当前位置:文档之家› 数字化汽车防撞测距仪设计

数字化汽车防撞测距仪设计

数字化汽车防撞测距仪设计
数字化汽车防撞测距仪设计

目录

1、设计背景 (2)

2、数字化汽车防撞测距仪总体设计方案 (3)

2.1硬件方面 (3)

2.2 软件方面 (4)

3 超声波的原理 (5)

3.1超声波 (5)

3.2超声波的产生 (5)

3.3 超声波的主要参数 (5)

4 硬件电路设计 (6)

4.1系统结构与检测距离工作原理 (6)

4.2 超声波发生电路设计 (7)

4.3 超声波接收电路设计 (8)

4.4 A/D转换电路设计 (9)

4.4.1 芯片74LS245 (9)

4.4.2 LED数码管 (10)

4.4.3 AD转换 (12)

4.5 报警电路设计 (13)

4.6 单片机89C51控制电路设计 (13)

5、软件设计 (16)

5.1 软件执行的工作过程 (16)

5.2 系统总体设计流程图 (18)

5.3 超声波接受和发射子程序设计 (19)

5.4 嗡鸣器报警和LED显示子程序设计 (19)

6、设计必得与体会 (21)

参考文献 (22)

附页 ............................................................................................. 错误!未定义书签。

1、设计背景

随着科学技术的快速发展,超声波将在测距仪中的应用越来越广。但就目前技术水平来说,人们可以具体利用的测距技术还十分有限,因此,这是一个正在蓬勃发展而又有无限前景的技术及产业领域。展望未来,超声波测距仪作为一种新型的非常重要有用的工具在各方面都将有很大的发展空间,它将朝着更加高定位高精度的方向发展,以满足日益发展的社会需求,如声纳的发展趋势基本为:研制具有更高定位精度的被动测距声纳,以满足水中武器实施全隐蔽攻击的需要;继续发展采用低频线谱检测的潜艇拖曳线列阵声纳,实现超远程的被动探测和识别;研制更适合于浅海工作的潜艇声纳,特别是解决浅海水中目标识别问题;大力降低潜艇自噪声,改善潜艇声纳的工作环境。无庸置疑,未来的超声波测距仪将与自动化智能化接轨,与其他的测距仪集成和融合,形成多测距仪。随着测距仪的技术进步,测距仪将从具有单纯判断功能发展到具有学习功能,最终发展到具有创造力。在新的世纪里,面貌一新的测距仪将发挥更大的作用。

由于汽车工业的发展和现在社会生活节奏的不断提高,汽车在全社会特别是在我国的使用数量会不断增加。这样对于汽车的安全行使提了更高的要求,在我国,由于城市人口的拥挤以及道路的狭窄,汽车的行进提出了方便的同时也带来了安全上的问题。汽车防撞系统能使汽车在前进或倒车的时候,让司机看到车外的所有物体(人)及物体(人)离汽车的,真实距离,同时还可以在汽车靠近物体(人)的时候发出报警信号,从而避免汽车撞上人或物体,增强汽车的安全性,保障人们的正常生活,提供汽车行进的安全性。这样就使汽车具有一双智能化的“电子眼”, 即超声波传感器达到近距离报警的设计。

2、数字化汽车防撞测距仪总体设计方案

本设计主要运用AT89C51的相关原理进行软件编程,通过硬件和软件相结合达到测距通过LED显示和嗡鸣器报警提示驾驶员。

2.1硬件方面

本设计在硬件电路方面主要有超声波发送电路、超声波接收电路、LED显示电路、报警电路几部份组成。超声波接收电路如图1所示。

图1 超声波接收电路

超声波发送电路如图2所示。

图2 超声波发射电路

LED数码显示电路如图3所示。

图3 LED数码显示电路

报警电路如图4所示。

图4 报警电路

2.2 软件方面

本设计主要通过编程对89C51的P1.0口输出控制起动超声波发生器发出超声波,51里同时起动定时器,此时就等待外部中断0的中断,如果P3.2有中断输入,则停止计时,此时起动计算程序,运用海伦公式计算距离,计算出距离之后用LED数码管进行显示,同时把数据进行比较,如果在倒车时障碍物小于1m 或者在前进时小于30米,则发出报警信号。然后外回开始断续运行,如果不用报警,也返回开始断续运行。

3 超声波的原理

3.1超声波

超声波是频率高于20000赫兹的声波,它方向性好,穿透能力强,易于获得较集中的声能,在水中传播距离远,可用于测距,测速,清洗,焊接,碎石、杀菌消毒等。在医学、军事、工业、农业上有很多的应用。超声波因其频率下限大约等于人的听觉上限而得名。科学家们将每秒钟振动的次数称为声音的频率,它的单位是赫兹。我们人类耳朵能听到的声波频率为20~20000赫兹。当声波的振动频率大于20000赫兹或小于20赫兹时,我们便听不见了。因此,我们把频率高于20000赫兹的声波称为“超声波”。

3.2超声波的产生

声波是物体机械振动状态(或能量)的传播形式。所谓振动是指物质的质点在其平衡位置附近进行的往返运动。譬如,鼓面经敲击后,它就上下振动,这种振动状态通过空气媒质向四面八方传播,这便是声波。超声波是指振动频率大于20000Hz以上的,其每秒的振动次数(频率)甚高,超出了人耳听觉的上限(20000Hz),人们将这种听不见的声波叫做超声波。超声和可闻声本质上是一致的,它们的共同点都是一种机械振动,通常以纵波的方式在弹性介质内会传播,是一种能量的传播形式,其不同点是超声频率高,波长短,在一定距离内沿直线传播具有良好的束射性和方向性,目前腹部超声成象所用的频率范围在2∽5兆Hz之间,常用为3∽3.5兆Hz(每秒振动1次为1Hz,1兆Hz=10^6Hz,即每秒振动100万次,可闻波的频率在16-20,000HZ 之间)。超声波是声波大家族中的一员。

3.3 超声波的主要参数

超声波的两个主要参数:频率:F≥20KHz;功率密度:p=发射功率(W)/发射面积(cm2);通常p≥0.3w/cm2; 在液体中传播的超声波能对物体表面的污物进行清洗,其原理可用“空化”现象来解释:超声波振动在液体中传播的音波压强达

到一个大气压时,其功率密度为0.35w/cm2,这时超声波的音波压强峰值就可达到真空或负压,但实际上无负压存在,因此在液体中产生一个很大的压力,将液体分子拉裂成空洞一空化核。此空洞非常接近真空,它在超声波压强反向达到最大时破裂,由于破裂而产生的强烈冲击将物体表面的污物撞击下来。这种由无数细小的空化气泡破裂而产生的冲击波现象称为“空化”现象。太小的声强无法产生空化效应。

4 硬件电路设计

4.1系统结构与检测距离工作原理

汽车防撞系统主要由超声波收发装置、单片机CPU控制、测温装置、报警装置、液晶显示接口等5部分组成,如图7所示。系统检测距离的原理是通过单片机发出40 kHz的方波串后,检测接收端是否接收遇障碍物反射的回波,同时利用单片机计算出收到回波所用的时间t和确定超声波所处温度下空气传播的速度v,其关系如表1 所示,则障碍物到汽车尾部距离为v×t/2,根据测出来的相应距离,通过CPU计算后判断作出报警响应、液晶显示等相应的控制。图7 系统的结构为了能够实现准确地测出障碍物到汽车的尾部的距离,尽量减少误差,采取算法为:两对超声波收发传感器分别安装在车尾,两者相隔1.6 m,如图5所示,

图5 海伦公式原理图

A,B分别代表两对超声波收发器,AB=1.6 m,假设F代表障碍物,声波的传播速度为

v,由于声波传播是来回反射的,则

2

1 t

v BF ?

=,

2

2 t

v AF ?

