当前位置:文档之家› 离散数学05一阶逻辑等值演算与推理

离散数学05一阶逻辑等值演算与推理

离散数学结构 第3章 命题逻辑的推理理论复习

第3章命题逻辑的推理理论 主要内容 1. 推理的形式结构: ①推理的前提 ②推理的结论 ③推理正确 ④有效结论 2. 判断推理是否正确的方法: ①真值表法 ②等值演算法 ③主析取范式法 3. 对于正确的推理,在自然推理系统P中构造证明 4. ①自然推理系统P的定义 ②自然推理系统P的推理规则: 前提引入规则、结论引入规则、置换规则、假言推理规则、附加规则、化简规则、拒取式规则、假言三段式规则、构造性二难规则、合取引入规则。 ③附加前提证明法 ④归谬法 学习要求 1. 理解并记住推理的形式结构的三种等价形式,即 ①{A1,A2,…,A k}├B ②A1∧A2∧…∧A k→B ③前提与结论分开写: 前提:A1,A2,…,A k 结论:B 在判断推理是否正确时,用②;在P系统中构造证明时用③。 2. 熟练掌握判断推理是否正确的三种方法(真值表法,等值演算法,主析取范式法)。 3. 牢记P系统中的各条推理规则。 4. 对于给定的正确推理,要求在P系统中给出严谨的证明序列。 5. 会用附加前提证明法和归谬法。 3.1 推理的形式结构 定义3.1设A1,A2,…,A k和B都是命题公式,若对于A1,A2,…,A k和B中出现的命题变项的任意一组赋值,或者A1∧A2∧…∧A k为假,或者当A1∧A2∧…∧A k为真时,B也为真,则称由前提A1,A2,…,A k推出B的推理是有效的或正确的,并称B是有效结论。

二、有效推理的等价定理 定理3.1命题公式A1,A2,…,A k推B的推理正确当且仅当 (A1∧A2∧…∧A k )→B 为重言式。 A k为假,或者A1∧A2∧…∧A k和B同时为真,这正符合定义3.1中推理正确的定义。 由此定理知,推理形式: 前提:A1,A2,…,A k 结论:B 是有效的当且仅当(A1∧A2∧…∧A k)→B为重言式。(A1∧A2∧…∧A k)→B称为上述推理的形式结构。从而推理的有效性等价于它的形式结构为永真式。于是,推理正确 {A1,A2,…,A k} B 可记为 A1∧A2∧…∧A k B 其中同一样是一种元语言符号,用来表示蕴涵式为重言式。 而判断命题公式永真性有三个方法: 1.真值表法 2.等值演算法 3.主析取范式法 三、重言蕴涵式 由上一个小节可以看出:形如A→B的重言式在推理中十分重要。

清华大学2006数学分析真题参考答案

清华大学2006数学分析真题参考答案 1.若数列{}n x 满足条件11221n n n n x x x x x x M ----+-++-≤g g g 则称{}n x 为有界变差数列,证:令10y =,11221n n n n n y x x x x x x ---=-+-++-g g g (n=2,3,….) 那么{}n y 单调递增,由条件知{}n y 有界, {}n y ∴收敛 ,从而0,0N ε?>?>,使当n m N >>时,有 n m y y ε-<,此即:11211n n n n m m x x x x x x ε---+--+-++-,考虑1()f x 和 3()f x 。 (i)若()132()()()f x f x f x <<,由于()f x 在12[,]x x 上连续,由介值定理,必存在 412[,]x x x ∈,使43()()f x f x =,定与一一映射矛盾。 (ii) ()312()()()f x f x f x <<,这时考虑23[,]x x ,必存在523[,]x x x ∈使得 51()()f x f x =,也得到矛盾。 (2)若存在123,,x x x I ∈且123x x x <<,123()()()f x f x f x ><。由介值定理,存在 412[,]x x x ∈,523[,]x x x ∈,使得42()()f x f x =,也与一一映射矛盾。 ∴f(x)在I 必严格单调。 3.证:设()f x 在(,)a b 内两个不同实根为12x x <,即12()()0f x f x ==。 由罗尔定理,存在12(,)c x x ∈,使()0f c '= (1) 因为()0f x ≥,从而为()f x 极小值点,由费马定理 12()()0f x f x ''∴== (2) 由(1),(2)对()f x '在1[,]x c 和2[,]c x 用罗尔定理,则存在3144(,),(,),x x c x c x ∈∈ 使34()()0f x f x ''''==。再一次对()f x ''在34[,]x x 上应用罗尔定理, 34[,](,)x x a b ξ?∈?,使(3)()0f ξ=。 4.证:令t=a+b-x,则 ()()()b b b a a a f x dx f a b t dt f a b x dx =+-=+-? ??。对6 a π = ,

