当前位置:文档之家› 筛板塔精馏操作及效率测定

筛板塔精馏操作及效率测定

筛板塔精馏操作及效率测定
筛板塔精馏操作及效率测定

专业: 化学工程与工艺 姓名: 王俭 3100100717
实验报告
课程名称: 过程工程原理实验 指导老师: 杨国成 成绩: 实验名称: 筛板塔精馏操作及效率测定 一、实验目的和要求(必填) 三、主要仪器设备(必填) 五、实验数据记录和处理 七、讨论、心得
学号: 日期: 地点:
实验类型: 同组学生姓名: 吕泽平、陈鹤 二、实验内容和原理(必填) 四、操作方法和实验步骤 六、实验结果与分析(必填)
一、实验目的和要求
1.了解筛板精馏塔及其附属设备的基本结构,掌握精馏过程的基本操作方法; 2.学会判断系统达到稳定的方法,掌握测定塔顶、塔釜溶液浓度的实验方法; 3.学习测定筛板塔在全回流和部分回流时的全塔效率和单板效率; 4.改变操作条件(回流比、加热功率等) ,观察塔内温度变化,从而了解回流的作用和 操作条件对精馏分离效率的影响。
二、实验内容和原理
在板式精馏塔中,偏离平衡的汽液两相在塔板上进行传质、传热,当离开该板的汽液两 相组成平衡、温度相同时,则此塔板称为理论板。然而在实际操作中,由于塔板上的汽液两 相接触时间有限及相间返混等因素影响,使之汽、液两相尚未达到平衡即你考塔板。即一块 实际塔板的分离效果达不到一块理论板的作用,因此精馏塔所需的实际板数比理论板数多。 (一) 全回流操作时的全塔效率和单板效率的测定 1. 全塔效率(总塔板效率) E T
ET ? NT ?1 NP ? 100%
式中: N T ——完成一定分离任务所需的理论塔板数,包括蒸馏釜;
NP
——完成一定分离任务所需的实际塔板数,本装置 N P =7 块。
全回流操作时, 操作线在 x-y 图上为对角线。 根据实验中所测定的塔顶、 塔底组成 x D 和 xW (均为摩尔百分数)在操作线和平衡线间作梯级,即可得到理论板数 N T 。
2. 单板效率 E m V ( 4 ) 气相单板效率
E mV (n) ? y n ? y n ?1 y n ? y n ?1
*
在全回流操作条件下, y n
E mV (n ) ? x n ?1 ? x n yn ? xn
*
。 ? x n ?1 , y n ? 1 ? x n。
所以
式中:—— y n、 y n ? 1 离开第 n、n+1 块塔板的蒸汽组成,摩尔百分数; —— x n、 x n ?1 离开第 n、n-1 块塔板的液体组成,摩尔百分数; —— y n 与 x n 成平衡的汽相组成,摩尔百分数。
*

E mV (4) ?
x3 ? x4 y4 ? x4
*
在实验中可测得 x 3 , x 4 ,根据汽液平衡关系即可到 y 4 * ,最终求得 E m V ( 4 )。
(二) 部分回流时全塔效率 E T ' 的测定 1. 精馏段操作线方程为: y n ? 1 式中:R——回流比
xD
? R R ?1 xn ? xD R ?1
——塔顶产品的组成,摩尔百分数。
实验中回流量由回流转子流量计测量,但由于实验操作中一般作

冷液回流,故实际回流 量 L 需进行校正。
L ? L 0 [1 ? C PD (t D ? t R ) rD ]
L0——回流转子流量计上的读数,ml/min; L——实际回流量,ml/min; tD——塔顶液相温度,℃; tR——回流液温度,℃; CpD——塔顶回流液在平均温度下的比热, kJ
/ kg ? K

rD——为塔顶回流液组成下的汽化潜热, kJ
/ kg

产品量 D 可由产品转子流量计测量。 由于产品量 D 与回流量 L 的组成和温度相同, 故回 流比 R 课直接用两者的比值得到: R=L/D(D 为产品流量计上的读数值) 。 实验中根据塔顶取样可得到 x D ,并测量回流和产品转子流量计读数 L0 和 D 以及回流温 度 tR 和塔顶液相温度 tD,在查附表可得 CpD、rD,由上述公式可求得回流比 R,从而得到精 馏段操作线方程。 2. 进料 q 线方程为:
y ? q q ?1 x? xF q ?1
其中,q——进料的液相分率;
xF
——进料液的组成,摩尔百分数。
C PF ( t s ? tF ) rF
q ?
1k m o l 进 料 变 为 饱 和 蒸 汽 所 需 热 量 1k m o l 料 液 的 汽 化 潜 热
=1+
式中,
t s ——进料液的泡点温度,℃; tF
——进料液温度,℃; ——进料液在平均温度下的比热容,kJ/(kmol ? K) ;
C PF
rF
——进料液组成,摩尔分数。
实验中根据进料液取样可得到 x F ,并测得其进料温度 t F ,再查表可得 t s 、 C P F 、 rF ,从 而得出 q,最终代入上式即可得到 q 线方程。 3. 理论板数的求取 根据上述得到的精馏段操作线方程和 q 线方程,以及测量得到的塔顶组成 xD、塔底组成 xW 和进料组成 xF,就可以在 x-y 图上作出精馏段操作线、q 线和提馏段操作线,然后用 x-y 图解法即可得到理论板数 NT。 根据上述求得的理论板数 NT,由式(1)便可得到部分回流时的全塔效率 ET。
三、主要仪器设备
精馏塔的装置由塔釜、塔体、全凝器、加料系统、回流系统、贮槽(原料、产品、釜液) 以及测量、控制仪表等组成。其装置流程图如图 1 所示。 筛板塔主要结构参数:塔内径 D=68mm,共 7 块塔板,其中精馏段 5 块,提馏段板间距 为 150mm,提馏段板间距为 180mm,筛孔孔径为 1.5mm,正三角形排列,孔间距 4.5mm, 开孔数为 104 个。本装置采用电加热方式,塔釜内装有 3 支额定功率为 3KW 的螺旋管加热 器。
图 1 精馏塔装置流程图
四、操作方法和实验步骤
1.根据浓度要求进行配料(一般 x =0.1)并加约 9 升料于塔釜内至玻璃液面计顶端。若实
F
验前料液已配好,则测定料液的组成; 2.关闭进、出料阀,关闭采样阀,全开冷凝器顶部排气阀,稍开冷凝冷却水阀门,全开 回流转子流量计阀门,先进行全回流操作; 3.开启仪表柜总电源钥匙开关,电源指示绿灯亮,通过电

压调节器调节所需要的加热电 压并保持恒定; 4.待釜液开始沸腾,开大冷凝冷却水阀门到转子流量计读数最大值,并保持恒定; 5.加热电压和冷凝冷却水量都维持恒定后,每隔五分钟观察各塔板温度,当灵敏板温度 基本不变时,操作即达到稳定。读取回流液量和温度; 6.进行部分回流操作时。将回流比调至 3~5,同时调整进料、产品、釜液等流量。当灵 敏板温度稳定以及釜液液面恒定后,即部分回流操作达到稳定。读取各转子流量计的流量和 各温度计的温度,并测取产品、料液、釜液的样品; 7. 实验结束后, 先将调压器旋钮调至零位, 关总电源开关切断电源, 待酒精蒸汽冷凝后, 再关闭冷凝冷却水了,并做好整洁工作。 注意事项: 1. 在操作过程中,釡液面千万不能低于釡液出口位置; 2. 一定要待操作稳定后才能取样,且要同时进行。
五、实验数据记录和处理
实验数据:
全回流 加热电压/V 产品转子流量计读数/(ml/min) 回流转子流量计读数/(ml/min) 残液转子流量计读数/(ml/min) 进料转子流量计读数/(ml/min) 冷却转子流量计读数/(l/h) 塔釜液温度/℃ 灵敏板温度/℃ 第一板气相温度/℃ 第一板液相温度/℃ 回流液温度/℃ 进料液温度/℃ 进料液浓度 XF/(mol/mol) (%) 回流液浓度 XD/(mol/mol) (%) 200 0 170 0 0 370 94 93 86 78 60 19 0 75.8 部分回流 200 24 100 155 210 370 95 91 88 79 55 18 10.3 77.6
塔釜液浓度 XW/(mol/mol) (%) 产品体积量/ml 产品浓度 XD'/(mol/mol) (%)
1.5
3.6 800
77.3
89.9
(一)全回流操作时的全塔效率 E 的测定
T
1.全塔效率 E
T
利用实验讲义上 附表二 乙醇-水溶液气液平衡数据(常压)拟合出气液平衡曲线,再 结合全回流时操作线 y
? x
,用 M-T 图解法求出理论塔板数。
全回流时理论塔板数的图解(摩尔百分比) 由上图得出全回流操作时所需的理论塔板数 NT=4.9,实验装置的实际塔板数 NP=7,因此
ET ? NT ?1 NP ? 1 0 0 % ? 5 5 .7 %
(二)部分回流时全塔效率 ET'的测定 1、精馏段操作线方程: 求回流比, 实际回流量校正:
L0 ? 2 4

