当前位置:文档之家› 磁力探伤技术及其实际应用

磁力探伤技术及其实际应用

磁力探伤技术及其实际应用
磁力探伤技术及其实际应用

河南工程学院

《焊机检验及生产管理》考查课专业论文

磁力探伤技术及其实际应用2015 年11 月15 日

磁力探伤技术及其实际应用

摘要:磁力探伤是一种检测材料缺陷、防止材料破坏的无损检测方法。该方法检测的对象是钢铁类强磁性物体的表面及近表层内的缺陷,在实际生产中被广泛使用。本文对磁力探伤技术进行分析,并就其在汽车半轴套管的实际检测作了详尽的研究,通过所述方法及实践以使工件的表面缺陷清晰的表现出来。

关键词:磁力探伤,漏磁,磁粉,磁痕

1磁力探伤技术原理

将被检件直接通电或使其放置在通电线圈或电磁铁当中,则在被检件中产生磁通。此时,若被检表面或近表层存在有缺陷,则磁通就会在其表面产生漏磁现象,缺陷的边缘就会形成N极与S极。在漏泄磁通中安装类似霍尔元件的磁通感应元件,便能检测出缺陷的存在(见图1)。一般把这种方法叫做“漏磁探伤法”。若使含有磁粉的悬浮液流过被检件的表面时,此时磁粉会被吸引到缺陷处,很据磁粉的附着形象亦一可发现缺陷的存在,一般把这种方法叫做“磁粉探伤”[1]。

图1.磁极的形成与缺陷

2缺陷漏磁现象的理论分析

虽然磁粉探伤如今已广泛地应用于现场实际,但是尚未完全搞清楚磁粉被吸附到缺陷处的机理。为了搞清机理,首先需要测定缺陷产生的漏磁磁通的分布并进行理论分析。通过对漏磁磁通的试验测定,现已搞清磁通的分布(见图2 )。最近,根据试验结果证明:在含缺陷的材料表面上,磁量不是均匀分布的模式。现已清楚,在紧靠材料表面处的漏磁磁通的水平方向分布如图3所示,在x=0部位形成了低谷。其情形与录磁探伤测得的结果相一致。

图2.漏磁磁通密度图3.磁量在缺陷分布不均时漏磁磁通分布

3磁粉探伤的可靠性

磁粉探伤主要用图4所示的固定式探伤机对机械零件的探伤方面。球罐之类大型结构物的焊口,用图5所示携带式极间磁化装置检测缺陷。一般情况下,由于磁粉探伤是靠检测人员目视观察在缺陷处形成的磁粉样式来确认,因此,漏检是在所难免的。曾让七个检验部门共同来检测一个球罐的焊口(内径3mm),并提供缺陷检测率。其结果,各部门的缺陷检测率差异相当大(如图6)。由这个图可以看出:对于长度大于5mm的缺陷,各单位均可检测出来。但缺陷愈小,检出率愈低。影响检出率的各种因素有:检查液浓度,磁粉粒度,检查液适用时间,磁化通电时间,观察时间,磁化效率。尤其是检查液适用时间、磁化通电时间、观察时间影响最甚。综合这些因素并考虑探伤速度,其复合影响的结果示于图7,图中可见探伤速度放慢,则检出率提高。

图4.固定式磁粉探伤仪图5.携带式极间电磁仪

图6.各部门对不同长度缺陷的检出率图7.探伤速度与缺陷检出率的关系磁粉探伤漏检的缺陷状态,左右着大型结构的安全可靠性,磁粉探伤后,要对缺陷进行修补,采用模拟计算,可把结构的破坏几率减小10—100倍。

4磁力探伤的自动化

磁粉探伤的最终结果,要由检测人员靠目测判定,所以,漏检是不可避免的。在要求使检测工作自动化、省力化的同时,人们也在谋求用机器代替人力进行检测。

磁力探伤的自动化,首先被引用到不用磁粉的漏磁探伤方面。但是,该方法的磁通感

应元件和被检件之间的距离会给缺陷检出精度造成很大影响。因此,已开发并实用的是对

制造厂同一材质的被检件的检测。图8为该种探伤机之一例。这类自动缺陷检测机具有能

探测出几百微米的检测能力,达到了磁粉探伤机目测的水平。而且,能够探测出缺陷最重要参量—深度[2]。由于这种探伤机不适用于大型、异形试件,故难以通用化。

图8.漏磁探伤机之一例

此外,人们还在研究开发适用于各种形状试件的自动检测探伤机。已经发表了2, 3种用计算机控制显示器的摄像机摄取磁粉图像,输入计算机,并由微机进行图像处理的装置。该方法中最重要的是,已研制出能辨别背景与缺陷图像、模型与缺陷图像的软件。应用该方法时,只有与看作是缺陷的8个直线图相一致的信号,才被判定为缺陷。还有另外一种方法:某个象素与其周围8个象素集合相联时,被判定为缺陷[3]。

5磁力探伤应用

汽车半轴套管是汽车驱动桥的重要安全件,其不仅承受车身及车载货物的重量,而且还要承受车辆在行驶过程中复杂交变重力的作用,因此要求其具有较好的力学性能和致密的金属流线组织,超强的承受交变负荷能力,且不许有任何裂纹、夹杂及折叠等破坏金属连续性的缺陷。因此,为提高其综合力学性能,及时地检测出工件表面缺陷和裂纹,尤其对于表面及近表面的缺陷检测问题就显得颇为重要。因此采用磁力探伤的方法对其进行检测。

5.1磁化方法

磁化零件的方法有: 纵向磁化、周向磁化、复合磁化和旋转磁化[4]。磁化方法在实际应用中应根据零件特点进行选择,且磁化时应尽量使磁场方向与缺陷分布方向垂直。考虑到轮毂半轴套管的缺陷,主要是锻造时产生的锻造裂纹和折叠,及热处理时产生的裂纹,因此采用复合磁化方法。根据实践经验,纵向磁化时,在零件中产生的退磁场对最终磁化效果有很大影响,因此当纵向磁化长径比较小的零件时,需用接长磁极块的方法来降低退磁因子,以保证足够的有效磁场,避免漏检。

5.2磁化电流

直流电和交流电都可以磁化零件。一般情况下直流电磁化结合干磁粉,交流电磁化结合湿磁粉效果较好。磁化电流的大小与零件的磁导率、最大横截面直径、充磁方法、检验方法(剩磁法或连续法)及对探伤灵敏度的要求等有关,有关资料推荐轴向通电法和中心导体法,磁化

电流按表1 计算。

表1.磁化电流计算

检测方法磁化电流计算公式

交流电直流电连续法I = (8 ~115) D I = (12 ~32) D

利磁法I = (25 ~45) D I = (25 ~45) D

D=零件最大横截面尺寸,mm; I=采用的电流值,A

5.3磁化通电时间

采用连续法时,被检零件的磁化、施加磁粉以及观察磁痕显示都应在磁化通电时间内完成,通电时间为1~3s,最长不超过10s,并可在施加磁粉后反复通电几次。采用剩磁法时,磁粉应在通电结束后再施加,通电时间为0. 25 ~1s。施加磁粉或磁悬液之前任何强磁性物体不得接触被检零件表面。

5.4磁粉及磁悬液

磁粉应具有高磁导率,低矫顽力和低剩磁,并应与被检零件表面颜色有较高的对比度。依据施加磁粉的方法不同,分为干法和湿法。干法广泛应用于大型结构件和大型焊缝局部区域等表面粗糙度较差的部位磁粉检测。使用干法时零件不但需要洁净,而且必须干燥,磁粉的粒度均匀并要求干燥。湿法是将磁粉以一定比例混于油质或水质液体中形成磁性悬浮液,用浇、喷及浸等方法施加到零件上进行检测。湿法节省磁粉,检验灵敏度高,适用于大批量生产中零件的检测,应用比干法更为广泛。