“离散数学”中的等价关系

“离散数学”中的等价关系 “离散数学”是计算机专业的重要基础课程和核心课程。通过该课程的教学,不仅要为学生们进一步学习本专业的后续课程提供必备的数学理论基础,更重要的是培养和提高学生的抽象思维能力和逻辑推理能力。与高等数学主要以连续量作为研究对象不同,离散数学主要以离散量作为主要的研究对象,内容包括数理逻辑、集合论、代数结构、图论以及组合数学、数论和离散概率等。由于这些内容在描述形式、研究方法和计算机应用领域等方面均存在着较大差异,且含有大量比较抽象的概念、定理和各种各样的形式化描述,因而学生普遍感到困难重重,学习效果不理想。因此,如何改进教学方法,提高教学效果,使学生们的抽象思维能力和逻辑推理能力真正得到提升,是“离散数学”课程教学过程中必须认真解决的重要课题。 1离散数学课程中的等价关系 1.1离散数学课程中等价关系的概念 定义1 设R为非空集合A上的二元关系。如果R是自反的、对称的和可传递的,则称R为A上的等价关系。 定义2 设R为非空集合A上的等价关系,x∈A,令[ x ]R={ y | y ∈A ∧xRy }, 则称[ x ]R 为x关于R的等价类,简记为[ x ]。 定义3 设R为非空集合A上的等价关系,以R的所有等价类作元素的集合称为A关于R的商集,记为A/R,即A/R={ [ x ]R| x∈A }。 根据定义1,很容易证明矩阵理论中的矩阵合同关系、相似关系都是等价关系;线性空间的同构关系也是一种等价关系。下面主要讨论离散数学中一些常见的等价关系。 1.2离散数学课程中各种具体的等价关系 数理逻辑中,命题公式A和B等值(记为A B)是指由它们构成的等价式A B 为永真式。命题公式的等值关系是建立在由所有命题公式构成的集合上的一种等价关系,这种等价关系将所有命题公式按其是否等值划分成若干个等价类,属于同一个等价类中的命题公式彼此等值,因而,只要清楚了等价类中某一个公式的性质,则与该公式同类的公式的性质也就完全清楚了。因此,命题公式的等值关系(等价关系)是获取命题公式性质的基石。 集合论中,集合A和B的等势是指从A到B存在一个双射函数即集合A中

清华大学数值分析A第一次作业

7、设y0=28,按递推公式 y n=y n?1? 1 100 783,n=1,2,… 计算y100,若取≈27.982,试问计算y100将有多大误差? 答:y100=y99?1 100783=y98?2 100 783=?=y0?100 100 783=28?783 若取783≈27.982,则y100≈28?27.982=0.018,只有2位有效数字,y100的最大误差位0.001 10、设f x=ln?(x? x2?1),它等价于f x=?ln?(x+ x2?1)。分别计算f30,开方和对数取6位有效数字。试问哪一个公式计算结果可靠?为什么? 答: x2?1≈29.9833 则对于f x=ln x?2?1,f30≈?4.09235 对于f x=?ln x+2?1,f30≈?4.09407 而f30= ln?(30?2?1) ,约为?4.09407,则f x=?ln?(x+ x2?1)计算结果更可靠。这是因为在公式f x=ln?(x? x2?1)中,存在两相近数相减(x? x2?1)的情况,导致算法数值不稳定。 11、求方程x2+62x+1=0的两个根,使它们具有四位有效数字。 答:x12=?62±622?4 2 =?31±312?1 则 x1=?31?312?1≈?31?30.98=?61.98 x2=?31+312?1= 1 31+312?1 ≈? 1 ≈?0.01613

12.(1)、计算101.1?101,要求具有4位有效数字 答:101.1?101= 101.1+101≈0.1 10.05+10.05 ≈0.004975 14、试导出计算积分I n=x n 4x+1dx 1 的一个递推公式,并讨论所得公式是否计算稳定。 答:I n=x n 4x+1dx 1 0= 1 4 4x+1x n?1?1 4 x n?1 4x+1 dx= 1 1 4 x n?1 1 dx?1 4 x n?1 4x+1 dx 1 = 1 4n ? 1 4 I n?1,n=1,2… I0= 1 dx= ln5 1 记εn为I n的误差,则由递推公式可得 εn=?1 εn?1=?=(? 1 )nε0 当n增大时,εn是减小的,故递推公式是计算稳定的。

《应用离散数学》方景龙版3.4 等价关系与划分

§3.4 等价关系与划分 习题3.4 1. 对于给定的集合A 和其上的二元关系R ,判断R 是否为等价关系。 (1)A 为实数集,A y x ∈?,,2=-?y x xRy 。 (2)}321{,,=A ,A y x ∈?,,3≠+?y x xRy 。 (3)+=Z A ,即正整数集,A y x ∈?,,是奇数xy xRy ?。 (4))(X P A =,集合X 的基数2||≥X ,A y x ∈?,,x y y x xRy ?∨??。 (5))(X P A =,集合X 和C 满足X C ?,A y x ∈?,,C y x xRy ?⊕?。 解 略 2. 设}{d c b a A ,,,=,对于A 上的等价关系 A I c d d c a b b a R }{><><><><=,,,,,,, 画出R 的关系图,并求出A 中各元素关于R 的等价类。 解 R 的关系图如下: A 中各元素关于R 的等价类分别为: },{][][b a b a ==,},{][][d c d c == 3. 考虑单词的集合}{sit wind wash sky last sheet W ,,,,,=。1R 和2R 分别是由“具有同样多的字母”和“具有相同的开头字母”定义的等价关系。求由1R 和2R 确定的商集1/R W 和2/R W 。 解 略 4. 给出模6同余关系,并求出所有的模6同余类。 解 模6同余关系)}6(mod |{b a b a b a R ≡∧∈><=Z ,, 所有的模6同余类为: 510}|5{][,,,, =∈+=i z i z i Z 即 },20,15,10,5,0,5,10,15,20,{]0[ ----= },21,16,11,6,1,4,9,14,19,{]1[ ----=