t D ? tR 2 ? 6 7℃ ? 7 0 ℃ 且
t D ? 7 9 , t R ? 5 5, 塔 顶 回 流 液 在 平 均 温 度
组 成 x D = 0 . 7 7 6 ( 即 ? D ? 0 .9 0 ) 时 比 热 C P D = 3 .3 4
(查附表一、二得数据) ; 塔顶回流
x D = 0 .7 7 6 即 ? D ? 0 .9 0 ; 查 附 表 三 知 r D ? 9 9 4 .8 k J / k g .
c pD (t D ? t R ) rD ) ? 100 ? 1 ? ( 3 .3 4 ? 7 9 -5 5 ) ( )? 1 0 8 m l / m in 9 9 4 .8
,故 L
? L 0 (1 ?

且测得产品流量 D=24 m l / m in ,所以回流比 R=L/D=4.5.
最终计算得到精馏段操作线方程为: y n ? 1
?
4 .5 5 .5
xn ?
1 5 .5
? 0 .7 7 6 ? 0 .8 1 8 x n ? 0 .1 4 1 .
2、进料 q

线方程为: y 以下先求 q,
进 料 液 温 度 t F ? 1 8℃ ;
?
q q ?1
x?
xF q ?1
.
进 料 液 泡 点 温 度 t s , 根 据 进 料 液 组 成 x F ? 0 .1 0 3 ? 0 .1 0 , 查 附 表 三 可 知 t S ? 9 1 .3℃ ; 定性温度为t ? t S ? tF 2 ? 5 5℃ .
在定性温度 t=55℃及 x F 在进料液组成 x F
q ? 1? c pF (t s ? t F ) rF
下, ? 0.103(即 ? F ? 0.24),
c pF ? 4 . 3 kJ 9
kg ? / ℃
? 0.103(? F ? 0.24) 时 ,
4 .3 9 ? 9 1.3 -1 8) ( ? 1 .1 7 . 1 8 9 9 .8
rF ? 1 8 9 9 k 8 . J
k/ g
.
? 1?
得到进料线方程为: y
?
1 .1 7 0 .1 7
x?
0 .1 0 3 0 .1 7
? 6 .8 8 x ? 0 .6 0 6 .
根据上述得到的精馏段操作线方程和 q 线方程,以及测量得到的塔顶组成 xD、塔底组成 xW 和进料组成 xF,就可以在 x-y 图上作出精馏段操作线、q 线和提馏段操作线(点( xW , yW ) 与精馏线、进料线交点的连线即为提留线) ,然后用 x-y 图解法即可得到理论板数。
部分回流时理论塔板数的图解 由上图图解可以得出部分回流时的理论踏板数约为 NT=6.2,实验装置的实际塔板数 NP=7,因 此,
ET ? NT ?1 NP ? 1 0 0 % ? 7 4 .3 %
六、实验结果与分析
由上述数据可知全回流的全塔效率(55.7%)小于部分回流的全塔效率(74.3%),工业 实际中理应全回流全塔效率更大一些,其可能原因是在进行开机全回流时,由于前次实验精 馏操作使得塔釜中含乙醇浓度较低,因而精馏难度较大,使得全塔效率降低。 当然,这些实验测量数据存在着一定的误差,其误差产生的原因可能有以下几方面:
(1)本次实验中的进料、产品、残液及冷却液的流量均由转子流量计测得,而由于各 流量的组成和温度不相同且转子流量计自身的精度问题,致使在读数时产生误差,虽然在计 算中进行过一定的校正,但仍存在误差; (2)在数据处理时,通过查表获得某些参数,查表时使用线性插值确定其数值,使得 查表结果存在一定的误差; (3)在进行理论塔板数求解时,采用的是图解法进行估算,在画图时存在一定的误差。
七、讨论、心得
思考题: 1. 影响精馏操作稳定的因素是哪些?维持塔稳定操作应注意哪些操作岗位?如何判断 塔的操作已达到稳定? 答:影响精馏操作稳定因素有进料的温度和流量、回流液的温度和流量、回流比、塔釜 的加热功率、冷却水的流量、塔釜液的流量等。为了维持塔的稳定操作,可以调节塔釜温 度、回流比和塔顶塔釜产品的流量大小。当塔的操作已经稳定的时候,可以认为塔满足物 料平衡和能量平衡,即塔内温度稳定,而且塔釜、接收器内液位维持稳定。
2. 在全回流条件下,改变加热功率对塔的分离效果有何影响?

答:在全回流状态下,若增大加热功率,将增大稳定时的塔釜温度,降低塔釜的产品浓 度,降低分离效果。 3. 塔顶冷回流对塔内回流液量有何影响?如何校正? 答: 过冷液体回流时会造成实际回流比和泡点回流比的差异, 原因是因为过冷液在回流 时将会与上升的蒸汽发生传热并使之冷凝,因而实际 L 大于回流液量。通过测定过冷液体的 温度和泡点温度,可以用公式:进行校正,其中 L0 为回流液的流量(可用转子流量计测定) , tD 为塔顶液相温度,tR 为回流液温度,CpD 为塔顶回流液在平均温度下的比热,rD 为塔顶回流 液组成下的汽化潜热。
4. 用转子流量计来测定乙醇水溶液流量,计算时应怎样校正? 答:转子流量计的标定是用 1 个标准大气压下 20℃的水或空气来进行的。当内部流体 物性改变时,需要进行相应校正。设被测流体的密度为 ? ' ,当流量计指示为 q 时,实际流体 v
的流量 q ' v 为
q 'v ? q v
?? ??
f
? ? '? ? ? ? ?? '
f
其中 ? f 是转子的密度, ? ' 是乙醇水溶液的密度, ? 是水的密度。
附录: 图 1 matlab 程序:
x=[0.004,0.0117,0.0157,0.0196,0.0235,0.0274,0.0313,0.0352,0.04,0.055,0.08,... 0.12,0.16,0.19,0.23,0.27,0.31,0.35,0.39,0.79,1.19,1.61,2.86,4.16,5.51... ,6.86,8.92,11.00,13.77,16.77,20,24.25,29.80,34.16,40,44.27,48.92,54,... 58.11,62.52,67.27,70.63,74.15,75.99,77.88,79.82,81.83,83.87,85.97,... 88.15,89.41]; y=[0.053,0.153,0.204,0.255,0.307,0.358,0.41,0.461,0.51,0.77,1.03,1.57,... 1.98,2.48,2.9,3.33,3.725,4.12,4.2,8.76,12.75,16.34,23.96,29.92,34.51... ,38.06,42.09,45.41,48.68,51.27,53.09,55.22,57.41,59.1,61.44,62.99,... 64.7,66.92,68.76,70.63,73.61,75.82,78,79.62,80.42,81.83,83.26,84.91... ,86.4,88.25,89.41]; c=polyfit(x,y,8); xx=x(1):0.1:x(length(x)); yy=polyval(c,xx); plot(xx,yy); hold on y1=x; plot(x,y1);
图 2 matlab 程序:
x=[0.004,0.0117,0.0157,0.0196,0.0235,0.0274,0.0313,0.0352,0.04,0.055,0.08,... 0.12,0.16,0.19,0.23,0.27,0.31,0.35,0.39,0.79,1.19,1.61,2.86,4.16,5.51... ,6.86,8.92,11.00,13.77,16.77,20,24.25,29.80,34.16,40,44.27,48.92,54,... 58.11,62.52,67.27,70.63,74.15,75.99,77.88,79.82,81.83,83.87,85.97,... 88.15,89.41]; y=[0.053,0.153,0.204,0.255,0.307,0.358,0.41,0.461,0.51,0.77,1.03,1.57,... 1.98,2.48,2.9,3.33,3.725,4.12,4.2,8.76,12.75,16.34,23.96,29.92,34.51... ,38.06,42.09,45.41,48.68,51.27,53.09,55.22,57.41,59.1,61.44,62.99,... 64.7,66.92,68.76,70.63,73.61,75.82,78,79.62,80.42,81.83,83.26,84.91... ,86.4,88.25,89.41]; n=[0.01,100]; n1=[2.2,2.2];m1=[0,2.2]; n2=[75.5,75.5];m2=[0,75.5]; n3=[7.4,7.4];m3=[0,7.4]; xf=[7.4,17]; yf=1.1675*xf/0.1675-7.4/0.1675; xd=[0,75.5]; yd=5.52*xd/6.52+75.5/6.52; plot(x,y); xlabel('x(%)');ylabel('y(%)'); axis([0 100 0 100]);
text(2.2,0,'xW');text(75.5,0,'xD');text(7.4,0,'xF') hold on; plot(n,n); hold on; plot(n1,m1,'r--'); hold on; plot(n2,m2,'r--'); hold

