当前位置:文档之家› 藻粉在水产饲料上的应用

藻粉在水产饲料上的应用

藻粉在水产饲料上的应用
藻粉在水产饲料上的应用

 万方数据

 万方数据

 万方数据

藻粉在水产饲料上的应用

作者:宋理平, 闫大伟, 沈晓芝

作者单位:宋理平(山东省淡水水产研究所), 闫大伟,沈晓芝(上海水产大学生命科学与技术学院)

刊名:

中国饲料

英文刊名:CHINA FEED

年,卷(期):2005(17)

被引用次数:2次

参考文献(16条)

1.蔡春芳;宋学宏;潘兴法几种抗病促生长剂对银鲫生长和免疫力的影响[期刊论文]-水利渔业 2002

2.操玉涛;刘立鹤;郑石轩螺旋藻添加量对凡纳对虾EPA和DHA含量的影响[期刊论文]-水利渔业 2004(05)

3.陈全霞;曾江宁;廖一波螺旋藻粉在鲍鱼配合饲料中的应用研究[期刊论文]-水产科技情报 2004(01)

4.刘华忠;刘定忠;姚茂忠螺旋藻对彭泽鲫生长性能的影响[期刊论文]-江西水产科技 2004(03)

5.刘树青;江晓路;牟海津免疫多糖对中国明对虾血清溶菌酶、磷酸酶和过氧化物酶的作用[期刊论文]-海洋与湖沼 1999(03)

6.牟海津;江晓路;刘树青免疫多糖对栉孔扇贝酸性磷酸酶,碱性磷酸酶和超氧化物歧化酶活性的影响 1999(03)

7.宁运旺;徐宝琪;黄怀成饲料中添加螺旋藻对中华鳖生长的影响[期刊论文]-淡水渔业 2000(04)

8.潘国英;王宁珠新的蛋白源-石莼藻粉在对虾饵料中的应用研究 1997

9.徐宗法;毕庶万;王际英饵料对稚幼参生长变色的影响 1999(01)

10.袁飞宇;杨小波;刘成红螺旋藻饲养锦鲤的研究[期刊论文]-水利渔业 2003

11.郑献昌;刘立鹤;徐焕新螺旋藻在南美白对虾饲料中最适添加量的研究[期刊论文]-内陆水产 2003(08)

12.周岐存;肖风波海藻在南美白对虾饲料中的应用研究[期刊论文]-海洋科学 2003(03)

13.周岐存;赵华超海藻在罗氏沼虾饲料中的应用研究[期刊论文]-饲料研究 2001(8)

14.Dalmo R A;Gwald J;Ingebrigtsen K The immunomodulatory effect of laminaran {β(1,3)-D-glucan} on Atlantic salmon,Salmo salar L.anterior kidney leucocytes after intraperitoneal,peroral and peranal administration[外文期刊] 1996(6)

15.Dalmo R A;Martinsen B;Horsberg T E Prophylactic effect ofβ (1,3) -D-glucan (laminarun) against experimental Aeromonas salmonicida and Vibro Sanmonicida infections[外文期刊] 1998(6)

16.Samuel M;Lam T J;Sin Y M Effect of laminaran {β(1,3)-D-glucan}on the protective immunity of blue gourami,Trichogasster trichopterus against Aeromonas hydrophila 1996

本文读者也读过(10条)

1.胡梦红.王有基二氢吡啶在水产饲料中的应用前景[期刊论文]-饲料博览2006(11)

2.和玉丹.邹君彪.袁金锋.王根虎海洋微藻在动物营养中的应用前景[期刊论文]-饲料研究2007(11)

3.陈焕铨生物活性添加剂在水产动物饲料中的应用效果[期刊论文]-水产科学2001,20(3)

4.余祖功.夏德全.吴婷婷.YU Zu-gong.XIA De-quan.WU Ting-ting盐酸半胱胺和二氢吡啶对奥利亚罗非鱼生长及相关激素水平、血液生化指标的影响[期刊论文]-南京农业大学学报2005,28(4)

5.葛凤杰.Ge Fengjie几种新型添加剂在水产饲料中的应用[期刊论文]-饲料工业2005,26(13)

6.李智红.贺帅.高洪东海藻饲料的研究现状[期刊论文]-中国动物保健2007(6)

7.周歧存.赵华超海藻在罗氏沼虾饲料中的应用研究[期刊论文]-饲料研究2001(8)

8.熊爱军.张石蕊.王建辉.黄冬云.高军二氢吡啶的生理功能及其在畜禽生产中的应用[期刊论文]-畜牧与饲料科学2010,31(4)

9.纪志有.彭晓芳.马金余.Ji Zhiyou.Peng Xiaofang.Ma Jinyu富含DHA微藻作为新型饲料添加剂在水产养殖业的应用[期刊论文]-饲料广角2010(19)

10.李柯懋水产饲料廉价蛋白源的开发利用研究概述[期刊论文]-中国水产2005(11)

引证文献(2条)

1.赵瑞祯石莼饲料对鲈鱼生长影响的研究[期刊论文]-饲料研究 2012(8)

2.王建平.王加启.卜登攀.霍小凯.郭同军.梁建光.王光文.袁耀明.李发弟热应激对奶牛影响的研究进展[期刊论文]-中国奶牛 2008(7)

本文链接:https://www.doczj.com/doc/c214714905.html,/Periodical_zgsl200517010.aspx

煤制烯烃技术大全

煤制烯烃技术大全 我国的能源结构是“富煤、缺油、少气”, 石油资源短缺已成为我国烯烃工业发展的主要瓶颈之一。国民经济的持续健康发展要求我国企业必须依托本国资源优势发展化工基础原料, 煤制烯烃技术是以煤炭替代石油生产甲醇, 进而再向乙烯、丙烯、聚烯烃等产业链下游方面发展。国际油价的节节攀升使MTO/MTP 项目的经济性更具竞争力。采用煤制烯烃技术代替石油制烯烃技术,可以减少我国对石油资源的过度依赖, 而且对推动贫油地区的工业发展及均衡合理利用我国资源都具有重要的意义。 技术进展 煤经甲醇制烯烃工艺主要由煤气化制合成气、合成气制取甲醇、甲醇制烯烃三项技术组成。煤经气化过程生成CO 和H2 ( 合成气) , 然后合成甲醇, 再借助类似催化裂化装置的流化床反应形式,生产低碳烯烃( 乙烯和丙烯) 。其中, 为满足经济规模甲醇制烯烃装置所需的大型煤气化技术、百万吨级甲醇生产技术均成熟可靠, 关键是甲醇制烯烃技术。目前, 世界上具备商业转让条件的甲醇制烯烃技术的有美国环球油品公司和挪威Hydro 公司共同开发的甲醇制低碳烯烃( MTO)工艺、德国Lurgi 公司的甲醇制丙烯( MTP) 工艺、中国科学院大连化学物理研究所的甲醇制低碳烯烃( DMTO) 工艺。这三种工艺虽然还没有工业化装置运行, 但经多年开发, 已具备工业化条件。