磁悬液是将磁粉混在液体介质中形成磁粉的悬浮液,一般采用油(变压器油或全损耗系统用油)、煤油或含有防腐剂的水。以油为载体时要求运动粘度在38℃时≤3. 0mm2/s,使用温度下≤5. 0mm2 /s,闪点不低于94℃,且无荧光,无异味。

5.5磁力探伤机、磁粉和磁悬液的综合性能测定

为保证磁力探伤机工作可靠及磁性悬浮液显示的灵敏度,一般选用A1- 30/100 型标准灵敏度试片进行测定。对于重要零件及承受重载荷的零件,一般选用A1- 15/100 型标准灵敏度试片,由于A1 型标准试片尺寸较大,当检测焊缝坡口等狭小部位时,一般可选用C- 15/50 型标准试片。一般在下列情况下必须用标准试片进行检验:①每班开始工作前;②更换新磁悬液后;③对磁力探伤机可靠性或磁力探伤机的系统灵敏度有怀疑时;④设备进行重要电气修理或大修后。

5.6磁痕观察及评定

零件表面不允许存在任何裂纹和白点,紧固件和轴类零件不允许有任何横向缺陷显示。缺陷磁痕、伪磁痕的特征可通过查表获得[5]。实际生产中,为防止产品错检,在每班结束前需对有缺陷的零件进行复检。在半成品检验时,对缺陷不能准确判断的零件,在缺陷部位用锉刀锉去0.3~05mm,再进行磁力探伤检测,若缺陷不存在,则视为合格品[6]。这样既保证了

产品质量又避免了因错检而造成浪费。

5.7退磁

磁力探伤后零件具有剩磁,尤其是硬磁性材料的零件。一般交流磁化采用交流退磁,直流磁化采用直流退磁。交流降压退磁效果好,但电流下降的周期较长,容易使零件发热; 直流退磁不会造成零件发热,但退磁效果较差。如果零件对剩磁要求严格,可以在直流退磁的基础上再进行一次交流退磁。

一般在下列情况下应进行退磁: ①当检测需要多次磁化时,如认定上一次磁化会给下一次磁化带来不良影响。②如认为零件的剩磁会对以后的机械加工产生不良影响。③如认为零件的剩磁会对测试或计量装置产生不良影响。④如认为零件的剩磁会对焊接产生不良影响。零件退磁后一般应不大于0.3×10-3 T。在实际生产中主要采用标准铁针来检测零件的剩磁。对有特殊要求的产品采用磁场强度计对零件的剩磁进行检测。

6结语

通过对磁粉检测各工作流程的阐述,对缺陷磁痕和伪磁痕的识别进行了说明。对影响磁痕的磁粉性能、磁化规范、磁悬液的浓度和粘度、零件表面状况等因素进行了分析,具体针对生产实际中需要考虑的问题进行了详细的描述。结果表明,通过以上方法并结合实践经验,能使工件的表面缺陷清晰地显示出来,而且能被准确地进行判断,在保证检测准确性的同时进一步提高了零件的质量及性能。

参考文献:

[1]伊藤清,高巍.磁力探伤新技术[J].黑龙江电力技术,2011,03(05):16-22.

[2]鄧菊生.工业磁力探伤法[J].机械制造,2002,08(12):56-66.

[3]刘彬.磁力探伤缺陷显示新方法—缺陷显示板.无损检测,2011,01(02):33-40.

[4]李超.磁力探伤在汽车半轴套管裂纹检测中的应用[J].金属加工(热加工),2011,17(02):20-28.

[5]宋庆华.磁力检验的假象[J].国外金属热处理.2012,01(05):01-09.

[6]李振庭.巧查裂纹[J].机械工人,2013,11(06):12-20.

焊接钢管在线涡流探伤

焊接钢管在线涡流探伤 曾祥照 摘要:涡流探伤具有连续、快速、检测灵敏度高的特点,适合于焊接钢管在生产线上的连续检测,是焊管生产中重要的质量控制方法。概述了EEC数字型涡流探伤仪在焊管生产线上涡流应用情况。 主题词:涡流探伤焊接钢管灵敏度 一.焊管涡流探伤的必要性 高频焊接钢管(简称焊接钢管或焊管)在流体输送、建筑构件和五金家具制作上有广泛的用途。焊缝中不得有裂缝、裂纹、未熔焊等缺陷,表面不得有超标的划痕、压伤等缺陷。由于焊管在生产线上(简称在线)具有连续、快速生产的特点,焊速15~60米/分,因此,焊管质量仅靠人工事后检验是很难保证的;而涡流探伤检验方法则具有检测速度快,无需要与工件表面耦合,检测灵敏度等优点,适合于焊管生产的质量控制和质量检验。 二.EEC-22型涡流探伤仪的功能 高频焊接钢管的生产是在生产线上进行的,简称在线生产。EEC-22型智能金属管道涡流探伤仪适用于金属管道的在线或离线涡流探伤,采用了数字电子技术,操作简单、方便;它在一台微机基础上配置涡流检测专用器件而成,在DOS或WINDOWS环境下配中文操作系统支持涡流检测软件运行,配有穿过式线圈和平面探头,平面探头用于焊缝纵向的扫查,穿过式线圈则用于整个钢管圆周截面的扫查,适合于钢管的在线或离线探伤。钢管的在线涡流探伤是指在生产线上与生产过程同步的探伤,主要用生产过程的质量控制;钢管的离线探伤是指钢管成品离开生产线后的探伤,主要用于钢管产品的质量检验。本厂是生产高频焊接钢管的工厂,因此将涡流探伤主要用于在线钢管对接纵向焊缝的质量控制,采用平面探头。 三.焊管涡流探伤灵敏度的调节 1.标样管的选取 焊接钢管涡流探伤执行GB7735《钢管涡流探伤检验方法》标准,探伤结果借助于对比试样中人工缺陷与自然缺陷显示信号的幅值对比进行判断,对比试样的钢管与被检钢管的公称尺寸应相同,化学成分、表面状态、热处理状态相似,即应有相似的电磁特性。 对比试样上的人工缺陷可分为钻孔和槽口两种,根据实际情况选其中一种。对于焊管而言,焊缝开裂、裂纹、未熔合等纵向缺陷是焊管的主要缺陷,其危害性要大于其他面积状的缺陷,因此选用槽口作为焊管的主要模拟缺陷是合理的,它有利焊缝线性缺陷的检出。槽口的深度为被检测钢管壁厚的12.5% ,最小深度为0.5mm,最大深度为1.50mm ;长度不小于50mm ,或两倍的检测线圈的宽度;槽口的宽度不大于槽口的深度。 在焊管生产过程中很容易找到符合标准规定的槽口尺寸的实际标样管,这种标样管既含有焊缝的开口裂缝,又含有裂纹或暗裂纹和未熔合,这些缺陷是连续缓慢过渡的,简称为缓变伤或自然伤。因此,可取选取一段符合槽口尺寸要求含有自然伤的焊管作为涡流探伤的标样管。 2.探伤灵敏度的调节 开机后进入EEC子目录,即进入涡流探伤程序,用键盘的编辑键,暂选择检测频率为50KHZ