on; plot(n3,m3,'r--'); hold on; plot(xd,yd); hold on; plot(xf,yf);

筛板精馏塔实验报告

筛板精馏塔实验报告 学院:化学化工学院 姓名: 学号: 指导老师: 实验时间:2016年6月3日

摘要本文对筛板精馏塔的性能进行测试,主要对乙醇正丙醇的精馏过程中的不同实验条件进行探讨;得出了进料流量、回流比与全塔效率的关系,确定了该筛板精馏塔的最佳操作条件。 关键词精馏;回流比;全回流;部分回流;全塔效率 Abstract the performance of the test sieve distillation column, mainly ethanol, n-propanol in the distillation process in different experimental conditions were discussed; obtained feed rate, reflux ratio with the whole tower efficiency is determined that the screen optimum operating conditions plate rectification column. Key words Distillation;Reflux ratio;Total reflux;partial reflux;The tower efficiency 前言精馏过程的节能措施一直是人们普遍关注的问题。精馏操作是化工生产中应用非常广泛的一种单元操作,也是化工原理课程的重要章节。分析运行中的精馏塔,当某一操作条件改变时的分离效果变化,属于精馏的操作型问题。这类问题取材于工程实践,是培养工程观念、提高学生解决实际问题能力的好方法,但同时也成为学习的难点。在工业生产中,充分掌握操作条件各类因素的影响,对提高产品的质量稳定生产,提高效益有重要的意义。本研究从进料流量、回流比、全回流和部分回流等操作因素对数字型筛板精馏塔进行全面考察得出一系列可靠直观的结果,加深对精馏操作中一些工程概念的理解,对工业生产有一定的指导意义。通过本实验,我们得出了大量的实验数据,由计算机绘图找出最优一组实验参数,在这组参数下进行提纯将会节约大量能源,同时为今后开出的设计型、综合型、研究型的实验项目,为学生的创新性科研项目具有重要的教改意义。 1.实验部分 1.1实验目的 1.1.1了解板式精馏塔的结构及精馏流程。

精馏塔操作和全塔效率的测定

实验四精馏塔操作和全塔效率的测定 一、实验目的 1.充分利用计算机采集和控制系统具有的快速、大容量和实时处理的特点,进行精馏过程多实验方案的设计,并进行实验验证,得出实验结论。以掌握实验研究的方法。 2.学会识别精馏塔内出现的几种操作状态,并分析这些操作状态对塔性能的影响。 3.学习精馏塔性能参数的测量方法,并掌握其影响因素。 4.测定精馏过程的动态特性,提高学生对精馏过程的认识。 二、实验内容 本实验为设计型实验,学生应在教师的协助下,独立设计出完整的实验方案,并自主实施。必须进行的实验内容为1?3,可供选做的实验内容为4?7,最少从中选做一个 1.研究开车过程中,精馏塔在全回流条件下,塔顶温度等参数随时间的变化情况。 2测定精馏塔在全回流、稳定操作条件下,塔体内温度沿塔高的分布。 3测定精馏塔在全回流和某一回流比连续精馏时,稳定操作后的全塔理论塔板数、总板效率和塔体内温度沿塔高的分布。 4在部分回流、稳定操作条件下,测定塔体内温度沿塔高的分布和塔顶浓度随回流比的变化情况。 5.在部分回流、稳定操作条件下,测定塔体内温度沿塔高的分布和塔顶浓度随进料流量的变化情况。 6.在部分回流、稳定操作条件下,测定塔体内温度沿塔高的分布和塔顶浓度随进料组成的变化情况。 7.在部分回流、稳定操作条件下,测定塔体内温度沿塔高的分布和塔顶浓度随进料热状态的变化情况。 三、实验原理 对于二元物系,如已知其汽液平衡数据,则根据精馏塔的原料液组成,进料热状况,操作回流比及塔顶馏出液组成,塔底釜液组成可以求出该塔的理论板数N T。按照式(4- 1 ) 可以得到总板效率E T,其中N P为实际塔板数。 E T二业100% N P (4-1) 部分回流时,进料热状况参数的计算式为 C pm (t BP - t F ) r m (4-2)

筛板精馏塔实验

实验8 筛板精馏塔实验 一、实验目的 1.了解筛板式精馏塔的结构流程及操作方法。 2.测取部分回流或全回流条件下的总板效率。 3.观察及操作状况。 二、实验原理 在板式精馏塔中,混合液的蒸汽逐板上升,回流液逐板下降,汽液两相在塔板上接触,实现传质,传热过程而达到两相一定程度的分离。如果在每层塔板上,液体与其上升的蒸汽到平衡状态,则该塔板称为理论板,然而在实际操作中、汽、液接触时间有限,汽液两相一般不可能达到平衡,即实际塔板的分离效果,达不到一块理论板的作用,因此精馏塔的所需实际板数一般比理论板要多,为了表示这种差异而引入了“板效率”这一概念,板效率有多 种表示方法,本实验主要测取二元物系的总板效率E p : E N N P T D 板式塔内各层塔板的传质效果并相同,总板效率只是反映了整个塔板的平均效率,概括地讲总板效率与塔的结构,操作条件,物质性质、组成等有关是无法用计算方法得出可靠值,而在设计中需主它,因此常常通过实验测取。实验中实验板数是已知的,只要测取有关数据而得到需要的理论板数即可得总板效率,本实验可测取部分回流和全回流两种情况下的板效,当测取塔顶浓度,塔底浓度进料浓度以及回流比并找出进料状态、即可通过作图法画出平衡线、精馏段操作线、提馏段操作线,并在平衡线与操作线之间画梯级即可得出理论板数。如果在全回流情况下,操作线与对角线重合,此时用作图法求取理论板数更为简单。 三、实验装置与流程 实验装置分两种: (1)用于全回流实验装置 精馏塔为一小型筛板塔,蒸馏釜为卧直径229m长3000mm内有加热器。塔内径50mm共有匕块塔板,每块塔板上开有直径2mm筛孔12个板间距100mm,塔体上中下各装有一玻璃段用以观察塔内的操作情况。塔顶装有蛇管式冷凝器蛇管为φ10×1紫铜管长3.25m,以水作冷凝剂,无提馏段,塔傍设有仪表控制台,采用1kw调压变压器控制釜内电加热器。在仪表控制台上设有温度指示表。压强表、流量计以及有关的操作控制等内容。 (2)用于部分回流实验装置 装置由塔、供料系统、产品贮槽和仪表控制柜等部份组成。蒸馏釜为φ250×340×3mm 不锈钢罐体,内设有2支1kw电热器,其中一支恒加热,另一支用可调变压器控制。控制电源,电压以及有关温,压力等内容均有相应仪表指示, 塔身采用φ57×3.5mm不锈钢管制成,设有二个加料口,共十五段塔节,法兰连接,塔身主要参数有塔板十五块,板厚1mm不锈钢板,孔径2mm,每板21孔三形排列,板间距100mm,溢流管为φ14×2不锈钢管堰高10mm。 在塔顶和灵敏板塔段中装有WEG—001微型铜阻感温计各一支由仪表柜上的XCE—102温度指示仪显示,以监测相组成变化。 塔顶上装有不锈钢蛇管冷凝器,蛇管为φ14×2长250mm以水作冷凝剂以LZB10型转子流量计计量,冷凝器装有排气旋塞。

