,伴随着气动热力学、计算流体力学的发展.压气机的设计水平在逐年提高。20世纪初采用螺旋桨理论设计压气机叶片,二十年代开始采用孤立叶形理论,三十年代中期开始采用叶栅设计理论,五十年代开始用二维设计技术,七十年代开始建立准三维设计体系,九十年代以来,航空界开始使用三维粘性流场分析设计体系对压气机进行设计。压气机设计理论、计算模型和设计系统在基础理论科研推动下不断进步跨越。即便是有先进的计算机辅助设计手段,如果基础科研理论没有进步,也无法在高性能压气机领域取得突破。由于压气机的逆压梯度相当大、需要对空气流场、温度场和压力场进行详尽的

先进航空发动机关键制造技术研究

ARTICLES 学术论文 引言 航空发动机的设计、材料与制造技术对于航空工业的发展起着关键性的作用,先进的航空动力是体现一个国家科技水平、军事实力和综合国力的重要标志之一。随着航空科技的迅速发展,面对不断提高的国防建设要求,航空发动机必须满足超高速、高空、长航时、超远航程的新一代飞机的需求。 近年来,航空工业发达国家都在研制高性能航空发动机上投入了大量的资金和人力,实施一系列技术开发和验证计划,如“先进战术战斗机发动机计划(ATFE )”、“综合高性能涡轮发动机技术(IHPTET )计划”及后续的VAATE 计划、英法合作军用发动机技术计划(AMET )等。在这些计划的支持下,美国的F119、欧洲的 EJ200、法国的M88和俄罗斯的AL-41F 等推重比10 一级发动机陆续问世。 为了提高发动机的可靠性和推力,先进高性能发动机采用了大量新材料,且结构越来越复杂,加工精度要求越来越高,对制造工艺提出了更高的要求。而且,在新一代航空发动机性能的提高中,制造技术与材料的贡献率为 50%~70%,在发动机减重方面,制造技术和材料的贡献率占70%~80%,这也充分表明先进的材料和工艺是航空发动机实现减重、增效、改善性能的关键。 1 航空发动机的材料、结构及工艺特点 在提高发动机可靠性和维护性的同时,为了提高发动机的推力和推重比,航空发动机普遍采用轻量化、整体化结构,如整体叶盘、叶环结构。钛合金、镍基高温合金,以及比强度高、比模量大、抗疲劳性能好的树脂基复合材 先进航空发动机关键制造技术研究 黄维,黄春峰,王永明,陈建民 (中国燃气涡轮研究院,四川 江油 621703) Key manufacturing technology research of advanced aero-engine HUANG Wei ,HUANG Chun-feng ,WANG Yong-ming ,CHEN Jian-min (China Gas Turbine Establishment ,Jiangyou 621703,China ) Abstract :This paper describes the features of aero-engine material ,structure and technology ,and then ,development status and trend of key manufacturing technology for advanced aero-engine was analyzed. Finally ,the development of advanced aero-engine manufacturing technology in China is introduced and some proposals are put forward. Key Words : aero-engine ,manufacturing ,summarization 作者简介: 黄维(1982—),男,四川仁寿人,中国燃气涡轮研究院助理工程师,主要从事工艺技术研究。E-mail :huangwei611@https://www.doczj.com/doc/cd18584676.html,