离散数学题目大汇总

离散数学试题一(A 卷答案) 一、(10分)证明(A ∨B )(P ∨Q ),P ,(B A )∨P A 。 二、(10分)甲、乙、丙、丁4个人有且仅有2个人参加围棋优胜比赛。关于谁参加竞赛,下列4 种判断都是正确的: (1)甲和乙只有一人参加; (2)丙参加,丁必参加; (3)乙或丁至多参加一人; (4)丁不参加,甲也不会参加。 请推出哪两个人参加了围棋比赛。 三、(10分)指出下列推理中,在哪些步骤上有错误为什么给出正确的推理形式。 (1)x (P (x ) Q (x )) P (2)P (y )Q (y ) T (1),US (3)xP (x ) P (4)P (y ) T (3),ES (5)Q (y ) T (2)(4),I (6)xQ (x ) T (5),EG 四、(10分)设A ={a ,b ,c},试给出A 上的一个二元关系R ,使其同时不满足自反性、反自反性、 五、(15分)设函数g :A →B ,f :B →C , (1)若f o g 是满射,则f 是满射。 (2)若f o g 是单射,则g 是单射。 六、(15分)设R 是集合A 上的一个具有传递和自反性质的关系,T 是A 上的关系,使得T R 且R ,证明T 是一个等价关系。 七、(15分)若是群,H 是G 的非空子集,则的子群对任意的a 、b ∈H 有 a * b -1∈H 。 八、(15分)(1)若无向图G 中只有两个奇数度结点,则这两个结点一定是连通的。 (2)若有向图G 中只有两个奇数度结点,它们一个可达另一个结点或互相可达吗 离散数学试题一(B 卷答案) 一、(15分)设计一盏电灯的开关电路,要求受3个开关A 、B 、C 的控制:当且仅当A 和C 同时关闭或B 和C 同时关闭时灯亮。设F 表示灯亮。 u v w

清华大学杨顶辉数值分析第6次作业

清华大学杨顶辉数值分析第6次作业

9.令*()(21),[0,1]n n T x T x x =-∈,试证*{()}n T x 是在[0,1]上带权 2 ()x x x ρ= -****0123(),(),(),()T x T x T x T x . 证明: 1 1 **2 1 1 * *20 12 2 1**20 ()()()(21)(21)211()()()()()211()22 ()()1()1()()()()()1n m n m n m n m n m n n m n m x T x T x dx x T x dx x x t x x T x T x dx t T t dt t t t T t dt t T x x x T x T x dx t T t t ρρρ---=---=-=++-= --= -???? ?令,则 由切比雪夫多项式1 01=02 m n dt m n m n ππ ≠??? =≠??==??? 所以*{()}n T x 是在[0,1]上带权2 ()x x x ρ= - *00*11* 2 2 2 2*33233()(21)1()(21)21 ()(21)2(21)188()(21)4(21)3(21)3248181 T x T x T x T x x T x T x x x x T x T x x x x x x =-==-=-=-=--=-=-=---=-+- 14.已知实验数据如下: i x 19 25 31 38 44 i y 19.0 32.3 49.0 73.3 97.8 用最小二乘法求形如2y a bx =+的经验公式,并求均方误差 解: 法方程为

清华大学杨顶辉数值分析第6次作业

9.令*()(21),[0,1]n n T x T x x =-∈,试证*{()}n T x 是在[0,1] 上带权()x ρ=的正交多项式,并求****0123(),(),(),()T x T x T x T x . 证明: 1 1 * *0 1 1 * *011**0 ()()()(21)(21)211()()()()()2()()()()()()()()n m n m n m n m n m n n m n m x T x T x dx x T x dx t x x T x T x dx t T t dt t T t dt T x x T x T x dx t T t ρρρ---=--=-== = ???? ?令,则 由切比雪夫多项式1 01=02 m n dt m n m n ππ ≠??? =≠??==??? 所以*{()}n T x 是在[0,1] 上带权()x ρ= *00*11* 22 2 2*33233()(21)1()(21)21 ()(21)2(21)188()(21)4(21)3(21)3248181 T x T x T x T x x T x T x x x x T x T x x x x x x =-==-=-=-=--=-=-=---=-+- 14.已知实验数据如下: 用最小二乘法求形如2y a bx =+的经验公式,并求均方误差 解: 法方程为

22222(1,)(1,1)(1,)(,)(,1)(,)a y x b x y x x x ?????? =???? ?????? ?? 即 5 5327271.453277277699369321.5a b ??????=???????????? 解得 0.972579 0.050035a b =?? =? 拟合公式为20.9725790.050035y x =+ 均方误差 2 4 2 2 0[]0.015023i i i y a bx σ==--=∑ 21.给出()ln f x x =的函数表如下: 用拉格朗日插值求ln 0.54的近似值并估计误差(计算取1n =及2n =) 解:1n =时,取010.5,0.6x x == 由拉格朗日插值定理有 1 100.60.5 0.693147 0.510826 0.50.(60.60.51.82321)0 1.()6047()52 j j j x x x L x f x l x ==------=-=∑ 所以1ln0.54(0.54)0.620219L ≈=- 误差为ln 0.54(0.620219)= 0.004032ε=-- 2n =时,取0120.4,0.5,0.6x x x === 由拉格朗日插值定理有