无损检测大作业-小论文

南京航空航天大学无损检测技术报告 无损检测技术在道桥领域的应用简介 (南京航空航天大学机电学院,南京市,210016) 摘要:本文简要介绍了当前无损检测领域中常用技术,如超声、射线、渗透、涡流、磁粉等常规无损检测技术,举例具体说明了超声波在道桥中的应用情况,并分析了超声波无损检测技术在道桥工程应用中所存在的困难与问题,以及预测道桥无损检测技术今后的发展趋势。关键词:无损检测技术;超声波;道桥;应用与发展 Introduction to NDT technology in the field of bridge Wang Yan ( College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics &Astronautics, Nanjing, 210016, China)Abstract:This article briefly describes the current commonly used in the field of non-destructive testing techniques, such as ultrasound, radiation, penetration, eddy current, magnetic and other conventional NDT techniques,specific illustrates the application of ultrasound in bridge, and analyze the ultrasonic nondestructive testing technology in road difficulties and problems that exist in bridge engineering applications, as well as non-destructive testing techniques to predict bridge future trends. Key words:NDT technology; ultrasound; bridge; application and development 1.引言 无损检测技术(Nondestructive Testing, NDT)是一门新兴的综合性应用学科,它是在不破坏或损坏被检测对象的前提下,利用材料内部结构异常或缺陷存在所引起的对热、声、光、电、磁等反应的变化,来探测各种工程材料、零部件、结构件等内部和表而缺陷,并对缺陷的类型、性质、数量、形状、位置、尺寸、分布及其变化作出判断和评价[1]。 近20年来,在我国的道桥建设飞速发展的同时,也有大批既有道路与桥梁相继进入老化时期。为此,为了确保道桥结构的安全运营,对道桥检测工作提出了更高的要求,道桥检测工作亦由此愈发显得重要。目前国内外在道桥检测方面继出现了许多现代检测技术与检测方法,其中比较具代表性的,国内外学者关注最多的是桥梁的健康诊断无损检测。道桥的无损检测技术的发展始于20世纪30年代初,目前已形成了一套较完整的无损检测体系[2]。文中扼要地介绍了超声波无损检测技术在道桥检测中的具体应用。 2. 无损检测及其新技术 1.1常规无损检测方法 无损检测技术是产品质量控制中不可缺少的基础技术,随着产品复杂程度增加和对安全性的严格要求,无损检测技术在产品质量控制中发挥着越来越重要的

钢管的水压试验和涡流探伤试验比较

钢管的水压试验和涡流探伤试验比较 展开全文 锅炉钢管的水压试验和涡流探伤都是材料的致密性能试验,它们之间在试验方法上具有等效性;而且钢管的涡流探伤具有快速、准确、易实现自动化检测等特点,它在试验方法上优于既费时又费力、准确性较差的水压试验方法,因此,涡流探伤检测方法完全可以用来代替锅炉钢管的逐根水压试验,而其他形式的无损探伤方法不能代替涡流探伤的致密性试验,这对于控制锅炉钢管的材料质量和提高锅炉制造质量以及保证锅炉的安全可靠性都具有重要意义。由于涡流探伤技术在锅炉钢管的质量检测和控制有很强的实用性,因而在锅炉行业中具有

良好的应用前景和推广价值。 钢管水压试验机组一、锅炉钢管的质量问题锅炉用无缝钢管(以下简称锅炉钢管)是制造锅炉用的重要材料,它的质量如何将直接关系锅炉制造质量以致于安装质量和使用质量。锅炉钢管质量本应是由钢管厂来作出保证的,但是在供不应求的情况下,提供给锅炉制造厂使用的锅炉钢管总免不了存在一些质量问题,用它制成的锅炉主要受压部件如水冷壁管、对流管、过热器管、换热器管等漏水或爆管现象时有发生,已成为困扰锅炉产品质量的一个大问题,对此锅炉制造厂和用户都很有意见。在卖方市场的情况下,锅炉制造厂几乎承担了包括材料供应方在内的全部责任;如何控制锅炉钢管的质量现已成为锅炉制造厂家越来越关心的问题,解决的办法不外乎是两个:一个是对锅炉钢管进行逐根的水压试验;另一个是对锅炉钢管实行100%的涡流探伤。 二、锅炉钢管的缺陷与伤按照材料学的观点,优良的金属材料其化学成分、物理性能、几何形状应该是连续的、纯洁的和均匀的。如果这三方面存在不足或受到破坏,就认为金属材料存在缺陷。如果金属材料在几何形状上存在着不连续性(即不紧密性或不密实性或者不致密性),例如有裂纹、缩孔、起皮、凹坑、分层、针孔、夹渣等,则认为金属材料存在伤痕(简称为伤),它不包括化学成分的不连续或物理性

五大常规探伤方法概述

五大常规探伤方法概述 五大常规方法是指射线探伤法、超声波探伤法、磁粉探伤法、涡流探伤法和渗透探伤法 1、射线探伤方法(RT) 射线探伤是利用射线的穿透性和直线性来探伤的方法。这些射线虽然不会像可见光那样凭肉眼就能直接察知,但它可使照相底片感光,也可用特殊的接收器来接收。常用于探伤的射线有x光和同位素发出的γ射线,分别称为x光探伤和γ射线探伤。当这些射线穿过(照射)物质时,该物质的密度越大,射线强度减弱得越多,即射线能穿透过该物质的强度就越小。此时,若用照相底片接收,则底片的感光量就小;若用仪器来接收,获得的信号就弱。因此,用射线来照射待探伤的零部件时,若其内部有气孔、夹渣等缺陷,射线穿过有缺陷的路径比没有缺陷的路径所透过的物质密度要小得多,其强度就减弱得少些,即透过的强度就大些,若用底片接收,则感光量就大些,就可以从底片上反映出缺陷垂直于射线方向的平面投影;若用其它接收器也同样可以用仪表来反映缺陷垂直于射线方向的平面投影和射线的透过量。由此可见,一般情况下,射线探伤是不易发现裂纹的,或者说,射线探伤对裂纹是不敏感的。因此,射线探伤对气孔、夹渣、未焊透等体积型缺陷最敏感。即射线探伤适宜用于体积型缺陷探伤,而不适宜面积型缺陷探伤。 2、超声波探伤方法(UT) 人们的耳朵能直接接收到的声波的频率范围通常是20Hz到20kHz,即音(声)频。频率低于20 Hz 的称为次声波,高于20 kHz的称为超声波。工业上常用数兆赫兹超声波来探伤。超声波频率高,则传播的直线性强,又易于在固体中传播,并且遇到两种不同介质形成的界面时易于反射,这样就可以用它来探伤。通常用超声波探头与待探工件表面良好的接触,探头则可有效地向工件发射超声波,并能接收(缺陷)界面反射来的超声波,同时转换成电信号,再传输给仪器进行处理。根据超声波在介质中传播的速度(常称声速)和传播的时间,就可知道缺陷的位置。当缺陷越大,反射面则越大,其反射的能量也就越大,故可根据反射能量的大小来查知各缺陷(当量)的大小。常用的探伤波形有纵波、横波、表面波等,前二者适用于探测内部缺陷,后者适宜于探测表面缺陷,但对表面的条件要求高。 3、磁粉探伤方法(MT) 磁粉探伤是建立在漏磁原理基础上的一种磁力探伤方法。当磁力线穿过铁磁材料及其制品时,在其(磁性)不连续处将产生漏磁场,形成磁极。此时撒上干磁粉或浇上磁悬液,磁极就会吸附磁粉,产生用肉眼能直接观察的明显磁痕。因此,可借助于该磁痕来显示铁磁材料及其制品的缺陷情况。磁粉探伤