筛板精馏塔化工实验报告

筛板精馏塔化工实验报告

作者: 日期:

筛板塔精馏过程实验 一、实验目的 1、了解筛板精馏塔及其附属设备的基本结构,掌握精馏过程的基本操作方法。 2、学会判断系统达到稳定的方法,掌握测定塔顶、塔釜溶液浓度的实验方法。 3、学习测定精馏塔全塔效率和单板效率的实验方法,研究回流比对精馏塔分离效率的影响。 二、实验原理 2.1全塔效率TE 全塔效率又称总板效率,是指达到指定分离效果所需理论板数与实际板数的比值于塔内所需理论塔板数,可由已知的双组分物系平衡关系,以及实验中测得的塔顶、塔釜出液的组成,回流比F和热状况q等,用图解法求得TN 2.2图解法求理论塔板数TN 图解法又称麦卡勃—蒂列(McCab e Thiele )法,简称Ml- T法,其原理与逐板计算法完全相同,只是将逐板计算过程在y-x图上直观地表示出来。 2.3全回流操作 在精馏全回流操作时,操作线在y-x图上为对角线,如图8 —3所示,根据塔顶、塔釜的组成在操作线和平衡线间作梯级,即可得到理论塔板部分回流操作。部分回流操作时,图解法的主要步骤为: (1 )根据物系和操作压力在y —x图上作出相平衡曲线,并画出对角线作为辅助线; (2 )在乂轴上定出x = xD xF、xW E点,依次通过这三点作垂线分别交对角线于点 a、f、b; (3 )在y轴上定出yC= xD/(R+1)的点c,连接a、c作出精馏段操作线; ⑷由进料热状况求出q线的斜率q/ (q-1 ),过点f作出q线交精馏段操作线于点d; (5) 连接点d、b作出提馏段操作线; (6) 从点a开始在平衡线和精馏段操作线之间画阶梯,当梯级跨过点d时,就改在 平衡线和提馏 段操作线之间画阶梯,直至梯级跨过点b为止; (7) 所画的总阶梯数就是全塔所需的理论踏板数 (包含再沸器),跨过点d的那块板就是加料板, 其上的阶梯数为精馏段的理论塔板数。 2.4实验装置和流程 本实验装置的主体设备是筛板精馏塔,配套的有加料系统、回流系统、产品出料管路、残液出料管路、进料泵和一些测量、控制仪表。 筛板塔主要结构参数:塔内径D= 68mm厚度洌?4mm塔板数N= 10块,板间距HT 二100mm加料位置由下向上起数第4块和第6块。降液管采用弓形,齿形堰,堰 长56mm堰高7.3mm齿深4.6mm齿数9个。降液管底隙4.5mm筛孔直径d0= 1.5mm 正三角形排列,孔间距t = 5mm开孔数为77个。塔釜为内电加热式,加热功率2.5kW,有效容积为10L。塔顶冷凝器、塔釜换热器均为盘管式。单板取样为自下而上第1块和第10块,斜向上为液相取样口,水平管为气相取样口。 本实验料液为乙醇水溶液,釜内液体由电加热器产生蒸汽逐板上升,经与各板上的液体传质后,进入盘管式换热器壳程,冷凝成液体后再从集液器流出,一部分作为回流液从塔顶流入塔内,另一部分作为产品馏出,进入产品贮罐;残液经釜液转子流量计流入釜液贮罐。

精馏塔效率的测定

精馏塔效率的测定 1. 实验目的 ①熟悉板式精馏塔和填料精馏塔的结构、性能与操作。 ②掌握板式塔全塔效率及填料塔等板高度的测定方法。 ③了解精馏操作中各项操作因素之间的关系与相互影响。 2. 实验原理 板式精馏塔连续稳态操作时涉及的基本参数有:F 、D 、W 、F x 、D x 、W x 、α、R 、q 、E 、p N 共计11个,操作中必然满足的基本关系有以下几方面: ①物料平衡:包括总物料与各组分的平衡,基本衡算式为: W D F += (3-25) W D F Wx Dx Fx += (3-26) 式中:F 、D 、W — 进料,塔顶、塔底产品的摩尔流率,s m ol F x 、D x 、W x — 进料,塔顶、塔底产品中轻组分的摩尔分率,无因次 上述参量中,只有4个独立变量,通常F 、F x 、D 、W 确定,则D x 、W x 唯一确定。 ②相平衡:采用相对挥发度,则平衡方程为: ()x x y 11-+=αα (3-27) 式中:α— 平均相对挥发度,无因次 ③在分离效率E ,分离程度D x 、W x 确定的前提下,操作回流比R 与实际塔板数p N 的对应;若人为改变操作参数从而引起回流比的改变,在分离效率与塔板数固定的前提下,必然引起塔两端产品浓度的改变。 ④进料参数的固定,进料参数包括进料量F 与进料浓度F x ,进料的热状态参数q 以及引入进料的位置进N ,人为改变上述参数,必然破坏精馏塔已有的平衡,引起相应操作参数的改变,最终使塔建立新的平衡,从而改变分离效果。 除上述平衡外,精馏操作中还要满足热量的平衡,即塔底加热量与塔顶冷凝量的对应以及冷、热物料热量交换的平衡,在恒摩尔流假定的前提下,热量平衡与物料平衡是相互关联、相互制约的,在数学描述中可以不再单独考虑。 常用的精馏塔效率分为单板效率和全塔效率。 单板效率亦称作默弗里效率,反映塔板实际增浓度与理论板增浓度的差距,可分别以气相浓度和液相浓度表示,气相默弗里效率的定义为: 11 +* +--=n n n n mv y y y y E (3-28) 式中:n y 、1+n y — 分别为离开和进入第n 块板的气流浓度 n * n y — 与离开第n 板的液流浓度n x 成平衡的气相浓度 全塔效率E 可看作精馏塔中各单板效率的平均值,是理论塔板数t N 与实际塔板数的比值:

实验十 板式精馏塔的操作及全塔效率的测定

实验十 板式精馏塔的操作及全塔效率的测定 一、实验目的: 1.熟悉筛板式精馏塔的结构、精馏流程及原理; 2.熟悉筛板式精馏塔的操作方法; 3.学会精馏塔效率的测定; 4.观察精馏过程中汽液两相在塔板上的接触情况; 5.了解回流的作用; 二、实验内容 1.测定在全回流条件下的全塔效率; 2.在进料条件下:进料浓度约25~28%(体积百分数,以下用v 表示)的乙醇水溶液,达到塔顶馏出液乙醇浓度大于93%(v ),塔釜残液乙醇浓度小于3%(v )。并在规定的时间内完成500mL 的采出量,记录下所有的实验参数; 3.要求控制料液进料量为3 L/h ,调节回流比,尽可能达到最大的塔顶馏出液浓度。 三、操作原理 精馏操作是分离工程中最基本最重要的单元之一。在板式精馏塔中,混合液在塔板上传质、传热,气相逐板上升,液相逐板下降,层层接触,多次部分气化,部分冷凝,在塔顶得到较纯的轻组分,塔釜得到较纯的重组分,从而实现分离,实验物料是乙醇—水系统。 1.维持稳定连续精馏操作过程的条件 (1)根据进料量及其组成、以及分离要求,严格维持塔内的物料平衡 总物料平衡— F=D+W 若F >D+W ,塔釜液面上升,会发生淹塔;相反若F <D+W ,会引起塔釜干料,最终导致破坏精馏塔的正常操作。 各组分的物料平衡— Fx F = Dx D + Wx W 塔顶采出率 W D W F x x x x F D --= 若塔顶采出率过大,即使精馏塔有足够的分离能力,塔顶也不能获得合格产物。 (2)精馏塔的分离能力 在塔板数一定的情况下,正常的精馏操作要有足够的回流比,才能保证一定的分离效果,获得合格的产品,所以要严格控制回流量。 (3)精馏塔操作时,应有正常的汽液负荷量,避免不正常的操作状况 1) 严重的液沫夹带现象 2) 严重的漏液现象 3) 溢流液泛 2.产品不合格原因及调节方法 (1)由于物料不平衡而引起的不正常现象及调节方法