(完整版)航空发动机试验测试技术

航空发动机试验测试技术 航空发动机是当代最精密的机械产品之一,由于航空发动机涉及气动、热工、结构与 强度、控制、测试、计算机、制造技术和材料等多种学科,一台发动机内有十几个部件和 系统以及数以万计的零件,其应力、温度、转速、压力、振动、间隙等工作条件远比飞机 其它分系统复杂和苛刻,而且对性能、重量、适用性、可靠性、耐久性和环境特性又有很 高的要求,因此发动机的研制过程是一个设计、制造、试验、修改设计的多次迭代性过程。在有良好技术储备的基础上,研制一种新的发动机尚要做一万小时的整机试验和十万小时 的部件及系统试验,需要庞大而精密的试验设备。试验测试技术是发展先进航空发动机的 关键技术之一,试验测试结果既是验证和修改发动机设计的重要依据,也是评价发动机部 件和整机性能的重要判定条件。因此“航空发动机是试出来的”已成为行业共识。 从航空发动机各组成部分的试验来分类,可分为部件试验和全台发动机的整机试验, 一般也将全台发动机的试验称为试车。部件试验主要有:进气道试验、压气机试验、平面 叶栅试验、燃烧室试验、涡轮试验、加力燃烧室试验、尾喷管试验、附件试验以及零、组 件的强度、振动试验等。整机试验有:整机地面试验、高空模拟试验、环境试验和飞行试 验等。下面详细介绍几种试验。 1进气道试验 研究飞行器进气道性能的风洞试验。一般先进行小缩比尺寸模型的风洞试验,主 要是验证和修改初步设计的进气道静特性。然后还需在较大的风洞上进行l/6或l/5的 缩尺模型试验,以便验证进气道全部设计要求。进气道与发动机是共同工作的,在不同状 态下都要求进气道与发动机的流量匹配和流场匹配,相容性要好。实现相容目前主要依靠 进气道与发动机联合试验。 2,压气机试验 对压气机性能进行的试验。压气机性能试验主要是在不同的转速下,测取压气机特性 参数(空气流量、增压比、效率和喘振点等),以便验证设计、计算是否正确、合理,找出 不足之处,便于修改、完善设计。压气机试验可分为: (1)压气机模型试验:用满足几何相似的缩小或放大的压气机模型件,在压气机试验台上按任务要求进行的试验。 (2)全尺寸压气机试验:用全尺寸的压气机试验件在压气机试验台上测取压气机特性,确定稳定工作边界,研究流动损失及检查压气机调节系统可靠性等所进行的试验。 (3)在发动机上进行的全尺寸压气机试验:在发动机上试验压气机,主要包括部件间的匹配和进行一些特种试验,如侧风试验、叶片应力测量试验和压气机防喘系统试验等。 3,燃烧室试验 在专门的燃烧室试验设备上,模拟发动机燃烧室的进口气流条件(压力、温度、流量) 所进行的各种试验。主要试验内容有:燃烧效率、流体阻力、稳定工作范围、加速性、出 口温度分布、火焰筒壁温与寿命、喷嘴积炭、排气污染、点火范围等。 由于燃烧室中发生的物理化学过程十分复杂,目前还没有一套精确的设计计算方法。因此,燃烧室的研制和发展主要靠大量试验来完成。根据试验目的,在不同试验器上,采 用不同的模拟准则,进行多次反复试验并进行修改调整,以满足设计要求,因此燃烧室试 验对新机研制或改进改型是必不可少的关键性试验。

航空发动机涡轮叶片

摘要 摘要 本论文着重论述了涡轮叶片的故障分析。首先引见了涡轮叶片的一些根本常识;对涡轮叶片的结构特点和工作特点进行了详尽的论述,为进一步分析涡轮叶片故障做铺垫。接着对涡轮叶片的系统故障与故障形式作了阐明,涡轮叶片的故障形式主要分为裂纹故障和折断两大类,通过图表的形式来阐述观点和得出结论;然后罗列出了一些实例(某型发动机和涡轮工作叶片裂纹故障、涡轮工作叶片折断故障)对叶片的故障作了详细剖析。最后通过分析和研究,举出了一些对故障的预防措施和排除故障的方法。 关键词:涡轮叶片论述,涡轮叶片故障及其故障类型,故障现象,故障原因,排除方法

ABSTRACT ABSTRACT This paper emphatically discusses the failure analysis of turbine blade.First introduced some basic knowledge of turbine blades;The structure characteristics and working characteristics of turbine blade were described in she wants,for the further analysis of turbine blade failure Then the failure and failure mode of turbine blades;Turbine blade failure form mainly divided into two major categories of crack fault and broken,Through the graph form to illustrate ideas and draw conclusions ;Then lists some examples(WJ5 swine and turbine engine blade crack fault,turbine blade folding section)has made the detailed analysis of the blade.Through the analysis and research,finally give the preventive measures for faults and troubleshooting methods. Key words: The turbine blades is discussed,turbine blade fault and failure type,The fault phenomenon,fault caus,Elimination method

太行航空发动机总体设计方案

一·本型航空发动机的应用领域 舰载机是以航空母舰或其他军舰为基地的海军飞机。用于攻击空中、水面、水下和地面目标,并遂行预警、侦察、巡逻、护航、布雷、扫雷和垂直登陆等任务。它是海军航空兵的主要作战手段之一,是在海洋战场上夺取和保持制空权、制海权的重要力量。舰载机能适应海洋环境。普通舰载机一般在6级风、4~5级浪的海况下,仍能在航空母舰上起落。舰载机能远在舰炮和战术导弹射程以外进行活动;借助母舰的续航力,可远离本国领土,进入各海洋活动。舰载歼击机多兼有攻击水面、地面目标的能力,舰载强击机(攻击机)多兼有空战能力,以充分发挥有限数量舰载机的最大效能。舰载飞机的起落和飞行条件比陆上飞机恶劣,因此舰载飞机应有良好的起飞性能、较低的着陆速度、良好的低速操纵性。驾驶舱的视野开阔,在母舰和飞机上还装有特殊的导航设备,便于驾驶员对准甲板跑道。为了少占甲板面积和便于在舰上机库存储器放,多数舰载飞机的机翼在停放时可以向上折叠,有的垂尾和机头也可以折转。此外,海水和潮湿的环境容易使飞机机体、发动机和机载设备严重腐蚀,飞机要有较好的防腐蚀措施。

二·航空发动机的性能设计指标 推力:15000daN 单位推力:20daN·s/kg 重量:150kg 推重比:10 耗油率:0.4kg/(h·N) 总压比:36 涡轮前温度:1800K 整机效率:50% 设计寿命:24000h 三·航空发动机的结构形式 3.1压气机 采用传统的小涵道比涡轮风扇发动机。涡轮风扇发动机有内外两