第一部分 MTO装置介绍 1.MTO装置主要组成部分 MTO装置可年处理180万吨甲醇,年生产60万吨烯烃产品。其以甲醇为原料,经过MTO反应单元,在催化剂作用下,生成多种烃类、水、和其它杂质,反应后物料进入急冷塔和水洗塔,裂解气中水在急冷塔和水洗塔脱除后,裂解气进入烯烃分离单元,裂解气在烯烃单元被进一步除去杂质,并经过冷却、精馏,分离出乙烯、丙烯、碳四、碳五、燃料气。其中液体产品进入烯烃罐区储存,燃料气进入瓦斯管网供各用户使用。MTO装置包括三部分,即甲醇制烯烃单元、烯烃分离单元和烯烃罐区。 2.MTO装置平面布置 MTO主装置位于煤制烯烃项目用地的东面,东邻第三循环水厂,西邻PP装置,北面为净水厂,占地面积390×200m2。烯烃罐区东邻第一循环水厂,北为MTO装置二期预留地,具体位置如下。 :

2016年水产饲料行业现状及发展趋势分析(精)

中国水产饲料行业发展监测分析与市场前 景预测报告(2016-2022年) 报告编号:1628738 行业市场研究属于企业战略研究范畴,作为当前应用最为广泛的咨询服务,其研究成果以报告形式呈现,通常包含以下内容:

一份专业的行业研究报告,注重指导企业或投资者了解该行业整体发展态势及经济运行状况,旨在为企业或投资者提供方向性的思路和参考。 一份有价值的行业研究报告,可以完成对行业系统、完整的调研分析工作,使决策者在阅读完行业研究报告后,能够清楚地了解该行业市场现状和发展前景趋势,确保了决策方向的正确性和科学性。 中国产业调研网https://www.doczj.com/doc/c214714905.html, 基于多年来对客户需求的深入了解,全面系统地研究了该行业市场现状及发展前景,注重信息的时效性,从而更好地把握市场变化和行业发展趋势。 一、基本信息 报告名称:中国水产饲料行业发展监测分析与市场前景预测报告(2016-2022年)报告编号:1628738 ←咨询时,请说明此编号。优惠价:¥7020 元可开具增值税专用发票 网上阅读: https://www.doczj.com/doc/c214714905.html,/R_NongLinMuYu/38/ShuiChanSiLiaoChanYeXianZhuangY

uFaZhanQianJing.html 温馨提示:如需英文、日文等其他语言版本,请与我们联系。 二、内容介绍 水产饲料种类繁多,从形状上来说可分为粉状饲料、软颗粒饲料、硬颗粒饲料和膨化饲料。从用途上说,有鲤鱼料、对虾料、甲鱼料等。 近年来,由于消费需求和养殖结构变化,我国饲料产品结构已发生较大变化,使我国的水产饲料产量年均增长率高达17%,远高于配合饲料8%的平均增速,猪料、禽料比例呈下降趋势。水产饲料业已成为饲料行业发展中的最大亮点。 我国水产饲料行业发展经历了三个阶段,第一阶段是20世纪80年代以前,饲料基本以天然饲料为主; 第二阶段从20世纪80年代到90年代末,中国水产饲料行业开始发展,技术和市场逐渐形成,饲料工业年产量跃居世界第二位; 第三阶段是2000年以后,行业政策日趋规范,市场集中化程度增强,创新成为企业制胜之道。 据中国产业调研网发布的中国水产饲料行业发展监测分析与市场前景预测报告(2016-2022年)显示,水产饲料是专门为水生动物养殖提供的饵料。按饲喂品种,水产饲料可分为鱼饲料、虾料和蟹料; 按饲料特点,可分为配合饲料、浓缩饲料和预混合饲料。水产饲料生产的原料主要由鱼粉、谷物原料和油脂构成,鱼粉和谷物原料往往占到饲料成本的50%以上。 中国水产饲料行业发展监测分析与市场前景预测报告(2016-2022年)是对水产饲料行业进行全面的阐述和论证,对研究过程中所获取的资料进行全面系统的整理和分析,通过图表、统计结果及文献资料,或以纵向的发展过程,或横向类别分析提出论点、分析论据,进行论证。中国水产饲料行业发展监测分析与市场前景预测报告(2016-202

饲料防霉剂的研究进展

饲料防霉剂的研究进展 简介:饲料霉变引起的饲料浪费是世界性难题,作为预防饲料霉变的措施之一即防霉剂的使用是非常重要的,目前饲料工业中化学防霉剂已被广泛采用,本文综述了饲料霉变的原因、危害、常用的饲料防霉剂及其作用机理。 饲料是发展畜禽业的物质基础,它不仅能为畜禽的正常生长发育供给营养,还能提高畜产品的产量和质量。在炎热多雨季节,饲料在储存和运输途中往往因水分含量过高而容易受到黄曲霉菌、灰曲霉菌、寄生曲霉菌、镰刀霉菌和赫曲霉菌等有毒真菌的感染而导致霉变,使饲料的适口性变差,动物采食量减少,从而导致动物的生产性能下降,严重者会导致动物中毒。在这种情况下,搞好饲料的保藏,防止饲料霉变和腐败已成为饲料生产中的一个重要环节。 一、饲料发生霉变的原因 1、霉菌的种类 能引起饲料霉变的霉菌主要有曲霉菌属、青霉属和镰刀菌属。其中曲霉菌属包括黄曲霉、白曲霉、寄生曲霉等;青霉菌属包括圆弧青霉、桔青霉、扩展青霉等;镰刀菌属包括禾谷镰刀菌、串珠镰刀菌、三线镰刀菌等。这些霉菌在适宜的环境条件下都可引起饲料霉变。 2、温度和湿度

霉菌的生长繁殖需要一定的温度和湿度。霉菌大多数属于中温型微生物,最适生长温度为20-30℃,霉菌繁殖产毒的最适温度为25-30℃,其中曲霉菌属最适宜生长温度为30℃,青霉属于最适宜生长温度为28℃左右,镰刀菌属最适宜生长温度为20℃左右。一般危害饲料的霉菌孢子在7℃时即可发芽生长,温度高于49℃时霉菌则被杀死或进入孢子阶段;当空气中相对湿度达到75%时霉菌就能生长,在80%-100%时快速生长,在湿度低于75%时生长受到抑制。 3、饲料的含水量 饲料的含水量是决定饲料中霉菌能否生长的一个重要 原因之一,当饲料中水分超过13%-14%时,易于霉菌生长,当饲料水分>15%时霉菌可大量生长繁殖,其毒素产生也相应增加,饲料水分为10%-18%时是真菌繁殖产毒的最适条件。饲料及原料的安全水分为:谷实类为14%,粉状饲料为≤13%,全价颗粒料为≤12.5%。 4、饲料的加工工艺 在生产颗粒饲料时,如果冷却器及配套风机选择不当,或使用过程中调整校核不当,致使颗粒饲料冷却不够或风量不足时,会导致颗粒饲料水分含量及料温过高,这样的颗粒饲料装袋后易发生霉变。另外,饲料在加工过程中如果饲料流程设备中没有及时清理,会在设备的一些死角积存发霉变质的料块,特别是在生产全价颗粒饲料过程中,当这些物块回流