=,也就是只要把时间

2

t与2

t确定下来就可以计算出BF与AF,然后利用海伦公式(海伦公式又译作希伦公式、海龙公式、希罗公式、海伦-秦九韶公式,传说是古代的叙拉古国王希伦(Heron,也称海龙)二世发现的公式,利用三角形的三条边长来求取三角形面积。但根据Morris Kline在1908年出版的著作考证,这条公式其实是阿基米德所发

现,以托希伦二世的名发表(未查证)。 我国宋代的数学家秦九韶也提出了“三斜求积术”,它与海伦公式基本一样。假设有一个三角形,边长分别为a 、b 、c ,三角形的面积S 可由以下公式求得: ()()()[]c p b p a p p S ---=

而公式里的p 为半周长:2c b a p ++=),设()2

AB BF AF L ++=有()()()AF L BF L AB L L S ---=,这就可以求出△ABC 的面积为S,则AB S EF 2=,其中EF 就是汽车的尾部到障碍物的距离。表1 温度与速度对应关系

表1 超声波在空气中的传播速度与温度的关系

图6 超声波测距系统结构框图

4.2 超声波发生电路设计

超声波发射电路原理图如图2所示。发射电路主要由反相器74LS04和超声

波发射换能器T构成,单片机P1.0端口输出的40kHz的方波信号一路经一级反向器后送到超声波换能器的一个电极,另一路经两级反向器后送到超声波换能器的另一个电极,用这种推换形式将方波信号加到超声波换能器的两端,可以提高超声波的发射强度。输出端采两个反向器并联,用以提高驱动能力。上位电阻R1O、R11一方面可以提高反向器74LS04输出高电平的驱动能力,另一方面可以增加超声波换能器的阻尼效果,缩短其自由振荡时间。其引脚图如图7所示。

图7 74LS04引脚图

其中74LS04反向器,其使用的极限值:电源电压最高7V,工作环境温度为(-55~125)℃,存储温度为(-65~150)℃。

4.3 超声波接收电路设计

集成电路TA8141S是一款红外线检波接收的专用芯片,常用于电视机红外遥控接收器。考虑到红外遥控常用的载波频率38 kHz与测距的超声波频率40 kHz较为接近,可以利用它制作超声波检测接收电路(如图1)。实验证明用TA8141S接收超声波(无信号时输出高电平),具有很好的灵敏度和较强的抗干扰能力。适当更改电容C4的大小,可以改变接收电路的灵敏度和抗干扰能力。其电路图如图1所示。其中TA8141S是信号放大与滤波作用,其1脚为空脚,它的简单介绍如下:

图8 TA8141S引脚图

各引脚功能介绍

1脚:空脚。

2脚:超声波信号输入端,该脚的输入阻抗约为40 kΩ

3脚:该脚与地之间连接RC串联电路,它们是负反馈串联网络的一个组成部分,改变它们的数值能改变前置放大器的增益和频率特性。增大电阻R1或减小C1,将使负反馈量增大,放大倍数下降,反之则放大倍数增大。但C1的改变会影响到频率特性,一般在实际使用中不必改动,推荐选用参数为R1=4.7Ω,C1=1μF。4脚:该脚与地之间连接检波电容,电容量大为平均值检波,瞬间相应灵敏度低;若容量小,则为峰值检波,瞬间相应灵敏度高,但检波输出的脉冲宽度变动大,易造成误动作,推荐参数为3.3μf。

5脚:接地端。

6脚:该脚与电源间接入一个电阻,用以设置带通滤波器的中心频率f0,阻值越大,中心频率越低。例如,取R=200kΩ时,f0≈42kHz,若取R=220kΩ,则中心频率f0≈38kHz。7脚:该脚与地之间接一个积分电容,标准值为330pF,如果该电容取得太大,会使探测距离变短。

8脚:遥控命令输出端,它是集电极开路输出方式,因此该引脚必须接上一个上拉电阻到电源端,推荐阻值为22kΩ,没有接受信号是该端输出为高电平,有信号时则产生下降。

9脚:电源正极,4.5~5V。

4.4 A/D转换电路设计

在前面程序计算出所测的距离同时,通过A/D0809,把模拟信号转换成数字信号通过LED数码显示,其电路图如图3所示。其中芯片相关介绍如下:

4.4.1 芯片74LS245

74LS245是我们常用的芯片,用来驱动LED或者其他的设备,它是8路同相三态双向总线收发器,可双向传输数据。

74LS245还具有双向三态功能,既可以输出,也可以输入数据。

当8051单片机的P0口总线负载达到或超过P0最大负载能力时,必须接入

74LS245等总线驱动器。

当片选端/CE低电平有效时,DIR=“0”,信号由 B 向 A 传输;(接收)DIR=“1”,信号由 A 向 B 传输;(发送)当/CE为高电平时,A、B均为高阻态。

由于P2口始终输出地址的高8位,接口时74LS245的三态控制端/1G和/2G 接地,P2口与驱动器输入线对应相连。P0口与74LS245输入端相连,/E端接地,保证数据现畅通。8051的/RD和/PSEN相与后接DIR,使得/RD或/PSEN有效时,74LS245输入(P0.i←Di),其它时间处于输出(P0.i→Di)。

图9 74LS245引脚图

4.4.2 LED数码管

图10 LED数码管

LED数码管(LED Segment Displays)是由多个发光二极管封在在一起组成“8”字型的器件,引线已在内部连接完成,只需引出它们的各个笔划,公共电极。LED数码管常用段数一般为7段有的另加一个小数点,位数有半位,1,2,3,4,5,6,8,10位等等....,LED数码管根据LED的接法不同分为共阴和共阳两

类。根据数码管的驱动方式的不同,可以分为静态式和动态式两类。

①静态显示驱动:静态驱动也称直流驱动。静态驱动是指每个数码管的每一个段码都由一个单片机的I/O端口进行驱动,或者使用如BCD码二-十进制译码器译码进行驱动。静态驱动的优点是编程简单,显示亮度高,缺点是占用I/O 端口多,如驱动5个数码管静态显示则需要5×8=40根I/O端口来驱动,要知道一个89S51单片机可用的I/O端口才32个呢:),实际应用时必须增加译码驱动器进行驱动,增加了硬件电路的复杂性。

②动态显示驱动:数码管动态显示接口是单片机中应用最为广泛的一种显示方式之一,动态驱动是将所有数码管的8个显示笔划"a,b,c,d,e,f,g,dp"的同名端连在一起,另外为每个数码管的公共极COM增加位选通控制电路,位选通由各自独立的I/O线控制,当单片机输出字形码时,所有数码管都接收到相同的字形码,但究竟是那个数码管会显示出字形,取决于单片机对位选通COM端电路的控制,所以我们只要将需要显示的数码管的选通控制打开,该位就显示出字形,没有选通的数码管就不会亮。通过分时轮流控制各个数码管的COM端,就使各个数码管轮流受控显示,这就是动态驱动。在轮流显示过程中,每位数码管的点亮时间为1~2ms,由于人的视觉暂留现象及发光二极管的余辉效应,尽管实际上各位数码管并非同时点亮,但只要扫描的速度足够快,给人的印象就是一组稳定的显示数据,不会有闪烁感,动态显示的效果和静态显示是一样的,能够节省大量的I/O端口,而且功耗更低。

LED数码有共阳和共阴两种,把这些LED发光二极管的正极接到一块(一般是拼成一个8字加一个小数点)而作为一个引脚,就叫共阳的,相反的,就叫共阴的,那么应用时这个脚就分别的接VCC和GND。再把多个这样的8字装在一起就成了多位的数码管了。

找公共共阴和公共共阳,首先,我们找个电源|稳压器(3到5伏)和1个1K(几百欧的也行)的电阻,VCC串接个电阻后和GND接在任意2个脚上,组合有很多,但总有一个LED会发光的,找到一个就够了,然后用GND不动,VCC(串电阻)逐个碰剩下的脚,如果有多个LED(一般是8个),那它就是共阴的了。相反用VCC不动,GND逐个碰剩下的脚,如果有多个LED(一般是8个),那它就是共阳的了。

一般四位数码管,有四个引脚控制选取哪一位数码管(位选),还有8位段选是公用的,就是当位选为第一位时,段选码只对第一位点亮那些段有关,同理选中第二个位时,段码只对第二位有效,依此类推。

一般硬件结构确定后,就会出现段码位码的说法。比如说四个位选引脚分别连接单片机p1.0 1.1 1.2 1.3,发光管是共阳,那么第一位的位码是xxxx0001;第二位是xxxx0010;第三位是xxxx0100;第四位是xxxx1000;这样我在显示时,如果显示第一位数据,则往p1口送xxxx0010,再送第一位的段码。

