当前位置:文档之家› (14)2007年新化一中高中化学奥林匹克竞赛辅导资料第十四章 烃的衍生物

(14)2007年新化一中高中化学奥林匹克竞赛辅导资料第十四章 烃的衍生物

(14)2007年新化一中高中化学奥林匹克竞赛辅导资料第十四章   烃的衍生物
(14)2007年新化一中高中化学奥林匹克竞赛辅导资料第十四章   烃的衍生物

2007年新化一中高中化学奥林匹克竞赛辅导资料

第十四章 烃的衍生物

【竞赛要求】

卤代烃、醇、酚、醚、醛、酮、酸、酯、胺、酰胺、硝基化合物、磺酸的基本性质及相互转化。异构现象。

【知识梳理】

一、卤代烃

(一)卤代烃的化学反应

卤代烃是烃分子中一个或多个氢原子被卤素原子取代后所生成的化合物。

卤代烃分子结构中含有C —X 键,由于卤素的电负性比碳大,碳卤键中电子云偏向卤素,使碳原子带部分正电荷,卤素易以X -的形式被取代,这种取代称为亲核取代反应(简写为S N )。活泼金属也可以与卤代烃反应,生成金属有机化合物。由于碳卤键的极性,使β碳原子上的氢原子与卤素原子一起脱去,发生消除反应而形成碳碳重键。另外卤代烃还可被多种试剂还原生成烃。卤代烃的化学反应如下:

1、亲核取代反应

(1)水解反应

RX + H 2O ROH + HX

卤代烷水解是可逆反应,而且反应速度很慢。为了提高产率和增加反应速度,常常将卤代烷与氢氧化钠或氢氧化钾的水溶液共热,使水解能顺利进行。

RX + H 2O ROH + NaX (2)氰解反应

RX + NaCN RCN + NaX

氰基经水解可以生成为羧基(–COOH ),可以制备羧酸及其衍生物。也是增长碳链的一种方法。如由乙烯来制备丙酸:

CH 2═CH 2 CH 3CH 2Cl CH 3CH 2CN CH 3CH 2COOH

(3)氨解反应

RX + NH 3 RNH 2

(4)醇解反应

RX + NaOEt ROEt + NaX (5)与硝酸银的醇溶液反应

RX + AgNO 3 RONO 2 + AgX ↓

NaOH

Δ HCl 氰解 水解

Δ 醇

此反应常用于各类卤代烃的鉴别。

不同卤代烃与硝酸银的醇溶液的反应活性不同,叔卤代烷 > 仲卤代烷 > 伯卤代烷。另外烯丙基卤和苄基卤也很活泼,同叔卤代烷一样,与硝酸银的反应速度很快,加入试剂可立即反应,仲卤代烷次之,伯卤代烷加热才能反应。

2、消除反应

卤代烷与氢氧化钾的醇溶液共热,分子中脱去一分子卤化氢生成烯烃,这种反应称为消除反应,以E 表示。

RCH 2CH 2Br + NaOH RCH ═CH

2 + NaBr + H 2O 不同结构的卤代烷的消除反应速度不同,3oR-X > 2oR-X > 1oR-X 。 不对称卤代烷在发生消除反应时,可得到两种产物。如:

RCH ═CHCH 3 (主要产物)

RCH 2CHXCH 3 + NaOH

RCH 2CH ═CH 2 (次要产物)

札依采夫规则:被消除的β– H 主要来自含氢较少的碳原子上。

3、与金属反应

(1)伍尔兹反应

卤代烷与金属钠反应可制备烷烃,此反应称为伍尔兹反应。

2CH 3CH 2Cl + 2Na CH 3CH 2CH 2CH 3 + NaCl

(2)格氏试剂反应

在卤代烷的无水乙醚溶液中,加入金属镁条,反应立即发生,生成的溶液叫格氏试剂。

RX + Mg RMgX 烷基卤化镁

CH 3CH 2Br + Mg CH 3CH 2MgBr 乙基溴化镁

格氏试剂是一个很重要的试剂,由于分子内含有极性键,化学性质很活泼,它在有机合成中有广泛的应用。

4、还原反应

卤代烃还可被多种试剂还原生成烃,如:

R —X RH

R —X RH

R —X RH R —X RH

(二)亲核取代反应机理

两类典型的亲核取代反应,一类是反应速度只与卤代烃的浓度有关,而与进攻试剂的浓度无关。

RX + OH - ROH + X -

乙醇 Δ

Zn+HCl LiAlH 4 H 2/Pt NH 3(液)+Na

υ = k [RX]

这类反应称为一级反应,也叫单分子反应,全称是单分子亲核取代反应,以S N 1表示。 另一类是反应速度不仅与卤代烃的浓度有关,也与进攻试剂的浓度有关。

RX + OH - ROH + X -

υ = k [RX][OH -]

这类反应称为二级反应,也叫双分子反应,全称为双分子亲核取代反应,以S N 2表示。

1、单分子亲核取代反应(S N 1)

叔丁基溴在碱性溶液中的水解反应速度,只与叔丁基溴的浓度有关,而与进攻试剂无关,它属于单分子亲核取代反应。

(CH 3)3CBr + OH - (CH 3)3COH + Br -

υ = k [(CH 3)3CBr]

单分子亲核取代反应分两步进行:

第一步 叔丁基溴发生碳溴键异裂,生成叔丁基正碳离子和溴负离子。在解离过程中碳溴键逐渐削弱,电子云向溴偏移,形成过渡态A ,进一步发生C —Br 键断裂。第一步反应速度很慢。

(CH 3)3CBr [(CH 3)3C ?Br] (CH 3)C + + Br -

第二步 生成的叔丁基正碳离子很快与进攻试剂结合形成过渡态B ,最后生成叔丁醇。

(CH 3)C + + OH - [(CH 3)3C ?OH] (CH 3)3COH

对S N 1历程反应来说,与生成的活性中间体——碳正离子的稳定性有关。碳正离子的稳定性取决于碳正离子的种类。烷基是一个给电子基,它通过诱导效应和共轭效应使用权碳正离子的正电荷得到分散,而增加了碳正离子的稳定性。显然碳正离子所连的烃基越多,其稳定性越大。碳正离子稳定性顺序如下:

3oC + > 2oC + > 1oC + > +CH 3

2、双分子亲核取代反应(S N 2)

溴甲烷在碱性溶液中的水解速度与卤代烷的浓度以及进攻试剂OH -的浓度的乘积成正比。S N 2历程与S N 1历程不同,反应是同步进行的,即卤代烃分子中碳卤键的断裂和醇分子中碳氧键的形成,是同时进行的,整个反应通过过渡态来实现。

过渡态一旦形成,会很快转变为生成物。此时新键的形成和旧键的断裂是同时发生的。S N 2反应的速度取决于过渡态的形成。形成过渡态不仅需要卤代烃的参与,同时也需要进攻试剂的参与,故称为双分子反应。

(三)影响亲核取代和消除反应的因素

卤代烃的消除反应和亲核取代反应同时发生而又相互竟争,控制反应方向获得所需要的产物,在有机合成上具有重要意义,影响上述反应的因素有下列几个:

1、烷基结构的影响

卤代烃反应类型的取向取决于亲核试剂进攻烃基的部分。亲核试剂若进攻α– 碳原子,则发生取代反应;若进攻β– 氢原子,则发生消除反应。显然α– 碳原子上所连的取代基越多,慢 快