水产饲料企业标准

Q/* *有限公司企业标准 Q/*03--2016 水产配合饲料 2016-1-10发布2016-1-20实施 *有限公司发布

前言 本标准是按GB/T1.1-2009《标准化工作导则》第一部分,标准的结构和编写编排:本标准代替了Q/*03-2015。 本标准与Q/*03-2015相比,主要技术变化如下: --产品的品种、型号的增删; 本标准由**有限公司提出。 本标准由**有限公司归口管理。 本标准由**有限公司负责起草。 本标准主要起草人:*。 本标准所代替标准历次版本发布情况为: --Q/*03-2015

水产配合饲料 1范围 本标准规定了水产饲料的定义、型号、产品名称及饲养阶段、技术要求、试验方法、检验规则、包装、标签、储存及运输、保质期。 本标准适用于本公司加工、销售的水产配合饲料。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 NY/T 117-1989 饲料用小麦 GB/T 19541- 2004 饲料用大豆粕 GB/T 23736-2009 饲料用菜籽粕 GB/T 21264-2007 饲料用棉籽粕 GB/T 19164- 2003 鱼粉 GB/T 5917.1- 2008 配合饲料粉碎粒度的测定两层筛筛分法 GB/T 5918- 2008 配合饲料混合均匀度的测定 GB/T 6432- 1994 饲料中粗蛋白测定方法 GB/T 6433- 2006 饲料中粗脂肪测定方法 GB/T 6434- 2006 饲料中粗纤维测定方法过滤法 GB/T 6435- 2006 饲料水分和其他挥发型物质含量的测定 GB/T 6437- 2002 饲料中总磷量的测定方法光度法 GB/T 6438- 2007 饲料中粗灰分的测定方法 GB/T 14699.1-2005 饲料采样 GB10648 饲料标签 GB13078 饲料卫生标准 GB/T 10647- 2008 饲料工业术语 GB/T 16764- 2006 配合饲料企业卫生规范 GB/T 16765- 1997 颗粒饲料通用技术条件 GB/T 18246- 2000 饲料中氨基酸的测定(蛋氨酸、赖氨酸) GB/T 18823- 2010 饲料检测结果判定的允许误差 GB/T 8946-2013 塑料编织袋通用技术要求 GB/T 8947-1998 复合塑料编织袋 JJF 1070 定量包装商品净含量计量检验规则 SC/T1077-2004 渔用配合饲料通用技术要求 农业部公告第168号饲料药物添加剂使用规范 农业部公告第176号禁止在饲料和动物饮用水使用的药品品种目录 农业部公告第193号食品动物禁用的兽药及其它化合物清单 农业部公告第1126号饲料添加剂品种目录 农业部公告第1773号饲料原料目录 农业部公告第1224号饲料添加剂安全使用规范 国家质量监督检验检疫总局令(2005)第75号定量包装商品计量监督管理办法

煤化工工艺-------煤制烯烃(MTO)煤制丙烯(MTP)技术的探讨与分析

煤化工工艺-------煤制烯烃(MTO)煤制丙烯(MTP)技术的探讨与分析 MTO及MTG的反应历程主反应为:2CH3OH→C2H4+2H2O 3CH3OH→C3H6+3H2O甲醇首先脱水为二甲醚(DME),形成的平衡混合物包括甲醇、二甲醚和水,然后转化为低碳烯烃,低碳烯烃通过氢转移、烷基化和缩聚反应生成烷烃、芳烃、环烷烃和较高级烯烃。甲醇在固体酸催化剂作用下脱水生成二甲醚,其中间体是质子化的表面甲氧基;低碳烯烃转化为烷烃、芳烃、环烷烃和较高级烯烃,其历程为通过带有氢转移反应的典型的正碳离子机理;二甲醚转化为低碳烯烃有多种机理论述,目前还没有统一认识。Mobil公司最初开发的MTO催化剂为ZSM-5,其乙烯收率仅为5%。改进后的工艺名称MTE,即甲醇转化为乙烯,最初为固定床反应器,后改为流化床反应器,乙烯和丙烯的选择性分别为45%和25%。UOP开发的以SAPO-34为活性组分的MTO-100催化剂,其乙烯选择性明显优于ZSM-5,使MTO工艺取得突破性进展。其乙烯和丙烯的选择性分别为43%~61.1%和27.4%~41.8%。从近期国外发表的专利看,MTO研究开发的重点仍是催化剂的改进,以提高低碳烯烃的选择性。将各种金属元素引入SAPO-34骨架上,得到称为MAPSO或ELPSO的分子筛,这是催化剂改型的重要手段之一。金属离子的引入会引起分子筛酸性及孔口大小的变化,孔口变小限制了大分子的扩散,有利于小分子烯烃选择性的提高,形成中等强度的酸中心,也将有利于烯烃的生成。 MTO工艺技术介绍 目前国外具有代表性的MTO工艺技术主要是:UOP/Hydro、ExxonMobil的技术,以及鲁奇(Lurgi)的MTP技术。ExxonMobil和UOP/Hydro的工艺流程区别不大,均采用流化床反应器,甲醇在反应器中反应,生成的产物经分离和提纯后得到乙烯、丙烯和轻质燃料等。目前UOP/Hydro工艺已在挪威国家石油公司的甲醇装置上进行运行,效果达到甲醇转化率99.8%,丙烯产率45%,乙烯产率34%,丁烯产率13%。鲁奇公司则专注由甲醇制单一丙烯新工艺的开发,采用中间冷却的绝热固定床反应器,使用南方化学公司提供的专用沸石催化剂,丙烯的选择率很高。据鲁奇公司称,日产1600吨丙烯生产装置的投资费用为1.8亿美元。有消息称,鲁奇公司甲醇制丙烯技术将首次实现规模化生产,其在伊朗投建10万吨/年丙烯装置,有望在2009年正式投产。从近期国外发表的专利看,MTO又做了一些新的改进。 1、以二甲醚(DME)作MTO中间步骤水或水蒸气对催化剂有一定危害性,减少水还可节省投资和生产成本,生产相同量的轻质烯烃产生的水,甲醇是二甲醚的两倍,所以装置设备尺寸可以减小,生产成本也可下降。 2、通过烯烃歧化途径灵活生产烯烃通过改变反应的温度可以调节乙烯丙烯的比例,但是温度提高会影响催化剂的寿命,而通过歧化反应可用乙烯和丁烯歧化来生产丙烯,也可以使丙烯歧化为乙烯和丁烯,不会影响催化剂的寿命,从而使产品分布更灵活。 3、以甲烷作反应稀释剂使用甲烷作稀释剂比用水或水蒸气作稀释剂可减少对催化剂的危害。 我国MTO工艺技术发展现状