无损检测论文

无损检测导论 论文 题目:超声波检测技术的应用及设备 系(院): 专业: 学生姓名: 指导教师: 年月日

摘要 超声波在被检测材料中传播时,材料的声学特性和内部组织的变化对超声波的传播产生一定的影响,通过对超声波受影响程度和状况的探测了解材料性能和结构变化的技术称为超声检测。超声波检测应用主要包括在工业上对各种材料的检测和在医疗上对人体的检测诊断,通过它人们可以探测出金属等工业材料中有没有气泡、伤痕、裂缝等缺陷,可以检测出人们身体的软组织、血流等是否正常。运用超声检测的方法来检测的仪器称之为超声波探伤仪。它的原理是:超声波在被检测材料中传播时,材料的声学特性和内部组织的变化对超声波的传播产生一定的影响,通过对超声波受影响程度和状况的探测了解材料性能和结构变化的技术称为超声检测。超声检测方法通常有穿透法、脉冲反射法、串列法等。 关键词:超声波检测的原理超声波检测的应用超声波检测仪器及原理

1 超声波检测原理 1.1超声波检测的基本原理 超声波在均匀连续弹性介质中传播时,将产生极少能量损失;但当材料中存在着晶界、缺陷等不连续阻隔时,将产生反射、折射、散射、绕射和衰减等现象,从而损失比较多的能量,使我们由接收换能器上接收的超声波信号的声时、振幅、波形或频率发生了相应的变化,测定这些变化就可以判定建筑材料的某些方面的性质和结构内部构造的情况达到测试的目的。当超声遇到缺陷面时,反射回波幅度会异常增大,根据反射幅度、延迟和相位等就可以判断缺陷的位置、面积和形状。 1.2超声波检测方法 利用超声波探伤,主要有穿透法探伤和反射法探伤两种方式。 穿透法探伤使用两个探头,一个用来发射超声波,一个用来接收超声波。检测时,两个探头分置在工件两侧,根据超声波穿透工件后能量的变化来判别工件内部质量。 反射法探伤高频发生器产生的高频脉冲激励信号作用在探头上,所产生的波向工件内部传播,如工件内部存在缺陷,波的一部分作为缺陷波被反射回来,发射波的其余部分作为底波也将反射回来。根据发射波、缺陷波、底波相对于扫描基线的位置可确定缺陷位置;根据缺陷波的幅度可确定缺陷的大小;根据缺陷波的形状可分析缺陷的性质;如工件内部无缺陷,则只有发射波和底波。 超声波的接收和产生原理相似,当超声波遇到不连续性时,即会产生反射,反射的超声波使压电晶片振动,继而在压电晶片两端产生电压。最主要是如何将电脉冲转化为探伤仪屏幕上的波形,模拟机是通过显像管显示的。显像管的图像是电子打在荧光物质上,使荧光物质发光;电子经过一个电场而改变方向,打在屏幕的不同位置,使屏幕显现图像。显像管x 方向上的电压是探伤仪加在压电晶片上的电 压,y方向的电压是压电晶片振动产生的电压, 这样就形成了屏幕上的波形。 在工业超声波检测中,超声波的反射特性 主要用于探测材料中的缺陷。以最常用的A 型显示测超声脉冲反射法探测为例: 超声波探伤仪中高频脉冲电路产生的高 频脉冲振荡电流施加超声换能器中的压电元 件上,激发出超声波并传入被检工件。超声波 在被检工件中传播时,若在声路上遇到缺陷。 将会在界面上产生反射,反射回波被探头接收 转换成高频脉冲电信号输入超声波探伤仪的 接收放大电路,经过处理后在超声波探伤仪的

焊管涡流探伤

所谓焊管涡流探伤,是利用涡流技术对焊管进行检测,这类检测是以无损为前提的。同时,我们需要明确的是,焊管通俗来讲,就是我们平时常常说的钢管,是通过焊接的钢管。对于涡流探伤技术,我们来详细了解一下。 1、涡流探伤的定义: 涡流探伤是利用交流电磁线圈在金属构件表面感应产生的涡流遇到缺陷会产生变化的原理,来检测构件缺陷的无损探伤技术。利用电磁感应原理用激磁线圈使导电构件内产生涡电流,借助探测线圈测定涡电流的变化量,从而获得构件缺陷的有关信息。涡流探伤是以交流电磁线圈在金属构件表面感应产生涡流的无损探伤技术。它适用于导电材料,包括铁磁性和非铁磁性金属材料构件的缺陷检测。由于涡流探伤,在检测时不要求线圈与构件紧密接触,也不用在线圈与构件间充满藕合剂,容易实现检验自动化。但涡流探伤仅适用于导电材料,只能检测表面或近表面层的缺陷,不便使用于形状复杂的构件.在火力发电厂中主要应用于检测凝汽器管、汽轮机叶片、汽轮机转子中间孔和焊缝等。 2、涡流探伤的原理: 交流电通入线圈时,若所用的电压及频率不变,则通过线圈的电流也将不变。如果在线圈中放入一金属管,管子表面感生周向电流,即涡流。涡流磁场

方向与外加电流的磁化方向相反,因此将抵消一部分外加电流,从而使线圈的阻抗、通过电流的大小相位均发生变化。管的直径、厚度、电导率和磁导率的变化以及有缺陷存在时,均会影响线圈的阻抗。若保持其他因素不变,仅将缺陷引起阻抗的信号取出,经仪器放大并予检测,就能达到探伤目的。涡流信号不仅能给出缺陷的大小,同时由于涡流探伤时可以根据表面下的涡流滞后于表面涡流一定相位,采用相位分析能判断出缺陷的位t(深度)。 3、涡流探伤的分类 检测线圈在涡流检验中,为了适应不同探伤目的,按照检测线圈和被检构件的相互关系分为穿过式线圈、内通式线圈和放里式线圈三大类。如需将工件插入并通过线圈检测时采用穿过式线圈。对管件进行检测时,有时需把线圈放入管子内部进行检验,则采用内通式线圈。采用放t式(点式)线圈时,把线圈放置于被查的工件表面进行检测。这种线圈体积小、线圈内部一般带有磁芯,灵敏度高,便于携带,适用于大型构件以及板材、带材等表面裂纹检验。按照检测线圈的使用方式,可分为绝对线圈式、标准比较线圈式和自比较式等三种型式。只用一个检测线圈称为绝对线圈式,用两个检测线圈接成差动形式,称为标准比较线圈式。采用两个线圈放于同一被检构件的不同部位,作为比较标准线圈,称自比较式,是标准比较线圈式的特例。墓本电路由振荡器、检测线圈信号输出电路、放大器、信号处理器、显示器和电源等部分组成。 4、涡流探伤技术的发展状况 涡流探伤技术是常规无损探伤技术之一,现在多频涡流、脉冲涡流及低频涡流等探伤方法已获得成功应用。我国从60年代中期开始研究此项技术,70