个涵道,它的外涵风扇处于飞机进气道内,可以在跨声速或超声速飞行时工作,较之于螺浆发动机具有效率高的优点。涡扇发动机与涡喷发动机相比,它具有较高的推进效率与较大的推力。而且采用涡轮风扇发动机后,为提高热效率而提高涡轮前温度不会给推进效率带来不利影响。而且外涵道的冷空气可以在涡轮部位形成冷空气薄膜,降低涡轮前高温燃气对涡轮的损害。而且外涵道空气与涡轮后燃气相掺混,有利于增加推力并降低噪音。下面对主要部件进行阐述。 压气机依然选用轴流式压气机。空气在轴流式是压气机中的流动方向大致平行工作轮轴,采用此中压气机的优点是其流动使其在结构上容易组织多级压缩,以没一级都较低的整压压力比获得较高的压气机总增压压力比。每级的增压压力i1.15-1.35之间,使得空气流经每级叶片通道时无需急剧的改变方向,减少流动损失,因而压气机效率高。特别在大流量是,轴流式压气机较其他种类的压气机更容易获得较高的压气机效率,可达90%左右,多级轴流式压气机还具有大流量,高效率,小迎风面的优点。 采用鼓盘式转子,兼顾鼓式转子的抗弯刚性和盘式转子的承受大离心载荷的能力,具体为混合式鼓盘转子,采用这种形式的转

大型飞机发动机的发展现状和关键技术分析

第23卷第6期2008年6月 航空动力学报 Journal of Aerospace Pow er Vol.23No.6 J une 2008 文章编号:100028055(2008)0620976205 大型飞机发动机的发展现状和关键技术分析 刘大响1,金 捷2,彭友梅1,胡晓煜3 (1.中国航空工业第一集团公司科技委,北京100012; 2.北京航空航天大学航空发动机数值仿真研究中心,北京100083; 3.中国航空工业第一集团公司发展研究中心,北京100012) 摘 要:对军民用大涵道比涡扇发动机的现状和发展趋势等进行了阐述,从国家大型飞机工程的战略目标、大型飞机发动机的重要性和市场前景等方面,对我国大涵道比涡扇发动机的需求、现状和差距进行了初步分析,简要介绍了我国大涵道比涡扇发动机的总体方案,提出了发展我国大涵道比涡扇发动机的主要关键技术,并分别从大涵道比涡扇发动机、国际合作、材料工艺试验条件建设等方面,简要论述了关键技术解决途径与措施建议. 关 键 词:大涵道比涡扇发动机;综述;需求分析;关键技术;措施途径中图分类号:V231 文献标识码:A 收稿日期:2007208209;修订日期:2008204208 作者简介:刘大响(1937-),男,湖南祁东人,教授、博导、工程院院士,主要研究方向:发动机发展战略、发动机总体、稳定性分析 和评定、发动机数值仿真技术等. Summarization of development status and key technologies for large airplane engines L IU Da 2xiang 1,J IN Jie 2,PEN G Y ou 2mei 1,HU Xiao 2yu 3 (https://www.doczj.com/doc/cd18584676.html,mittee of Science and Technology of China Aviation Indust ry Corporation I , Beijing 100012,China ; 2.Aeroengine Numerical Simulation Research Center , Beijing University of Aeronautics and Ast ronautics ,Beijing 100083,China ;3.Develop ment and Research Center of China Aviation Indust ry Corporation I , Beijing 100012,China )Abstract :The develop ment stat us and trends of military and civil high bypass pressure ratio (BPR )t urbofan engines for large airplanes has been summarized in t he paper.In t he as 2pect s of st rategical goals ,importance and marketing foreground of t he high BPR t urbofan engines for national large airplanes engineering in China ,t he requirement s ,stat us and gap s of high BPR t urbofan engines in China have been analysis briefly as well as t he int roduction of t he overall engine scheme for t he high BPR t urbofan engines wit h t he main key technolo 2gies for t he engines.In terms of military and civil high BPR t urbofan engines technologies ,international cooperation ,materials and techniques and test facilities ,some suggestion and app roach have been discussed for t he technical challenges wit h t he develop ment of high BPR t urbofan engines in China. K ey w ords :highbypass pressure ratio (BPR )t urbofan engine ;summarization ; requirement s ;key technologies ;app roach