4.4.3 A/D转换

ADC0809是CMOS单片型逐次逼近式A/D转换器,它由8路模拟开关、地址锁存与译码器、比较器、8位开关树型D/A转换器、逐次逼近。其引脚功能是ADC0809芯片有28条引脚,采用双列直插式封装,如图11所示。下面说明各引脚功能。

IN0~IN7:8路模拟量输入端。2-1~2-8:8位数字量输出端。ADDA、ADDB、ADDC:3位地址输入线,用于选通8路模拟输入中的一路ALE:地址锁存允许信号,输入,高电平有效。START:A/D转换启动脉冲输入端,输入一个正脉冲(至少100ns宽)使其启动(脉冲上升沿使0809复位,下降沿启动A/D转换)。EOC:A/D转换结束信号,输出,当A/D转换结束时,此端输出一个高电平(转换期间一直为低电平)。OE:数据输出允许信号,输入,高电平有效。当A/D转换结束时,此端输入一个高电平,才能打开输出三态门,输出数字量。CLK:时钟脉冲输入端。要求时钟频率不高于640KHZ。REF(+)、REF(-):基准电压。Vcc:电源,单一+5V。GND:地。其内部结构和引脚图如图3所示。

图11 ADC0809内部结构图和引脚图

4.5 报警电路设计

根据本设计,当这个仪器安装在车的前面时候,测量的距离小于50m时,发出报警信号,当安装在车的后面的时候,测量的距离小于1m时,发出报警信号。在电路中主要通过置P2.1为1实现,当满足我们所设置的条件时候,则置P2.1为1,所以P2.1为高电平,驱动三级管导通,则嗡鸣器导通,这时候发出报警信号,其电路图如图4所示。

4.6 单片机89C51控制电路设计

5l系列单片机中典型芯片(AT89C51)采用40引脚双列直插封装(DIP)形式,内部由CPU,4kB的ROM,256 B的RAM,2个16b的定时/计数器TO和T1,4个8 b 的工/O端I:IP0,P1,P2,P3,一个全双功串行通信口等组成。特别是该系列单片机片内的Flash可编程、可擦除只读存储器(E~PROM),使其在实际中有着十分广泛的用途,在便携式、省电及特殊信息保存的仪器和系统中更有用。

图12 AT89C51引脚与封装图

89C51是一种带4K字节闪烁可编程可擦除只读存储器(FPEROM—Fal sh Programmable and Erasable Read Only Memory)的低电压,高性能C MOS8位微处理器,俗称单片机。89C2051是一种带2K字节闪烁可编程可擦除只读存储器的单片机。单片机的可擦除只读存储器可以反复擦除100次。该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的89C51是一种高效微控制器,89C2051是它的一种精简版本。89C单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。

1.主要特性:

4K字节可编程闪烁存储器,全静态工作:0Hz-24Hz,三级程序存储器锁定,128*8位内部RAM,32可编程I/O线,两个16位定时器/计数器,5个中断源,可编程串行通道,低功耗的闲置和掉电模式,片内振荡器和时钟电路2.管脚说明:

VCC:供电电压。

GND:接地。

P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。当P1口的管脚第一次写1时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。

P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在FLASH编程和校验时,P1口作为第八位地址接收。

P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。并因此作为输入时,P2口的管脚被外部拉低,将输出电流。这是由于内部上拉的缘故。P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。P2口在FLASH编程和校验时接收高八位地址信号和控制信号。

P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。P3口也可作为AT89C51的一些特殊功能口,如下表所示:P3.0 RXD(串行输入口);P3.1 TXD(串行输出口);P3.2 /INT0(外部中断0);P3.3 /INT1(外部中断1);P3.4 T0(记时器0外部输入);P 3.5 T1(记时器1外部输入);P3.6 /WR(外部数据存储器写选通);P3.7 /RD(外部数据存储器读选通);P3口同时为闪烁编程和编程校验接收一些控制信号。

RST:复位输入。当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。其复位电路图如图13所示。

图13 复位电路图

ALE/PROG:当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。在FLASH编程期间,此引脚用于输入编程脉冲。在平时,AL E端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。因此它可用作对外部输出的脉冲或用于定时目的。然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE脉冲。如想禁止ALE的输出可在SFR8EH地址上置0。此时,ALE只有在执行MOVX,MOVC指令是ALE才起作用。另外,该引脚被略微拉高。如果微处理器在外部执行状态ALE禁止,置位无效。

/PSEN:外部程序存储器的选通信号。在由外部程序存储器取指期间,每个机器周期两次/PSEN有效。但在访问外部数据存储器时,这两次有效的/PS EN信号将不出现。

/EA/VPP:当/EA保持低电平时,则在此期间外部程序存储器(0000H-F FFFH),不管是否有内部程序存储器。注意加密方式1时,/EA将内部锁定为RESET;当/EA端保持高电平时,此间内部程序存储器。在FLASH编程期间,此引脚也用于施加12V编程电源(VPP)。

XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。

XTAL2:来自反向振荡器的输出。

3.振荡器特性:

XTAL1和XTAL2分别为反向放大器的输入和输出。该反向放大器可以配置为片内振荡器。石晶振荡和陶瓷振荡均可采用。如采用外部时钟源驱动器件,XTAL2应不接。有余输入至内部时钟信号要通过一个二分频触发器,因此对外部时钟信号的脉宽无任何要求,但必须保证脉冲的高低电平要求的宽度。其电路图如图14所示。

图14 晶振电路图

4.芯片擦除:

整个PEROM阵列和三个锁定位的电擦除可通过正确的控制信号组合,并保持ALE管脚处于低电平10ms 来完成。在芯片擦操作中,代码阵列全被写“1”且在任何非空存储字节被重复编程以前,该操作必须被执行。

此外,AT89C51设有稳态逻辑,可以在低到零频率的条件下静态逻辑,支持两种软件可选的掉电模式。在闲置模式下,CPU停止工作。但RAM,定时器,计数器,串口和中断系统仍在工作。在掉电模式下,保存RAM的内容并且冻结振荡器,禁止所用其他芯片功能,直到下一个硬件复位为止。

5.结构特点:

8位CPU;片内振荡器和时钟电路;32根I/O线;外部存贮器寻址范围R OM、RAM64K;2个16位的定时器/计数器;5个中断源,两个中断优先级;全双工串行口;布尔处理器;

5l系列单片机提供以下功能:4 kB存储器;256 BRAM;32条工/O线;2个16b定时/计数器;5个2级中断源;1个全双向的串行口以及时钟电路。

空闲方式:CPU停止工作,而让RAM、定时/计数器、串行口和中断系统继续工作。掉电方式:保存RAM的内容,振荡器停振,禁止芯片所有的其他功能直到下一次硬件复位。5l系列单片机为许多控制提供了高度灵活和低成本的解决办法。充分利用他的片内资源,即可在较少外围电路的情况下构成功能完善的超声波测距系统。

5、软件设计

5.1 软件执行的工作过程

(1)当系统按下控制开关键后,对系统进行初始化,采取主程序循环方式。

(2)读取温度温度值,将P2.4置“0”,选通AD转换芯片ADC0804使其进入工作,同时P2.5与ADC0804的INTR端连接,当INTR端输出高电平则可以读取此时温

度值。为了方便计算波速与温度对应表改为近似范围对应,速度与温度近似对应关系如表1所示。

(3)测出相应的波速值后将其存储,并将P2.5口置“1”停止ADC0804进行温度采样,然后通过P2.0口发出10个周期40 kHz方波脉冲串,总时间为250μs。需要注意的是在设计程序过程中,每条指令执行的机器周期为1μs或2μs,所以应该考虑这些时间的损耗,也就是说需要输出比较准确的周期方波。

(4)当发送完10个方波脉冲串后,就马上启动计数器T1进行计数,而计数器计数最长时间为65.536 ms,这种超声波收发传感器范围控制在8 m范围内,从而计数器设定的溢出时间为47 ms(因为声波收发是来回时间的,所以设定为(8/340)×2×1 000 ms=47 ms),当溢出的话就重发方波脉冲串,直到接收器受到信号为止。

(5)超声波接收器接收到的反射信号通过放大经过锁相环芯片LM567输出,分别接在INT1和INT0端,为了不受优先级影响,只要设寄存器IP=00 H则INT0与INT1可以按照先收到信号的先执行中断处理服务,后收到者后处理,不分高低中断优先级[3]。但这里要注意,因为会遇到如下两种情况。