五大常规无损检测

五大常规无损检测 PT=渗透探伤 MT=磁粉探伤 UT=超声波探伤 RT=射线探伤 ET=涡流探伤 五大常规无损检测:渗透探伤、磁粉探伤、超声波探伤、射线探伤、涡流探伤, 1.射线探伤也就是X光拍片简称RT, 2.超声波检查简称UT,射线探伤和超声波探伤一般适用于主甲板,外板,横舱壁,内底板,上下边柜斜板等对接的焊缝。施工者对要求射线探伤的焊缝及热影响区域进行打磨处理,消除焊缝表面的凹凸不平对底片影像显示的影响,确保无油污、无油漆、无飞溅。射线探伤有一定的杀伤性,船方及各施工部门在X 光射线探伤时段、不得靠近X光射线探伤位置半径三十米范围的警示区域,防止射线伤害人员。 3.磁粉探伤又称MT或者MPT(Magnetic Particle Testing),一般适用于对接焊缝,角焊缝,尾轴及锻钢件,铸钢等磁性材料的表面附近进行探伤的检测方法。利用铁受磁石吸引的原理进行检查。在进行磁粉探伤检测时,使被测物收到磁力的作用,将磁粉(磁性微型粉末)散布在其表面。然后,缺陷的部分表面所泄漏出来泄露磁力会将磁粉吸住,形成图案。指示图案比实际缺陷要大数十倍,因此很容易便能找出缺陷。磁粉探伤检测一般按照前处理→磁化→喷淋磁粉→观察→后处理的步骤进行 4.渗透探伤简称PT,着色一般适用于船体对接焊缝,角焊缝等,螺旋桨叶根部,锻钢件、铸钢件表面。当机械零部件需磁粉探伤或着色探伤时,则要将被探物件表面的油污清洁干净并摆放整齐,如果焊缝做磁粉探伤或着色探伤时,则需将焊道清洁干净,要求无油污、无油漆、无飞溅。 5.涡流检测(ET)的英文名称是:Eddy Current Testing工业上无损检测的方法之一。给一个线圈通入交流电,在一定条件下通过的电流是不变的。如果把线圈靠近被测工件,像船在水中那样,工件内会感应出涡流,受涡流影响,线圈电流会发生变化。由于涡流的大小随工件内有没有缺陷而不同,所以线圈电流变化的大小能反映有无缺陷。适用于导电材料..由于导体自身各种因素(如电导率,磁导率,形状,尺寸和缺陷等)的变化,会导致感应电流的变化,利用这种现象而判知导体性质,状态的检测方法叫做涡流检测方法.属于表面探伤法,适用于钢铁、有色金属、石墨等导电体工件,因为并不需要接触工件,所以检测速度很快,但设备昂贵。 UT,RT认证 国家标准国标的,欧标的?协会的,军品方面的,技术监督局的, 行业不一样 需要认证的机构也不一样

无损检测论文

无损检测技术的原理及应用 摘要:本文介绍了当前无损检测技术,包括射线、超声、渗透等常规技术和声发射、磁记忆等新技术.并论述它们的工作原理、优缺点和应用范围 关键词:无损检测;新技术 1 概述 随着现代工业的发展,对产品质量和结构安全性,使用可靠性提出越来越高的要求,由于无损检测技术具有不破坏试件,检测灵敏度高等优点,所以其应用日益广泛。本文主要介绍无损检测的常用技术如射线、超声、磁粉和渗透及新技术如声发射、磁记忆等。 2 无损检测方法 现代无损检测的定义是:在不损坏试件的前提下,以物理或化学方法为手段,借助先进的技术和设备器材,对试件的内部及表面的结构,性质,状态进行检查和测试的方法。 2.1射线检测 射线检测技术一般用于检测焊缝和铸件中存在的气孔、密集气孔、夹渣和未融合、未焊 透等缺陷。射线检测不适用于锻件、管材、棒材的检测。射线检测方法可获得缺陷的直观图像,对长度、宽度尺寸的定最也比较准确,检测结果有直观纪录,可以长期保存。但该方法对体积型缺陷(气孔、夹渣)检出率高,对体积型缺陷(如裂纹未熔合类),如果照相角度不适当,容易漏检。另外该方法不适宜较厚的工件,且检测成本高、速度慢,同时对人体有害,需做特殊防护。 2.2超声波检测 超声检测是利用超声波在介质中传播时产生衰减,遇到界面产生反射的性质来检测缺陷的无损检测方法。与其它常规无损检测技术相比,它具有被测对象范围广;检测深度大;缺陷定位准确,检测灵敏度高;成本低,使用方便;速度快,对人体无害以及便于现场使用等特点。目前大量应用于金属材料和构件质量在线监控和产品的在投检查。如钢板、管道、焊鞋、堆焊层、复合层、压力容器及高压管道、路轨和机车车辆零部件、棱元件及集成电路引线的检测等。 2.3渗透检测 渗透检测是基于毛细管现象揭示非多孔性固体材料表面开口缺陷,其方法是将液体渗透液渗人工件表面开口缺陷中,用去除剂清除多余渗透液后,用显像剂表示出缺陷。渗透检测可有效用于除疏松多孑L性材料外的任何种类的材料,如钢铁材料、有色金属材料、陶瓷材料和塑料等材料的表面开口缺陷。随着渗透检测方法在压力容器检测中的广泛应用,必须合理选择渗透剂及检测工艺、标准试块及受检压力容器实际缺陷试块,使用可行的渗透榆测方法标准等来提高渗透检测的可靠性。该方法操作简单成本低,缺陷显示赢观,检测灵敏度高,可检测的材料和缺陷范围广,对形状复杂的部件~次操作就可大致做到全面检测。但只能检测出材料的表面开口缺陷且不适用于多孔性材料的检验,对工件和环境有污染。渗透检测方法在检测表面微细裂纹时往往比射线检测灵敏度高,还可用于磁粉检测无法应用到的部位。2.4声发射检测 声发射是指材料或结构受外力或内力作用产生变形或断裂,以弹性波形式释放出应变能的现象。而弹性波可以反映出材料的一些性质。声发射检测就是通过探测受力时材料内部发出的应力波判断容器内部结构损伤程度的一种新的无损检测方法。在构件裂纹形成、扩展直至开裂过程中会发射出能量大小不同的声发射信号,根据声发射信号的大小可判断是否有裂纹产生、及裂纹的扩展程度。 声发射与X射线、超声波等常规检测方法的主要区别在于它是一种动态无损检测方法。声发

超声波无损检测论文无损检测论文

超声波无损检测论文无损检测论文 一种可实现高速信号处理的超声波无损检测系统的设计无损探伤技术是在不损坏工件或原材料工作状态的前提下,对被检验部件的表面和内部质量进行检查的一种测试手段。超声波探伤就是利用超声能透入金属材料的深处,并由一截面进入另,截面时,在界面边缘发生反射的特点来检查零件缺陷的一种方法。当超声波束自零件表面由探头通至金属内部,遇到缺陷与零件底面时就分別发生反射波来,在荧光屏上形成脉冲波形,根据这些脉冲波形来判断缺陷位置和大小。 随着超声波探伤技术的发展,对数字信号的处理与分析已不再仅仅是辅助技术。而是一种基本技术,由此出现了各种全数字化的超声波检测设备。但早期的数字化设备仅停留在超声波检测频率较低频段的信号处理上,主要是受到高速A/D和高速存储技术的限制,山于计算机总线技术应用的瓶颈,也不能实时多通道传送波形数据到计算机去处理,声源定位信号分析等实时显示分析的功能只能由硬件输出的参数完成。 而A/D转换器和高效率微处理器的问世克服了在高频领域应用模拟电子技术受到的各种限制。数字化全波形超声波探伤设备就是由计算机作为主机,以单片机芯片为主构成的专用板卡统一控制管理超声系统。这种设备综合应用了高速数据采集技术、A/D转换技术、大容量缓冲技术、多通道切换技术、数据存储技术和数据管理软件技术

等先进的数据信号处理技术,使得多通道声发射波形的采集和分析不再困难。因此,如何开发和研制更具先进性、创新性、科学性和实用性的全数字式超声波检测设备和系统,已成为一项紧迫性的任务。 本文主要介绍一种基于高速信号处理技术的超声波无损检测系 统的典型设计方案,从系统的总体设计、单元电路设计和程序设计等方面阐述和分析了设让原理,电路和软件的结构与功能等,系统方案具有较高的技术含量和实用价值。 总体设计 系统的总体结构设计如图1所示。首先,由高压脉冲发生器发射高压脉冲,其经能量转換电路形成超声波信号,遇到缺陷或杂质时产生反射波,再经能量转换电路转換为电压信号,最后经放大电路放大、A/D转换后,形成数字量,写入高速数据缓存器中;然后,由PCI接口电路将缓存器中的数据适时地通过PCI总线送到本系统的微处理 器进行处理,实现与外部计算机通信、显示、打印,存储和控制等功能。 本系统采用转换速率为60MHz的8位高速A/D转换电路以满足数据采集的要求。为对A/D芯片输出的高速数据进行缓冲,并充分利用LCI总线带宽,采用了]2KB的高速数据缓存电路;对于多通道检测的要求,设计了通道选择控制电路以实现通道之间的切換;采用高增益的高频宽带放大电路对缺陷回波信号进行整理和放大。