空间位阻越大,越不利于取代反应(S N2)而有利于消除反应。3o卤代烃在碱性条件下,易发生消除反应。1o卤代烃与强的亲核试剂作用时,主要发生取代反应。

2、亲核试剂的影响

亲核试剂的碱性强,浓度大有利于消除反应,反之利于取代反应。这是因为亲核试剂碱性强,浓度大有利进攻β–氢原子而发生消除反应。

3、溶剂的影响

一般来说,弱极性溶剂有利于消除反应,而强极性溶剂有利于取代反应。

4、温度的影响

温度升高对消除反应、取代反应都是有利的。但由于消除反应涉及到C–H键断裂,所需能量较高,所以提高温度对消除反应更有利。

二、醇、酚、醚

醇和酚都含有相同的官能团羟基(–OH),醇的羟基和脂肪烃、脂环烃或芳香烃侧链的碳原子相连。而酚的羟基是直接连在芳环的碳原子上。因此醇和酚的结构是不相同的,其性质也是不同的。醇的通式为ROH,酚的通式为ArOH。

醚则可看作是醇和酚中羟基上的氢原子被烃基(–R或–Ar)取代的产物,醚的通式为R–O–R或Ar–O–Ar。

(一)醇

醇的化学性质由羟基决定。它的化学反应涉及到断裂碳氧键(C…OH)即羟基被取代,或者断裂氢氧键(O…H),即氢被取代或脱去;另外羟基和β–碳上的氢液也可以同时消去形成碳碳双键。醇的化学反应如下:

1、与活泼金属反应

缓慢

ROH + Na RONa + H2

各种不同结构的醇与金属钠反应的速度不同,甲醇> 伯醇> 仲醇> 叔醇。

醇羟基中的氢原子不如水分子中的氢原子活泼,当醇与金属钠作用时,比水与金属钠作用缓慢得多,而且所产生的热量不足以使放出的氢气燃烧。某些反应过程中残留的钠据此可用乙醇处理,以除去多余的金属钠。

醇的酸性比水小,因此反应所得到的醇钠可水解得到原来的醇。醇钠的化学性质活泼,它是强碱,在有机合成中可作缩合剂用,并可作引入烷氧剂的烷氧化试剂。

其它活泼的金属,例如镁、铝等也可与醇作用生成醇镁和醇铝。异丙醇铝和叔丁醇铝在有机合成上有重要的应用。

2、与无机酸的反应

(1)与氢卤酸反应

醇与氢卤酸作用生成卤代烃和水,这是制备卤代烃的重要方法。反应如下:

ROH + HX RX + H2O

醇与氢卤酸反应的快慢与氢卤酸的种类及醇的结构有关。

不同种类的氢卤酸活性顺序为:氢碘酸> 氢溴酸> 盐酸;

不同结构的醇活性顺序为:烯丙醇 > 叔醇 > 仲醇 > 伯醇。

因此,不同结构的醇与氢卤酸反应速度不同,这可用于区别伯、仲、叔醇。所用的试剂为无水氯化锌和浓盐酸配成的溶液,称为卢卡氏试剂。卢卡氏试剂与叔醇反应速度最快,立即生成卤代烷,由于卤代烷不溶于卢卡氏试剂,使溶液混浊。仲醇反应较慢,需放置片刻才能混浊分层。伯醇在常温下不反应,需在加热下才能反应。(注意此反应的鉴别只适用于含6个碳以下的伯、仲、叔醇异构体,因高级一元醇也不溶于卢卡氏试剂)。

(2)与含氧无机酸反应

醇与含氧无机酸如硝酸、硫酸、磷酸等作用,脱去水分子而生成无机酸酯。例如:

CH 3CH 2OH + HNO 3 CH 3CH 2O ─NO 2 硝酸乙酯

CH 3OH + H 2SO 4 CH 3O ─SO

3H 硫酸氢乙酯

CH 3O ─SO 3H CH 3O ─SO 2─OCH 3 硫酸二甲酯

3、脱水反应

醇与浓硫酸混合在一起,随着反应温度的不同,有两种脱水方式。在高温下,可分子内脱水生成烯烃;在低温下也可分子间脱水生成醚。例如:

CH 3CH 2OH + HOCH 2CH 3 CH 3CH 2OCH 2CH 3

CH 3CH 2OH CH 2═CH 2 醇中最容易脱水的是叔醇、仲醇次之,伯醇最难。对于叔醇,分子内脱水可有两种方向,但主要产物与卤代烷烃脱卤代氢一样服从扎依采夫规则,生成双键碳原子上连有最多烃基的烯烃。

4、氧化反应

醇分子中由于羟基的影响,使得α– 氢较活泼,容易发生氧化反应。伯醇和仲醇由于有α– 氢存在容易被氧化,而叔醇没有α– 氢难氧化。常用的氧化剂为重铬酸钾和硫酸或高锰酸钾等。不同类型的醇得到不同的氧化产物。

伯醇首先被氧化成醛,醛继续被氧化生成羧酸。

RCH 2OH RCHO RCOOH

仲醇氧化成含相同碳原子数的酮,由于酮较稳定,不易被氧化,可用于酮的合成。

RCHOHR RCOR

(二)酚

酚是羟基直接与芳环相联,由于芳环和羟基的相互影响,所以酚的羟基和芳环具有一些特有的性质。如酚的酸性比醇要强,这是由于酚离解氢离子后,得到一个稳定的苯氧负离子:

酚的羟基和芳环形成一个共轭体系,所以酚羟基也不易消去(消除反应)。酚的芳环由于[O] 减压蒸馏

170℃ 浓H 2SO 4 140℃ 浓H 2SO 4 [O] [O] OH O — + H +

受羟基的影响,也比相应的芳环更容易发生亲电取代反应。酚的化学反应如下:

1、酚羟基的反应

(1)酸性

酚具有酸性,酚和氢氧化钠的水溶液作用,生成可溶于水的酚钠。

+ NaOH + H 2O

通常酚的酸性比碳酸弱,如苯酚的pK 为10,碳酸的pK 为6.38。因此,酚不溶于碳酸氢钠溶液。若在酚钠溶液中通入二氧化碳,则苯酚又游离出来。可利用酚的这一性质进行分离提纯。

+ CO 2 + H 2O + NaHCO 3

苯酚的弱酸性,是由于羟基氧原子的孤对电子与苯环的π电子发生p –π共轭,致使电子离域使氧原子周围的电子云密度下降,从而有利于氢原子以质子的形式离去

(2)与三氯化铁反应

含酚羟基的化合物大多数都能与三氯化铁作用发生显色反应。故此反应常用来鉴别酚类。但具有烯醇式结构的化合物也会与三氯化铁呈显色反应。

2、芳环上的亲电取代反应

(1)卤代反应

酚极易发生卤代反应。苯酚只要用溴水处理,就立即生成不溶于水的2,4,6–三溴苯酚白色沉淀,反应非常灵敏。

+ Br 2 ↓ + HBr

除苯酚外,凡是酚羟基的邻、对位上还有氢的酚类化合物与溴水作用,均能生成沉淀。故该反应常用于酚类化合物的鉴别。

(2)硝化反应

苯酚在常温下用稀硝酸处理就可得到邻硝基苯酚和对硝基苯酚。 + 20℅HNO 3 +

邻硝基苯酚和对硝基苯酚可用水蒸气蒸馏法分开。这是因为邻硝基苯酚通过分子内氢键形成环状化合物,不再与水缔合,也不易生成分子间氢键,故水溶性小、挥发性大,可随水蒸气蒸出。而对硝基苯酚可生成分子间氢键而相互缔合,挥发性小,不随水蒸气蒸出。

(三)氧化反应

酚类化合物很容易被氧化,不仅可用氧化剂如高锰酸钾等氧化,甚至较长时间与空气接触,也可被空气中的氧气氧化,使颜色加深。苯酚被氧化时,不仅羟基被氧化,羟基对位的碳OH ONa ONa OH H 2O

OH Br Br Br OH 25℃ OH 2

OH NO 2 OH

氢键也被氧化,结果生成对苯醌。

+ [O ]