离散数学答案

第一章命题逻辑基本概念课后练习题答案 1.将下列命题符号化,并指出真值: (1)p∧q,其中,p:2是素数,q:5是素数,真值为1; (2)p∧q,其中,p:是无理数,q:自然对数的底e是无理数,真值为1; (3)p∧┐q,其中,p:2是最小的素数,q:2是最小的自然数,真值为1; (4)p∧q,其中,p:3是素数,q:3是偶数,真值为0; (5)┐p∧┐q,其中,p:4是素数,q:4是偶数,真值为0. 2.将下列命题符号化,并指出真值: (1)p∨q,其中,p:2是偶数,q:3是偶数,真值为1; (2)p∨q,其中,p:2是偶数,q:4是偶数,真值为1; (3)p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0; (4)p∨q,其中,p:3是偶数,q:4是偶数,真值为1; (5)┐p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0; 3.(1)(┐p∧q)∨(p∧┐q),其中,小丽从筐里拿一个苹果,q:小丽从筐里拿一个梨; (2)(p∧┐q)∨(┐p∧q),其中,p:刘晓月选学英语,q:刘晓月选学日语;. 4.因为p与q不能同时为真. 5.设p:今天是星期一,q:明天是星期二,r:明天是星期三: (1)p→q,真值为1(不会出现前件为真,后件为假的情况); (2)q→p,真值为1(也不会出现前件为真,后件为假的情况); (3)p q,真值为1; (4)p→r,若p为真,则p→r真值为0,否则,p→r真值为1. 4. .将下列命题符号化,并指出真值: (1)p∧q,其中,p:2是素数,q:5是素数,真值为1; (2)p∧q,其中,p:是无理数,q:自然对数的底e是无理数,真值为1; (3)p∧┐q,其中,p:2是最小的素数,q:2是最小的自然数,真值为1; (4)p∧q,其中,p:3是素数,q:3是偶数,真值为0; (5)┐p∧┐q,其中,p:4是素数,q:4是偶数,真值为0. 5.将下列命题符号化,并指出真值: (1)p∨q,其中,p:2是偶数,q:3是偶数,真值为1; (2)p∨q,其中,p:2是偶数,q:4是偶数,真值为1; (3)p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0; (4)p∨q,其中,p:3是偶数,q:4是偶数,真值为1; (5)┐p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0; 6.(1)(┐p∧q)∨(p∧┐q),其中,小丽从筐里拿一个苹果,q:小丽从筐里拿一个梨; (2)(p∧┐q)∨(┐p∧q),其中,p:刘晓月选学英语,q:刘晓月选学日语;. 7.因为p与q不能同时为真. 13.设p:今天是星期一,q:明天是星期二,r:明天是星期三: (1)p→q,真值为1(不会出现前件为真,后件为假的情况); (2)q→p,真值为1(也不会出现前件为真,后件为假的情况); (3)p q,真值为1; (4)p→r,若p为真,则p→r真值为0,否则,p→r真值为1. 16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。 (1)p∨(q∧r)?0∨(0∧1) ?0

最新离散数学-第二章命题逻辑等值演算习题及答案

第二章作业 1 评分要求: 2 1. 每小题6分: 结果正确1分; 方法格式正确3分; 计算过程2分. 合计48 3 分 4 2. 给出每小题得分(注意: 写出扣分理由) 5 3. 总得分在采分点1处正确设置. 6 一. 证明下面等值式(真值表法, 解逻辑方程法, 等值演算法, 三种方 7 法每种方法至少使用一次): 8 说明 9 证 10 1. p ?(p ∧q)∨(p ∧?q) 11 解逻辑方程法 12 设 p ?((p ∧q)∨(p ∧?q)) =0, 分两种情况讨论: 13 ?? ?=?∧∨∧=0)()(1 )1(q p q p p 或者 14 ?? ?=?∧∨∧=1 )()(0 )2(q p q p p 15 (1)(2)两种情况均无解, 从而, p ?(p ∧q)∨(p ∧?q)无成假赋值, 为永真式. 16 等值演算法 17 (p ∧q)∨(p ∧?q) 18 ? p ∧(q ∨?q) ∧对∨的分配率 19 ? p ∧1 排中律 20

? p 同一律 21 真值表法 22 即 p? ((p∧q)∨(p∧?q))为永真式, 得证23 2. (p→q)∧(p→r)?p→(q∧r) 24 等值演算法 25 (p→q)∧(p→r) 26 ? (?p∨q)∧(?p∨r)蕴含等值式 27 ??p∨(q∧r)析取对合取的分配律 28 ? p→(q∧r)蕴含等值式 29 3. ?(p?q)?(p∨q)∧?(p∧q) 30 等值演算法 31 ?(p?q) 32 ??( (p→q)∧(q→p) )等价等值式 33 ??( (?p∨q)∧(?q∨p) )蕴含等值式 34