1)当收到第一个中断并处理完后才收到第二个中断则按如下顺序进行处理,即收到第一个中断后,就读取计数寄存器TH1与TL1的计数值并存储后跳出中断服务,继续计数,等待下一个中断到来,当收到第二个中断时就再次读取此时计数器的TH1与TL1的计数值,并加上在第一个中断执行指令时所损耗的时间并存储,这样就得出两个声波传播的时间值t1与t2,则BF=v×t1/2,AF=v×t2/2,这样就确

定了BF与AF的距离;

2)当进行第一个中断处理时又同时收到第二个中断信号的时候按如下进行处理,即收到第一个中断后,就读取计数寄存器TH1与TL1的计数值并存储起来,为t1。但是在处理第一个中断服务时已经收到第二个中断,因为第二个时间时不知道的,所以只能取近似值,为了减少误差,则第二次时间值取为t2加上第一次执行指令时间的1/2。

(6)存储了两个时间值t1与t2后,进行数值处理后确定出距离进行比较后并存储数据,根据比较出来的结果,调用LCD显示子程序,作出相应的LCD显示要求和是否执行警报处理[4]。然后重新从步骤2开始执行。

5.2 系统总体设计流程图

图中S<30或者S>1是在高速路上前进的时候,报警的范围是小于30m,在倒车的时候,报警的范围是小于1m。

图15 系统总体设计流程图

5.3 超声波接受和发射子程序设计

超声波发生子程序的作用是通过P1.0端口发送2个左右超声波脉冲信号(频率约40kHz的方波),脉冲宽度为12μs左右,同时把计数器T0打开进行计时。超声波发生子程序较简单,但要求程序运行准确,所以采用汇编语言编程。

超声波测距仪主程序利用外中断0检测返回超声波信号,一旦接收到返回超声波信号(即INT0引脚出现低电平),立即进入中断程序。进入中断后就立即关闭计时器T0停止计时,并将测距成功标志字赋值1。如果当计时器溢出时还未检测到超声波返回信号,则定时器T0溢出中断将外中断0关闭,并将测距成功标志字赋值2以表示此次测距不成功。前方测距电路的输出端接单片机INT0端口,中断优先级最高,左、右测距电路的输出通过与门IC3A的输出接单片机INT1端口,同时单片机P1.3和P1.4接到IC3A的输入端,中断源的识别由程序查询来处理,中断优先级为先右后左。

超声波发射接收流程图:

图16 超声波发射接收流程图

5.4 嗡鸣器报警和LED显示子程序设计

在主程序中,当发射超声波的同时起动计时器,当收到了反射回来的超声波

的时候停止计时,读取时间用海伦公式计算距离,然后进行比较,如果在报警的范围内则报警,然后回到开始继续运行,如果不在也回到开始程序继续运行。当计算出距离时,把数据用LED显示出来。

嗡鸣器报警和LED显示流程图:

图17 嗡鸣器报警和LED显示流程图

专业汽车结构与设计大作业

专业汽车结构与设计大作业题目:自装卸垃圾汽车设计 学院: 班级: 姓名: 学号:

自装卸垃圾汽车设计 摘要:自装卸垃圾车是搜集分散在城市垃圾点上的桶装生活垃圾,并运转到垃圾处理厂的专业汽车。目前,国产自装卸垃圾汽车一般是在二类汽车基础上改装而成的侧装式自装卸垃圾汽车。具有集装速度快、二次污染少、操作方便、结构简单等的优点。本文主要对自装卸垃圾汽车的举升机构和液压系统进行介绍和设计。 关键词:自装卸垃圾汽车、举升机构、液压系统、工作效率、环保。 正文:近年来,由于社会经济的快速发展和城市人口的急速增长,城市固体废弃物的数量和种类也随着迅速增加,环保已经成为了一个非常重要的问题。一方面是因为大量的城市垃圾对人们优美舒适的工作、学习和生活造成了极其恶劣的影响;另一方面,大量的城市垃圾严重威胁着人类赖以生存的环境。从长远发展来看,垃圾车是环卫工作的重要装备,有着广阔的发展前景。所以,设计出环保、工作效率高的自装卸垃圾车便显得尤为重要。 本文所设计的自装卸垃圾车是由EQ1091货车改装而成,改装后的车身装载质量为4500kg。卸载采用的是普通自卸汽车额后倾自卸形式,装载采用的是右前侧吊装形式,吊装机构布置在车厢右前侧。 确定车厢尺寸:参考自卸车相关资料,选用车厢的尺寸为长3600mm,宽2100mm,高1580mm。

确定最大举升角:自卸机构必须保证车厢自动举升和倾斜,最大举升角一般设计等于或大于48°,本文选取最大举升角为50°。 一、举升机构的选择 (一)举升机构的作用 举升机构是自卸汽车的重要组成部分,它直接关系着自卸车使用性能和整体布置,决定了自卸汽车的优劣。装有举升机构的自卸式垃圾汽车可实现垃圾的快速搜集运输,很大程度上节省了垃圾倾倒时间和劳动力,缩短了运输周期,提高了工作效率,改善了工人的劳动环境。因此,举升机构的选择对自卸式垃圾车有着极其重要的作用。 (二)举升机构形式的选择 举升机构分为两类:直推式和连杆组合式。 直推式举升机构利用液压缸直接作用与车厢,有布置简单、结构紧凑、举升效率高、设计容易等的优点。举升过程是通过油箱直接顶起车厢,一般采用双油缸结构来提高整车的稳定性,但是容易导致油缸泄漏或双杠不同步,进而造成车厢举升力不均,损坏油缸,甚至造成车厢变形的严重后果。从整车稳定性来考虑,直推式举升机构适用于重型自卸汽车。 举升机构原理图

制动系统匹配设计计算分解

制动系统匹配设计计算 根据AA车型整车开发计划,AA车型制动系统在参考BB轿车底盘制造平台的基础上进行逆向开发设计,管路重新设计。本计算是以选配C发动机为基础。 AA车型的行车制动系统采用液压制动系统。前、后制动器分别为前通风盘式制动器和实心盘式制动器,制动踏板为吊挂式踏板,带真空助力器,制动管路为双回路对角线(X型)布置,采用ABS。驻车制动系统为机械式手动后盘式制动,采用远距离棘轮拉索操纵机构。因AA车型与参考样车BB的整车参数接近,制动系统采用了BB样车制动系统,因此,计算的目的在于校核前/后制动力、最大制动距离、制动踏板力、驻车制动手柄力及驻坡极限倾角。 设计要符合GB 12676-1999《汽车制动系统结构、性能和试验方法》;GB 13594-2003《机动车和挂车防抱制动性能和试验方法》和GB 7258-2004《机动车运行安全技术条件》的要求,其中的踏板力要求≤500N,驻车制动停驻角度为20%(12),驻车制动操纵手柄力≤400N。 制动系统设计的输入条件 整车基本参数见表1,零部件主要参数见表2。 表1 整车基本参数

表2 零部件主要参数制动系统设计计算 1.地面对前、后车轮的法向反作用力 地面对前、后车轮的法向反作用力如图1所示。 图1 制动工况受力简图由图1,对后轮接地点取力矩得:

式中:FZ1(N):地面对前轮的法向反作用力;G(N):汽车重力;b(m):汽车质心至后轴中心线的水平距离;m(kg):汽车质量;hg(m):汽车质心高度;L(m):轴距;(m/s2):汽车减速度。 对前轮接地点取力矩,得: 式中:FZ2(N):地面对后轮的法向反作用力;a(m):汽车质心至前轴中心线的距离。 2.理想前后制动力分配 在附着系数为ψ的路面上,前、后车轮同步抱死的条件是:前、后轮制动器制动力之和等于汽车的地面附着力;并且前、后轮制动器制动力Fm1、Fm2分别等于各自的附着力,即:

奔驰车距监控防撞系统(DTR)简介

随着汽车数量日益增多, 车速愈来愈高,汽车交通事故 也随之增多。汽车相撞、撞人、 撞障碍物、翻车、冲出公路等 事故时有发生。尤其高速公路 上一旦出现撞车,就会造成多 车相撞。分析撞车原因,大致有:驾驶不慎,能见度不高,车速过快,车距过小或汽车本身故障等。 从1997年开始,很多奔驰车型上安装了一种新的安全驾驶系统,即车距监控防撞系统(图1),该系统减小了驾驶员长时间驾车的劳动强度,同时提高了驾驶的安全性能。 车距监控防撞系统是一个智能型升级版的自动定速巡航系统,当驾驶者驾驶车辆处在定速巡航状态下时,该系统起作用,与前面的车子保持一定的距离,让驾驶更安全,应注意该系统与驻车防撞系统有相似,但又不同,驻车防撞系统可以在车辆停车和倒车时检测车辆前、后、侧面的障碍物距离,在靠近障碍物时 会发出声音警报。本节主要介绍车距监控 防撞系统。 1. 系统作用 车头有测距雷达,我们可以俗称其为 “电眼”,不断监测与前车的距离,根据 自身的车速、两车的距离、角度,及小(窄)路等情况,决定车辆速度,保持车头部距离。当前面的车子急刹,你就算反应不过来,“车距监控防撞系统”会立即通过电脑计算出合适的刹车力度和刹车距离,在与前车相撞之前自动刹停。

2. 系统组成 雷达传感器、DTR监控电脑、指示灯等组成。 3. 元件位置 系统工作指示灯安装在仪表内, 见图1。 雷达传感器一般安装在散热器 上,具体位置如图2。 DTR电脑一般安装在防火墙正 前或靠左侧,如图3。 4. 系统工作原理 主要通过雷达传感器侦测前方障碍物距离车头的远近,当发现障碍物已达到可测范围(距离),则危险距离警告灯会依障碍物的实际距离亮起,当距离过近时,有些车型警告喇叭会“嘀嘀”响起,以警告驾驶者注意前方障碍物已经接近车体,同时DTR电脑会通过车身电脑网络CAN-BAS与发动机电脑、变速器电脑及ESP 、ABS刹车系统电脑通讯,通过限制发动机输出转速,调节刹车作用力及变速箱挡位,控制定速巡航的车速。若前方无障碍物(100米为限)则警告灯会熄灭,车子便会加速至预设的巡航速度。 5. DTR系统的维修: 该系统元件较少,目前故障率较低。如果系统故障,要通过仪器调取其故障码,故障一般出现在传感器或电脑,当出现传感器故障码时,可测量传感器的电源搭铁是否正常,DTR 电脑提供给传感器的电源为20~24V,如果电源搭铁正常则传感器损坏。

华南理工大学汽车设计作业题按照章节分类

华南理工大学《汽车设计》作业题 第一章汽车总体设计 1.货车按发动机位置不同分几种?各有何优缺点? 2.货车按驾驶室与发动机相对位置不同分几种?各有何优缺点? 3.大客车按发动机位置不同布置形式有几种?各有何优缺点? 4.轿车的布置形式有几种?各有何优缺点? 5.根据气缸的排列形式不同,发动机有几种?各有何优缺点? 6.根据冷却方式不同,发动机有几种?各有何优缺点? 7.汽车的质量参数包括哪些参数?各自如何定义的? 8.汽车轴距的确定原则是什么?影响轴距大小的主要因素有哪些? 9.汽车轮距大小不同对什么问题有影响?影响轮距的因素有哪些? 10.画汽车总布置图用到的基准线(面)有哪些?各基准应如何确定? 11.影响车架宽度的因素有哪些?车架纵梁的断面形式有几种?

第二章离合器设计 12.设计离合器、离合器操纵机构需要满足哪些基本要求? 13.盘形离合器有几种?各有何优缺点? 14.离合器的压紧弹簧有几种形式?各有何优缺点? 15.离合器的压紧弹簧布置形式有几种?各有何优缺点? 16.离合器的摩擦衬片与从动钢板的连接方式有几种?各有何优缺点? 17.离合器的操纵机构有几种?各有何优缺点? 18.离合器的后备系数的定义及影响取值大小的因素有哪些? 19.离合器的主要参数有哪些? 20.影响选取离合器弹簧数的因素有哪些? 21.膜片弹簧的弹性特性是什么样的?主要影响因素是什么?工作点最佳位置应如何确定 22.离合器的踏板行程对什么有较为重要的影响? 23.要满足离合器主动与从动部分分离彻底可采取哪些措施? 24.要使离合器接合平顺可采取哪些措施? 25.要使离合器吸热能力高,散热能力好可采取哪些措施? 26.增加离合器的外径尺寸对离合器及整车的性能有何影响?

汽车自动防撞系统

此外,汽车倒车时司机不能观察车后情况,也往往造成撞人或撞上障碍物。分析撞车原因,大致有:驾驶不慎,能见度不高,车速过快,车距过小或汽车本身故障等。 针对上述问题, 我们设计一个基于超声波技术的汽车防撞系统能以声音和直观的显示告知驾驶员周围障碍物的情况,解除了驾驶员泊车、起动车辆、行使等前后左右探视所引起的困扰,并帮助驾驶员扫除了视野死角和视线模糊(能见度低)的缺陷,提高了安全性。 本制作是基于AT89S52单片机控制的超声波技术的汽车防撞系统小车模型,通过单片机控制超声波换能器的发射与接收,利用计算收发时间差算出四周各障碍物具体距离加以显示及自动控制小车减速或停车功能,快速准确地实现自动测量显示与智能控制。超声波对外界光线和电磁场不敏感,可以用于黑暗、有灰尘、烟雾、强电磁干扰等参杂环境中,使得系统抗干扰能力、测量精度能力增强。我国是交通大国,交通驾驶安全事故频频发生,此防撞控制系统的研究将有利于交通驾驶智能控制的发展,可以使得交通事故大幅度下降。 该系统由单片机控制,体积小巧,安装灵活方便,具有一定的应用前景。 1 总体方案设计 1.1传感器的选择 智能测距主要有红外收发测距、超声波测距。 红外收发测距是利用红外线的发射与接收进行测量。其特点是外围电路简便。但是存在受外界干扰大,测量距离范围小等不足。 超声波测距是利用超声波传感器进行发射接收。超声波传感器的外围电路设计较复杂,但其干扰能力强,不受空间电磁波干扰,也不受一般机械振动的干扰,穿透性好,可在浓雾、风沙、阴雨、污染环境中工作,适合大型车辆的行驶测距。

得出距离值。那么测量最大值就是以一个周期为时间差的距离值。一般公式为: d=v×t/2最大值为: dmax=v×T/2(T为周期) 假设室温下声波在空气中的传播速度是 335.5m/s,测量得到的声波从声源到达目标然后返回声源的时间是 t 秒,则距离 D可以由下列公式计算: D=33550(cm/s)×t(s) 因为声波经过的距离是声源与目标之间距离的两倍,声源与目标之间的距离d应该是 D/2。 如图2所示为超声波收发电路示意图。 图2 超声波收发原理框图 40KHz的方波信号由单片机的T1周期性产生,经过驱动电路推挽超声波发射头向外发出。由于在外界中存在很多的干扰,接收回来的微弱信号的波形将类似正弦波,但含有很多的杂波。我们必须报这个接收回来点波送进带通滤波器,还原出较好的波形,然后进行放大,再送进电压比较器得到较好的方波,进入单片机进行中断。单片机中断后,计算出发射到接收的时间。软件设计

汽车设计作业1

汽车设计作业1 拟开发一款轴距2600mm前置前驱5座轿车,要求能在良好铺装路面高速行驶,试初选其:1、总长、总宽、最小离地间隙、室内高、车顶高、总高、轮距; 总长: 乘用车总长与轴距的关系为La=L/C (对于前置前驱车C的取值范围为0.62~0.66,这里我取0.62) 故总长取La=2600/0.62≈4194mm 总宽: 乘用车总宽Ba与车辆总长La的关系 Ba=(La/3)+195mm±60mm=(4194/3)+195±60=1533~1653mm 经检查Ba的范围满足后座三人的乘用车总宽不小于1410mm的要求 故总宽取Ba=1580mm 最小离地间隙: 一般来说,轿车的最小离地间隙的范围为110~150mm 故最小离地间隙取130mm 室内高: 由座位高、乘员上身长和头部及头上部空间构成的室内高hb一般在1120~1380mm 故室内高取1200mm