多元酚更易被氧化,例如,邻苯二酚和对苯二酚可被弱的氧化剂(如氧化银、溴化银)氧化成邻苯醌和对苯醌。

+ AgBr (三)醚

由于醚分子中的氧原子与两个烃基结合,分子的极性很小。醚是一类很不活泼的化合物(环氧乙烷除外)。它对氧化剂、还原剂和碱都极稳定。如常温下与金属钠不作用,因此常用金属钠干燥醚。但是在一定条件下,醚可发生特有的反应。

1、盐的生成 因醚键上的氧原子有末共电子对,能接受强酸中的质子,以配位键的形式结合生成盐。

R –O –R + HCl [R –OH –R]+Cl -

2、醚键的断裂

在较高的温度下,强酸能使醚键断裂,最有效的是氢卤酸,又以氢碘酸为最好,在常温下就可使醚键断裂,生成一分子醇和一分子碘代烃。若有过量的氢碘酸,则生成的醇进一步转变成另一分子的碘代烃。

R –O –R + HI RI + ROH

ROH + HI RI + H 2O

醚键的断裂有两种方式,通常是含碳原子数较少的烷基形成碘代物。若是芳香烃基烷基醚与氢碘酸作用,总是烷氧基断裂,生成酚和碘代烷。

+ HI + CH 3I

3、环醚(环氧乙烷)的反应

环醚(环氧乙烷)在酸或碱催化下可与许多含活泼氢的化合物或亲核试剂作用发生开环反应。试剂中的负离子或带部分负电荷的原子或基团,总是和碳原子结合,其余部分和氧原子结合生成各类相应的化合物。例如:

+ HCl CH 2OHCH 2Cl

+ H 2O CH 2OHCH 2OH

+ RMgX RCH 2CH 2OMgX

OH OH

O O O CH 3 OH CH 2—CH 2 O

CH 2—CH 2 O 无水醚 CH 2—CH 2

RCH 2CH 2OMgX + H 2O

RCH 2CH 2OH + ROH + ROH (S N 2)

环氧乙烷环上有取代基时,开环方向与反应条件有关,一般规律是:在酸催化下反应主要发生在含烃基较多的碳氧键间;在碱催化下反应主要发生在含烃基较少的碳氧键间。

三、醛和酮

醛和酮都是含有羰基官能团的化合物。当羰基与一个羟基和一个氢原子相结合时就是醛,醛基的简写为–CHO 。若羰基与两个烃基相结合,就是酮,酮分子中的羰基叫做酮基。

醛、酮羰基中的碳原子为sp 2杂化,而氧原子则是未经杂化的。碳原子的三个sp 2杂化轨道相互对称地分布在一个平面上,其中之一与氧原子的2p 轨道在键轴方向重叠构成碳氧σ键。碳原子末参加杂化的2p 轨道垂直于碳原子三个sp 2杂化轨道所在的平面,与氧原子的另一个2p 轨道平等重叠,形成π键,即碳氧双键也是由一个σ键和一个π键组成。由于氧原子的电负性比碳原子大,羰基中的π电子云就偏向于氧原子,羰基碳原子带上部分正电荷,而氧原子带上部分负电荷。

由羰基的结构知道,醛、酮一般可以发生三类化学反应:

(一)亲核加成反应

醛、酮在发生加成反应时,决定反应速度的一步是亲核试剂(可以是负离子或带有末共有电子对的中性分子)进攻带部分正电荷的羰基碳原子,生成氧负离子。即羰基上的加成反应由亲核试剂进攻引起的,故羰基的加成反应称为亲核加成反应。

1、与氢氰酸加成

醛、脂肪族甲基酮8个碳以下的环酮能与氢氰酸发生加成反应生成α-氰醇。反应通式为:

+ HCN 丙酮与氢氰酸作用,无碱存在时,3~4小时内只有一半反应物作用掉。但如加一滴氢氧化钾,则反应2分钟内即完成。若加入酸,反应速度减慢,加入大量的酸,放置几天也不发生作用。根据以上事实可以推论,在醛、酮与氢氰酸加成反应中,真正起作用的是氰基负离子这一CH 3—CH —CH 2 O H + CH 3—CH —CH 2 OR OH CH 3—CH —CH 2 O OH - CH 3—CH —CH 2OH OR R C O (

CH 3)H R C H (CH 3)

CN OH

亲核试剂。碱的加入增加了反应体系的氰基负离子浓度,酸的加入则降低了氰基负离子浓度,这是由于弱酸氢氰酸在溶液中存在下面的平衡。

HCN CN - + H + 醛、酮与亲核试剂的加成反应都是试剂中带负电部分首先向羰基带正电荷碳原子进攻,生成氧负离子,然后试剂中带正电荷部分加到氧负离子上去。在这两步反应中,第一步需共价键异裂,是反应慢的一步,是决定反应速度的一步。可用通式表示如下:

+ : Nu — 不同结构的醛、酮进行亲核加成反应的难易程度不同,其由易到难的顺序为:

HCHO > RCHO > RCOCH 3 > RCOR

影响醛酮亲核加成反应的速度的因素有两方面,其一是电性因素,烷基是供电子基,与羰基碳原子连接的烷基会使羰基碳原子的正电性下降,对亲核加成不利。其二是立体因素,当烷基与羰基相连,不但降低羰基碳的正电性,而且烷基的空间阻碍作用,也不便于亲核试剂接近羰基,不利于亲核加成反应的进行。

2、与亚硫酸氢钠加成

醛、甲基酮以及环酮可与亚硫酸氢钠的饱和溶液发生加成反应,生成α – 羟基磺酸钠,它不溶于饱和的亚硫酸氢钠溶液中而析出结晶。

+ NaHSO 3 ↓ 本加成反应可用来鉴别醛、脂肪族甲基酮和8个碳原子以下的环酮。由于反应为可逆反应,加成物α-羟基磺酸钠遇酸或碱,又可恢复成原来的醛和酮,故可利用这一性质分离和提纯醛酮。

3、与醇加成

在干燥氯化氢或浓硫酸作用下,一分子醛和一分子醇发生加成反应,生成半缩醛。例如:

CH 3CH 2CHO + CH 3OH CH 3CH 2CH(OH)OCH 3

半缩醛一般不稳定,它可继续与一分子醇反应,两者之间脱去一分子水,而生成稳定的缩醛。

CH 3CH 2CH(OH)OCH 3 + CH 3OH CH 3CH 2CH(OCH 3)2

在结构上,缩醛跟醚的结构相似,对碱和氧化剂是稳定的,对稀酸敏感可水解成原来的醛。

RCH (OR )2 + H 2O RCHO 在有机合成中可利用这一性质保护活泼的醛基。例如由对羟基环已基甲醛合成对醛基环已酮时,若不将醛基保护起来,当用高锰酸钾氧化时,醛基也会被氧化成羧酸。

C

O 慢 C O Nu A +

C OA Nu

干燥HCl H +

R C O (CH 3)H H (CH 3)

R C 3Na

OH 干燥HCl

+ CH 3OH

4、与格氏试剂加成

格氏试剂与甲醛作用生成伯醇,生成的醇比用作原料的格氏试剂多一个碳原子。 HCHO + RMgX RCH 2OmgX RCH 2OH 格氏试剂与其它醛作用生成仲醇。例如:

RCHO + RMgX R 2CHOMgX R 2CHOH

格氏试剂与酮作用生成叔醇。例如: RCOR + RMgX R 3COMgX R 3COH 5、与氨的衍生物加成

氨的衍生物可以是伯胺、羟胺、肼、苯肼、2,4 – 二硝基苯肼以及氨基脲。醛、酮能与氨的衍生物发生加成作用,反应并不停留在加成一步,加成产物相继发生脱水形成含碳氮双键的化合物。反应式如下:

+ H 2N –R + H 2NOH + H 2NNH 2

+ + H 2NNHCONH 2

上述的氨衍生物可用于检查羰基的存在,又叫羰基试剂。特别是2,4 – 二硝基苯肼几乎能与所有的醛、酮迅速反应,生成橙黄色或橙红色的结晶,常用来鉴别。

6、与魏悌锡试剂加成

魏惕锡试剂是由亲核性的三苯基膦(C 6H 5)3P 与卤代烷进行亲核取代反应制得的膦盐,再用强碱例如苯基锂处理除去α-氢而制得。

醛、酮与魏悌锡试剂作用脱去一分子氧化三苯基膦生成烯烃,称为魏悌锡反应。反应通式为:

R R R CHO [O] 水解 CH OCH 3 OH

OCH 3 CHO CH O OCH 3 OCH 3 R C (CH 3)H O —H 2O R C (

R )H NR H 2NHN —H 2O —H 2O —H 2O —H 2O NOH R C (

R )H NNH 2 R C (R )H NNH R

C (R )H O N NH 2 NH C R C (R )H H +

H 2O H +

H 2O

H + H 2O

+

应用魏悌锡反应制备烯烃条件温和、双键位置确定。例如合成亚甲基环已烷,若采用醇脱水的方法难以得到。

(二)α – 活泼氢的反应

醛酮α – 碳原子上的氢原子受羰基的影响变得活泼。这是由于羰基的吸电子性使α – 碳上的α – H 键极性增强,氢原子有变成质子离去的倾向。或者说α – 碳原子上的碳氢σ键与羰基中的π键形成σ – π共轭(超共轭效应),也加强了α – 碳原子上的氢原子解离成质子的倾向。

1、卤代和卤仿反应

在酸的存在下,醛、酮和卤素的卤代反应可控制在一卤代产物。

+ Br 2

在碱性催化下,卤代反应不能控制在一卤代产物,而是生成多卤代产物。α – 碳原子上连有三个氢原子的醛酮,例如,乙醛和甲基酮,能与卤素的碱性溶液作用,生成三卤代物。三卤代物在碱性溶液中不稳定,立即分解成三卤甲烷和羧酸盐,这就是卤仿反应。常用的卤素是碘,反应产物为碘仿,上述反应就称为碘仿反应。碘仿是淡黄色结晶,容易识别,故碘仿反应常用来鉴别乙醛和甲基酮。次碘酸钠也是氧化剂,可把乙醇及具有 CH 3CH(OH) – 结构的仲醇分别氧化成相应的乙醛或甲基酮,故也可发生碘仿反应。

2、羟醛缩合反应

在稀碱的催化下,一分子醛因失去α – 氢原子而生成的碳负离子加到另一分子醛的羰基碳原子上,而氢原子则加到氧原子上,生成β – 羟基醛,这一反应就是羟醛缩合反应。它是增长碳链的一种方法。例如:

CH 3CHO + CH 3CHO CH 3CH(OH)CH 2CHO

若生成的β – 羟基醛仍有α – H 时,则受热或在酸作用下脱水生成α,β – 不饱和醛。

CH 3CH(OH)CH 2CHO CH 3CH ═CHCHO

酮也能发生醇酮缩合反应,但平衡不利于醇酮的生成。例如丙酮的醇酮缩合需在氢氧化钡的催化下,并采用特殊设备将生成的产物及时分出,使用权平衡向生成产物的方向移动。 CH 3COCH 3 + CH 3COCH 3

当两种不同的含α –H 的醛(或酮)在稀碱作用下发生醇醛(或酮)缩合反应时,由于交叉缩合的结果会得到4种不同的产物,分离困难,意义不大。若选用一种不含α –H 的醛和一种含α – H 的醛进行缩合,控制反应条件可和到单一产物。例如:

HCHO + (CH 3)2CHCHO HOCH 2C(CH 3)2CHO

由芳香醛和脂肪醛酮通过交叉缩合制得α,β – 不饱和醛酮,称克莱森 – 斯密特反应。例3 Br 20℃ Br COCH 2Br C CH 3 OH CHCOCH 3 CH 3

如:

+ CH 3COCH 3

(三)氧化与还原反应

1、氧化反应

醛羰基上的氢原子不但可被强的氧化剂高锰酸钾等氧化,也可被弱的氧化剂如托伦试剂和斐林试剂所氧化,生成含相同数碳原子的羧酸,而酮却不被氧化。

(1)醛与托伦试剂(由氢氧化银和氨水制得的无色溶液)共热,可以在试管壁上生成明亮的银境,故又称银境反应。

RCHO + [Ag(NH 3)2]+ RCOONH 4 + Ag↓ + NH 3 + H 2O

(2)醛与斐林试剂(由硫酸铜和洒石酸钾钠的氢氧化钠溶液配制而成的深蓝色二价铜络合物)共热,则生成砖红色的氧化亚铜沉淀。

RCHO + Cu 2+ + NaOH + H 2O RCOONa + Cu 2O↓ 甲醛与斐林试剂作用,有铜析出可生成铜境,故此反应又称铜境反应。

HCHO + Cu 2+ + NaOH + H 2O HCOONa + Cu↓

利用托伦试剂可把醛与酮区别开来。但芳醛不与斐林试剂作用,因此,利用斐林试剂可把脂肪醛和芳香醛区别开来。

2、还原反应

采用不同的还原剂,可将醛酮分子中的羰基还原成羟基,也可以脱氧还原成亚甲基。

(1)羰基还原成醇羟基

醛酮羰基在催化剂铂、镉、镍等存在下,可催化加氢,将羰基还原成羟基。若分子结构中有碳碳双键也同时被还原。如:

CH 3CH═CHCHO + H 2 CH 3CH 2CH 2CH 2OH

用金属氢化物如硼氢化钠、氢化锂铝等则只选择性地把羰基还原成羟基,而分子中的碳碳双键不被还原,例如:

CH 3CH═CHCH 2CHO CH 3CH═CHCH 2CH 2OH (2)羰基还原成亚甲基

醛、酮与锌汞齐及浓盐酸回流反应,羰基被还原成亚甲基,这一反应称为克莱门森还原。例如:

+ HCl

(3)康尼查罗反应

没有α– 氢原子的醛在浓碱作用下发生醛分子之间的氧化还原反应,即一分子醛被还原成Δ

Ni LiAlH 4 COCH 3 Zn-Hg

_ Δ CH 2CH 3 Δ Δ

醇,另一分子醛被氧化成羧酸,这一反应称为康尼查罗反应,属歧化反应。例如:

2HCHO + NaOH

(浓) CH 3OH + HCOONa

如果是两种不含α– H 的醛在浓碱条件下作用,若两种醛其中一种是甲醛,由于甲醛是还原性最强的醛,所以总是甲醛被氧化成酸而另一醛被还原成醇。这一特性使得该反应成为一种有用的合成方法。

+ HCHO + NaOH (浓) + HCOONa

+ HCHO + NaOH + HCOONa

四、羧酸及其衍生物

(一)羧酸

由烃基(或氢原子)与羧基相连所组成的化合物称为羧酸,其通式为RCOOH ,羧基(–COOH )是羧酸的官能团。根据羧酸结构分析,它主要发生以下四类反应:

1、酸性

RCOOH RCOO - + H +

羧酸的酸性比苯酚和碳酸的酸性强,因此羧酸能与碳酸钠、碳酸氢钠反应生成羧酸盐。

RCOOH + NaHCO 3(Na 2CO 3) RCOONa + H 2O + CO 2↑

但羧酸的酸性比无机酸弱,所以在羧酸盐中加入无机酸时,羧酸又游离出来。利用这一性质,不仅可以鉴别羧酸和苯酚,还可以用来分离提纯有关化合物。

当羧酸的烃基上(特别是α– 碳原子上)连有电负性大的基团时,由于它们的吸电子诱导效应,使氢氧间电子云偏向氧原子,氢氧键的极性增强,促进解离,使酸性增大。基团的电负性愈大,取代基的数目愈多,距羧基的位置愈近,吸电子诱导效应愈强,则使羧酸的酸性更强。如:

三氯乙酸 二氯乙酸 氯乙酸

pK a 0.028 1.29 2.81

因此,低级的二元酸的酸性比饱和一元酸强,特别是乙二酸,它是由两个电负性大的羧基直接相连而成的,由于两个羧基的相互影响,使酸性显著增强,乙二酸的pK a 1 =1.46,其酸性C CHO CH 2OH HOH 2C 2OH

C CH 2OH CH 2OH HOH

2C 2OH

CHO CH 2OH

比磷酸的pK a 1 =1.59还强。

取代基对芳香酸酸性的影响也有同样的规律。当羧基的对位连有硝基、卤素原子等吸电子基时,酸性增强;而对位连有甲基、甲氧基等斥电子基时,则酸性减弱。至于邻位取代基的影响,因受位阻影响比较复杂,间位取代基的影响不能在共轭体系内传递,影响较小。

对硝基苯甲酸 对氯苯甲酸 对甲氧基苯甲酸 对甲基苯甲酸

pK a 3.42 3.97 4.47 4.38

2、羰基的反应

(1)酰卤的生成

羧酸与三氯化磷、五氯化磷、氯化亚砜等作用,生成酰氯。

RCOOH + PCl 3(PCl 5、SOCl 2)

RCOCl

(2)酸酐的生成

在脱水剂的作用下,羧酸加热脱水,生成酸酐。常用的脱水剂有五氧化二磷等。 RCOOH + RCOOH RCOOOCR

(3)酯化反应

羧酸与醇在酸的催化作用下生成酯的反应,称为酯化反应。酯化反应是可逆反应,为了提高酯的产率,可增加某种反应物的浓度,或及时蒸出反应生成的酯或水,使平衡向生成物方向移动。

RCOOH + R 1OH RCOOR 1 + H 2O

酯化反应可按两种方式进行:

实验证明,大多数情况下,酯化反应是按①的方式进行的。如用含有示踪原子18O 的甲醇与苯甲酸反应,结果发现18O 在生成的酯中。

(4)酰胺的生成

在羧酸中通入氨气或加入碳酸铵,首先生成羧酸的铵盐,铵盐胺热脱水生成酰胺。

RCOOH + NH 3 RCOONH 4 RCONH 2

(5)羧基还原反应

羧酸在一般情况下,和大多数还原剂不反应,但能被强还原剂—氢化锂铝还原成醇。用氢化铝锂还原羧酸时,不但产率高,而且分子中的碳碳不饱和键不受影响,只还原羧基而生成不饱和醇。例如:

RCH 2CH═CHCOOH RCH 2CH═CHCH 2OH

P 2O 5 Δ

H + -H 2O Δ

LiAlH 4

3、α– H 的反应

羧基和羰基一样,能使α– H 活化。但羧基的致活作用比羰基小,所以羧酸的α– H 卤代反应需用在红磷等催化剂存在下才能顺利进行。

CH 3COOH + Cl 2

CH 2ClCOOH CHCl 2COOH CCl 3COOH

4、脱羧基反应

羧酸分子脱去羧基放出二氧化碳的反应叫脱羧反应。例如,低级羧酸的钠盐及芳香族羧酸的钠盐在碱石灰(NaOH –CaO )存在下加热,可脱羧生成烃。

CH 3COONa CH 4 + Na 2CO 3 这是实验室用来制取纯甲烷的方法。

一元羧酸的脱羧反应比较困难,把羧酸盐蒸气通过加热至400~500℃的钍、锰或镁的氧化物,则脱羧生成酮。

2CH 3COOH CH 3COCH 3 + CO 2 + H 2O

当一元羧酸的α– 碳上连有吸电子基时,脱羧较容易进行,如:

CCl 3COOH CHCl 3 + CO 2↑

(二)羧酸衍生物

重要的羧酸衍生物有酰卤、酸酐、酯和酰胺。它们的结构特征为

,它们共同的反应是羰基的加成–消除反应:

羧酸衍生物的反应活性是:酰氯 > 酸酐 > 酯 > 酰胺。

1、水解

四种羧酸衍生物化学性质相似,主要表现在它们都能水解,生成相应的羧酸。

RCOCl HCl

RCOOOCR 1 R 1COOH RCOOR 1 R 1OH

RCONH 2 NH 3

Δ

P P Cl 2 P Cl 2

+ H 2O RCOOH + Δ 碱石灰

2、醇解

酰氯、酸酐和酯都能与醇作用生成酯。

RCOCl HCl

RCOOOCR 1 R 1COOH RCOOR 1 R 1OH

RCONH 2 H 2NH

3、氨解

酰氯、酸酐和酯都能与氨作用,生成酰胺。

RCOCl HCl

RCOOOCR 1 R 1COOH RCOOR 1 R 1OH

4、与RMgX 反应

RCOCl + CH 3(CH 2)MgCl

酰胺中含有活泼氢,能使RMgX 分解。RCONH 2型酰胺与3~4摩尔RMgX 长时间共热也可以得到酮。

5、还原

RCOCl RCHO

RCOCl R –CH 2OH RCOOOCR 2 R –CH 2OH RCOOR ’ + H 2 RCH 2OH + R ’ OH

RCOOR ’ R –CH 2OH + R ’ OH

RCONH 2 RCH 2NH 2

+ HOR 2 RCOOR 2 + + NH 3 RCONH

2 + 乙醚,FeCl

3 203K CH 3—C —(CH 2)3CH 3 OMgCl Cl -MgCl 2 CH 3—C —(CH 2)3CH 3

O 72% CH 2—C CH 2—C O O O MgI CH 3O O=CCH 2CH 2COOH CH 3O 41% 低温 + CH 3CH 2—C —OCH 3 O CH 3MgBr 乙醚 CH 3CH 2—C —OCH 3 OMgBr CH 3 Br OCH 3 —Mg CH 3CH 2—C —CH 3 O CH 3MgBr 乙醚 CH 3CH 2—C —CH 3 OMgBr 3 CH 3MgBr 乙醚 CH 3CH 2—C —CH 3 OH 3 H 2/Pb –BaSO 4

LiAlH 4 或NaBH 4

LiAlH 4 CuO ,CuCrO 4

LiAlH 4 LiAlH 4 或NaBH 4

6、酯缩合反应

2CH 3COOEt CH 3COCH 2COOEt (乙酰乙酸乙酯)

7、酰胺特有的反应

R –COONH 4 RCONH 2 R –C≡N

RCONH 2 RNH 2

(三)丙二酸二乙酯及其在有机合成中的应用

丙二酸二乙酯,简称丙二酸酯,常用下面的方法来制取丙二酸酯: CH 2ClCOONa CH 2CNCOONa + C 2H 5OH C 2H 5OOCCH 2COOC 2H 5

由于丙二酸酯分子中亚甲基上的氢原子受相邻两个酯基的影响,比较活泼,其能在乙醇化钠的催化下与卤代烃或酰氯反应,生成一元取代丙二酸酯和二元取代丙二酸酯。烃基或酰基取代两二酸酯经碱性水解、酸化和脱羧后,可制得相应的羧酸。这是合成各种类型羧酸的重要方法,称为丙二酯酯合成法。例如:

RCH 2COOH 一烃基乙酸 二烃基乙酸

+ CH 3COCl

EtONa EtO –C –(CH 2)5––OEt O O

EtONa O COOEt -H 2O H 2O -H 2O H 2O

X 2 + NaOH (NaOX) NaCN H 2SO 4 COOC 2H 5 CH 2 乙醇钠 RX CH R 乙醇钠 R 1X R R 1 C COOC 2H 5 COOC 2H 5 2H 5 COOC 2H 5 COOC 2H 5 NaOH 水 CH R COONa H + CH R COOH

COOH —CO 2 Δ COOC 2H 5 CH R COOC 2H 5 NaOH 水 R R 1 COONa C H + —CO 2 Δ CH R 1 COOH COOC 2H 5 R R 1 C 2H 5 R R 1 COOH C 乙醇钠 NaOH 水 H +

—CO 2 CH 2 COOH CH 3 C O COOC 2H 5 CH 2 2H 5 COOC 2H 5 CH CH 3 C O 2H 5 COONa CH CH 3 C O COONa COOH CH 3 C O

五、取代羧酸

羧酸分子中烃基上的氢原子被其它原子或原子团取代后生成的化合物称为取代羧酸。常见的取代羧酸有卤代酸、羟基酸、羰基酸(氧代酸)和氨基酸等。

(一)羟基酸

羟基酸既具有醇和羧酸的一般性质,如醇羟基可以氧化、酰化、酯化;羧基可以成盐、成酯等,又由于羟基和羧基的相互影响,而具有一些特殊的性质。

1、酸性

在羟基酸分子中,由于羟基的吸电子诱导效应沿着碳链传递到羧基上,而降低了羧基碳的电子云密度,使羧基中氧氢键的电子云偏向于氧原子,促进了氢原子解离成质子。由于诱导效应随传递距离的增长而减弱,因此羟基酸的酸性随着羟基与羧基距离的增加而减弱。如:

CH 3CHOHCOOH OHCH 2CH 2COOH CH 3CH 2COOH

pK a 3.87 4.51 4.88

2、α– 羟基酸的分解反应

由于羟基和羧基都有吸电子诱导效应,使羧基与α– 碳原子之间的电子云密度降低,有利于二者之间键的断裂,所以当α– 羟基酸与稀硫酸共热时,分解成比原来少一个碳原子的醛或酮和甲酸。

RCHOHCOH RCHO + HCOOH 此反应常用于由高级羧酸经α– 溴代酸制备少一个碳原子的高级醛。

RCH 2COOH RCHBrCOOH RCHOHCOOH RCHO + HCOOH 3、脱水反应

脱水产物因羟基与羧基的相对位置不同而有所区别。 (1)α– 羟基酸生成交酯:α– 羟基酸受热时,一分子α– 羟基酸的羟基与另一分子α– 羟基酸的羟基相互脱水,生成六元环的交酯。

RCHOHCOOH + RCHOHCOOH 交酯

(2)β– 羟基酸生成α,β– 不饱和羧酸:β– 羟基酸中的α– 氢原子同时受到羟基和羧基的影响,比较活泼,受热时容易与β– 碳原子上的羟基结合,发生分子内脱水生成α,β– 不饱和羧酸。

RCHOHCH 2COOH RCH ═CHCOOH + H 2O

(3)γ– 和δ– 羟基酸生成物内酯:γ– 和δ– 羟基酸在室温时分子内的羟基和羧基就自动脱去一分子水,生成稳定的γ– 和δ– 内酯。

稀硫酸

Δ 溴 P H 2O

OH - 稀硫酸 Δ Δ Δ CH 2 OH C O CH 2 C O O

(4)羟基与羧基相隔5个或5个以上碳原子的醇酸受热,发生多分子间的脱水,生成链状的聚酯。

(二)羰基酸

分子中既含有羰基又含有羧基的化合物称为羰基酸。根据所含的是醛基还是酮基,将其分为醛酸和酮酸。

酮酸具有酮和羧酸的一般性质,如与氢或亚硫酸氢钠加成、与羟胺生成肟、成盐和酰化等。由于两种官能团的相互影响,α– 酮酸和β– 酮酸又有一些特殊的性质。

1、α– 酮酸的性质

(1)脱羧和脱羰反应

在α– 酮酸分子中,羰基与羧基直接相连,由于羰基和羧基的氧原子都具有较强的吸电子能力,使羰基碳与羧基碳原子之间的电子云密度降低,所以碳碳键容易断裂,在一定条件下可发生脱羧和脱羰反应。

α– 酮酸与稀硫酸或浓硫酸共热,分别发生脱羧和脱羰反应生成醛或羧酸。

RCOCOOH + 稀H 2SO 4 RCHO + CO 2↑ RCOCOOH + 浓H 2SO 4 RCOOH + CO ↑

(2)氧化反应 α– 酮酸很容易被氧化,托伦试剂就能其氧化成羧酸和二氧化碳。

RCOCOOH + [Ag(NH 3)2]+ RCOONH 4 + Ag ↓

2、β– 酮酸的性质 在β– 酮酸分子中,由于羰基和羧基的吸电子诱导效应的影响,使α– 位的亚甲基碳原子电子云密度降低。因此亚甲基与相邻两个碳原子间的键容易断裂,在不同的反应条件下,能发生酮式和酸式分解反应。

(1)酮式分解

β-酮酸在高于室温的情况下,即脱去羧基生成酮。称为酮式分解。

RCOCH 2COOH RCOCH 3 + CO 2↑

(2)酸式分解

β– 酮酸与浓碱共热时,α– 和β– 碳原子间的键发生断裂,生成两分子羧酸盐。称为酸式分解。

RCOCH 2COOH + 40℅NaOH RCOONa + CH 3COONa

(三)乙酰乙酸乙酯及酮式 – 烯醇式互变异构现象

1、乙酰乙酸乙酯的制备

在醇钠的催化作用下,两分子乙酸乙酯脱去一分子乙醇生成乙酰乙酸乙酯,此反应称为克莱森酯缩合反应。

150℃ Δ

Δ Δ Δ

2CH 3COOC 2H 5 CH 3COCH 2COOC 2H 5 + C 2H 5OH

2、酮式 – 烯醇式互变异构现象

乙酰乙酸乙酯能与羰基试剂如羟按、苯肼反应生成肟、苯腙等,能与氢氰酸、亚硫酸氢钠等发生加成反应。由此,证明它具有酮的结构。另外,乙酰乙酸乙酯还能与金属钠作用放出氢气,能使溴的四氯化碳溶液褪色,与三氯化铁作用产生紫红色。由此,又证明它也具有烯醇式的结构。这种现象的产生是因为乙酰乙酸乙酯室温下通常是由酮式和烯醇式两种异构体共同组成的混合物,它们之间在不断地相互转变,并以一定比例呈动态平衡。

像这样两种异构体之间所发生的一种可逆异构化现象,叫做互变异构现象。 乙酰乙酸乙酯分子中烯醇式异构体存在的比例较一般羰基化合物要高的原因,是由于其分子中的亚甲基氢受羰基和酯基的吸电子诱导效应的影响酸性较强,容易以质子形式解离。形成的碳负离子与羰基和酯基共轭,发生电子离域而比较稳定。当H +与羰基氧结合时,就形成烯醇式异构体。此外,还由于烯醇式异构体能形成六元环的分子内氢键,以及其分子中共轭体系的存在,更加强了它稳定性。

3、分解反应

(1)酮式分解

乙酰乙酸乙酯在稀碱溶液中加热,可发生水解反应,经酸化后,生成β–丁酮酸。β–丁酮酸不稳定,失去二氧化碳生成丙酮。

(2)酸式分解

乙酰乙酸乙酯与浓碱共热时,生成两分子乙酸盐,经酸化后得到两分子乙酸。

4、在合成上的应用 乙酰乙酸乙酯亚甲基上的氢原子很活泼,与醇钠等强碱作用时,生成乙酰乙酸乙酯的钠盐,再与活泼的卤烃或酰卤作用,生成乙酰乙酸乙酯的一烃基、二烃基或酰基衍生物。 + RCOX