离散数学等价关系

离散数学是一门研究离散量结构及其相互关系的数学学科,是现代数学的重要分支。离散的含义是指不同的连接元素,主要根据离散量研究结构和它们之间的关系,其对象通常是有限的或可数的元素。离散数学已广泛应用于各个学科,尤其是计算机科学和技术。同时,离散数学也是计算机专业许多专业课程必不可少的高级课程,例如编程语言,数据结构,操作系统,编译技术,人工智能,数据库,算法设计和分析以及计算机理论基础。通过对离散数学的研究,我们不仅可以掌握处理离散结构的描述工具和方法,为后续课程创造条件,还可以提高抽象思维和严格的逻辑推理能力,打下坚实的基础。参与未来的创新研发工作。 随着信息时代的到来,以微积分为代表的连续数学在工业革命时代的主导地位发生了变化,离散数学的重要性逐渐为人们所认识。离散数学教授的思想和方法广泛地反映在计算机科学和技术及相关专业的各个领域,从科学计算到信息处理,从理论计算机科学到计算机应用技术,从计算机软件到计算机硬件,从人工智能到认知系统,所有这些都与离散数学密切相关。因为数字电子计算机是离散结构,所以它只能处理离散或离散的定量关系。因此,计算机科学本身以及与计算机科学及其应用密切相关的现代科学研究领域都面临着如何为离散结构建立相应的数学模型的问题。以及如何离散化通过连续数量关系建立的数学模型,以便可以通过计算机对其进行处理。

离散数学是一门综合性学科,由传统逻辑,集合论(包括函数),数论基础,算法设计,组合分析,离散概率,关系论,图论和树,抽象代数(包括代数系统,组)组成。,环,域等),布尔代数和计算模型(语言和自动机)。离散数学已应用于现代科学和技术的许多领域。 离散数学也可以说是计算机科学的基本核心学科。离散数学中有一个著名的典型例子-四色定理,也称为四色猜想,它是现代世界上三个主要的数学问题之一。它是由英国制图员弗朗西斯·古斯里(Francis guthrie)于1852年提出的。当他为地图着色时,他发现了一种现象:“每张地图只能用四种颜色着色,而具有共同边界的国家可以使用不同的颜色。”那么可以通过数学证明吗?100多年后的1976年,肯尼思·阿佩尔(Kenneth Appel)和沃尔夫冈·哈肯(Wolfgang Haken)使用了计算机辅助计算,这花了1200个小时和100亿次判断,终于证明了四色定理,这在世界上引起了轰动。这是离散数学与计算机科学合作的结果。 离散数学可以看作是数学与计算机科学之间的桥梁,因为离散数学不仅可以与诸如集合论和图论之类的数学知识区分开,而且与计算机科学中的数据库理论和数据结构有关,这可以导致人们进入计算机科学的思维领域,促进计算机科学的发展。

清华大学高等数值分析实验设计及答案

高等数值分析实验一 工物研13 成彬彬2004310559 一.用CG,Lanczos和MINRES方法求解大型稀疏对称正定矩阵Ax=b 作实验中,A是利用A= sprandsym(S,[],rc,3)随机生成的一个对称正定阵,S是1043阶的一个稀疏阵 A= sprandsym(S,[],0.01,3); 检验所生成的矩阵A的特征如下: rank(A-A')=0 %即A=A’,A是对称的; rank(A)=1043 %A满秩 cond(A)= 28.5908 %A是一个“好”阵 1.CG方法 利用CG方法解上面的线性方程组 [x,flag,relres,iter,resvec] = pcg(A,b,1e-6,1043); 结果如下: Iter=35,表示在35步时已经收敛到接近真实x relres= norm(b-A*x)/norm(b)= 5.8907e-007为最终相对残差 绘出A的特征值分布图和收敛曲线: S=svd(A); %绘制特征值分布 subplot(211) plot(S); title('Distribution of A''s singular values');; xlabel('n') ylabel('singular values') subplot(212); %绘制收敛曲线 semilogy(0:iter,resvec/norm(b),'-o'); title('Convergence curve'); xlabel('iteration number'); ylabel('relative residual'); 得到如下图象:

为了观察CG方法的收敛速度和A的特征值分布的关系,需要改变A的特征值: (1).研究A的最大最小特征值的变化对收敛速度的影响 在A的构造过程中,通过改变A= sprandsym(S,[],rc,3)中的参数rc(1/rc为A的条件数),可以达到改变A的特征值分布的目的: 通过改变rc=0.1,0.0001得到如下两幅图 以上三种情况下,由收敛定理2.2.2计算得到的至多叠代次数分别为:48,14和486,由于上实验结果可以看出实际叠代次数都比上限值要小较多。 由以上三图比较可以看出,A的条件数越大,即A的最大最小特征值的差别越大,叠代所需要的步骤就越多,收敛越慢。 (2)研究A的中间特征值的分布对于收敛特性的影响: 为了研究A的中间特征值的分布对收敛速度的影响,进行了如下实验: 固定A的条件数,即给定A的最大最小特征值,改变中间特征值得分布,再来生成A,具体的实现方法是,先将原来的生成A进行特征值分解: [U,S]=svd(A);