车顶高: 车顶造型高度ht大约在20~40mm 故车顶高取35mm 总高: 轿车总高与最小离地间隙、室内高、车顶高、地板及下部零件高都有关系 地板及下部零件高取100mm 故总高累加得1465mm 轮距: 根据教科书上表1-2各类汽车的轴距与轮距,由轴距条件2600mm知该乘用车排量大致为1.6~2.5L,对应的轮距为1300~1500mm 一般来说,前轮距会选得比后轮距略大一些 故前轮距取1430mm;后轮距取1400mm 2、发动机排量、空气阻力系数、假定汽车正面投影面积为2.0m2时发动机的最大功率 发动机排量 根据轴距判断该乘用车适合匹配的发动机排量为1.6~2.5L 根据其在良好路面高速行驶的动力性需求 故发动机排量取2.0L 空气阻力系数

汽车智能防撞系统的文献综述

汽车智能防撞系统的研究 摘要:本文综述世界智能车辆技术在自动防撞方面的应用现状,结合我国高速公路、驾驶习惯及现有传感器的技术状况,分析探究适合中国高速公路及现实国情的汽车智能防撞装置。根据所要实现的基本功能,对比当前采用的四种常用测距方法,最终选用红外激光测距原理,建立了系统方案。汽车红外激光智能防撞装置是一种主动式防撞系统,它能使反应时间、距离、速度三个方面都能得到良好的优化控制,可以有效地避免汽车追尾碰撞事故的发生,该系统在汽车领域的应用与其所能带来的经济效益和社会效益将会是相当可观的。 关键词:智能防撞激光测距雷达测距单片机语音报警 1 前言 1.1课题研究的价值和意义 随着我国改革开放的不断深入和社会主义经济的不断发展,人们的物质生活日益提高,汽车己经进入千家万户,公路交通呈现出行驶高速化、车流密集化和驾驶员非职业化的趋势;与此同时,也带来了一个不可避免的问题:交通事故逐年上升。 2004年,全国公安机关交通管理部门共受理道路交通事故51.8万起,造成107077人死亡,比2003年增加2705人,上升2.6%;直接财产损失23.9亿元。在各类事故形态中,机动车碰撞事故占绝大多数。2004年,全国共发生机动车碰撞事故400389起,造成77081人死亡、375620人受伤,分别占总数的77.3%、72%和78.1%。其中,正面相撞事故123577起,造成31715人死亡、128447人受伤,分别占总数的23.9%、29.6%和26.7%;侧面相撞事故196798起,造成29900人死亡、186683人受伤,分别占总数的38%、27.9%和38.8%;追尾相撞事故80014起,造成15466人死亡、60490人受伤,分别占总数的15.5%、14.4%和12.6%。从以上数据,足以说明公路交通安全已是我国面临的重大问题。 我国的高速公路起步随晚,但发展较快。据统计,高速公路每百公里事故率为普通公路的4倍多。高速公路的事故类型,大多数为车辆的追尾碰撞事故,这是由高速公路的特点所决定的。高速公路具有汽车专用、分割行驶、控制出入、全部立交、限制车速以及高标准、设施完备等特点。高速公路由于排除了行人、非机动车的干扰,从而保证车辆可以高速行驶,而具有路面宽阔、标示醒目、标线分明、全线封闭等特点。保证了高速公路具有行车速度快、交通流量大的优点。我国,一般公路平均时速为40~50Km/h,而高速公路平均时速可达80Km/h以上。高速公路车辆速度快、干扰小的特点也促使其发生的事故性质比较严重,一旦发生事故,多数是恶性的交通事故。分析高速公路交通事故的类型和原因,发现超速行驶、恶劣天气时很容易发生制动测滑、甩尾或行车视距不足而导致的追尾碰撞事故。死亡事故中65%以上是追尾相撞造成的。由此可见,如何提高汽车行驶安全性,减少交通事故及其损失,己经刻不容缓的摆在研究人员的面前。 据有关部门对交通事故的统计分析,发现在司机—汽车—环境三要素中,司机是可靠性最差的一个环节,80%以上的事故是由于司机反映不及时或判断失误引起。计算表明,司机反映迟缓1秒,速度为80Km/h的汽车要前进约22.2米,由此可能产生不堪设想的后果。若在夜间或雨、雪、雾等恶劣天气条件下,汽车在中、高速行驶时,很难及时发现前方障碍物并采取必要应急措施。统计表明,在发生撞车的事故中,45%是司机没有看清楚前面车辆所处的位置,30%是发现前方车辆但为时己晚,特别在汽车高速行驶的情况下,前方目标正确识别与否至关重要。根据汽车驾驶自动化和智能化的发展趋势,汽车防撞系统的研制有着重要的意义。 1.2研究的现状

外文翻译-基于AT89C2051 的智能型汽车防撞报警器的设计

An AT89C2051 Based Intelligent Proxim ityWarning Indicator for Automobile It introduces the function and characteristicsofm icrocontrollerAT89C2051 Based on it. A low cost high-accuracy microm iniaturization and digital display proxim ity warning indicator for automobile is designed. The indicatormeasures the distance and speed of the automobile, with ultrasonicwave and integrated Hall unit and controls the system by the real-time control and Data-processing of the microcontroller Moreover. its circuitry principle is introduced in detail as well as its software design. Along with modern rhythm of life speeding up, the frequency which the traffic accident occurred is increasing, for enhances the security of automobile movement. This article introduced one kind of alarm system based on monolithic integrated circuit controls the automobile guards against hitting. This equipment the monolithic integratedcircuit real-time control and the data processing function, with the ultrasonic wave range finder technology, the sensor technologyunifies, may examine in the automobile movement rear area the obstacle and the automobile distance and the automobile vehicle speed, reveals the installment demonstration distance through the number, and is away from far and near the situation by the sound production electriccircuit basis to send out the warning sound. The ultrasonic ranging principle is, after unceasingly examines the ultrasonic wave launch to meet the echo which the obstacle reflects, thus determines the launch ultrasonic wave and receives the echo the time difference. Then extracts is away from S=C×T/2, C is the ultrasonic wave wave velocity, under the normal temperature takes is 344 m/s. After sonic speed determination, so long as obtains the ultrasonic wave round-trip the time, then obtains the distance. The automobile vehicle speed survey is integrates the sensor through Hall to realize. Namely, is loaded with the permanent magnet the turntable input axis and the wheel revolution axis is connected, when the wheel rotates, the turntable along with it rotation, this time, on the turn table permanent magnet can integrate the sensor after Hall, thus integrates the sensor in Hall the input end to obtain a magnetism signal, if the turntable does not stop the rotation, Hall integratesthe sensor then to be able to output the rotational speed signal. It can be said that, to the automobile vehicle speed survey essence into the rotational speed signal frequency survey. AT89C2051 is a low power loss, the high performance 8 CMOS microprocessor, is compatible with the MCS-51 series instruction collection and the pin, has following characteristic: 128 bytes internal RAM, 2 K bytes EPROM, fifteen I/O line, two sixteen-fixed time counters, five two-level of interrupt sources, one entire duplex serial port, internal precisely simulates the comparator and internal swingming, the low power loss leaves unused and falls the electricity pattern. The working voltage scope 4.25 ~ 5.5 V, the operating frequency takes12 MHz. In AT89C2051, two sixteen-fixed time/counters registers is T0and T1, make fixed time/counters, may count the machine cycle, counts the frequency for the oscilation frequency 1/12; When makes the counter, may appears to on exterior input pin P3.4/T0 and P3.5/T1 from 1 to 0 changes when increase 1, counts the frequency for the oscilation frequency 1/24.