航 空 发 动 机 叶 片 涂 层

航空发动机叶片涂层技术 一.涡轮叶片是先进航空发动机核心关键之一 航空发动机被称为现代工业“皇冠上的明珠”,航空发动机是飞机的“心脏”,价值一般占到整架飞机的20%-25%。目前,能独立研制、生产航空发动机的国家只有美、英、法、俄、中5个。但是,无论“昆仑”、“秦岭”发动机、还是“太行”系列,我国航空发动机的水平距离这一领域的“珠穆朗玛”依然存在不小的差距。美、俄、英、法四个顶级“玩家”能够自主研发先进航空发动机。西方四国由于对未来战场与市场的担忧,在航空发动机核心技术上一直对中国实施禁运和封锁。技术难关有很多。本人认为涡轮叶片是先进航空发动机的核心技术之一。 随着航空航天工业的发展,对发动机的性能要求越来越高,要使发动机具有高的推重比和大的推动力,所采用的主要措施是提高涡轮进口温度。国外在20世纪90年代,要求涡轮前燃气进口温度达1850-1950K。美国在IHPTET计划中要求:在海平面标准大气条件下,航空燃气涡轮机的的涡轮进口温度高达2366K。涡轮进口温度的提高要求发动机零件必须具有更高的抗热冲击、耐高温腐蚀、抗热交变和复杂应力的能力。对于舰载机,由于在海洋高盐雾环境下长期服役,要求发动机的叶片的耐腐蚀性更高;常在沙漠上飞行的飞机,发动机的叶片要具有更好的耐磨蚀。 众所周知:镍基和钴基高温合金具有优异的高温力学和腐蚀性

能,广泛用于制造航空发动机和各类燃气轮机的涡轮叶片(blade and vane)。就材质来看:各国的高温合金型号虽各不相同,但就相近成分的高温合金来说,其性能相近(生产工艺方法不同有也造成性能有大的差异)。好的高温合金的使用温度也只有1073K左右,为达到前面所说的要求温度,采用的方法有二:一是制成空心的叶片。空心叶片自20世纪60年代中期出现以来,经历了对流冷却、冲击冷却、气膜冷却以及综合冷却的发展历程,使进气口温度高出叶片材料约300—500℃,内腔的走向复杂化和细致化。这一步的改进仍难满足需要,且英国发展计划将取消冷却。二是涂层,常进行多材质多层次涂层。 PVT公司研究表明:军用直升机上的发动机叶片采用涂层,在沙漠上飞行,寿命可提高3倍左右,不仅大大降低了制造发动机叶片的成本,同时也使飞机的维护时间延长了两倍。 二.涡轮叶片的涂层 高温合金的生产方法或晶形结构对产品的性能是有很大影响的,如图1所示,GE公司20年前开始采用单晶高温合金制作战机用发 Fig.1 Comparative preperties of polycrystal,columnar and single-crystal superallys

航空发动机整机的性能方案设计

航空发动机整机的性能方案设计 对于一款民用航空发动机来说,最重要的是什么?安全!省油!安!全!省!油!重要的话说三遍!正如有国外专家说的那样:民用发动机必须足够安全、足够省油,否则就是白给航空公司,人家也不要。 “丈母娘择婿指南” 那么大家说了,你就造个最安全、最省油的,很难吗?我们先不涉及制造、装配,仅谈一谈整机的性能设计问题。一款民用航空发动机要想和心目中的飞机搭伙过日子,就得首先被航空公司挑中。与中国大妈挑女婿的标准类似,能被选中的发动机也要满足以下几点要求:力气大(高推力)、吃得少(省油)、不要动不动就撂挑子(安全性高),最好全年无休(可靠性高),有病不去医院吃个药片就能好(维修成本低),同时还要足够沉稳内敛(低噪声)、讲究卫生(污染物排放少)。下面,就让我们一起走近民用航空发动机,看看它是怎样从整机性能上勤修内功征服丈母娘的吧。

事情是这样的,在我们周围的空气里面,住着无数调皮的空气分子。根据脾气秉性的不同,又分为氮气分子、氧气分子、水分子等各种类型。这些分子就像被一杆子打散的桌球,时时刻刻处于不停的运动和相互碰撞中。当它们前进的方向上有东西挡路时,就狠狠地撞上去。遇上其它空气分子还好,大不了大家都改个方向继续往前跑。若遇到列队迎敌的固体分子们,那就是一个被立刻反射回来的下场。当然,此时铜墙铁壁的固体分子也被狠狠地撞了一下腰。 分子们个体太小,碰撞一下的力量当然也是不值一提的。但架不住数量太多,每时每刻都有数以亿亿亿计的分子撞上来。所以宏观来看,空气中的任何物体都会持续受到一个压力的作用,即气压P。“咦?我就算初中毕业也知道这个P 应该叫压强吧?!”没错,说起这个名称,那还真有个原因:发动机内部各个部件的表面积和各流道截面的面积一般是固定不变的,如果每次计算压力都用压强乘以面积那也太傻了,所以直接扔掉面积不管,压力就是压强了! 显然,这个压力的大小与单位时间内撞上来的分子个数成正比。同样数量的空气分子被塞到大小不同的箱子中,它们对箱壁的压力也会不同。箱子越大,分子们越稀疏,撞到同一块地方的分子就越少,压力也就越小。具体说来就是,压力P