水产饲料产业分析

水产饲料产业分析 最近联合国公开预测,今年(2011年)的10月底,全世界人口会达到70亿人,而2025年将达到80亿人。可以预估到2050年,将达到90亿人。人口的增加固然会带来社会生存压力,但也是产业创新和成长的推动力。以目前粮食生产勉强可以喂饱全人类的情况看来,科学家预测在2050年之前世界粮食会产生不足的现象。而这个匮乏的现象很可能会因为气候变迁、水资源缺乏以及生质能源需求的增加而变得更加严重。为应付这种匮乏,科学家们认为,在目前这个时机,世界各国应该努力应用科技来改善农业的产出。在建议的多项方案中,水产养殖科技也受到相当的重视。水产养殖会受到重视,除了因为世界有广大的海洋空间尚未开发,另外则因为水产鱼类的饲料效率比其他陆上动物高:根据联合国粮农组织(Food andAgriculture Organization,简称FAO)的资料,使用100公斤的饲料喂养动物,约可以得到的食用肉分别为:1.2公斤的牛或羊肉,13公斤猪肉,20公斤鸡肉,或65公斤鲑鱼肉;而且因为鱼肉含有丰富有益人体健康的不饱和脂肪酸(DHA、EPA等)而受到人们欢迎。目前世界各国对水产养殖产业都具有浓厚的兴趣。相对于欧美国家畜牧产业较发达,水产养殖产业则是则是亚洲国家的强项。2006年的数据显示,全世界水产养殖产量亚太国家(Asia and Pacific region)占89.5%以上,其中中国水产养殖产量占66.7%,是领先全球的水产养殖大国,欧洲水产养殖产量仅占世界产量的4.2%,而北美洲仅占1.2%。相较于禽畜产业的

产量在最近20年来的年成长率约为2.6%,水产养殖产业的产量在每年都以约9%的成长速率成长,是食品领域成长最快的一个区块。水产养殖产业在2008年产量为6千8百万吨,包括有水生植物(产量占23%,例如昆布、海苔、藻类等),软体动物类(产量占19%,牡蛎、鲍鱼、蛤类等),虾蟹类(产量占8 %,虾类、螃蟹等)、鱼类(产量占50%,鲤鱼、吴郭鱼、石斑鱼等)。其中只有鱼类和虾蟹类(占总产量58%,简称水产养殖鱼虾类)需要饲料喂食。最近10年来水产配合饲料(compound aquafeeds)产量的年成长率为10.9%和水产养殖鱼虾类的产量年成长率10.7%相当,显示饲料产业和水产养殖鱼虾产业是相辅相成,水产养殖鱼虾产业之所以能快速成长,水产饲料产业的发达有相当程度的贡献 在过去,鱼虾类养殖户大部分使用自制水产饲料(farm-made aquafeeds)来喂食鱼虾,虽然饲料成本比较便宜,但是消化率及嗜口性较差,往往会使用较多的投喂量,于是水池中饲料残留量堆积多,非但水质容易造成污染,养殖管理也较不易,往往非但没有达到经济效益,而且常污染水源而成为环保人士对水产养殖业的诟病。近年来由于水产饲料产业技术的进步,饲养效率提升,使许多养殖户纷纷改用工业生产的水产配合饲料,减去自行生产饲料的负担,养殖面积可以扩大,鱼虾产量也可以提升。根据FAO的资料,目前全世界使用的水产饲料,约仍有4050%是养殖户的自制饲料。在2008年,全世界的水产饲料产量约为6千万吨(其中约3千万吨是工业生产的水产配合饲料,另外3千万吨为自制饲料)。以年成长率10%计算,

水产饲料商业计划书

在养殖行业当中,所需要必备的肯定是饲料了,不管是什么物种的养殖,都是需要饲料进行养殖的,没有饲料就会缺乏后勤支援,让养殖搞不下去,而水产饲料也是一种非常重要的资源,水产饲料在饲料界有着很大的优势。 水产饲料是专门为水生动物养殖提供的饵料。按饲喂品种,水产饲料可分为鱼饲料、虾料和蟹料;按饲料特点,可分为配合饲料、浓缩饲料和预混合饲料。水产饲料生产的原料主要由鱼粉、谷物原料和油脂构成,鱼粉和谷物原料往往占到饲料成本的50%以上。 行业季节性特征明显,短期或受下游养殖业景气度下滑拖累:与畜禽养殖不同,水产养殖受季节性因素影响更为明显,由于鱼虾等绝大部分水生动物最佳生长动物在20-30摄氏度之间,因此每年5-10月是水产养殖最佳生长期,同时也是水产饲料销售旺季。此外,二、三季度水产饲料企业毛利率受益下游养殖需求回升与工厂开工率提升,环比改善趋势明显。 我国水产饲料发展趋势分析 由于水产饲料企业数目众多,布局分散,行业竞争激烈,一些具有竞争力的龙头企业通过收购扩大规模和改善区 域布局,如通威集团公司分别在长三角、珠三角、两湖等地有计划的开始了下一轮加速发展、扩张的布局、布点工作:在江苏连云港、贵州黔西、重庆长寿等地新建配合饲料项目,对苏州、扬州、淮安、沙市、南昌、广东、山东、廊坊等公司进行的技术改造、扩产项目先后开工;同时公司提速推进连云港、重庆长寿、贵州黔西、河南等新建饲料项目的建设,以及天津、苏州、沙市、南昌等公司的

扩产技改,积极开展对广东珠三角、粤北、广西等待建饲料项目的考察、选址工作。 【水产饲料项目融资商业计划书目录】 第一章中国水产饲料制造行业发展环境分析 第一节水产饲料制造行业及属性分析 一、行业定义 二、国民经济依赖性 三、经济类型属性 第二节经济发展环境 第三节政策发展环境 第四节社会发展环境

煤制烯烃简介

煤制烯烃项目简介 一、煤制烯烃 煤制烯烃简单来说可分为煤制甲醇、甲醇制烯烃这两个过程。主要有四个步骤:首先通过煤气化制合成气,然后将合成气净化,接着将净化合成气制成甲醇,甲醇在催化剂得作用下脱水生成二甲醚(DME),形成甲醇、二甲醚与水得平衡混合物,然后转化为低碳烯烃,烯烃经过聚合反应生产聚烯烃。 煤制烯烃主要指乙烯、丙烯及其聚合物、聚乙烯主要应用于粘合剂、农膜、电线与电缆、包装(食品软包装、拉伸膜、收缩膜、垃圾袋、手提袋、重型包装袋、挤出涂覆)、聚合物加工(旋转成型、注射成型、吹塑成型)等行业。 丙烯就是仅次于乙烯得一种重要有机石油化工基本原料,主要用于生产聚丙烯、苯酚、丙酮、丁醇、辛醇、丙烯腈、环氧丙烷、丙二醇、环氧氯丙烷、合成甘油、丙烯酸以及异丙醇等。 二、国外煤制烯烃技术 MTO就是国际上对甲醇制烯烃得统一叫法。最早提出煤基甲醇制烯烃工艺得就是美孚石油公司(Mobil),随后巴斯夫公司(BASF)、埃克森石油公司(Exxon)、环球石油公司(UOP)及海德鲁公司(Hydro)等相继投入开发,在很大程度上推进了MTO得工业化。1995年,UOP与挪威NorskHydro公司合作建成一套甲醇加工能力0.75 吨/天得示范装置,连续运转90天,甲醇转化率接近100%,乙烯与丙烯得碳基质量收率达到80%。1998年建成投产采用UOP/Hydro工艺得20万吨/年乙烯工业装置,截止2006年已实现50万吨/年乙烯装置得工业设计,并表示可对设计得50万吨/年大型乙烯装置做出承诺与保证、UOP/Hydro得MTO工艺可以在比较宽得范围内调整反应产物中C2与C3;烯烃得产出比,可根据市场需求生产适销对路得产品,以获取最大得收益。 惠生(南京)清洁能源股份有限公司甲醇制烯烃装置采用环球油品公司(UOP)得甲醇制烯烃(MTO)/烯烃裂化(OCP)技术,就是全球首套采用霍尼