GBT51285铝及铝合金冷拉薄壁管材涡流探伤方法

GB/T 5126-85铝及铝合金冷拉薄壁管材涡流探伤方法 中华人民共和国国家标准 铝及铝合金冷拉薄壁管材涡流探伤方法GB/T5126-85 本标准适用于以外穿通式涡流探伤方法检测冷拉航空高压导管、普通导管及一般用途的薄壁圆管。被检管材外径Φ6~22mm;壁厚0.5~1.5mm。 1 检测原理 管材纵向通过一种或几种频率的交流电流激励线圈,线圈的电性能由于管材的接近而变化,这种变化取决于线圈与管材间的距离、管材的几何尺寸、导电率和导磁率、以及管材的冶金与机械缺陷。当管材通过线圈时,由于管材的这些变量差异,所引起的电磁效应的变化产生了电信号,信号经过放大和转换后驱动报警或显示的装置,进行报警、记录以及分选,最终检测出有缺陷的管材。 2 一般规定 2.1 管材应在精整加工后,最终热处理前或后的状态下进行探伤。 2.2 被检管材表面应光滑、清洁、端部无毛刺。弯曲度和椭圆度应符合有关标准要求。 2.3 执行本方法的操作人员应具有有关学会考核并认可的Ⅱ级或Ⅱ级以上涡流探伤资格。 3 仪器和设备 3.1 探伤仪器 探伤仪器应能以适当频率(1~125kHz)的交流电流激励线圈,并能检测出线圈电磁信号的变化。3.2 检测线圈 环绕式检测线圈应能在管材内部产生感应电流,并能检测出管材的电特性变化。 3.3 传动设备 传动设备应能使管材以均匀的速度,在线圈和管材或两者最小的振动下,平稳地通过线圈,并使两者保持良好的同心度。 4 标准试样 标准试样用于调整和校验探伤仪器和传动设备,以保证探伤灵敏度、重复性和分辨能力在规定范围内,并作为验收标准。 4.1 标准试样的制备 4.1.1 制作标准试样的管材,应与被检管材的合金牌号、热处理状态、规格相同。 4.1.2 制作标准试样的管材,不应有表面凹凸和其他明显缺陷,也不应有超过有关标准规定的弯曲和椭圆度。 4.1.3制作标准试样的管材长度为2m,沿其管材径向垂直钻制两组通孔,一组为da标准孔,一组为db标准孔,每组三个。相邻两孔间的纵向距离为150mm,三孔周向分布相差120°±5°。孔至管材任何一端的最小距离为500mm。 4.1.4 制作标准试样的管材,不应有大于da标准孔指示的80%任何噪声指示。 4.1.5 标准试样尺寸和标准孔分布应符合下图规定。 标准试样示意图 4.2 钻制标准孔的要求 a. 所有da、db标准孔均为通孔; b. 孔径允许偏差±0.05mm; 标准试样及标准孔规格、尺寸见下 表。mm 标准试样规格标准孔直径壁厚0.50~1.50 A 级 B 级

五大常规探伤方法概述及其特点

五大常规探伤方法概述及其特点 工业无损探伤的方法很多,目前国内外最常用的探伤方法有五种,即人们常称的五大常规探伤方法。本文将首先介绍五大常规探伤方法及其特点,并结合汽车维修中的特定条件和需求,选出更适合于汽车维修的探伤方法。 一、五大常规探伤方法概述 五大常规方法是指射线探伤法、超声波探伤法、磁粉探伤法、涡流探伤法和渗透探伤法。 1、射线探伤方法 射线探伤是利用射线的穿透性和直线性来探伤的方法。这些射线虽然不会像可见光那样凭肉眼就能直接察知,但它可使照相底片感光,也可用特殊的接收器来接收。常用于探伤的射线有x光和同位素发出的γ射线,分别称为x光探伤和γ射线探伤。当这些射线穿过物质时,该物质的密度越大,射线强度减弱得越多,即射线能穿透过该物质的强度就越校此时,若用照相底片接收,则底片的感光量就小;若用仪器来接收,获得的信号就弱。因此,用射线来照射待探伤的零部件时,若其内部有气孔、夹渣等缺陷,射线穿过有缺陷的路径比没有缺陷的路径所透过的物质密度要小得多,其强度就减弱得少些,即透过的强度就大些,若用底片接收,则感光量就大些,就可以从底片上反映出缺陷垂直于射线方向的平面投影;若用其它接收器也同样可以用仪表来反映缺陷垂直于射线方向的平面投影和射线的透过量。由此可见,一般情况下,射线探伤是不易发现裂纹的,或者说,射线探伤对裂纹是不敏感的。因此,射线探伤对气孔、夹渣、未焊透等体积型缺陷最敏感。即射线探伤适宜用于体积型缺陷探伤,而不适宜面积型缺陷探伤。 2、超声波探伤方法 人们的耳朵能直接接收到的声波的频率范围通常是20Hz到20kHz,即音频。频率低于20Hz的称为次声波,高于20kHz的称为超声波。工业上常用数兆赫兹超声波来探伤。超声波频率高,则传播的直线性强,又易于在固体中传播,并且遇到两种不同介质形成的界面时易于反射,这样就可以用它来探伤。通常用超声波探头与待探工件表面良好的接触,探头则可有效地向工件发射超声波,并能接收界面反射来的超声波,同时转换成电信号,再传输给仪器进行处理。根据超声波在介质中传播的速度和传播的时间,就可知道缺陷的位置。当缺陷越大,反射面则越大,其反射的能量也就越大,故可根据反射能量的大小来查知各缺陷的大校常用的探伤波形有纵波、横波、表面波等,前二者适用于探测内部缺陷,后者适宜于探测表面缺陷,但对表面的条件要求高。 3、磁粉探伤方法 磁粉探伤是建立在漏磁原理基础上的一种磁力探伤方法。当磁力线穿过铁磁材料及其制品时,在其不连续处将产生漏磁场,形成磁极。此时撒上干磁粉或浇上磁悬液,磁极就会吸附磁粉,产生用肉眼能直接观察的明显磁痕。因此,可借助于该磁痕来显示铁磁材料及其制品的缺陷情况。磁粉探伤法可探测露出表面,用肉眼或借助于放大镜也不能直接观察到的微小缺陷,也可探测未露出表面,而是埋藏在表面下几毫米的近表面缺陷。用这种方法虽然也能探查气孔、夹杂、未焊透等体积型缺陷,但对面积型缺陷更灵敏,更适于检查因淬火、轧制、锻造、铸造、焊接、电镀、磨削、疲劳等引起的裂纹。 磁力探伤中对缺陷的显示方法有多种,有用磁粉显示的,也有不用磁粉显示的。用磁粉显示的称为磁粉探伤,因它显示直观、操作简单、人们乐于使用,故它是最常用的方法之一。不用磁粉显示的,习惯上称为漏磁探伤,它常借助于感应线圈、磁敏管、霍尔元件等来反映缺陷,它比磁粉探伤更卫生,但不如前者直观。由于目前磁力探伤主要用磁粉来显示缺陷,因此,人们有时把磁粉探伤直接称为磁力探伤,其设备称为磁力探伤设备。 4、涡流探伤方法