筛板精馏塔精馏实验报告样本

筛板精馏塔精馏实验报告样本 6.1实验目的 1.了解板式塔的结构及精馏流程 2.理论联系实际,掌握精馏塔的操作 3.掌握精馏塔全塔效率的测定方法。 6.2实验内容 ⑴采用乙醇~水系统测定精馏塔全塔效率、液泛点、漏液点 ⑵在规定时间内,完成D=500ml、同时达到xD≥93v%、xW≤3v%分离任务 6.3实验原理 塔釜加热,液体沸腾,在塔内产生上升蒸汽,上升蒸汽与沸腾液 体有着不同的组成,这种不同组成来自轻重组份间有不同的挥发度, 由此塔顶冷凝,只需要部分回流即可达到塔顶轻组份增浓和塔底重 组份提浓的目的。部分凝液作为轻组份较浓的塔顶产品,部分凝液 作为回流,形成塔内下降液流,下降液流的浓度自塔顶而下逐步下 降,至塔底浓度合格后,连续或间歇地自塔釜排出部分釜液作为重 组份较浓的塔底产品。 在塔中部适当位置加入待分离料液,加料液中轻组份浓度与塔截 面下降液流浓度最接近,该处即为加料的适当位置。所以,加料液 中轻组分浓度愈高,加料位置也愈高,加料位置将塔分成上下二个 塔段,上段为精馏段,下段为提馏段。

在精馏段中上升蒸汽与回流之间实行物质传递,使上升蒸汽中轻 组份持续增浓,至塔顶达到要求浓度。在提馏段中,下降液流与上 升蒸汽间的物质传递使下降液流中的轻组份转入汽相,重组份则转 入液相,下降液流中重组份浓度持续增浓,至塔底达到要求浓度。 6.3.1评价精馏的指标—全塔效率η 全回流下测全塔效率有二个目的。一是在尽可能短的时间内在塔 内各塔板,至上而下建立浓度分布,从而使未达平衡的不合格产品 全部回入塔内直至塔顶塔底产品浓度合格,并维持若干时间后为部 分回流提供质量保证。二是因为全回流下的全塔效率和部分回流下 的全塔效率相差不大,在工程处理时,能够用全回流下的全塔效率 代替部分回流下的全塔效率,全回流时精馏段和提馏段操作线重合, 气液两相间的传质具有的推动力,操作变量只有1个,即塔釜 加热量,所测定的全塔效率比较准确地反映了该精馏塔的性 能,对应的塔顶或塔底浓度即为该塔的极限浓度。全塔效率的定 义式如下: ??NT?1 (1) N NT:全回流下的理论板数; N:精馏塔实际板数。 6.3.2维持正常精馏的设备因素和操作因素 精馏塔的结构应能提供所需的塔板数和塔板上充足的相间传递面积。 塔底加热(产生上升蒸汽)、塔顶冷凝(形成回流)是精馏操作的主 要能量消耗;回流比愈大,塔顶冷凝量愈大,塔底加热量也必须愈大。回流比愈大,相间物质传递的推动力也愈大。

化工原理精馏实验报告

北京化工大学 实验报告 精馏实验 一、摘要 精馏是实现液相混合物液液分离的重要方法,而精馏塔是化工生产中进行分离过程的主要单元,板式精馏塔为其主要形式。本实验用工程模拟的方法模拟精馏塔在全回流的状态下及部分回流状态下的操作情况,从而计算单板效率和总板效率,并分析影响单板效率的主要因素,最终得以提高塔板效率。 关键词:精馏、板式塔、理论板数、总板效率、单板效率 二、实验目的 1、熟悉精馏的工艺流程,掌握精馏实验的操作方法。 2、了解板式塔的结构,观察塔板上气- 液接触状况。 3、测测定全回流时的全塔效率及单板效率。 4、测定部分回流时的全塔效率。 5、测定全塔的浓度或温度分布。 6、测定塔釜再沸器的沸腾给热系数。 三、实验原理 在板式精馏塔中,由塔釜产生的蒸汽沿塔逐板上升与来自塔顶逐板下降的回流液,在塔 板上实现多次接触,进行传热和传质,使混合液达到一定程度的分离。 回流是精馏操作得以实现的基础。塔顶的回流量和采出量之比,称为回流比。回流比是精馏操作的重要参数之一,其大小影响着精馏操作的分离效果和能耗。 回流比存在两种极限情况:最小回流比和全回流。若塔在最小回流比下操作,要完成分离任务,则

需要有无穷多块塔板的精馏塔。当然,这不符合工业实际,所以最小回流比只是 一个操作限度。若操作处于全回流时,既无任何产品采出,也无原料加入,塔顶的冷凝液全部返回塔中,这在生产中无实验意义。但是,由于此时所需理论板数最少,又易于达到稳定,故常在工业装置开停车、排除故障及科学研究时采用。 实际回流比常取用最小回流比的倍。在精馏操作中,若回流系统出现故障,操作情况会急剧恶化,分离效果也将变坏。 板效率是体现塔板性能及操作状况的主要参数,有以下两种定义方法。 (1)总板效率E N e 式中E —总板效率;N—理论板数(不包括塔釜);Ne —实际板数。 2)单板效率E ml E x n 1 x n E ml * x n 1 x n* 式中E ml—以液相浓度表示的单板效率; x n,x n-1—第n 块板的和第(n-1 )块板得液相浓度; x n*—与第n 块板气相浓度相平衡的液相浓度。 总板效率与单板效率的数值通常由实验测定。单板效率是评价塔板性能优劣的重要数据。物系性质、板型及操作负荷是影响单板效率的重要因素。当物系与板型确定后,可通过改变气液负荷达到最高的板效率;对于不同的板型,可以在保持相同的物系及操作条件下,测定其单板效率,已评价其性能的优劣。总板效率反映全塔各塔板的平均分离效果,常用于板式塔设计中。 若改变塔釜再沸器中电加热器的电压,塔板上升蒸汽量将会改变,同时,塔釜再沸器电加热器表面的温度将发生变化,其沸腾给热系数也将发生变化,从而可以得到沸腾给热系数也加热量的关系。由牛顿冷却定律,可知 Q A t m

筛板精馏塔化工实验报告

筛板塔精馏过程实验 一、实验目的 1、了解筛板精馏塔及其附属设备的基本结构,掌握精馏过程的基本操作方法。 2、学会判断系统达到稳定的方法,掌握测定塔顶、塔釜溶液浓度的实验方法。 3、学习测定精馏塔全塔效率和单板效率的实验方法,研究回流比对精馏塔分离效率的影响。 二、实验原理 2.1 全塔效率 TE 全塔效率又称总板效率,是指达到指定分离效果所需理论板数与实际板数的比值于塔内所需理论塔板数,可由已知的双组分物系平衡关系,以及实验中测得的塔顶、塔釜出液的组成,回流比R和热状况q等,用图解法求得TN 2.2 图解法求理论塔板数 TN 图解法又称麦卡勃-蒂列(McCabe-Thiele)法,简称M-T法,其原理与逐板计算法完全相同,只是将逐板计算过程在y-x图上直观地表示出来。 2.3 全回流操作 在精馏全回流操作时,操作线在y-x图上为对角线,如图8-3所示,根据塔顶、塔釜的组成在操作线和平衡线间作梯级,即可得到理论塔板部分回流操作。部分回流操作时,图解法的主要步骤为: (1)根据物系和操作压力在y-x图上作出相平衡曲线,并画出对角线作为辅助线;(2)在x轴上定出x=xD、xF、xW三点,依次通过这三点作垂线分别交对角线于点a、f、b; (3)在y轴上定出yC=xD/(R+1)的点c,连接a、c作出精馏段操作线; (4)由进料热状况求出q线的斜率q/(q-1),过点f作出q线交精馏段操作线于点d; (5)连接点d、b作出提馏段操作线; (6)从点a开始在平衡线和精馏段操作线之间画阶梯,当梯级跨过点d时,就改在平衡线和提馏 段操作线之间画阶梯,直至梯级跨过点b为止; (7) 所画的总阶梯数就是全塔所需的理论踏板数(包含再沸器),跨过点d的那块板就是加料板, 其上的阶梯数为精馏段的理论塔板数。 2.4 实验装置和流程 本实验装置的主体设备是筛板精馏塔,配套的有加料系统、回流系统、产品出料管路、残液出料管路、进料泵和一些测量、控制仪表。 筛板塔主要结构参数:塔内径D=68mm,厚度洌?4mm,塔板数N=10块,板间距HT =100mm。加料位置由下向上起数第4块和第6块。降液管采用弓形,齿形堰,堰长56mm,堰高7.3mm,齿深4.6mm,齿数9个。降液管底隙4.5mm。筛孔直径d0=1.5mm,正三角形排列,孔间距t=5mm,开孔数为77个。塔釜为内电加热式,加热功率2.5kW,有效容积为10L。塔顶冷凝器、塔釜换热器均为盘管式。单板取样为自下而上第1块和第10块,斜向上为液相取样口,水平管为气相取样口。 本实验料液为乙醇水溶液,釜内液体由电加热器产生蒸汽逐板上升,经与各板上的液体传质后,进入盘管式换热器壳程,冷凝成液体后再从集液器流出,一部分作为回流液从塔顶流入塔内,另一部分作为产品馏出,进入产品贮罐;残液经釜液转子流量计流入釜液贮罐。