航空发动机叶片材料及制造技术现状

航空发动机叶片材料及制造技术现状 在航空发动机中,涡轮叶片由于处于温度最高、应力最复杂、环境最恶劣的部位而被列为第一关键件,并被誉为“王冠上的明珠”。涡轮叶片的性能水平,特别是承温能力,成为一种型号发动机先进程度的重要标志,在一定意义上,也是一个国家航空工业水平的显著标志【007】。 航空发动机不断追求高推重比,使得变形高温合金和铸造高温合金难以满足其越来越高的温度及性能要求,因而国外自7O年代以来纷纷开始研制新型高温合金,先后研制了定向凝固高温合金、单晶高温合金等具有优异高温性能的新材料;单晶高温合金已经发展到了第3代。8O年代,又开始研制了陶瓷叶片材料,在叶片上开始采用防腐、隔热涂层等技术。 1 航空发动机原理简介 航空发动机主要分民用和军用两种。图1是普惠公司民用涡轮发动机主要构件;图2是军用发动机的工作原理示意图;图3是飞机涡轮发动机内的温度、气流速度和压力分布;图4是罗尔斯-罗伊斯喷气发动机内温度和材料分布;图5为航空发动机用不同材料用量的发展变化情况。 图1 普惠公司民用涡轮发动机主要构件 图2 EJ200军用飞机涡轮发动机的工作原理

图3 商用涡轮发动机内的温度、气流速度和压力分布 图4 罗尔斯-罗伊斯喷气发动机内温度和材料分布 图5 航空发动机用不同材料用量的变化情况

1变形高温合金叶片 1.1 叶片材料 变形高温合金发展有50多年的历史,国内飞机发动机叶片常用变形高温合金如表1所示。高温合金中随着铝、钛和钨、钼含量增加,材料性能持续提高,但热加工性能下降;加入昂贵的合金元素钴之后,可以改善材料的综合性能和提高高温组织的稳定性。 1.2 制造技术 生产工艺。变形高温合金叶片的生产是将热轧棒经过模锻或辊压成形的。模锻叶片主要工艺如下: (1)镦锻榫头部位; (2)换模具,模锻叶身。通常分粗锻、精锻两道工序;模锻时,一般要在模腔内壁喷涂硫化钼,减少模具与材料接触面之阻力,以利于金属变 形流动; (3)精锻件,机加工成成品; (4)成品零件消应力退火处理; (5)表面抛光处理。分电解抛光、机械抛光两种。 常见问题。模锻叶片生产中常见问题如下: (1)钢锭头部切头余量不足,中心亮条缺陷贯穿整个叶片; (2) GH4049合金模锻易出现锻造裂纹; (3)叶片电解抛光中,发生电解损伤,形成晶界腐蚀; (4) GH4220合金生产的叶片,在试车中容易发生“掉晶”现象;这是在热应力反复作用下,导致晶粒松动,直至剥落。 发展趋势。叶片是航空发动机关键零件.它的制造量占整机制造量的三分之一左右。航空发动机叶片属于薄壁易变形零件。如何控制其变形并高效、高质量地加工是目前叶片制造行业研究的重要课题之一。

航空发动机设计的总体强度

航空发动机设计的总体强度 众所周知,航空发动机是一种高温、高压、高转速的精密机械,那强度,必须刚刚的!!上一期的总体结构想必大家还念念不忘,本期借着结构的东风讲讲发动机的总体强度。 第一个问题,强度专业是干啥滴?通俗地讲,“大发”作为一个干得多吃得少的新时代好青年,没有一个强健的身体可不行呢,这个强健,既体现在普通意义的强度上面(抗拉抗弯还要抗扭),还体现在抗疲劳能力(怎么折腾都不坏)和抗打击能力(无知的小鸟呼啦啦地撞上来)等方方面面,总的来说,生活在 航空发动机这样一个地狱般的工作环境里,没有一副打不坏、耐力好、贼扛揍 的好身板是不行的。为了确保发动机方方面面的零组件都能符合这样变态的标准,我们的强度攻城狮们可谓是殚精竭虑。 今天,我们首先为大家介绍的是总体强度专业。 在国内,很少有总体强度这样一个概念,那总体强度是干什么的呢?其主要有三个方面:用洋文来说分别为Load, WEM and Rotor Dynamics。发动机行业内有句名言,载荷先行活看结构,这个载荷呢就是这里的Load;WEM作为一个 洋小伙,其全称为Whole Engine Model,凡是和整机模型相关的各种任务都 找他;最后一位就是本期的主角,RotorDynamics,转子动力学。 下面客官请听我娓娓道来。 1转子动力学的前生后世 为满足航空器日益增长的舒适性、经济性、高效率等要求,现代民用航空发动机被设计为带涡轮和压气机的旋转机械。为保障不同涡轮和压气机的工作性能,发动机主要采用双轴和三轴的结构布局,而转速往往达到每分钟几千(低压部件)或几万转(高压部件)。在这种严酷的工作条件下,发动机转子动力学设计就显得尤为重要了。 发动机转子动力学设计的优劣,直接影响着发动机整机振动的好坏与否。 如果将航空发动机拟化为一个人,涡轮、压气机、燃烧室等部件结构代表 着发动机的骨骼与肌肉,燃油和空气代表着食物与血液,性能等代表着物理特