混凝土无损检测论文

混凝土无损检测技术浅析 摘要:任何科学技术的发展都离不开试验设计和测试,试验设计和测试是关于实验技术的一门科学,它将数理统计学的基本原理广泛应用于科研和生产实践,是当今科学研究人员和工程技术人员必须掌握的基本技术方法之一。混凝土是现代建筑工程中应用最广泛的建筑材料之一,混凝土的质量极大地影响着结构的安全性能,加强混凝土质量的监测和控制,保证和提高混凝土的质量,是当下建筑工程的重要课题之一。鉴于此,本文选择混凝土无损检测技术为研究对象,主要针对混凝土无损检测过程中的回弹法检测技术的相关问题进行了分析与讨论。 关键词:混凝土;无损检测;回弹法检测 目前,随着经济的不断发展我国的基础设施建设事业也发展得如火如荼。但是,随着建设项目的不断复杂化,我们在实践的过程中发现各种各样的因素都会对施工项目本文产生不同程度的影响,这些结构中就包含了很多不容被发现的缺陷和问题。对于我国来说,很多基础项目的规模往往很大,例如大型水坝、桥梁、高层建筑、高速公路等等。它们同时也是关系到国家经济和国防建设的保障基础,它们在其漫长的服役过程中,在不同因素的影响下和各种因素的侵蚀下,其基本结构和功能都会发生隐形或者显性的变化,如果不对这些问题给予足够的重视,就有可能在未来的某一天给我们带了灾难性的后果。 混凝土的无损检测技术,是在不破坏机构构件的前提下,直接从结构物上测试或者钻取芯样测试,通过无损检测技术的基本理论和已经建立的一些经验标准曲线,推定混凝土的强度和缺陷,它既适用于工程过程中的质量检测,也适用于工程竣工的验收和建筑物使用期间混凝土质量的检定,同时还能评定旧老建筑物的完整性和安全性。 回弹法一直以其仪器简单、操作方便、经济迅速、具有相当的测试精度,在混凝土无损检测领域占据相当优越的地位。回弹法检测混凝土强度的原理是按照混凝土的抗压强度和表面硬度之间存在某种相关关系,根据表面硬度推定混凝土的抗压强度。对混凝土结构构件不破坏、操作简单、费用低、不受结构物的形状及尺寸限制,可以进行多次重复试验,是直接在结构物上检测混凝土强度的现场无损检测技术,并已成为混凝土质量管理的重要手段,但回弹法在使用过程中还是出现了较多的操作不规范、随意性大、计算方法不当等问题,造成了较大的测

涡流探伤在焊管行业的应用

高频焊管在线涡流探伤应用 摘要:高频焊接钢管(简称焊接钢管或焊管)在流体输送、建筑构件和五金家具制作上有广泛的用途。涡流探伤机是一种利用涡流原理检测金属表面及近表面缺陷的仪器,涡流探伤以交流电磁线圈在金属构件表面感应产生涡流的无损探伤技术。由于涡流探伤,在检测时不要求线圈与构件紧密接触,也不用在线圈与构件间充满藕合剂,容易实现钢管在线检验。 关键词:高频焊管涡流探伤仪磁化探头 一、行业应用概述 高频焊接钢管(简称焊接钢管或焊管)在流体输送、建筑构件和五金家具制作上有广泛的用途。焊缝中不得有裂缝、裂纹、未熔焊等缺陷,表面不得有超标的划痕、压伤等缺陷。由于焊管在生产线上(简称在线)具有连续、快速生产的特点,因此,焊管质量仅靠人工事后检验是很难保证的;而涡流探伤检验方法则具有检测速度快,无需要与工件表面耦合,检测灵敏度等优点,适合于焊管生产的质量控制和质量检验。在线焊管(壁厚6mm以内)探伤,只有选择涡流探伤最可靠、合适。 焊管的在线涡流探伤是指在生产线上与生产过程同步的探伤,主要用生产过程的质量控制;焊接钢管涡流探伤执行GB/T7735-2004《钢管涡流探伤检验方法》标准,探伤结果借助于对比试样中人工缺陷与自然缺陷显示信号的幅值对比进行判断,对比试样的钢管与被检钢管的公称尺寸应相同,化学成分、表面状态、热处理状态相似,即应有相似的电磁特性。 在线探伤系统可以实现缺陷的实时检测、记录、报警及延时打标功能,检测报告数据可以长期保存在电脑硬盘里,如需要可以进行打印输出。 二、涡流探伤原理及优势 涡流流检测就是运用电磁感应原理,将高频正弦波电流激励探头线圈,当探头接近金属表面时,线圈周围的交变磁场在金属表面产生感应电流。对于平板金属,感应电流的流向是以线圈同心的圆形,形似旋涡称为涡流。同时涡流也产生相同频率的磁场称涡流场,其方向与线圈磁场方向相反。涡流通道的损耗电阻,以及涡流产生的反磁通,又反射到探头线圈,改变了线圈的电流大小及相位,即改变了线圈的阻抗。因此,探头在金属表面移动,遇到缺陷(如未熔焊、暗缝、开口裂纹、气孔、夹渣和折叠等)或材质、尺寸等变化时,使涡流磁场对线圈的反作用不同,引起线圈阻抗变化,通过涡流检测仪器测量出这种变化量就能鉴别金属表面有无缺陷或其它物理性质变化。 按探测线圈的形状不同,可分为穿过式(用于管、棒、线材的检测)、局部放置式(用于工件

磁粉探伤和超声波探伤原理

有表面或近表面缺陷的工件被磁化后,当缺陷方向与磁场方向成一定角度时,由于缺陷处的磁导率的变化,磁力线逸出工件表面,产生漏磁场,吸附磁粉形成磁痕。用磁粉探伤检验表面裂纹,与超声探伤和射线探伤比较,其灵敏度高、操作简单、结果可靠、重复性好、缺陷容易辨认。但这种方法仅适用于检验铁磁性材料的表面和近表面缺陷。 当前位置:首页 >> 企业新闻 >> 技术文章 >> 正文 磁粉探伤的原理 我要打印 IE收藏放入公文包我要留言查看留言 切割设备网:利用在强磁场中,铁磁性材料表层缺陷产生的漏磁场吸附磁粉的现象而进行的无损检验法,称磁粉探伤。 磁粉探伤原理:首先将被检焊缝局部充磁,焊缝中便有磁力线通过。对于断面尺寸相同、内部材料均匀的焊缝,磁力线的分布是均匀的。当焊缝内部或表面有裂纹、气孔、夹渣等缺陷时,磁力线将绕过磁阻较大的缺陷产生弯曲。此时在焊缝表面撒上磁粉,磁力线将穿过表面缺陷上的磁粉,形成“漏磁”。根据被吸附磁粉的形状、数量、厚薄程度,便可判断缺陷的大小和位置。内部缺陷由于离焊缝表面较远,磁力线在其上不会形成漏磁,磁粉不能被吸住,无堆积现象,所以缺陷无法显露。 超声波探伤仪 运用超声检测的方法来检测的仪器称之为超声波探伤仪。它的原理是:超声波在被检测材料中传播时,材料的声学特性和内部组织的变化对超声波的传播产生一定的影响,通过对超声波受影响程度和状况的探测了解材料性能和结构变化的技术称为超声检测。超声检测方法通常有穿透法、脉冲反射法、串列法等。 说白了就是变频原理