离散数学-第二章命题逻辑等值演算习题及答案

第二章作业 评分要求: 1. 每小题6分: 结果正确1分; 方法格式正确3分; 计算过程2分. 合计48分 2. 给出每小题得分(注意: 写出扣分理由) 3. 总得分在采分点1处正确设置. 一.证明下面等值式(真值表法,解逻辑方程法,等值演算法,三种方法每种方法至少使用一次): 说明 证 1. p(p ∧q)∨(p ∧q) 解逻辑方程法 设 p((p ∧q)∨(p ∧q)) =0, 分两种情况讨论: ???=?∧∨∧=0 )()(1)1(q p q p p 或者 ? ??=?∧∨∧=1)()(0)2(q p q p p (1)(2)两种情况均无解, 从而, p(p ∧q)∨(p ∧q)无成假赋值, 为永真式. 等值演算法 (p ∧q)∨(p ∧q) p ∧(q ∨q) ∧对∨的分配率 p ∧1 排中律 p 同一律 真值表法

2. (p→q)∧(p→r)p→(q∧r) 等值演算法 (p→q)∧(p→r) (p∨q)∧(p∨r)蕴含等值式 p∨(q∧r)析取对合取的分配律 p→(q∧r)蕴含等值式 3. (pq)(p∨q)∧(p∧q) 等值演算法 (pq) ( (p→q)∧(q→p) )等价等值式 ( (p∨q)∧(q∨p) )蕴含等值式 ( (p∧q)∨(p∧q) )合取对析取分配律, 矛盾律, 同一律 (p∨q)∧(p∧q)德摩根律 4. (p∧q)∨(p∧q)(p∨q)∧(p∧q) 等值演算法 (p∧q)∨(p∧q) (p∨q)∧(p∧q)析取对合取分配律, 排中律, 同一律 说明: 用真值表法和解逻辑方程法证明相当于证明为永真式. 等值演算法证明时每一步后面最好注明理由以加深印象, 熟练后可以不写. 由于等值演算法证明具有较强的技巧性, 平时应注意总结心得. 二.求下列公式的主析取范式与主合取范式(等值演算法与用成真赋值或成假赋值求解都至少使用一次): 1. 2. 3. 4. 1. (p→q)→(q∨p) 解 (p→q)→(q∨p)

离散数学等价关系

离散数学等价关系 等价关系是设是非空集合A上的二元关du系,若R是自反的、对称的、传递的,则称R是A上的等价关系。给定非空集合A,若有集合S={S ,S ,…,S },其中S A,S(i=1,2,…,m)且S S = (i j)同时有S =A,称S是A的划分。研究等价关系的目的在于将集合中的元素进行分类,选取每类的代表元素来降低问题的复杂度,如软件测试时,可利用等价类来选择测试用例。 分成一块的有: 划分1:{{1,2,3,4}},对应的等价关系就是全域关系E,也就是A×A。分成两块的有: 划分2:{{1,2},{3,4}}, 划分3:{{1,3},{2,4}}, 划分4:{{1,4},{2,3}},分成三块的有: 划分5:{{1},{2,3,4}}, 划分6:{{2},{1,3,4}}, 划分7:{{3},{1,2,4}}, 划分8:{{4},{1,2,3}},分成四块的有: 划分9:{{1},{2},{3},{4}},对应的等价关系就是恒等关系I。 由划分求等价关系:∈R当且仅当a,b在同一个划分块中。扩展资料:

定义:若关系R在集合A中是自反、对称和传递的,则称R为A 上的等价关系。所谓关系R 就是笛卡尔积 A×A 中的一个子集。A 中的两个元素x,y有关系R,如果(x,y)∈R。我们常简记为 xRy。 自反:任意x属于A,则x与自己具有关系R,即xRx; 对称:任意x,y属于A,如果x与y具有关系R,即xRy,则y与x也具有关系R,即yRx; 传递:任意x,y,z属于A,如果xRy且yRz,则xRz。 x,y具有等价关系R,则称x,y R等价,有时亦简称等价。

离散数学 数理逻辑 课后答案

第一章命题逻辑基本概念 4.将下列命题符号化,并指出真值: (1)p∧q,其中,p:2是素数,q:5是素数,真值为1; (2)p∧q,其中,p:是无理数,q:自然对数的底e是无理数,真值为1; (3)p∧┐q,其中,p:2是最小的素数,q:2是最小的自然数,真值为1; (4)p∧q,其中,p:3是素数,q:3是偶数,真值为0; (5)┐p∧┐q,其中,p:4是素数,q:4是偶数,真值为0. 5.将下列命题符号化,并指出真值: (1)p∨q,其中,p:2是偶数,q:3是偶数,真值为1; (2)p∨q,其中,p:2是偶数,q:4是偶数,真值为1; (3)p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0; (4)p∨q,其中,p:3是偶数,q:4是偶数,真值为1; (5)┐p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0; 6.(1)(┐p∧q)∨(p∧┐q),其中,小丽从筐里拿一个苹果,q:小丽从筐里拿一个梨; (2)(p∧┐q)∨(┐p∧q),其中,p:刘晓月选学英语,q:刘晓月选学日语;. 7.因为p与q不能同时为真. 8.p:2<1,q:3<2 (1)p→q, (2)p→┐q, (3)┐q→p, (4)┐q→p, (5)┐q→p, (6)p→q, 13.设p:今天是星期一,q:明天是星期二,r:明天是星期三: (1)p→q,真值为1(不会出现前件为真,后件为假的情况); (2)q→p,真值为1(也不会出现前件为真,后件为假的情况); (3)p q,真值为1; (4)p→r,若p为真,则p→r真值为0,否则,p→r真值为1. 16.设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。 (1)p∨(q∧r)?0∨(0∧1) ?0 (2)(p?r)∧(﹁q∨s) ?(0?1)∧(1∨1) ?0∧1?0. (3)(?p∧?q∧r)?(p∧q∧﹁r) ?(1∧1∧1)? (0∧0∧0)?0 (4)(?r∧s)→(p∧?q) ?(0∧1)→(1∧0) ?0→0?1 17.判断下面一段论述是否为真:“π是无理数。并且,如果3是无理数,则2也是无理数。另外6能被2整除,6才能被4整除。” 答:p: π是无理数 1 q: 3是无理数0 r: 2是无理数 1