汽车设计作业

第一章汽车总体设计 1、按发动机的位置分,乘用车有哪几种布置型式,各自有什么优缺点? 乘用车的布置形式:乘用车的布置形式主要有发动机前置前轮驱动(FF)、发动机前置后轮驱动(FR)、发动机后置后轮驱动(RR)三种。 发动机前置前轮驱动乘用车的主要优点:a、有明显的不足转向性能;b、越过障碍的能力高;c、动力总成结构紧凑;d、有利于提高乘坐舒适性; e、有利于提高汽车的机动性;(轴距可以缩短)f、发动机散热条件好;g、行李箱空间大;h、变形容易;i、供暖效率高;j、操纵机构简单;k、整备质量轻;L、制造难度降低。 主要缺点:结构与制造工艺均复杂;(采用等速万向节)前轮工作条件恶劣,轮胎寿命短;(前桥负荷较后轴重)汽车爬坡能力降低;后轮容易抱死,并引起侧滑;发动机横制时总体布置工作困难,维修保养的接近性差;发生正面碰撞事故,发动机及其附件损失较大,维修费用高。 发动机前置后轮驱动乘用车的主要优点:a、轴荷分配合理,因而有利于提高轮胎的使用寿命;b、前轮不驱动,因而不需要采用等速万向节,并有利于减少制造成本;c、客厢较长,乘坐空间宽敞,行驶平稳;d、上坡行驶时,因驱动轮上的附着力增大,故爬坡能力强;e、有足够大的行李箱空间;f、因变速器与主减速器分开,故拆装、维修容易。 主要缺点:a、地板上有凸起的通道,影响了乘坐舒适性; b、汽车正面与其它物体发生碰撞易导致发动机进入客厢,会使前排乘员受到严重伤害; c、汽车总长较长,整车整备质量增大,影响汽车的燃油经济性和动力性。 发动机后置后轮驱动乘用车的主要优点:a、结构紧凑; b、改善了驾驶员视野; c、改善后排座椅中间座位成员出入的条件d、整车整备质量小;e、乘客座椅能够布置在舒适区内;客厢内地板比较平整; f、爬坡能力强; g、当发动机布置在轴距外时轴距短,机动性能好。 主要缺点:a、后桥负荷重,使汽车具有过多转向的倾向,操纵性变坏; b、前轮附着力小,高速行驶时转向不稳定,影响操纵稳定性;c、行李箱在前部,空间不够大;d、操纵机构复杂; f 、驾驶员不易发现发动机故障;g、发动机工作噪声容易传给成员;h、改装变形困难。 2、按发动机的相对位置分,货车有哪几种布置型式,各自特点如何? 货车按照发动机位置不同,可分为发动机前置、中置和后置三种布置形式。 发动机前置后桥驱动货车主要优点:维修发动机方便;离合器、变速器等操纵机构简单;货箱地板高度低;可以采用直列发动机、V型发动机或卧式发动机;发现发动机故障容易。 主要缺点:如采用平头式驾驶室,而且发动机布置在前轴之上的中部,则驾驶室内部隔热、隔振等问题难以解决;如采用长头式驾驶室,为保证视野,驾驶员座椅须布置高些,这又影响整车和质心高度以及增加其他方面显而易见的缺点。 发动机中置后桥驱动货车:可以采用水平对置式发动机布置在货箱下方,因发动机通用性不好,需特殊设计,维修不便;离合器、变速器等操纵机构复杂;发动机距地面近,容易被车轮带动起来的泥土弄脏;受发动机位置影响,货箱地板高度高。目前这种布置形式的货车已不采用。 发动机后置后轮驱动货车:是由发动机后置后轮驱动的乘用车变型而来,所以极少采用。这种形式的货车主要缺点是后桥容易超载,操纵机构复杂;发现发动机故障和维修发动机都困难,以及发动机容易被泥土弄脏等。 3、大客车有哪几种布置型式,各自有什么优缺点? 客车有下列布置形式:发动机前置后桥驱动;发动机中置后桥驱动;发动机后置后桥驱动。 发动机前置后桥驱动布置方案的主要优点:动力总成操纵机构结构简单;散热器冷却效果好;冬季在散热器罩前部蒙以保护棉被,能改善发动机的保温条件;发动机出现故障时驾驶员容易发现。 主要缺点:车厢面积利用不好,布置座椅时受发动机限制;地板平面离地面较高,乘客上、下车不方便;传动轴长度长;发动机的噪声、气味和热量易于传入车厢内;隔绝发动机振动困难,影响乘坐舒适性;检修发动机必须在驾驶室内进行,检修工作舒适性差;如果乘客门布置在轴距内,使车身刚度削弱;若采用前开门布置,虽可改善车身刚度,但使前悬加长,同时可能使前轴超载。 发动机后置后桥驱动布置方案的主要优点:能较好地隔绝发动机的噪声、气味、热量;检修发动机方便;轴荷分配合理;同时由于后桥簧上质量与簧下质量之比增大,能改善车厢后部的乘坐舒适性;当发动机横置时,车厢面积利用较好,并且布置座椅受发动机影响较少;作为城市间客车使用时,能够在地板下部和客车全宽范围内设立体积很大的行李箱。作为市内用客车不需要行李箱,则可以降低地板高度;传动轴长度短。 主要缺点:发动机冷却条件不好,必须采用冷却效果强的散热器;动力总成操纵机构复杂;驾驶员不易发现发动机故障。

曹楠楠汽车-倒车防撞系统设计

单位代码:005 分类号:IN 大学创新学院 本科毕业论文(设计) 题目:汽车倒车防撞系统设计专业:电子信息工程 姓名:楠楠

学号:0903024119 指导教师:延宁 职称:教授 毕业时间:二零一三年六月

汽车倒车防撞系统设计 摘要:本次设计主要是以AT89S52单片机作为主体设计的汽车倒车防撞系统,这种智能的系统给汽车在倒车时提供较高的安全性。该系统利用了超声波不用接触就能进行测量距离的特点,系统主要包括超声波发射电路模块,超声波接受电路模块,液晶显示模块以及声光报警电路模块。超声波探头主要是进行超声波的发射和接受部分,液晶显示主要是显示障碍物与车之间的距离,在超出所设定的距离时,蜂鸣器报警,同时发光二极管亮,提醒驾驶员采相应的措施。提高汽车在倒车过程中的安全性,能很有效的减少交通事故。 关键词:AT89S52;超声波;测量距离;防撞

The Design about Collision Avoidance System of Revering Abstract:This design is mainly based on AT89S52 single chip microcomputer as the main design of the automobile back-draft anti-collision system, this system of intelligent car provides high security in reverse. The system uses ultrasonic without contact can characteristics of distance measurement, system mainly consists of ultrasonic transmitting circuit module, ultrasonic receiving circuit module, liquid crystal display module and an acousto-optic alarm circuit module. The ultrasonic probe is mainly the ultrasonic transmitting and receiving part, LCD display between the obstacle and the vehicle distance, beyond the set distance, the buzzer alarm, at the same time the bright light emitting diodes, to remind the driver to adopt the corresponding measures. Improve the safety car in reversing the process, can be very effective to reduce traffic accidents. KEY WORDS: AT89S52, ultrasonic, measuring the distance,collision avoidance

吉大2019-2020学年第一学期期末考试《汽车设计基础》大作业答案

吉林大学网络教育学院2019-2020学年第一学期期末考试《汽车设计基础》大作业 学生姓名专业 层次年级学号 学习中心成绩 年月日

作业完成要求:大作业要求学生手写,提供手写文档的清晰扫描图片,并将图片添加到word 文档内,最终wod文档上传平台,不允许学生提交其他格式文件(如JPG,RAR等非word 文档格式),如有雷同、抄袭成绩按不及格处理。 一、名词解释(每小题2分,共20分) 1、汽车总质量汽车总质量( G )是指汽车装备 齐全,并按规定装满客(包括驾驶员)、货时 的重量。 2、最小转弯直径最小转弯直径是指汽车转弯行 驶且方向盘转到极限位置时,汽车前外轮、 后内轮、最远点、最近点等分别形成的轨迹 圆直径。 3、汽车整备质量汽车的整备质量,亦即我们以 前惯称的“空车重量”。 指汽车载质量与整车整 4、汽车质量系数 m0 备质量的比值 5、轮胎负荷系数是一组标示轮胎的类型与规 格,标示在胎面侧方的数字或者英文字母, 主要显示轮胎的基本性能等。 6、轴荷分配轴荷分配(Distribution of Axle Load)是指汽车的质量分配到前后轴上的比 例,一般以百分比表示,它分为空载和满载 两组数据。它分为空载和满载两组数据。 7、汽车燃油经济性汽车经济性是指以最小的 燃油消耗量完成单位运输工作的能力。 8、离合器后备系数离合器后备系数是离合器 的重要参数,它反映离合器传递最大扭矩的 可靠程度。 9、扭转减震器的角刚度是指离合器从动片相 对于其从动盘毂转1rad所需的转矩值 10、变速器中心距变速器中心距由变速范围、 额定功率和外形尺寸等等因素而定。 二、简答题(每小题6分,共60分) 1、简述汽车新产品开发的流程。