筛板精馏实验知识讲解

筛板精馏实验装置 使用说明书 华中师范大学化学学院2016年12月

筛板精馏实验装置 一、实验目的 1、熟悉板式精馏塔的结构、流程及各部件的结构作用; 2、了解精馏塔的正确操作,学会正确处理各种异常情况; 3、用作图法确定精馏塔全回流与部分回流时理论板数,并计算出全塔效率。 二、实验流程、装置描述 筛板精馏实验流程图 阀门:V1塔釜加料阀,V2塔釜放净阀,V3塔釜出料阀,V4塔底产品罐放净阀,V5塔顶产品罐放净阀,V6冷却正丙醇流量调节阀,V7采出电磁阀,V8回流电磁阀,V9采样阀,V10、

V11压差计连通阀。 温度:TI1塔釜温度,TI2塔顶温度,TI3回流温度,TI4进料温度,TI5~ TI12塔板温度。 压力:PI1塔釜压力。 差压:DPI1全塔压降。 流量:FI1冷却正丙醇流量。 液位:LI1塔釜液位。 流程说明: 进料:进料泵从原料罐内抽出原料液,经过塔釜换热器,原料液走管程,塔釜溢流液走壳程,热交换后原料液由塔体中间进料口进入塔体 塔顶出料:塔内蒸汽上升至冷凝器,蒸汽走壳程,冷却正丙醇走管程,蒸汽冷凝成液体,流入馏分器,一路经回流电磁阀回流至塔内,另一路经采出电磁阀流入塔顶产品罐塔釜出料:塔釜溢流液经塔釜出料阀V3溢流至塔釜换热器,塔釜溢流液走壳程,原料液走管程,热交换后塔釜溢流液流入塔釜产品罐 冷却正丙醇:冷却正丙醇来自实验室自来正丙醇,经冷却正丙醇流量调节阀V6控制,转子流量计计量,流入冷凝器,冷却正丙醇走管程,蒸汽走壳程,热交换后冷却正丙醇排入地沟 设备仪表参数: 精馏塔:塔内径D=50mm,塔内采用筛板及圆形降液管,共有8块板,板间距HT=55mm,塔板:筛板上孔径d=1.5mm,筛孔数N=127个,开孔率11%。 进料泵:蠕动泵,25#进料管,流量1.6ml/r,转速0-100.0rpm 冷却正丙醇流量计16~160 l/h 总加热功率为3.3Kw 压力传感器0—10KPa 温度传感器:PT100,直径3mm 差压传感器0-5 KPa 三、实验操作(以乙醇-正丙醇为例): 1、开车 ⑴、一般是在塔釜先加入10~20v%(体积)的乙醇正丙醇溶液,釜液位与塔釜出料口持平。 ⑵、开启软件和装置电源,软件与设备建立连接(软件操作见附1-软件说明)。 ⑶、开启电加热电源,选择加热方式,维持塔釜压力在约1000Pa为合适。 ⑷、打开塔顶冷凝器进正丙醇阀V5,流量约80 l/h。 ⑸、回流比操作切换至手动状态,关闭采出电磁阀,开启回流电磁阀,使塔处于全回流状态;

化工原理筛板塔精馏实验报告

化工原理筛板塔精馏实 验报告 标准化管理部编码-[99968T-6889628-J68568-1689N]

筛板塔精馏实验 一.实验目的 1.了解筛板精馏塔及其附属设备的基本结构,掌握精馏过程的基本操作方法。 2.学会判断系统达到稳定的方法,掌握测定塔顶、塔釜溶液浓度的实验方法。 3.学习测定精馏塔全塔效率和单板效率的实验方法,研究回流比对精馏塔分离效率的影响。 二.基本原理 1.全塔效率E T 全塔效率又称总板效率,是指达到指定分离效果所需理论板数与实际板数的比值: E E=E E?1 E N T ——完成一定分离任务所需的理论塔板数,包括蒸馏釜; N P ——完成一定分离任务所需的实际塔板数,本装置N P=10。2.图解法求理论塔板数N T 以回流比R写成的精馏段操作线方程如下: y E+1= E + E E+ 1 + E E y n+1 ——精馏段第n+1块塔板上升的蒸汽组成,摩尔分数; x n ——精馏段第n块塔板下流的液体组成,摩尔分数; x D ——塔顶溜出液的液体组成,摩尔分数; R——泡点回流下的回流比。 提馏段操作线方程如下: E E+1= E′ E′? E E? E E′? E E y m+1 ——提馏段第m+1块塔板上升的蒸汽组成,摩尔分数; x m ——提馏段第m块塔板下流的液体组成,摩尔分数; x W -塔底釜液的液体组成,摩尔分数; L'-提馏段内下流的液体量,kmol/s; W-釜液流量,kmol/s。 加料线(q线)方程可表示为:

E= E E?1 E? E E E?1 其中, E=1+E EE(E E?E E) E E q——进料热状况参数; r F ——进料液组成下的汽化潜热,kJ/kmol; t S ——进料液的泡点温度,℃; t F ——进料液温度,℃; c pF ——进料液在平均温度 (tS tF ) /2 下的比热容,kJ/(kmol℃); x F ——进料液组成,摩尔分数。 (1)全回流操作 在精馏全回流操作时,操作线在y-x图上为对角线,如图1所示,根据塔顶、塔釜的组成在操作线和平衡线间作梯级,即可得到理论塔板数。 图1 全回流时理论塔板数确定 (2)部分回流操作 部分回流操作时,如图2,图解法的主要步骤为: A.根据物系和操作压力画出相平衡曲线,并画出对角线作为辅助线; B.在对角线上定出a点(xD,xD)、f点(xF,xF)和b点(xW,xW); C.在y轴上定出yC=xD/(R+1)的点c,连接a、c作出精馏段操作线; D.由进料热状况求出q,过点f作出斜率为q/(q-1)的q线交精馏段操作线于点d,连接点d、b作出提馏段操作线; E.从点a开始在平衡线和精馏段操作线之间画阶梯,当梯级跨过点d时,就改在平衡线和提馏段操作线之间画阶梯,直至梯级跨过点b为止; G.所画的总阶梯数就是全塔所需的理论踏板数(包含再沸器),跨过点d的那块板就是加料板,其上的阶梯数为精馏段的理论塔板数。 图2 部分回流时理论板数的确定 本实验料液为乙醇水溶液,釜内液体由电加热器产生蒸汽逐板上升,经与各板上的液体传质后,进入盘管式换热器壳程,冷凝成液体后再从集液器流出,一部分作为回流液从塔顶流入塔内,另一部分作为产品馏出,进入产品贮罐;残液经釜液转子流量计流入釜液贮罐。