离散数学(二元关系)课后总结

第四章二元关系 例1 设A={0,1},B={a,b},求A?B ,B?A,A?A 。 解:A?B={<0,a>,<0,b>,<1,a>,<1,b>} B?A={,,,} A?A={<0,0>,<0,1>,<1,0>,<1,1>} 可见A×B≠B×A 例2、关于笛卡尔乘积的几个证明 1)如果A、B都是有限集,且|A|=m, |B|=n,则 |A?B |=mn. 证明:由笛卡尔积的定义及排列组合中的乘法原理,直接推得此定理。 2) A?Φ=Φ?B=Φ 3) ?对∪和∩满足分配律。 设A,B,C是任意集合,则 ⑴A?(B∪C)= (A?B)∪(A?C); ⑵A?(B∩C)= (A?B)∩(A?C); ⑶(A∪B)?C= (A?C)∪(B?C); ⑷(A∩B)?C= (A?C)∩(B?C) 证明⑴:任取∈A?(B∪C) ?x∈A ∧y∈B∪C ?x∈A ∧(y∈B∨y∈C) ?( x∈A ∧y∈B)∨(x∈A∧y∈C) ?∈A?B∨∈A?C ?∈(A?B)∪(A?C) 所以⑴式成立。 4)若C≠Φ,,则A?B?(A?C?B?C) ?(C?A?C?B). 证明: 必要性:设A?B,求证A?C?B?C 任取∈A?C ?x∈A∧y∈C?x∈B∧y∈C (因A?B) ?∈B?C 所以, A?C?B?C. 充分性:若CΦ≠, 由A?C?B?C 求证A?B 取C中元素y, 任取x∈A?x∈A∧y∈C?∈A?C ?∈B?C (由A?C?B?C ) ?x∈B∧y∈C? x∈B 所以, A?B. 所以A?B?(A?C?B?C) 类似可以证明A?B ?(C?A?C?B). 5) 设A、B、C、D为非空集合,则 A?B?C?D?A?C∧B?D. 证明: 首先,由A?B?C?D 证明A?C∧B?D. 任取x∈A,任取y∈B,所以x∈A∧y∈B ?∈A×B ?∈C×D (由A?B?C?D ) ?x∈C∧y∈D 所以, A?C∧B?D. 其次, 由A?C,B?D. 证明A?B?C?D 任取∈A×B ∈A×B ? x∈A∧y∈B ? x∈C∧y∈D (由A?C,B?D) ?∈C×D 所以, A?B?C?D 证毕.

离散数学等价关系

等价类: 在离散数学中,等价关系是指定义在集合A上的关系,满足自反的、对称的和传递的等性质。设R是定义在集合A上的等价关系,与A中一个元素a有关系的所有元素的集合叫做a的等价类。等价类应用十分广泛,如在编程语言中,我们使用等价类来判定标识符是不是表示同一个事物。 定义: 在离散数学中,等价关系是指定义在集合A上的关系,满足自反的、对称的和传递的等性质。设R是定义在集合A上的等价关系,与A中一个元素a有关系的所有元素的集合叫做a的等价类。A的关于R的等价类记作。当只考虑一个关系时,我们省去下表R并把这个等价类写作[a]。 在软件工程中,是把所有可能输入的数据,即程序的输入域划分成若干部分(子集),然后从每一个子集中选取少数具有代表性的数据作为测试用例,从而减少了数据输入量从而提高了效率,称之为等价类方法,该方法是一种重要的、常用的黑盒测试用例设计方法。 分类: 在离散数学中,等价类的划分基于以下定理:设R是定义在集合A上的等价关系。那么R的等价类构成S的划分。反过来,给定集合S的划分{ |i∈I},则存在一个等价关系R,它以集合作为它的等价类。 因为等价关系的a 在a 中和任何两个等价类要么相等要么不