各种汽车防撞系统

第三章汽车主动防撞系统的总体工程 3.1 各种汽车防撞系统的比较 对于车辆安全来说,最主要的判断依据是两车之间的相对距离和相对速度信息,当本车以较高的速度接近前方车辆时,如果两车之间的距离太近,很容易造成追尾事故。因此,常用的防装系统都将车辆之间的相对距离最为最主要检测任务。 汽车雷达按照其探测方向的不同,主要分为倒车雷达和前视雷达两种,汽车倒车雷达由于探测距离较短,一般运用超声波或红外探测两种方式构成,该项技术已经比较成熟,国内外已经有相应的产品。而相比较来说,在高速公路中由于车速快,要求防撞雷达探测距离要长,故高速公路的防撞系统要求较高。而且在恶劣天气情况下,如雨,雪,雾等天气,以及前方车辆尾部卷起的气沫灰尘所造成视野不良等情况时,防撞预警系统应向驾驶人员提供前方车辆和障碍物的距离,相对速度等信息;在危险临近的情况下,通过警报系统发出声光警报,在极度危险的情况下可以采取转向和制动措施,从而避免碰撞,追尾等事故的发生。 目前的高速公路防撞系统按工作方式分主要有激光,超声波,红外等一些测量方法,不同的方式工作过程和工作原理上有不同之处,但它们主要作用都是通过不同的测量方法判断前方车辆与本车辆的相对距离,并根据两车之间的危险性程度做出相应的预防措施。为了更好的了解各种系统的工作原理,下面对不同的探测方式进行详细的介绍。 2.4激光测距 激光测距仪是一种光子雷达系统,它具有测量时间短,量程大,精度高等优点,在许多领域得到了广泛应用。目前在汽车上应用较广的激光测距系统可以分为非成像式激光雷达和成像式雷达。 非成像式激光雷达根据激光束传播时间确定距离。激光束在传播路上遇到前车发生反射。测量从发射时刻到反射回到发射点经过的时间t,便可以计算出车距。其计算公式同超声波测距共识,不同的是速度v为光速,v=3×108m/s。 从高功率窄脉冲激光器发射出来的激光脉冲经发射物镜聚焦成一定形状的光束后,用扫描镜左右扫描,向空间发射,照射在前方车辆或者其他目标上,其反射光经扫描镜,接受物镜及回输光纤,被导入到信号处理装置内光电二极管,利用计算器计数激光二极管启动脉冲与光电二极管的接受脉冲间的时间差,即可求得目标距离。利用扫描镜系统中的位置探测器测定反射镜的角度即可测出目标的方位。 成像式激光雷达又可分为扫描成像激光雷达和非扫描成像激光雷达。扫描激光成像雷达把激光雷达同二维光学扫描镜结合起来,利用扫描器控制出射激光的方向,通过对整个现场进行逐点扫描测量,即可获得视场内目标目标的三维信息。但扫描成像激光雷达普遍纯在成像速度过慢的问题。这有待于软件,硬件的进一步改善。非扫描成像式激光雷达将光源发出的经过强度调制的激光经分束器系统分为多束光后沿不同方向射出。照射待测区域。被测物体表面散射的光经微通道图像增强板(MCP)混频输出后,由面阵CCD等二维成像器接收,CCD每个像元的输出信号提供了相应成像区的距离信息。利用信息融合技术即可重建三维图像。由于非扫描成像激光雷达测点数目大大减少,从而提高了三维成像速度。 在汽车测距系统中,非成像激光雷达更具有使用价值。同成像式激光雷达相比,具有造价低,速度快,稳定性高等特点。 由于激光雷达测距仪工作环境处于高速运动的车体重,震动大,对其稳定性,可靠性提出了较高的要求,其体积也受到了一定的限制,同时还要考虑省电,低价,对人眼安全等因素。这些决定了其光源只能采用半导体激光器。已处于使用阶段的激光雷达所需要的光学元件在市场上有售,价格比较高。目前,在汽车

汽车倒车防撞报警器的设计与实现

汽车倒车防撞报警器的设计与实现 摘要:倒车后视不良一直是困扰驾驶员,特别是新手的难题。倒车雷达能以声音或者更为直观的形式告知驾驶员周围障碍物的情况,帮助驾驶员扫除视野死角和消除视线模糊的缺陷,提高驾驶的安全性。本文详细介绍了一种基于AT89C51单片机的超声波脉冲测距的倒车防撞报警器的设计。该设计以超声波在空气中传播速度为确定条件,利用超声波的反射,测量距离。论文概述了超声测距的基本原理及超声传感器的特性,并在超声测距原理的基础上,提出了系统的总体构成,以蜂鸣器报警作为警告提醒,具有较强的实用性。 关键词:防撞超声波传感器距离方位控制系统 Reversing car collision avoidance alarm Design and Implementation Abstract: The back-draft back sight is not good always puzzles the pilot, specially novice's difficult problem.The back-draft radar can or a more direct-viewing form informs around the pilot by the sound the obstacle situation, helps the pilot to clean the field of vision dead angle and the elimination line of sight fuzzy flaw, enhances driving the security.This article introduced one kind in detail based on AT89C51 monolithic integrated circuit ultrasonic wave pulse range finder back-draft proximity warner design. This design take the ultrasonic wave in the air the propagation velocity as the determination condition, the use ultrasonic wave reflection, the survey distance.The paper has outlined the supersonic range finder basic principle and the supersonic sensor characteristic, and in the supersonic range finder principle foundation, proposed the system overall constitution, reports to the police by the buzzer took the warning reminder, has the strong usability. Key words: Anti-collision Ultrasonic sensor Distance Position Control system

专用汽车设计试卷

山东科技大学2011-2012学年第一学期 《专用汽车设计》考试试卷 一、判断题(每小题1分,共10分) 1.一般来讲,专用汽车的比功率大于家用轿车(×) 2.滚动阻力系数与汽车的速度没有关系(×) 3.大多数集装箱采用的是后门单开式开启方式(×) 4.压缩式垃圾车都可以自动装卸,不需人工干预(×) 5.同样工况下前置直推式自卸汽车的举升油缸比后置式直径大(×) 6.自卸汽车的最大举升角度必须小于货物的安息角(×) 7.栏板起重运输车的栏板运动采用的是四杆机构(√) 8.散装粮食运输车采用的是气力运输方式(√) 9.集装箱运输车属于特种结构汽车的范畴(√) 10.在充满液化石油气时不允许装满罐体(√) 二、单向选择题(每小题2分,共20分) 1.下列不属于箱式箱式货车的是(D) A.保温车 B.冷藏车C、运钞车D、禽畜运输车 2、专用车液压系统的取力最好在(A ) A、发动机端 B、离合器部分 C、传动轴 D、变速箱 3.下列不属于蔬菜的制冷方式(A) A、水冷 B、干冰 C、冷板 D、机械制冷 4、随车起重机装卸木材时采用的结构形式(A ) A、前置 B、中置 C、后置 5、专用汽车改装最多的部分是(D ) A、驾驶室 B、底盘 C、发动机 D、车厢 6.下列不属于粉粒物运输车的结构部件是(C ) A、多孔板 B、流态化元件 C、空气压缩机 D、螺旋叶片 7、下列不属于灌装汽车常用的封头形式是(A) A、方形 B、半球形 C、椭圆形 D、螺形 8.下列专用汽车肯定不需要液压支腿的是(B ) A、高空作业车 B、半挂车 C、随车起重机 D、混凝土搅拌车 9、高空作业车作业平台调平结构不常用的是(A) A、重力式 B、平行四杆式 C、行星齿轮方式 D、等容积液压缸 10、去掉货箱的底盘类型(A) A、一类底盘 B、二类底盘 C、三类底盘 D、四类底盘 三、简答题(每小题5分,共20分) 1、简述压缩式垃圾车的基本工作原理 答:压缩式垃圾车是装备有液压举升机构和尾部填塞器,能将垃圾自行装入、转运和倾卸的专用自卸汽车,主要用于收集、转运袋装生活垃圾。 压缩式垃圾车的专用工作装置主要由车厢和装载箱两部分组成。 工作原理:车厢固联于底盘车架上,装载厢位于车厢后端,其上角与车厢铰接,并可由举升液压缸驱动其绕铰接轴转动。垃圾从装载厢后部入口处装入,再经装载厢内的压缩机构进行压缩处理,最后将垃圾向前挤压入车厢内压实。车厢设有

相关主题
文本预览
相关文档 最新文档