精馏实验报告

实验名称:精馏实验 一、 实验目的 ① 测定精馏塔在全回流及部分回流条件下的全塔效率。 ② 测定精馏塔在全回流条件下的单板效率。 ③ 测定精馏塔在全回流条件下塔体浓度(温度)分布。 ④ 测定再沸器的传热膜系数。 二、 实验器材 精馏实验装置(北京化工大学制) 三、 实验原理 在精馏过程中,由塔釜产生的蒸汽沿塔逐板上升与来自塔顶逐板下降的回流液在塔板上多次部分汽化部分冷凝,进行传热与传质,使混合液达到一定程度的分离。 回流是精馏操作的必要条件,塔顶的回流量与采出量之比称为回流比。回流比是精馏操作的主要参数,它的大小直接影响精馏操作的分离效果和能耗。若塔在最小回流比下操作,要完成分离任务,则需要无穷多块塔板,在工业上是不可行的。若在全回流下操作,既无任何产品的采出,也无任何原料的加入,塔顶的冷凝液全部返回到塔中,这在生产中无任何意义。但是,由于此时所需理论板数最少,易于达到稳定,故常在科学研究及工业装置的开停车及排除故障时采用。通常回流比取最小回流比的1.2~2.0倍。 1. 塔板效率 板式精馏塔中汽液两相在各塔板上相互接触而发生传质作用,由于接触时间短暂和不够充分,并且汽相上升也有一些雾沫夹带,因此其传质效率总不会达到理论板效果。通常用塔板效率来表示塔板上传质的完善程度。 塔板效率是体现塔板性能及操作状况的主要参数。影响塔板效率的因素很多,大致归纳为:流体的物理性质(如粘度、密度、相对挥发度和表面张力等)塔板结构以及操作条件等,由于影响塔板效率的因素相当复杂,目前仍以实验的方法测定。 (1)总板效率E (或全塔的效率):反映全塔中各层塔板的平均分离效果,常用于板式塔的设计。 e N N E 式中 E ——总板效率 N ——理论板数 e N ——实际板数 (2)单板效率 ,反映单独的一块板上传质的效果,是评价塔板式性能 优劣的重要数据,常有于塔板的研究。

实验一 填料塔分离效率的测定实验报告

实验一填料塔分离效率的测定实验报告实验一填料塔分离效率的测定 一实验目的 本实验的目的在于: (1) 了解系统表面张力对填料精馏塔效率的影响机理; (2) 测定甲酸–水系统在正、负系统范围的HETP。 二实验原理: 根据热力学分析,为使喷淋液能很好地润湿填料表面,在选择填料的材质时,要使固体 大于液体的表面张力。然而有时虽已满足上述热力学条件,但液膜仍的表面张力,,SVLV 会破裂形成沟流,这是由于混合液中低沸组分与高沸组分表面张力不同,随着塔内传质传热的进行,形成表面张力梯度,造成填料表面液膜的破碎,从而影响分离效果。 根据系统中组分表面张力的大小,可将二元精馏系统分为下列三类: (1) 正系统:低沸组分的表面张力较低,即。当回流液下降时,液体的表面,,,,lhl 张力值逐渐增大。 ,LV (2) 负系统;与正系统相反,低沸组分的表面张力较高,即。因而回流液下,,,,lhl 降过程中表面张力,逐渐减小。 LV

(3) 中性系统:系统中低沸组分的表面张力与高沸组分的表面张力相近,即,,,,lh或两组分的挥发度差异甚小,使得回流液的表面张力值并不随着塔中的位置有多大变化。 在精馏操作中,由于传质与传热的结果,导致液膜表面不同区域的浓度或温度不均匀,使表面张力发生局部变化,形成表面张力梯度,从而引起表面层内液体的运动,产生Marangoni 效应。这一效应可引起界面处的不稳定,形成旋涡;也会造成界面的切向和法向脉动,而这些脉动有时又会引起界面的局部破裂,因此由玛兰哥尼(,arangoni)效应引起的局部流体运动反过来又影响传热传质。 填料塔内,相际接触面积的大小取决于液膜的稳定性,若液膜不稳定,液膜破裂形成沟流,使相际接触面积减少。由于液膜不均匀,传质也不均匀,液膜较薄的部分轻组分传出较多,重组分传入也较多,于是液膜薄的地方轻组分含量就比液膜厚的地方小,对正系统而言,如图2–29所示,由于轻组分的表面张力小于重组分,液膜薄的地方表面张力较大,而液膜 较厚部分的表面张力比较薄处小,表面张力差 推动液体从较厚处流向较薄处,这样液膜修 复,变得稳定。对于负系统,则情况相反,在 液膜较薄部分表面张力比液膜较厚部分的表 图1 表面张力梯度对液膜稳定性的影响面张力小,表面张力差使液体从较薄处流向较 厚处,这样液膜被撕裂形成沟流。实验证明, 正、负系统在填料塔中具有不同的传质效率, 图2 水–甲酸系统的x - y图负系统的等板高度(HETP)可比正系统大一倍甚至一倍以上。

筛板精馏塔实验指导书

筛板精馏塔实验指导书

筛板精馏塔实验 一. 实验目的 1. 了解筛板精馏塔及其附属设备的基本结构,掌握精馏过程的基本操作方法。 2. 学会判断系统达到稳定的方法,掌握测定塔顶、塔釜溶液浓度的实验方法。 3. 学习测定精馏塔全塔效率的实验方法,研究回流比对精馏塔分离效率的影响。 二.基本原理 1.全塔效率T E 全塔效率又称总板效率,是指达到指定分离效果所需理论板数与实际板数的比值,即 1 T T P N E N -= (1) 式中,T N -完成一定分离任务所需的理论塔板数,包括蒸馏釜; P N -完成一定分离任务所需的实际塔板数,本装置P N =10。 全塔效率简单地反映了整个塔内塔板的平均效率,说明了塔板结构、物性系数、操作状况对塔分离能力的影响。对于塔内所需理论塔板数T N ,可由已知的双组分物系平衡关系,以及实验中测得的塔顶、塔釜出液的组成,回流比R 和热状况q 等,用图解法求得。 2. 图解法求理论塔板数T N 图解法又称麦卡勃-蒂列(McCabe -Thiele )法,简称M -T 法,其原理与逐板计算法完全相同,只是将逐板计算过程在y -x 图上直观地表示出来。 精馏段的操作线方程为: 111 D n n x R y x R R += +++ (2) 式中, 1n y +-精馏段第n+1块塔板上升的蒸汽组成,摩尔分数; n x -精馏段第n 块塔板下流的液体组成,摩尔分数; D x -塔顶溜出液的液体组成,摩尔分数; R -泡点回流下的回流比。

提馏段的操作线方程为: ' 1' 'W m m Wx L y x L W L W +=--- (3) 式中,1m y +-提馏段第m+1块塔板上升的蒸汽组成,摩尔分数; m x -提馏段第m 块塔板下流的液体组成,摩尔分数; W x -塔底釜液的液体组成,摩尔分数; 'L -提馏段内下流的液体量,kmol/s ; W -釜液流量,kmol/s 。 加料线(q 线)方程可表示为: 11F x q y x q q = --- (4) 其中, () 1pF S F F c t t q r -=+ (5) 式中,q -进料热状况参数; F r -进料液组成下的汽化潜热,kJ/kmol ; S t -进料液的泡点温度,℃; F t -进料液温度,℃; pF c -进料液在平均温度 的比热容,kJ/(kmol ℃); (pF c 可由两种方法计算:①在定性温度 下分别查酒精和水的热容,按比例求混合物的 pF c ;② ,α和β为附表一中比热容的值。) F x -进料液组成,摩尔分数。 回流比R 的确定: L R D = (6) 式中,L -回流液量,kmol/s ; D -馏出液量,kmol/s 。 式(6)只适用于泡点下回流时的情况,而实际操作时为了保证上升气流能完全冷凝,冷却水量一般都比较大,回流液温度往往低于泡点温度,即冷液回流。