大豆磷脂的功效与作用

大豆磷脂的功效与作用 大豆磷脂的功效和作用 延缓衰老功能 人体细胞的细胞膜主要是由卵磷脂构成的.人体补充卵磷脂可以修补被损伤的细胞膜,增加细胞膜的脂肪酸的不饱和度,改善膜的功能,使其软化和年轻化.这样就提高了人体的代谢能力,自愈能力和机体组织的再生能力,从而增强人体整体的生命活力,从根本上延缓人体的衰老,对人体衰老而引发的动作不协调等症有相当高程度的改善,保持人类的健康,年轻与活力. 调节血脂,降低胆固醇 引起动脉硬化的胆固醇是脂肪性的蜡状物质,如果胆固醇含量过高富积在动脉壁上,就会严重影响血液循环,是引起心,脑血管病的主要原因.卵磷脂具有显著降低胆固醇,甘油三酯,低密度脂蛋白的作用,这主要是因为卵磷脂的乳化作用影响了胆固醇与脂肪的运输与沉积,并能除去过剩的甘油三酯.因此,大豆卵磷脂可以有效降低过高的血脂和胆固醇,进而防治因其而引起的心脑血管疾病. 强化脑部功能 增强记忆力在脑神经细胞中卵磷脂的含量约占其质量的%-20%“乙酰胆碱”是大脑内的一种信息传导物质,“胆碱”是大豆卵磷脂的基本成分,卵磷脂的充分供应将保证有充分的胆碱与人体

内的“乙酰”合成为“乙酰胆碱”,从而为人脑提供充分的信息传导物质,进而提高脑细胞的活性化程度,提高记忆与智力水平. 防治糖尿病的作用 糖尿病是一种内分泌代谢性疾病,多数患者都存在脂肪代谢障碍,降血脂的方法除使用药物外,还可以选择大豆卵磷脂.大豆卵磷脂的降脂原理明确,效果可靠,没有副作用,并且还能改善细胞的功能,提高细胞的代谢能力,供给机体所需的能量. 大豆磷脂的作用机理 ①.对肝脏的作用机理:磷脂是构成细胞生物膜(细胞膜、核膜、线粒体膜)脂双层的基本骨架,也是构成各种脂蛋白的主要组成成分,因此磷脂是身体所必需的,俗称必需磷脂。大豆磷脂在体内能以完整的分子形式与受损的肝细胞膜结合,修复受损的肝细胞膜,促进肝细胞再生。大豆磷脂还能将肝中的脂肪带到血液中乳化成小微粒,大豆磷脂修复肝细胞膜和消化肝中脂肪的双重作用对脂肪肝的功效更为明显。 ②.对血管的作用机理:磷脂参与脂肪和胆固醇的运输。血浆中磷脂过低,则胆固醇/卵磷脂比值增大,出现胆固醇沉积引起动脉粥样硬化,故磷脂有抗高胆固醇血症的作用。如果每天服用大豆磷脂5-7克,连续2-4个月可明显降低胆固醇含量,缓解因高血脂引起的各种不适,对治疗高血脂、高胆固醇、动脉硬化具有显著的功效。 ③.对神经系统的作用机理:磷脂是组成大脑和神经细胞必不可少的成份。研究表明,精神异常的患者,脑细胞中磷脂含量仅为正常人的一半。服用大豆磷脂后,经过体内水解会生成胆碱、

饲料中防霉剂的添加方法及用量

饲料中防霉剂的添加方法及用量 在饲料中添加的化学防霉剂种类很多,可分为单方和复方两大类:1、单方防霉剂 单方防霉剂包括丙酸盐类、甲酸及甲酸钙、山梨酸、柠檬酸、马酸二甲酯以及大蒜素等。这些防霉添加剂具有破坏或阻断病原微生物的作用,但又不会阻碍消化道中正常有益菌群和酶的活动,有的还能改变饲料的口味和提高饲料的适口性。 2、复方防霉剂 为了提高防霉剂的防霉能力和综合品质,除了使用单方防霉剂以外,还经常使用复方防霉剂。复方防霉剂的广谱抗菌防霉能力更强,适用范围更宽,经常使用的复方防霉剂有: 用92%海藻物、4%碘酸钙、4%丙酸钙组成,使用时按8%的比例添加到饲料中。这种防霉剂除了防霉效果好以外,最大特点是增加了海藻物中各种微量元素,如钙、铁、锌、碘、铜等,使饲料中的微量元素更丰富。 用1份醋酸钠和2份醛酸混合均匀,然后在混合物中加入1%的山梨酸,充分搅拌并干燥即可,使用时按1%的比例加入到饲料中。 添加量 1、苯甲酸和苯甲酸钠:苯甲酸和苯甲酸钠都能非选择性地抑制微生物细胞呼吸酶的活性,使微生物的代谢受障碍,从而有效地抑制多种微生物的生长和繁殖,且对动物的生长和繁殖均无不良影响。在饲料中主要使用苯甲酸钠,一般的使用量不超过0.1%。 2、富马酸及其酯类:富马酸酯类包括富马酸二甲酯、富马酸二乙酯和富马酸二丁酯等,其中防霉效果较好的为富马酸二甲酯。富马酸及其酯类也是酸性防霉剂,抗菌谱较广,并可改善饲料的味道以及提高饲料利用率,一般使用量在0.2%左右。 3、脱氢乙酸:脱氢乙酸是一种高效广谱抗菌剂,具有较强的抑制细菌、霉菌及酵母菌发育作用,尤其对霉菌的作用最强,在酸、碱等条件下均具有一定的抗菌作用。脱氢乙酸是一种低毒防霉剂,一般无不良影响,使用量为0.05%左右。 注意事项 1、根据水分含量等实际情况灵活使用防霉剂:影响防霉剂作用效果的因素有很多,如防霉剂的溶解度、饲料环境的酸碱度、水分含量、温度、饲料中糖和盐类的含量、饲料污染程度等。但饲料中使用防霉剂主要是根据季节和水分含量来决定是否使用和用量。因

2017年特种水产饲料行业分析报告

2017年特种水产饲料行业分析报告 2017年5月

目录 一、特种水产养殖量逐年上升 (5) 1、全球水产产量增速稳定,国内贡献主要增量 (7) 2、特种水产增速高于全国水产平均增速 (7) 8 3、中国渔业经济空间巨大 .................................................................................... 二、消费升级,特种水产需求快速提升 (9) 三、供给收缩,水产价格底部反弹,17年行情有望延续 (12) 1、最严格、最长休渔期助推价格进一步上涨 (13) 2、禁渔期以来海水产品价格上涨明显,水产饲料直接受益 (14) 四、特种水产地域分布及养殖方式 (16) 五、普及率低,特种水产饲料行业前景广阔 (18) 1、特种水产饲料增速超过行业平均增速 (19) 2、水产养殖方式转变,为水产饲料释放巨大的需求空间 (20) 3、食品安全意识增强,养殖环节受到关注 (21) 21 4、饲料供给缺口明显 .......................................................................................... 5、特种水产种苗早期配合饲料前景广阔 (22) 23六、特种水产饲料成本分析 .................................................................. 27七、行业竞争情况 ..................................................................................