交集不相交的性质。得出X 的所有等价类的集合形成X 的集合划分划分: 所有X 的元素属于一且唯一的等价类。反过来,X 的所有划分也定义了在X 上等价关系。 在软件工程中等价类划分及标准如下: 划分等价类 等价类是指某个输入域的子集合。在该子集合中,各个输入数据对于揭露程序中的错误都是等效的,并合理地假定:测试某等价类的代表值就等于对这一类其他值的测试,因此,可以把全部输入数据合理划分为若干等价类,在每一个等价类中取一个数据作为测试的输入条件就可以用少量代表性的测试数据取得较好的测试结果。等价类划分有两种不同的情况:有效等价类和无效等价类。 1)有效等价类 是指对于程序的规格说明来说是合理的、有意义的输入数据构成的集合。利用有效等价类可检验程序是否实现了规格说明所规定的功能和性能。 2)无效等价类 指对程序的规格说明是不合理的或无意义的输入数据所构成的集合。对于具体的问题,无效等价类至少应有一个,也可能多个。 设计测试用例时,要同时考虑这两种等价类。因为软件不仅要能接收合理的数据,也要能经受意外的考验,这样的测试才能确保软件具有更高的可靠性。 3.划分等价类的标准

清华大学数值分析实验报告

数值分析实验报告 一、 实验3.1 题目: 考虑线性程组b Ax =,n n R A ?∈,n R b ∈,编制一个能自动选取主元,又能手动选取主元的求解线性代数程组的Gauss 消去过程。 (1)取矩阵????????????????=6816816816 A ,?? ? ?? ??? ????????=1415157 b ,则程有解()T x 1,,1,1*?=。取10 =n 计算矩阵的条件数。分别用顺序Gauss 消元、列主元Gauss 消元和完全选主元Gauss 消元法求解,结果如? (2)现选择程序中手动选取主元的功能,每步消去过程都选取模最小或按模尽可能小的元素作为主元进行消元,观察并记录计算结果,若每步消去过程总选取按模最大的元素作为主元,结果又如?分析实验的结果。 (3)取矩阵阶数n=20或者更大,重复上述实验过程,观察记录并分析不同的问题及消去过程中选择不同的主元时计算结果的差异,说明主元素的选取在消去过程中的作用。 (4)选取其他你感兴趣的问题或者随机生成的矩阵,计算其条件数,重复上述实验,观察记录并分析实验的结果。

1. 算法介绍 首先,分析各种算法消去过程的计算公式, 顺序高斯消去法: 第k 步消去中,设增广矩阵B 中的元素() 0k kk a ≠(若等于零则可以判定系数 矩阵为奇异矩阵,停止计算),则对k 行以下各行计算() () ,1,2,,k ik ik k kk a l i k k n a ==++, 分别用ik l -乘以增广矩阵B 的第k 行并加到第1,2, ,k k n ++行, 则可将增广矩阵B 中第k 列中() k kk a 以下的元素消为零;重复此法,从第1步进行到第n-1步,则可以得到最终的增广矩阵,即()()(),n n n B A b ??=? ?; 列主元高斯消去法: 第k 步消去中,在增广矩阵B 中的子阵()()()()k k kk kn k k nk nn a a a a ??? ?? ????? 中,选取() k k i k a 使得()(k) max k k i k ik k i n a a ≤≤=,当k i k ≠时,对B 中第k 行与第k i 行交换,然后按照和顺序消去 法相同的步骤进行。重复此法,从第1步进行第n-1步,就可以得到最终的增广矩阵,即( ) ()()111,n n n B A b ??=? ?; 完全主元高斯消去法: 第k 步消去中,在增广矩阵B 中对应的子阵()()()()k k kk kn k k nk nn a a a a ??? ?? ????? 中,选取()k k k i j a 使得()(k) max k k k i j ij k i n k j n a a ≤≤≤≤=,若k i k ≠或k j k ≠,则对B 中第k 行与第k i 行、第k 列与第k j 列 交换,然后按照和顺序消去法相同的步骤进行即可。重复此法,从第1步进行到

清华大学杨顶辉数值分析第5次作业答案

2.定义映射22:B R R →,()B x y =,满足y Ax =,其中0.80.40.10.4A ?? =?? ??,2,x y R ∈ 则对任意的2,u v R ∈ 1111119 ||()()||||||||()||||||||||||||10 B u B v Au Av A u v A u v u v -=-=-≤-=- 故映射B 对一范数是压缩的 由范数定义 ||||1 ||||max |||| 1.2x A Ax ∞∞∞===,知必然存在0x ,0||||1x ∞= 使得0|||||||| 1.2Ax A ∞∞== 设012(,)T x x x = 取12(,0),(0,)T T u x v x ==-,则0u v x -=,有 00||()()||||||||()|||||||||| 1.21||||||||B u B v Au Av A u v Ax A x u v ∞∞∞∞∞∞∞-=-=-===>==- 故有||()()||B u B v ∞->||||u v ∞-,从而映射B 对无穷范数不是压缩的 4. 证明:对任意的,[,]x y a b ∈ 由拉格朗日中值定理,有 ()()'()()()1e G x G y G x y x y e ξ ξ ξ-=-=-+ 其中0111b b e e e e ξξ< ≤<++ 所以 |()()||()|||11b b e e G x G y x y x y e e ξξ-=-≤-++ 故G 为[,]a b 上的压缩映射 而()ln(1)ln x x G x e e x =+>= 即()G x x =无根 故()G x 没有不动点

相关主题
文本预览
相关文档 最新文档