航空发动机制造技术专业简介

航空发动机制造技术专业简介 专业代码560603 专业名称航空发动机制造技术 基本修业年限三年 培养目标 本专业培养德、智、体、美全面发展,具有良好职业道德和人文素养,掌握航空发动机制造技术、精密加工、特种加工和航空发动机工艺装备等基本知识,具备精密加工、超精加工、特种加工工艺参数选择和航空零部件工艺装备制造的能力,以及数控加工工艺规程的编制和数控加工程序的编制的能力,从事数控机床操作、数控电加工机床操作、数控编程、机械加工工艺等工作的高素质技术技能人才。 就业面向 主要面向航空发动机研发、制造企业,在数控机床操作、数控电加工机床操作、机械加工工艺等岗位群,从事工艺装备的制造、精密机床和特种加工设备的操作(包括电火花成型机床、线切割机床、电化学加工机床、激光加工机床和快速成型机床)等工作。 主要职业能力 1.具备对新知识、新技能的学习能力和创新创业能力; 2.具备航空零件识图能力和计算机绘图能力; 3.具备材料选用与热处理方法选择能力; 4.具备数控编程和操作数控机床加工航空零部件的能力; 5.具备对航空发动机零部件进行测绘的能力,具备 CAD/CAM 软件应用能力; 6.具备精密加工、超精加工、特种加工工艺参数选择能力; 7.具备操作数控电加工机床加工机械零件的能力。

核心课程与实习实训 1.核心课程 包括机械制造工艺与机床夹具、金属切削与机床、数控特种加工概述、数控电火花加工、数控电火花线切割加工、先进制造技术、航空发动机制造新技术等。 2.实习实训 在校内进行数控机床操作、数控电加工机床、UG 制图员培训、数控手工编程等实训。在航空发动机研发、制造企业进行实习。 职业资格证书举例 机修钳工制图员数控设备装调维修工数控线切割操作工数控电加工机床操作工 衔接中职专业举例 飞机维修机械加工技术 接续本科专业举例 无

(7)航空发动机叶片-15页文档资料

发动机叶片 一、发动机与飞机 1.发动机种类 1)涡轮喷气发动机(WP)WP5、WP6、WP7、……WP13 2)涡轮螺桨发动机(WJ)WJ5、WJ6、WJ7 3)涡轮风扇发动机(WS)WS9、WS10、WS11 4)涡轮轴发动机(WZ)WZ5、WZ6、WZ8、WZ9 5)活塞发动机(HS)HS5、HS6、HS9 2.发动机的结构与组成 燃气涡轮发动机主要由压气机、燃烧室和涡轮三大部件以及燃油系统、滑油系统、空气系统、电器系统、进排气边系统及轴承传力系统等组成。(发动机的整体构造如下图1)三大部件中除燃烧外的压气机与涡轮都是由转子和静子构成,静子由内、外机匣和导向(整流)叶片构成;转子由叶片盘、轴及轴承构成,其中叶片数量最多(见表1~5) 3. 工作原理:发动机将大量的燃料燃烧产生的热能,势能给涡

轮导向器斜切口膨胀产生大量的动能,其一部分转换成机械功驱动压气机和附件,剩余能由尾喷管膨胀加速产生推力。 热力过程:用p-υ或T-S 图来表示发动机的热力过程: 4. 发动机是飞机的动力,也是飞机的心脏,不同用途的飞机配备不同种类的发动机。如: 1) 军民用运输机、轰炸机、客机、装用WJ 、WS 、WP 类发 动机。 2) 强击机、歼击机、教练机、侦察机、装用WP 、WS 、HS 类发动机。 3) 军民用直升机装用WZ 类发动机。 二、 叶片 在燃气涡轮发动机中叶片无论是压气机叶片还是涡轮叶片,它们的数量最多,而发动机就是依靠这众多的叶片完成对气体的压缩和膨胀以及以最高的效率产生强大的动力来推动飞机前进的工作。叶片是一种特殊的零件,它的数量多,形状复杂,要求高,