筛板精馏实验报告

筛板精馏实验报告 篇一:化工原理筛板塔精馏实验报告 筛板塔精馏实验 一.实验目的 1.了解筛板精馏塔及其附属设备的基本结构,掌握精馏过程的基本操作方法。 2.学会判断系统达到稳定的方法,掌握测定塔顶、塔釜溶液浓度的实验方法。 3.学习测定精馏塔全塔效率和单板效率的实验方法,研究回流比对精馏塔分离效率的影响。 二.基本原理 1.全塔效率ET 全塔效率又称总板效率,是指达到指定分离效果所需理论板数与实际板数的比值: NT——完成一定分离任务所需的理论塔板数,包括蒸馏釜; NP——完成一定分离任务所需的实际塔板数,本装置NP=10。 2.图解法求理论塔板数NT 以回流比R写成的精馏段操作线方程如下: yn+1——精馏段第n+1块塔板上升的蒸汽组成,摩尔分数; xn——精馏段第n块塔板下流的液体组成,摩尔分数;xD——塔顶溜出液的液体组成,摩尔分数; R——泡点回流下的回流比。 提馏段操作线方程如下:

ym+1——提馏段第m+1块塔板上升的蒸汽组成,摩尔分数; xm——提馏段第m块塔板下流的液体组成,摩尔分数;xW-塔底釜液的液体组成,摩尔分数; L'-提馏段内下流的液体量,kmol/s; W-釜液流量,kmol/s。 加料线(q线)方程可表示为: 其中, q——进料热状况参数; rF——进料液组成下的汽化潜热,kJ/kmol; tS——进料液的泡点温度,℃; tF——进料液温度,℃; cpF——进料液在平均温度 (tS ? tF ) /2 下的比热容,kJ/(kmol℃); xF——进料液组成,摩尔分数。(1)全回流操作 在精馏全回流操作时,操作线在y-x图上为对角线,如图1所示,根据塔顶、塔釜的组成在操作线和平衡线间作梯级,即可得到理论塔板数。 图1 全回流时理论塔板数确定 (2)部分回流操作 部分回流操作时,如图2,图解法的主要步骤为: A.根据物系和操作压力画出相平衡曲线,并画出对角线作为辅助线; B.在对角线上定出a点(xD,xD)、f点(xF,xF)和b点(xW,xW);

筛板塔全塔效率的测定

课程名称:化工基础实验任课教师:万鑫 实验室名称:化工基础实验室房间号:理工2#115实验时间:2013年5 月15 日

实验装置: 精馏实验流程示意图 1-原料罐进料口;2-原料罐;3-进料泵回流阀;4-进料泵;5-电加热器;6-釜料放空阀;7-塔釜产品罐放空阀;8-釜产品储罐;9-塔釜;10-流量计;11-顶产品罐放空阀;12-顶产品;13-塔板;14-塔身;15-降液管;16-塔顶取样口;17-观察段;18-线圈;19-冷凝器20-塔釜取样口。 精馏塔为筛板塔,全塔共有九块塔板由紫铜板制成,塔高 1.5米,塔身用内径为50mm 的不锈钢管制成,每段为10厘米,焊上法兰后,用螺栓连在一起,并垫上聚四氟乙烯垫防漏,塔身的第二段和第九段是用耐热玻璃制成的,以便于观察塔内的操作情况。除了这两段玻璃塔段外,其余的塔段都用玻璃棉保温。降液管是由外径为8毫米的铜管制成。筛板的直径是54mm,筛孔的直径是2mm。 塔中装有铂电阻温度计来测量塔内气象温度。 塔顶的全凝器为风式换热器,塔釜用电炉丝加热,塔的外部也用保温棉保温。 混合液体由高位槽经蠕动泵计量后进入塔内。塔釜的液面由液位计和放大器计量再由液位仪表显示。塔底产品经过由液位控制平衡管流出。回流比调节阀用来控制回流比,馏出液储罐接受馏出液。 操作步骤: (一)实验前准备工作,检查工作: 1. 将与阿贝折光仪配套的超级恒温水浴(用户自备)调整运行到所需的温度,并记下这个温度(例如30℃)。(本实验运行温度25℃) 2. 检查实验装置上的各个旋塞、阀门均应处于关闭状态;电流、电压表及电位器位置均应为零。 3. 配制一定浓度(质量浓度 20%左右)的乙醇─正丙醇混合液(总容量6000毫升左

精馏塔的操作和全塔效率的测定实验

精馏塔的操作和全塔效率的测定实验 10.1 实验内容 (2)在部分回流条件下进行连续精馏操作,在规定时间内完成500mL乙醇产品的生产任务,并要求塔顶产品中的乙醇体积分数大于0.93,同时塔釜出料中乙醇体积分数小于0.03。 10.2 实验目的 (1)了解板式精馏塔的结构及精馏流程。 (2)理论联系实际,掌握精馏塔的操作。 10.3 实验原理 10.3.1 概述 精馏是利用液体混合物中各组分的挥发度不同使之分离的单元操作。精馏过程在精馏塔内完成。根据精馏塔内构件不同,可将精馏塔分为板式塔和填料塔两大类。根据塔内气、液接触方式不同,亦可将前者称为级式接触传质设备,后者称为微分式接触传质设备。 塔板是板式精馏塔的主要构件,是气、液两相接触传热、传质的媒介。通过塔底的再沸器对塔釜液体加热使之沸腾汽化,上升的蒸汽穿过塔板上的孔道和板上的液体接触进行传热传质。塔顶的蒸汽经冷凝器冷凝后,部分作为塔顶产品,部分冷凝液则作为回流返回塔内。来自塔顶的液体自上而下经过降液管流至下层塔板口,再横向流过整个塔板,经另—侧的降液管流下。气、液两相在塔内整体呈逆流,板上呈错流, 10.3.2 精馏塔的效率及测定 塔板效率是精馏塔设计的重要参数之—。有关塔板效率的定义有如下几种:点效率、Nurphree板效率、湿板效率和全塔效率。影响塔板效率的因素有很多,如塔板结构、气液相流量和接触状况以及物性等诸多因素,都对塔板效率有不可忽视的影响。迄今为止,塔板效率的计算问题尚未得到很好的解决,—般还 是通过实验的方法测定。 由于众多复杂因素的影响,精馏塔内各板和板上各点的效率不尽相同,工程上有实际意义的是在全回流条件下测定全塔效率。全塔效率的定义如下

板式精馏塔实验报告

板式精馏塔实验报告 学院:广州大学生命科学学院 班级:生物工程121班 分组:第一组 姓名: 其他组员: 学号:

指导老师:尚小琴吴俊荣 实验时间2014.11.15 摘要:此次实验是对筛板精馏塔的性能进行全面的测试,实验主要对乙醇正丙醇精馏过 程中的研究不同条件下改变参量时的实验结果,根据实验数据计算得出塔釜浓度、回流比、进料位置等与全塔效率的关系,确定该筛板精塔的最优实验操作条件。 关键词:精馏;回流比;全塔效率;塔釜浓度 Abstract:The sieve plate distillation column performance comprehensive testing, mainly on ethanol isopropyl alcohol distillation process in the different experimental conditions were discussed, the reactor concentration, reflux ratio, feed location and the entire towerThe relationship between the efficiency of sieve plate tower, determine the optimal experimental conditions of fine. Key words: Distillation;reflux ratio;the tower efficiency 引言:精馏是利用混合液中两种液体的沸点差异来分离两种液体的过程。精馏装置有精馏塔、原料预热器、再沸器、冷凝器、釜液冷却器和产品冷却器等设备。热量自塔釜输入,物料在塔内经多次部分气化与部分冷凝进行精馏分离,由冷凝器和冷却器中的冷却介质将余热带走。精馏过程的节能措施一直是人们普遍关注的问题。精馏操作是化工生产中应用非常广泛的一种单元操作,也是化工原理课程的重要章节[2]。分析运行中的精馏塔,当某一操作条件改变时的分离效果变化,属于精馏的操作型问题[4]。本研究从塔釜浓度、回流比、进料位置、全回流和部分回流等操作因素对数字型筛板精馏塔进行全面考察[1],得出一系列可靠直观的结果,加深对精馏操作中一些工程概念的理解,对工业生产有一定的指导意义通过本实验我们得出了大量的实验数据,由计算机绘图找出最优一组实验参数,在这组参数下进行提纯将会节约大量能源,同时为今后开出的设计型、综合型、研究型的实验项目,为学生的创新性科研项目具有重要的教改意义[3]。 1.实验部分

相关主题
文本预览
相关文档 最新文档