CH 3 C O CH 2COOC 2H 5

C CH COOC 2H 5

OH

CH 3 稀碱 H + Δ CH 3 C O CH 3 CH 3 C O CH 2COOC 2H 5 CH 3 C O CH 2COONa 浓碱 H + CH 3 C O CH 3 CH 3 C O CH 2COOC 2H 5 CH 3 C O ONa 乙醇钠 RX 乙醇钠 R 1X CH 3 C 2H 5 O CH 2 O R CH 3 C 2H 5 O O R CH 3 C C O 2H 5 O R 1 NaH CH 3 C O CH 2COOC 2H 5 CH 3 C 2H 5 O O R C CH O

2019年中国化学奥林匹克竞赛浙江省预赛试题

2019年中国化学奥林匹克竞赛浙江省预赛试题 考生须知: 1.全卷分试题卷和答题卷两部分,试题共有8题,满分100分。考试时间120分钟。 2.本卷答案必须做在答题卷相应位置上,做在试题卷上无效,考后只交答题卷。必须在答题卷上写明县(市)、学校、姓名、准考证号,字迹清楚。 3.只能用黑色水笔成签字笔答卷,铅笔圆珠笔等答卷无效;答卷上用胶带纸,修正液为无效卷;答卷上有与答题无关的图案,文字为无效卷; 4.可以使用非编程计算器。 第1题(10分)根据所给条件按照要求书写化学反应方程式(要求系数为最简整数比) 1-1 铜在潮湿空气中慢慢生成一层绿色铜绣23[Cu(OH)CuCO ] 。 1-2 乙硼烷与一氧化碳在NaBH 4、THF 条件下1:2化合,生成物有一个六元环。 1-3 古代艺术家的油画都是以铅白为底色,这些油画易受H 2S 气体的侵蚀而变黑(PbS ),可以用H 2O 2对这些古油画进行修复,写出H 2O 2修复油画的化学反应方程式。 1-4 光气(COCl 2)和NH 3反应制备常见的氮肥。 1-5 银镜实验时需要用的银氨溶液,必须现配现用:因为久置的银氨溶液常析出黑色的氮化银沉淀。写出相应的化学反应方程式。 第2题(30分) 2-1 画出下列分子的立体结构:PH 3、P 2H 4、H 3PO 2。

2-2 甲基异氰酸酯(MIC)是制造某些杀虫剂的中间体,是一种剧毒的物质,其分子式为C2H3NO,MIC原子连接顺序为H3CNCO,除氢外的四个原子不都在一条直线上。指出N的杂化类型、写出最稳定路易斯结构式。 2-3 在水溶液中,水以多种微粒的形式与其它物种成水合物,画出微粒H5O2+和H9O4+的结构图示。 2-4 根据所给信息画出下列物种的结构。 2-4-1 As3S4+中每个原子都满足8电子结构,有一个S-S键,如果将其中一个S换成As,则变成一个有三重轴的中性分子。 2-4-2 As4蒸气分子具有白磷一样的正四面体结构:As4S4分子可以看做4个硫原子分别插入As4的四条边,As的化学环境相同。画出As4S4的结构。 2-4-3 S4O62-中含有3个S-S键。 2-5 A、B、C、D、E五种元素分居四个不同的周期和四个不同的族,它们的原子序数依次增大。常温常压下,A、B、D的单质为气态,而C、E的单质为固态。五种元素中,只有C、D、E的单质能与氢氧化钠溶液反应;C的剧毒单质与氢氧化钠溶液加热反应,有一种剧毒气体生成;D单质与氢氧化钠溶液加热反应,生成两种盐;E单质与氢氧化钠溶液反应,放出A单质。E的基态原子不含单电子,其L能层和M能层的电子数不相等,N能层只有2个电子。 2-5-1 写出A、B、C、D、E的元素符号。 2-5-2 写出D单质与氢氧化钠溶液加热反应的方程式。 2-5-3 写出E单质与氢氧化钠溶液反应的方程式。 2-6 用次氯酸钠氧化过量的氨可以制备化合物A,A可以用作火箭燃料。最新制备A的工艺是用氨和醛(酮)的混合气体和氯气反应,然后水解。A的水溶液呈碱性,用硫酸酸化一定浓度A溶液,冷却可得到白色沉淀物B。在浓NaOH介质中A溶液可作氧化剂放出气体C。气体C的水溶液可以使Cu2+溶液变成深蓝色溶液D。C的水溶液不能溶解纯净的Zn(OH)2,但若加入适量的NH4Cl固体后,Zn(OH)2溶解变成含E的溶液。A的水溶液有很强的还原能力,它能还原Ag+,本身被氧化成气体单质G。将气体C通过红热CuO粉末,可得到固体单质F和G。给出A~G的化学式。 第3题(15分) 3-1 有一含Co的单核配合物,元素分析表明其含Co 21.4%,H 5.4%,N 25.4%,C l 13.0%(质

高中化学竞赛辅导参考资料(全)

绪论 1.化学:在分子、离子和原子层次上,研究物质的组成和结构以及物质的化学 性质和化学变化及其内在联系的科学。 应注意的问题: (1)化学变化的特点:原子核组成不变,发生分子组成或原子、离子等结合方式的改变; (2)认为物理变化不产生质变,不生成新物质是不准确的,如: 12H+3 1 H==42He+10n是质变,产生了新元素,但属于物理变化的范畴; (3)化学变化也有基本粒子参加,如:2AgCl==2Ag+Cl2就有光子参加; (4)物质 2.无机化学:除去碳氢化合物及其大多数衍生物外,对所有元素和他们的化合 物的性质和反应进行研究和理论解释的科学。(莫勒提法) 3.怎样学习无机化学? (1)你所积累的好的学习方法都适于学习无机化学。 (2)课前预习,带着问题听课。提倡写预习笔记。 (3)课上精力集中,边听边看边想边记,眼、耳、手、脑并用。 (4)课后趁热复习,按时完成作业,及时消化,不欠账。 (5)提高自学能力,讨论课积极发言。 (6)随时总结,使知识系统化。达到书越读越薄之目的。 (7)理论联系实际,做好化学实验。

第一章原子结构和原子周期系 教学目标:1.学会一个规则:斯莱特规则; 2.掌握两个效应:屏蔽效应、钻穿效应; 3.掌握三个原理:能量最低、保里不相容、洪特规则; 4.掌握四个量子数:n、l、l、m s 5.掌握五个分区:s、p、d、ds、f 6.掌握六对概念; 7.掌握七个周期; 8.掌握八个主族八个副族。 重点:1.原子核外电子排布三个原理,核外电子的四个量子数; 2.元素周期表的结构其及元素性质变化规律。 难点:屏蔽效应、钻穿效应概念及应用; 教学方法:讲授与讨论相结合,做适量练习题和作业题。 教学内容: §1-1经典物理学对原子结构的认识 1-1原子的核形结构 1708年卢瑟福通过α粒子散射实验确认:原子是由中央带正电的原子核和周围若干绕核旋转的电子组成。遇到的问题:电子绕核运动,将不断辐射电磁波,不断损失能量,最终将落到核上,原子因此而消亡实际与此相反,原子是稳定存在的,急需找到理论解释。 1-2 原子光谱的规律性 1光谱一束光通过分光棱镜折射后再屏幕上得到一条彩带或线形亮条前者称连续光谱后者称线形光谱太阳光电灯光为连续光谱原子光谱为线形光谱图1-1 2氢原子光谱里德堡方程 R H=1.097×10 M n1