煤制烯烃成本分析

煤制烯烃成本分析 煤制烯烃和石脑油裂解制烯烃技术路线相比较,在经济上的竞争力的先决条件是:项目须在煤炭基地坑口建设,以自产廉价煤炭为原料,通过经济型的大规模装置生产低成本的甲醇,再由该甲醇制烯烃。前几年专家测算,原油价格在35~40美元/桶时,煤制烯烃即有市场竞争力(中国煤没有涨价前)。现在原油已经回落到50美/桶左右,相对于高油价时期煤制烯烃的竞争力缩小。UOP公司公开发表的文献介绍,当原料甲醇价格控制在90~100美元/吨时,采用MTO工艺制取的乙烯和丙烯成本与20~22美元/桶原油价格条件下石脑油裂解制烯烃的成本相比具备经济竞争力,在目前油价背景下,煤制烯烃工艺路线的经济性不言而喻。 1.成本分析 MTO(或DHTO)及MTP工艺均属催化反应合成工艺。一般的裂解工艺每产1吨当量烯烃约需3吨石脑油,目前国内石脑油价格为4500元/吨左右,而MTP(或DMTO)及MTP对甲醇的消耗量也大约为3吨,煤基甲醇的完成成本(坑口媒价)一般在1500~2000元/吨左右,如以60万吨/年大型装置测算,价格更低。说明煤基低碳烯烃在我国的发展已具备了十分重要的战略优势。 2.神华集团煤制油有限公司经济性测算 根据神华集团煤制油有限公司所作的研究表明(2007年):神华集团原料煤价格在100元/吨左右,煤制甲醇的规模达到100万吨/年以上时,可以将甲醇的完全生产成本控制在100美元/吨以下。对以煤为原料(采用美国环球油品公司的MTO 工艺)与以石脑油为原料制取的聚乙烯、聚丙烯成本进行测算和比较表明,煤路线(煤价100元/吨)制取的聚烯烃成本比石脑油路线(石脑油价格22美元/桶)低400元/吨左右。此外,煤路线制烯烃的成本中原料煤所占的比例小于20%,煤价的波动对经济性影响较小。 3.中科院大连化物所经济性分析 中国中科院大连化物所甲醇制烯烃DMTO技术工业化试验结果是,甲醇转化率接近100%;2.95吨甲醇产1吨烯烃,其中50%乙烯、50%丙烯。由于每2.0吨煤即可生产1吨甲醇,所以,原料加燃料需7.5吨煤生产1吨烯烃。中科院大连化物所试验室人员对两种化工路线的经济性作了比较:当国际原油价格为35美元/桶时,原油炼制石脑油所生产的烯烃成本是5300元/吨。走煤制烯烃路线的话,除非煤价超过513元/吨,否则煤制烯烃的成本不会超过5300元/吨。目前,北方的煤炭开采成

复合大豆磷脂粉的生产工艺及在饲料中的应用

复合大豆磷脂粉的生产工艺及在饲料中的应用 在国内,早期用于饲料加工业的磷脂产品主要为浓缩磷脂(也称磷脂油)。此类产品因未标准化,产品的磷脂含量不一,粘度范围较宽。磷脂含量高,粘度大,流动性差,不易于泵送和喷涂添加;磷脂含量过低,粘度虽小,但产品易分层,影响使用性能,而且会使饲料中的磷脂含量降低,不能充分发挥磷脂的营养生理效能。对于油脂加工企业来讲,生产过稀的磷脂产品,等于无形中浪费大量的油,现时很不经济,因此在生产过程中均尽量提出其中的油脂成分。这样一来,饲料加工企业只好采用人工加料或加油稀释的方式添加磷脂,有的企业因费时费力不好添加等各种原因而不使用,从而限制了浓缩磷脂在饲料中的应用。尽管脱油(粉状)磷脂产品在添加性能和营养生理作用方面具有优势,但因价格昂贵,难以广泛使用,只限用于某些特种饲料的加工。对于液体改性磷脂,虽然在磷脂粘度方面有所改进,提高了产品的流动性,但也存在产品性价比问题以及需要有油脂喷涂设备,因此也局限于某些饲料的加工及一些大中型饲料厂的使用。在这种背景下,一种以营养型载体吸附浓缩磷脂制成流动性好、易于添加使用的复合磷脂粉便应运而生。目前国内市场供应的这种复合磷脂粉主要是以膨化玉米、膨化豆粕作为吸附载体的。 大豆磷脂在资源可利用性、产品可加工性,生理营养功能和产品品质特性方面要优越于其他植物性磷脂。这也是目前国内外广泛开发利用大豆磷脂的原因所在。大豆磷脂、玉米、豆粕等均属天然制品,因此,作为“天然饲料”,复合大豆磷脂粉具有极大的应用价值。 1·磷脂的商品价值 来源于动植物油脂的磷脂,其分子结构与天然油脂相似,同属甘油酯类,故具有油脂的一般营养特性。从营养性质来看,磷脂和油脂一样,能提供甘油和脂肪酸等成分,此外还提供磷酸、胆碱和肌醇等成分,并具有水溶性维生素的某些性质。在能量方面,由于磷脂分子中有磷酸和胆碱等存在,略低于油脂。就必需脂肪酸含量而言,植物性磷脂要优于动物性磷脂(见表1)。

中国水产饲料市场全景调查与发展前景研究报告

2011-2015年中国水产饲料市场全景调查与发展前景研究报告 近年来,水产饲料行业一直保持着良好的发展势头,并已一跃成为我国饲料工业中发展最快、效益最好、潜力最大的产业,其直接原因是国内水产养殖业一直持续增长。众所周知,中国是目前世界上最大的水产品养殖国,同时也是目前世界上唯一一个养殖产量超过捕捞产量的国家,据权威资料显示,由于消费需求和养殖结构的变化,我国饲料产品结构已发生较大变化。 中国产业信息网发布的《2011-2015年中国水产饲料市场全景调查与发展前景研究报告》共十五章。首先介绍了世界水产饲料制造行业运行态势、中国水产饲料制造行业市场运行环境等,接着分析了中国水产饲料产业运行的现状,然后介绍了中国水产饲料制造行业竞争格局。随后,报告对中国水产饲料制造做了重点企业经营状况分析,最后分析了中国水产饲料制造行业前景展望与投资预测。您若想对水产饲料产业有个系统的了解或者想投资水产饲料行业,本报告是您不可或缺的重要工具。 本研究报告数据主要采用国家统计数据,海关总署,问卷调查数据,商务部采集数据等数据库。其中宏观经济数据主要来自国家统计局,部分行业统计数据主要来自国家统计局及市场调研数据,企业数据主要来自于国家统计局规模企业统计数据库及证券交易所等,价格数据主要来自于各类市场监测数据库。 第一章2011年世界水产饲料制造行业运行态势分析 第一节2011年世界水产饲料产业运行环境分析 一、世界水产养殖业现状分析