先进航空发动机关键制造技术发展现状与趋势

先进航空发动机关键制造技术发展现状与趋势 一、轻量化、整体化新型冷却结构件制造技术1 整体叶盘制造技术整体叶盘是新一代航空发动机实现结构创新与 技术跨越的关键部件,通过将传统结构的叶片和轮盘设计成整体结构,省去传统连接方式采用的榫头、榫槽和锁紧装置,结构重量减轻、零件数减少,避免了榫头的气流损失,使发动机整体结构大为简化,推重比和可靠性明显提高。在第四代战斗机的动力装置推重比10 发动机F119 和EJ200上,风扇、压气机和涡轮采用整体叶盘结构,使发动机重量减轻20%~30%,效率提高5%~10%,零件数量减少50% 以上。目前,整体叶盘的制造方法主要有:电子束焊接法;扩散连接法;线性摩擦焊接法;五坐标数控铣削加工或电解加工法;锻接法;热等静压法等。在未来推重比15~20 的高性能发动机上,如欧洲未来推重比15~20 的发动机和美国的IHPTET 计划中的推重比20的发动机,将采用效果更好的SiC 陶瓷基复合材料或抗氧化的C/C 复合材料制造整体涡轮叶盘。2 整体叶环(无盘转子)制造技术如果将整体叶盘中的轮盘部分去掉,就成为整体叶环,零件的重量将进一步降低。在推重比15~20 高性能发动机上的压气机拟采用整体叶环,由于采用密度较小的复合材料制造,叶片减轻,可以直接固定在承力环上,从而取消了轮盘,使结构质量减轻70%。目前正

在研制的整体叶环是用连续单根碳化硅长纤维增强的钛基复合材料制造的。推重比15~20 高性能发动机,如美国XTX16/1A 变循环发动机的核心机第3、4 级压气机为整体叶环转子结构。该整体叶环转子及其间的隔环采用TiMC 金属基复合材料制造。英、法、德研制了TiMMC 叶环,用于改进EJ200的3级风扇、高压压气机和涡轮。3 大小叶片转子制造技术大小叶片转子技术是整体叶盘的特例,即在整体叶盘全弦长叶片通道后部中间增加一组分流小叶片,此分流小叶片具有大大提高轴流压气机叶片级增压比和减少气流引起的振动等特点,是使轴流压气机级增压比达到3 或3 以上的有发展潜力的技术。4 发动机机匣制造技术在新一代航空发动机上有很多机匣,如进气道机匣、外涵机匣、风扇机匣、压气机机匣、燃烧室机匣、涡轮机匣等,由于各机匣在发动机上的部位不同,其工作温度差别很大,各机匣的选材也不同,分别为树脂基复合材料、铁合金、高温合金。树脂基复合材料已广泛用于高性能发动机的低温部件,如F119 发动机的进气道机匣、外涵道筒体、中介机匣。至今成功应用的树脂基复合材料有PMR-15(热固性聚酰亚胺)及其发展型、Avimid(热固性聚酰亚胺)AFR700 等,最高耐热温度为290℃~371℃,2020 年前的目标是研制出在425℃温度下仍具有热稳定性的新型树脂基复合材料。树脂基复合材料构件的制造技术是集自动铺带技术(ATL)、自动纤维铺放

航空发动机叶片增材制造

航空发动机叶片增材制造调查报告 总体来说,有这样几种可行性方向。 一、工艺方向,包括整体增材制造或者表面增材强化: 1. 整体增材制造:使用3d打印代替传统加工工艺,整体打印。目前可行的3d打印技术包括: FDM:熔融沉积(Fused Deposition Modeling) SLM:选择性激光熔融技术(Selective Laser Melting) SLS:选择性激光烧结成型法(Selective Laser Sintering) DMLS:直接金属激光烧结(Direct Metal Laser Sintering) LMD:激光金属沉积(laser metal deposition) 相比于熔模铸造,增材制造具有的优势多于劣势,因此具有较大研究价值。如何解决增材制造新工艺存在的技术弱点正是需要研究的方向。总结有如下几点: ①强度问题:目前最常用为镍基合金增材,使用何种材料可提升强度? ②精度问题:粘结剂喷射,然后是适当的烧结和表面处理是一种很有前途的合金制造工艺 [1],如何进一步提升表面精度? ③温度问题:3d打印叶片目前只是在常温叶片制造上有一些应用,针对于航空发动机涡轮的耐高温叶片(1400-1700℃)则鲜有研究。需要解决问题包括:除镍基合金外,打印粉末采用何种耐高温材料(金属、非金属、复合材料[2])?最佳的高温合金打印方法是哪一种? ④建立模型:建立增材制造叶片的收缩模型、疲劳模型、力学模型等。 2.表面增材强化:使用激光熔覆或等离子喷涂,在已有叶片表面上增加强化散热层,叶片为多层结构。(滕海灏) 二、产品方向,叶片结构智能化和新材料应用。目前叶片结构如下图所示[3],采用熔模铸造的工艺方案,其优缺点见上表。如前所述,如果采用3d打印工艺加工这种空心叶片结构将会实现多方面的优化。就产品本身而言,可以在如下方面进行研究。

(整理)(7)航空发动机叶片.