超声波探伤技术简介 1、超声检测 超声波检测是无损检测方法之一,无损检测是在不破坏前提下,检查工件宏观缺陷或测量工件特征的各种技术方法的统称。常规无损检测方法有:超声检测Ultrasonic Testing(缩写UT);射线检测Radiographic Testing(缩写RT);磁粉检测Magnetic particle Testing (缩写MT);渗透检验Penetrant Testing (缩写PT);涡流检测Eddy current Testing (缩写ET); 2、超声波探伤仪 运用超声检测的方法来检测的仪器称之为超声波探伤仪。它的原理是:超声波在被检测材料中传播时,材料的声学特性和内部组织的变化对超声波的传播产生一定的影响,通过对超声波受影响程度和状况的探测了解材料性能和结构变化的技术称为超声检测。超声检测方法通常有穿透法、脉冲反射法、串列法等。 PXUT-350 1、检测范围0.0-5000.0mm 2、工作频率 3、增益调节 4、 波形显示 3、衰减控制 4、垂直性误差≤3% 5、水平性误差≤0.3% 6、抑制电平 7、探伤灵敏度余量≥60dB 8、脉冲移位 9、使用电源7.2VDC,220VAC 10、外形尺寸250×140×50 11、备注全国服务,上门调试培训。如有特殊需要,特聘上海铁路局机务系统无损检测设备服务中心工程师,上门培训指导。探伤工艺乃保证质量的重中之重,选购信誉好,产品好的商家尤为重要。 12、产品介绍PXUT-350全数字智能超声波探伤仪采用新型超大屏幕高亮度EL显示器件(6.5"高亮场致发光显示器),仪器造型优美,体积小巧,屏幕超大,强光下无需遮光也能清晰显示,仪器功能实用,性能稳定,操作简便,是一款性能价格比非常优异的笔记本式全数字智能超声波探伤仪。 13、产地中国 回答者:Eisenhower314 - 魔法学徒一级5-18 11:23 PXUT系列超声波探伤仪是南通友联生产的主要机型,我用其中的几款。 工作原理一两句说不清楚,我就简单说一下吧。 首先,超声波,探伤仪发射出电脉冲,通过屏蔽传输线给探头上的压电晶片(换能器)两个

BS EN10246-3无缝 焊接钢管涡流探伤要点

钢管非破坏性试验--- 第3部分: 无缝钢管和焊接钢管(埋弧焊除外)的自动涡流探伤欧洲标准EN 10246-3: 1999 为英国标准状态.

国家标准前言 该英国标准为官方英语版本的EN10246-3:1999. 该英国标准包含BS 3889-1:1983的元素. 标准附件A中完整列出EN 10246的部分. 该标准部分代替了BS 3889-1:1983, 并且当所有相关部分被发布时BS 3889-1: 1983将被撤回. 英国参与的准备工作被委托给技术委员会,承压用钢的ISE/73, 承压钢管的ISE/73/1, 责任如下: ---协助咨询者理解文本 ---向负责的欧洲委员会提交任何关于解释或改变建议的查询, 并保持英国的利益通报 ---监视相关的国际和欧洲发展并在英国发布它们 代表该委员会的组织架构清单可以通过向委员会秘书要求获得 相关引用 本文所提及到的国际或欧洲出版实施的英国标准可以在BSI 标准中”国际标准对照索引”中找到, 或者通过使用BSI 标准文件电子目录的”查找”设置找到. 仅英国标准不意味着包括合同所有必须的条款. 符合英国标准本身并不赋予法律义务的豁免权 页面摘要 这份文件包括封面, 封二和EN标准的标题页 第2至第14页, 封三及封底 文档最后一次发行时显示BSI版权声明 发布以来下达的修改 修改编号日期意见

钢管非破坏性试验--- 第3部分: 无缝钢管和焊接钢管(埋弧焊除外)的自动涡流探伤 该欧洲标准于1999年10月6日被CEN通过 CEN成员必须遵守CEN/CENELEC 内部规定,保证赋予本欧洲标准的国家标准状态没有发生改变. 该欧洲标准拥有三种官方版本(英语, 法语, 德语). 其他任何语言的版本需由CEN成员负责翻译并且知悉中央秘书处的状态和官方版本一致. 以CEN 成员为国家标准主体的有, 澳大利亚, 比利时, 捷克, 丹麦, 芬兰, 法国, 德国, 希腊, 冰岛, 爱尔兰, 意大利, 卢森堡, 荷兰, 挪威, 葡萄牙, 西班牙, 瑞典, 瑞士和英国.

无损检测论文

桂林航天工业学院 论文报告 课程名称无损检测 开课学期 2015-2016(一) 班级 20130922Z01 姓名许远航

无损检测技术 一、激光技术在无损检测领域的应用与发展 激光技术在无损检测领域的应用始于七十年代初期,由于激光本身所具有的独特性能,使其在无损检测领域的应用不断扩大,并逐渐形成了激光全息、激光超声等无损检测新技术,这些技术由于其在现代无损检测方面具有独特能力而无可争议地成为无损检测领域的新成员。 1.激光全息无损检测技术 激光全息术是激光技术在无损检测领域应用最早、用得最多的方法。激光全息无损检测约占激光全息术总应用的25%。其检测的基本原理是通过对被测物体加外加载荷,利用有缺陷部位的形变量与其它部位不同的特点,通过加载前后所形成的全息图像的叠加来反映材料、结构内部是否存在缺陷。 激光全息无损检测技术的发展方向主要有以下几方面。 (1)将全息图记录在非线性记录材料上,以实现干涉图像的实时显现。 (2)利用计算机图像处理技术获取干涉条纹的实时定量数据。 (3)采用新的干涉技术,如相移干涉技术。在原来的基础上进一步提高全息技术的分辨率和准确性。 2.激光超声无损检测技术 激光超声技术是七十年代中期发展起来的无损检测新技术。它利用Q开关脉冲激光器发出的激光束照射被测物体,激发出超声波,采用干涉仪显示该超声波的干涉条纹。与其他超声无损检测方法相比,激光超声检测的主要优越性如下。 (1)能实现一定距离之外的非接触检测,不存在耦合与匹配问题。

(2)利用超短激光脉冲可以得到超短声脉冲和高时间分辨率,可以在宽带范围内提取信息,实现宽带检测。 (3)易于聚焦,实现快速扫描和成像。 3.激光无损检测的发展 激光超声检测成本高,安全性较差,目前仍处于发展阶段。但在无损检测领域,激光超声检测在以下几方面的应用前景引起了人们的关注:(1)可用于高温条件下的检测.如热钢材的在线检测;(2)适用于某些不宜接近的样品,如放射性样品的检测;(3)激光束可入射到任何部位,可用于检测形状奇异的样品;(4)可用于超薄超细的样品及表面或亚表面层的检测。国外近几年已有将激光超声检测用于飞机复合材料的检测、热态钢的在线检测的报道,在化学气相沉积、物理气相沉积、等离子体溅射等高温镀膜工艺过程中膜层厚度的实时检测方面也进行了研究。 二、超声检测技术在无损检测中的应用与发展 超声无损检测技术(UT)是五大常规检测技术之一,与其它常规无损检测技术相比,它具有被测对象范围广。检测深度大;缺陷定位准确,检测灵敏度高;成本低,使用方便;速度快,对人体无害以及便于现场使用等特点。 1.超声检测技术的应用 (1)目前大量应用于金属材料和构件质量在线监控和产品的在投检查。如钢板、管道、焊鞋、堆焊层、复合层、压力容器及高压管道、路轨和机车车辆零部件、棱元件及集成电路引线的检测等。 (2)各种新材料的检测。如有机基复合材料、金属基复合材料、结构陶瓷材料、陶瓷基复合材料等,超声检测技术已成为复合材料的支柱。

相关主题
相关文档 最新文档