二、全球水产品消费与日俱增 三、全球饲料工业运行分析 第二节2011年世界水产饲料产业运行透析 一、世界水产饲料业亮点分析 二、世界水产饲料业市场供需分析 三、世界水产饲料研究新进展 四、世界水产饲料市场动态分析 第三节2011年世界水产饲料部分国家及地区市场分析 一、亚洲水产饲料 二、欧洲水产饲料 三、美国水产饲料 四、其它国家 第四节2011-2015年世界水产饲料发展趋势分析 第二章2011年中国水产饲料制造行业市场运行环境分析 第一节2010年中国宏观经济环境分析 一、GDP历史变动轨迹分析 二、固定资产投资历史变动轨迹分析 三、2011年中国宏观经济发展预测分析 第二节2011年中国水产饲料制造行业政策环境分析 一、《饲料中真蛋白的测定》国家标准通过专家预审 二、《饲料和饲料添加剂管理条例》 三、《饲料添加剂和添加剂预混合饲料生产许可证管理办法》 四、《水产品专项整治行动实施方案》 第三节2011年中国水产饲料制造行业技术环境分析 一、挤压膨化加工技术 二、水产饲料微粉碎技术 三、水产颗粒配合饲料技术 第四节2011年中国水产饲料制造行业社会环境分析

煤制烯烃典型工艺路线

煤制烯烃典型工艺路线 国内煤制烯烃企业不断增多,尽管源头都是煤,但在生产工艺和终极产品方面有所不同。下面以神华包头、延长中煤、宁波富德企业为例,对目前已有的工艺路线和产品情况做简单介绍。 国内煤制烯烃企业不断增多,尽管源头都是煤,但在生产工艺和终极产品方面有所不同。下面以神华包头、延长中煤、宁波富德企业为例,对目前已有的工艺路线和产品情况做简单介绍。 神华包头是典型的煤制烯烃企业的代表,如图1,终端产品以乙烯、丙烯为主,最后聚合而成PP、PE。目前宁煤、大唐、中煤榆林等企业都是采用此工艺路线. 延长中煤榆林能源化工(简称榆能化)是世界首套煤、气、油综合利用项目。该项目主要分两部分,一部分是以煤和天然气联合制甲醇,而天然气供应则主要来自于油田回收天然气和煤层气,这种技术路线能耗物耗较低,且二氧化碳排放量较纯煤头的少。甲醇年产能180万吨,烯烃产能60万吨(大约乙烯、丙烯各30万吨),为PP、PE各一条线提供原料,如图2。

同时榆能化还建设了另一套装置,即150万吨/年渣油催化热裂解(DCC),所需要的原料是常压渣油,终端产品包括乙烯、丙烯,为PP、PE的另两条线提供原料,如图3。 综合看,榆能化在烯烃供应方面是分两条腿走路,煤、天然气路线和油路线可独立运行,灵活保证PP、PE共4条线的原料供应。宁波富德能源有限公司是典型的外购甲醇制烯烃企业的代表,如图4。理论上甲醇的加工能力也是180万吨,生产60万吨的烯烃,包括30万吨丙烯。但和神华包头不同,他们在终端产品方面是最大限度的生产丙烯,因此增加了一套OCU(烯烃转化)装置,利用乙烯和丁烯再生产丙烯,大约增产丙烯9万吨,因此富德PP的产能约达到40万吨/年。利用剩余乙烯生产环氧乙烷,最终产品是乙二醇。

大豆磷脂粉

大豆磷脂粉 本品采用优质大豆浓缩磷脂和优质膨化玉米粉为主要原料精制而成。产品外观为黄色、粉状(20-30目),有特殊磷脂香味,纯天然、无任何毒性及有害物,富含多种营养成分,广泛应用于大中型饲料厂、养殖场。 一、产品特点: 1.用于替代饲料中的动、植物性油脂,储存使用方便简易。 2.显著提高断奶仔猪对脂肪的消化率及脂溶性维生素和其他营养成分的吸收,从而消除因消化不良而导致的腹泻;提高家禽等动物的饲料报酬,有效提高抗病能力。 3.显著提高家禽产蛋性能,延长产蛋高峰期。 4.显著促进肉鸡生长,增加蛋白质沉淀,降低腹脂。 5.促进鱼类对脂肪的吸收转换,加强蛋白质沉淀,提高成活率和生长速度,显著减少肝胆肿大等常见鱼类疾病。 6.极大改善饲料适口性,降低饲料加工过程中的粉尘损耗和机械设备磨损,有效提高生产能力。

二、质量指标: 1.感观:呈黄棕色粉末状,有一定粘性,具有膨化玉米、大豆磷脂油特有气味。 2.理化指标:粗脂肪(%)≥50;粗蛋白(%)≥8;酸价(mgKOH/g)≤20;水分(%)≤8% 三、产品应用范围: 广泛应用于饲料加工厂和养殖场。用于替代油脂(如豆油、猪油等),提高饲料品种和生产效率,降低饲料成本。 四、推荐用量: 水产:1-2%;乳仔猪:2-6%;生长肥育猪:2-5%;哺乳母猪:1-5%;家禽:1-5% 五、包装:编制袋包装,40KG/包。 六、产品贮存:存放于阴凉、干燥、通风处,避免阳光直晒。 七、保质期:9个月 八、使用方法: 按一定比例直接添加于饲料中并充分混合均匀。

大豆磷脂不仅是能量饲料替代品,取代动物源饲料原料,使饲料产品达到绿色环保,并且因是植物提取物,分子链短,易吸收,转化快,转化率高。同时磷脂还具有独特的免疫功能: (1)磷脂是肝脏向外转运脂肪所需载脂蛋白必不可少的物质,还可增加载脂蛋白的脂肪运输力,减轻脂肪沉积从而防治脂肪肝,保护肝脏,提高肝脏的解毒功能。 (2)其乳化作用有助于脂肪的消化、吸收、转运,还能修复肝细胞,促进肝细胞再生,添加磷脂后,动物的肝脏明显增大。 (3)很好的提供动物的免疫系统活力,使巨噬细胞应激性增加,促进T淋巴细胞的增殖,从而提高免疫力,增加抗应激能力和抗病力。 (4)有效巩固呼吸道粘膜的完整性,增强抵抗呼吸道的能力。(5)可提高断奶仔猪对脂肪的消化率及脂溶性维生素和其他营养成分的吸收,从而消除因消化不良而导致的腹泻。 二、质量指标