发动机叶片 一、 发动机与飞机 1. 发动机种类 1) 涡轮喷气发动机(WP )WP5、WP6、WP7、……WP13 2) 涡轮螺桨发动机(WJ )WJ5、WJ6、WJ7 3) 涡轮风扇发动机(WS )WS9、WS10、WS11 4) 涡轮轴发动机(WZ )WZ5、WZ6、WZ8、WZ9 5) 活塞发动机(HS )HS5、HS6、HS9 2. 发动机的结构与组成 燃气涡轮发动机主要由压气机、燃烧室和涡轮三大部件以及燃油系统、滑油系统、空气系统、电器系统、进排气边系统及轴承传力系统等组成。(发动机的整体构造如下图1)三大部件中除燃烧外的压气机与涡轮都是由转子和静子构成,静子由内、外机匣和导向(整流)叶片构成;转子由叶片盘、轴及轴承构成,其中叶片数量最多(见表1~5) 3. 发动机工作原理及热处理过程

工作原理:发动机将大量的燃料燃烧产生的热能,势能给涡轮导向器斜切口膨胀产生大量的动能,其一部分转换成机械功驱动压气机和附件,剩余能由尾喷管膨胀加速产生推力。 热力过程:用p-υ或T-S 图来表示发动机的热力过程: 4. 飞机与发动机 发动机是飞机的动力,也是飞机的心脏,不同用途的飞机配备不同种类的发动机。如: 1) 军民用运输机、轰炸机、客机、装用WJ 、WS 、WP 类发 动机。 2) 强击机、歼击机、教练机、侦察机、装用WP 、WS 、HS 类发动机。 3) 军民用直升机装用WZ 类发动机。 二、 叶片 在燃气涡轮发动机中叶片无论是压气机叶片还是涡轮叶片,它们的数量最多,而发动机就是依靠这众多的 叶片完成对气体的

压缩和膨胀以及以最高的效率产生强大的动力来推动飞机前进的工作。叶片是一种特殊的零件,它的数量多,形状复杂,要求高,加工难度大,而且是故障多发的零件,一直以来各发动机厂的生产的关键,因此对其投入的人力、物力、财力都是比较大的,而且国内外发动机厂家正以最大的努力来提高叶片的性能,生产能力及质量满足需要。 1.叶片为什么一定要扭 在流道中,由于在不同的半径上,圆周速度是不同的,因此在不同的半径基元级中,气流的攻角相差极大,在叶尖、由于圆周速度最大,造成很大的正攻角,结果使叶型叶背产生严重的气流分离;在叶根,由于圆周速度最小,造成很大的负攻角,结果使叶型的叶盆产生严重的气流分离。因此,对于直叶片来说。除了最近中径处的一部分还能工作之外,其余部分都会产生严重的气流分离,也就是说,用直叶片工作的压气机或涡轮,其效率极其低劣的,甚至会达到根本无法运转的地步。 发动机叶片数量统计如下(以WJ6、WS11为例)表: 1.WJ6 压气机叶片数量见表1 表1 涡轮叶片数量见表2 表2

航空发动机控制系统浅析

航空发动机控制系统浅析 【摘要】航空发动机控制系统是一个多变量、时变、非线性、多功能的复杂系统,其性能的优劣直接影响发动机及飞机的性能。本文主要论述了航空发动机控制系统的发展历程、相关技术及其技术优缺点,并预测了国际发动机控制技术的未来发展。 【关键词】航空发动机控制系统;机械液压;FADEC;分布式;综合控制 1.概述 发动机的工作过程是极其复杂的气动热力过程,在其工作范围内随着发动机的工作条件和工作状态(如巡航、加速及减速等)的变化,它的气动热力过程将发生很大的变化,对于这样一个复杂而且多变的过程如果不加以控制,可以想象系统不但达不到设计的性能要求,而且根本无法正常工作。所以,航空发动机控制系统的目的就是使其在允许的环境条件和工作状态下都能稳定、可靠地运行,充分发挥其性能效益。 2.发展历程 随着航空发动机技术的不断进步和性能不断提高,其控制系统也由简单到复杂。航空发动机控制系统发展阶段的分类方法有很多种,目前,按发动机控制技术的发展和应用阶段大致分为以下4种,作简要介绍:(1)机械液压控制;(2)数字电子式控制;(3)分布式控制;(4)综合控制。 2.1 机械液压控制系统 机械液压控制系统:是使用基于开环控制或单输入单输出(SISO)闭环反馈控制等经典控制理论,采用由凸轮和机械液压装置组成的机械液压控制器即可成功地对发动机进行控制。 机械液压控制系统典型应用的机种:最典型的就是俄罗斯AN-*系列飞机。 这种简单的单输入单输出控制系统优点:(1)方法简单;(2)易于实现;(3)能保证发动机在一定使用范围内具有较好的性能。因此这种控制方法目前仍然应用于许多发动机的控制中。目前,国内运输机飞机上,发动机控制仍然用的是凸轮和机械液压装置组成的机械液压控制器。 随着发动机控制功能的增加,控制系统的复杂度也越来越大。这种简单的液压机械控制系统的缺点就显现了出来:(1)仅适用于:飞行速度比较小、飞行高度比较低、发动机的推力不大的飞机。(2)机械液压流量控制和伺服部件变得越来越大、越来越重、越来越昂贵。

相关主题
文本预览
相关文档 最新文档