饲料防霉剂及其应用

饲料防霉剂及其应用 饲料霉变引起的饲料浪费是世界性难题。农作物在田间、收获、加工、储存过程中都可感染霉菌。霉菌不是一个分类学上的名称,凡是在基质上长成绒毛状、棉絮状或蜘蛛网状的菌丝体的真菌,统称为霉菌。因其种类繁多(一般泛指毛霉、根霉、毛壳霉、曲霉、青霉和镰刀霉菌属等真菌〕、生长性强(温度在-5~60℃,相对湿度80%以上都可以生长)繁殖力强等,给饲料的贮存带来了诸多不利。作为预防霉变的重要措施之一,防霉剂的使用是非常重要的。但目前市场上防霉剂种类繁多,适用范围及防霉效果不尽相同,如使用不当还会引起中毒现象,如何选用合适的防霉剂是在实际生产中值得重视的问题,本文旨在探讨对各种防霉剂的应用及其机理,以供广大饲料工作参考。 1常用防霉剂及作用机理 联合国FAO/WHO对防霉剂有严格的要求:①防霉剂添加应很小,无毒性和无刺激性;②能溶解达到有效浓度;③性质稳定、贮存时不发生变化、也不与饲料或其它成分起反应;④无异味、臭味;⑤有较广的抑菌谱。具备以上各点才是较为优良的防霉剂。目前常用的防霉剂主要为有机酸、有机酸盐类及有机酸或有机酸盐与特殊的载体结合制成的复合防霉剂。 1.l丙酸 丙酸为无色液体,具有挥发性。带有乙醇味,是应用最早、最广的防霉剂之一。目前市场上用的露保丝、万路保、克霉霸及诗华抗霉素等主要成分均为丙酸。丙酸的防霉机理目前公认的有两个:①非离解的丙酸活性分子在霉菌细胞外形成高渗透压,使霉菌细胞内脱水,而失去繁殖能力;②丙酸活性分子可穿透霉菌细胞壁,抑制细胞内的酶活性,而阻止霉菌的繁殖。丙酸作为挥发性液体,在饲料贮存中可挥发产生丙酸气体,与饲料表面充分接触,因此抑菌均匀,效果好。对饲料混合均匀度要求不高,有效用量低,见效快。对好气性芽孢杆菌、黄曲霉有较好的抑制作用。缺点是,热稳定性不好,80℃制粒过程中挥发量达40%,用于制粒时损失大;在贮存过程中损失快,药效持力短,不利于长期保存;易受饲料中钙盐或蛋白质的中和,而失去活性。因此,要求即时起作用,防霉时间不需要太长时,丙酸是较好的防霉剂。1.2丙酸盐 丙酸盐为白色颗粒或粉末,无臭或稍有异臭味,溶于水。我国生产的克霉灵、除霉净、霉敌、101等主要成分为丙酸盐类。丙酸盐的有效作用成分是丙酸分子而非丙酸盐类。丙酸盐释放丙酸分子受饲料中水分和pH值的影响,pH=7时丙酸盐溶于水,游离出丙酸分子仅为0.8%,pH=4.9游离酸含量为50%。因此丙酸盐的防霉效果不如丙酸。而且丙酸盐离解后形成弱碱性,阻碍进一步离解。饲料pH值调节必须依靠外来酸。丙酸盐的抑霉菌作用取决于丙酸的效果。从以上特点可知丙酸盐的抑菌效果不如丙酸,不具有熏蒸作用,对饲料混合均匀度要求高;用量大,并因此影响适口性;对饲料含水分、pH值要求严格,且不能即时起作用。丙酸盐的优点是,不挥发、耐高温,不受饲料中成分影响,腐蚀性低,刺激性小,且适合持续贮存。 1.3山梨酸及其盐 山梨酸又名2,4一己二酸,为化学合成品,白色结晶粉末或无色针状结晶,无臭或少有刺激性气味,溶于水,其盐为无色或白色鳞片结晶或白色结晶粉末,在空气中易受潮分解不稳定,一般应用较少。而山梨酸却和丙酸一样是目前最常用的防霉剂。山梨酸及其盐的作用机制为山梨酸与微生物酶系统中的巯基结合,而破坏酶系统达到抑菌目的(汪锦邦,1985)。另外,Paster等(1987)认为山梨酸还可在饲料表面形成一均匀的有机酸保护膜,阻止霉菌进入内层。山梨酸的优点是,防霉效果好,对霉菌、酵母菌、好气性细菌均有抑制作用,毒性小、价格低。缺点是防霉效果受pH值的影响,pH值大于7.5时,几乎无抑菌作用;对乳酸菌几乎无效;在水中易氧化,在塑料容器中其活性会降低。 1.4苯甲酸及其盐 为无色或白色针状或鳞片状结晶,稍溶于水。是目前使用量最大的防霉剂之一。添加量一般为0.1%~0.3%。有效成分为非离解态的苯甲酸活性分子。作用机理为完整的苯甲酸活性分子穿过霉菌细胞壁,抑制细胞内呼吸酶的活性及阻碍乙酰辅酶的缩合反应,使三羧酸循环受阻,代谢受影响。并可阻碍

水产饲料企业如何选择优质的水产预混料

水产饲料企业如何选择优质的水产预混 料 https://www.doczj.com/doc/c214714905.html, 2010年05月07日09:06 水产前沿 生意社05月07日讯 面对市面上琳琅满目的水产预混料产品,没有国家规定的含量标准,各行其是的标签上的含量指标,还有模糊不清的功能性成分,作为水产饲料企业,应该如何 进行选择和判断 预混料是水产饲料中必不可少的一种原料,在欧洲等成熟市场,水产预混料作为一个打包的大原料,被饲料生产企业广泛接受。即使在中国,水产预混料外包的趋势也是越来越明显。面对市面上琳琅满目的水产预混料产品,没有国家规定的含量标准,各行其是的标签上的含量指标,还有模糊不清的功能性成分,作为水产饲料企业,应该如何进行选择和判断? 1、分析标签的规范性 标签的规范性很大程度上显示了企业的规范性和对自身产品的理解。预混料产品的标签上标识的产品含量,可以作为产品合格与否最终仲裁的依据,而且根据饲料标签的国标要求,需要在标签上标识全部微量元素及维生素和其他有效成分含量。比如我们常见的“泛酸”应该是以“D-泛酸”标识,而不能以“泛酸”或者“D-泛酸钙”等标识。因为泛酸有旋光性,不同旋光性的生物学活性不同,而且“D-泛酸钙”是D-泛酸的钙盐,商品中“D-泛酸钙”的含量是98%,而“D-泛酸”的含量是90%,如果使用商品含量来代替纯品含量,那么实际的成分含量会达不到配方设计的要求。将商品含量当作纯品含量来计算,在预混料生产中却是非常常见。分析标签的规范性,是对预混料进行判断和识别的第一步。 2、分析配方的合理性 水产动物品种繁多,加之养殖条件难以控制,导致对维生素和矿物质的需要量的基础研究相对较少,而且即使是同一个养殖品种,不同的研究机构所做出的研究结果也会有比较大的差别。但是这并不代表水产动物对维生素和微量元素的需要量没有规律可循。如果将研究文献中对维生素和矿物质需要量的研究结果归类统计,就可以发现其实每种元素的需要量大致都有一个范围。其实畜禽对维生素的需要量也存在一个范围,只是相对于水产动物而言,变化的范围更小而已。水产动物对维生素和矿物质的需要量也有一个合理的范围,例如普通的淡水鱼对维生素A(VA)的需要量范围在4000-8000IU/kg饲料左右,对维生素K3的需要量在3-10ppm左右。除了每种维生素应用的范围之外,水产动物对维生素和矿物质的需要量也有一些基本的规律,如对维生素E(VE)的需要量会随着饲料中脂肪的含量增加而增加,对维生素B6的需要量会随着饲料中蛋白质的含量增加而增加等等。将预混料配方用Excel软件录入,根据添加量规范为每千克饲料中维

相关主题
文本预览
相关文档 最新文档