化学奥赛2

2002年全国高中学生化学竞赛(江苏省赛区)选拔赛试题 (2002年8月5日8:30-11:30 共计3小时) 姓名 1.(12分)(1) 如果已经发现167号元素A,若已知的原子结构规律不变,167号元素应是第周期、第族元素;可能的最高氧化态为;氢化物的化学式为。 (2) 某一放射性物质衰变20%需15天,该物质的半衰期是。 分子中有种化学环境不同的氢原子。如果用氯 (3) 化合物CH3CH CH2 O 取代分子中的氢原子,生成的一氯代物可能有种。 (4) 硅与碳为同族元素,呈四价。然而,与碳化合物相比,硅化合物的数量要少得多。碳易于形成双键,硅则不易形成双键。但据美国《科学》杂志2000年报道,已合成了分子中既有Si-Si单键,又有Si=Si双键的化合物X。X的分子式为Si5H6,红外光谱和核磁共振表明X分子中氢原子的化学环境有2种,则X的结构式是:。 2.(13分)(1) 磷和氢能组成一系列的氢化物,如PH3,P2H4,P12H16等。其中最重要的是PH3。PH3称为膦,它是一种无色剧毒的有类似大蒜臭味的气体。它可由NaOH和白磷反应来制备,其制备反应的化学方程式为,P2H4的沸点比PH3(填“高”或“低”),原因是。AsH3又称胂,试写出由As2O3制备胂的反应方程式,胂的汽化热比膦(填“大”或“小”)。 (2) ①根据VSEPR理论,SCl3+和ICl4-的空间构型分别是和,S 和I分别以和杂化轨道同Cl形成共价键。 ② SCl3+和PCl3是等电子体,其S-Cl键键长(填>、=或<)P-Cl键键长,原因是。 3.(5分)石墨晶体由如图(1)所示的C原子平面层堆叠形成。有一种常见的2H型石墨以二层重复的堆叠方式构成,即若以A、B分别表示沿垂直于平面层方向(C方向)堆叠的两个不同层次,它的堆叠方式为ABAB……。图(2)为AB两层的堆叠方式,O和●分别表示A层和B层的C原子。 (1) 在图(2)中标明两个晶胞参数a和b。 (2) 画出2H型石墨晶胞的立体示意图,并指出晶胞类型。

历年高中化学奥赛竞赛试题及答案

中国化学会第21届全国高中学生化学竞赛(省级赛区)试题 题号 1 2 3 4 5 6 7 8 9 10 11 总分 满分12 6 10 7 10 12 8 4 10 12 9 100 得分 评卷人 ●竞赛时间3小时。迟到超过半小时者不能进考场。开始考试后1小时内不得离场。时间到,把试卷(背面朝上)放在桌 面上,立即起立撤离考场。 ●试卷装订成册,不得拆散。所有解答必须写在指定的方框内,不得用铅笔填写。草稿纸在最后一页。不得持有任何其 他纸张。 ●姓名、报名号和所属学校必须写在首页左侧指定位置,写在其他地方者按废卷论处。 ●允许使用非编程计算器以及直尺等文具。 第1题(12分) 通常,硅不与水反应,然而,弱碱性水溶液能使一定量的硅溶解,生成Si(OH)4。 1-1已知反应分两步进行,试用化学方程式表示上述溶解过程。 早在上世纪50年代就发现了CH5+的存在,人们曾提出该离子结构的多种假设,然而,直至1999年,才在低温下获得该离子的振动-转动光谱,并由此提出该离子的如下结构模型:氢原子围绕着碳原子快速转动;所有C-H键的键长相等。 1-2该离子的结构能否用经典的共价键理论说明?简述理由。 1-3该离子是()。 A.质子酸 B.路易斯酸 C.自由基 D.亲核试剂 2003年5月报道,在石油中发现了一种新的烷烃分子,因其结构类似于金刚石,被称为“分子钻石”,若能合成,有可能用做合成纳米材料的理想模板。该分子的结构简图如下: 1-4该分子的分子式为; 1-5该分子有无对称中心? 1-6该分子有几种不同级的碳原子? 1-7该分子有无手性碳原子? 1-8该分子有无手性? 第2题(5分) 羟胺和用同位素标记氮原子(N﹡)的亚硝酸在不同介质中发生反应,方程式如下: NH2OH+HN﹡O2→A+H2O NH2OH+HN﹡O2→B+H2O

全国高中化学奥赛初赛试题与答案

第1题(4分) 2004年2月2日,俄国杜布纳实验室宣布用核反应得到了两种新元素X 和Y 。X 是用高能48Ca 撞击Am 24395靶得到的。经过100微秒,X 发生α-衰变,得到Y 。然后Y 连续发生4 次α-衰变,转变为质量数为268的第105号元素Db 的同位素。以X 和Y 的原子序数为新元素的代号(左上角标注该核素的质量数),写出上述合成新元素X 和Y 的核反应方程式。 答案: Am 24395+ 4820Ca = 288115+3n (2分)不写3n 不得分。答291115不得分。 288115 = 284113 + 4He (2分) 质量数错误不得分。 4He 也可用符号α。 (答下式不计分:284113-44He = 268105或268105Db )(蓝色为答案,红色为注释,注释语不计分,下同) 第2题(4分)2004年7月德俄两国化学家共同宣布,在高压下氮气会发生聚合得到高聚氮, 这种高聚氮的N-N 键的键能为160 kJ/mol (N 2的键能为942 kJ/mol),晶体结构如图所示。在这种晶体中,每个氮原子的配位数为 ;按键型分类时,属于 晶体。这种固体的可能潜在应用是 ,这是因为: 。 答案: 3 原子晶体 炸药(或高能材料) 高聚氮分解成N 2释放大量能量。(各1分) 第3题(6分)某实验测出人类呼吸中各种气体的分压/Pa 如下表所示: 3-1 请将各种气体的分子式填入上表。 3-2 指出表中第一种和第二种呼出气体的分压小于吸入气体分压的主要原因。 答案: 姓名学校赛场报名号赛区省市自治区

(每空1分,共4分) 呼出气中的N2的分压小于吸入气中的分压的主要原因是呼出气中的CO2和水蒸气有较大分压,总压不变,因而N2的摩尔分数下降(1分);呼出气中的O2的分压小于吸入气中的分压的主要原因是吸入的O2被人体消耗了。(1分)(共2分) 第4题(15分)在铜的催化作用下氨和氟反应得到一种铵盐和一种三角锥体分子A(键角102o,偶极矩0.78x10-30 C·m;对比:氨的键角107.3o,偶极矩4.74x10-30 C·m); 4-1 写出A的分子式和它的合成反应的化学方程式。 答案:NF3(1分)4NH3 + 3F2 = NF3 + 3NH4F(1分)(共2分) 4-2 A分子质子化放出的热明显小于氨分子质子化放出的热。为什么? 答案:N-F 键的偶极方向与氮原子孤对电子的偶极方向相反,导致分子偶极矩很小,因此质子化能力远比氨质子化能力小。画图说明也可,如: (1分) 4-3 A与汞共热,得到一种汞盐和一对互为异构体的B和C(相对分子质量66)。写出化学方程式及B和C的立体结构。 答案: 2NF3 +2Hg = N2F2 + 2HgF2(1分) (14+19)X2=66(每式1分)(共3分) 4-4 B与四氟化锡反应首先得到平面构型的D和负二价单中心阴离子E构成的离子化合物;这种离子化合物受热放出C,同时得到D和负一价单中心阴离子F构成的离子化合物。画出D、E、F 的立体结构;写出得到它们的化学方程式。 答案: D E F (每式1分) 2 N2F2 + SnF4 = [N2F+]2[SnF6]2-(1分) [N2F+]2[SnF6]2- = [N2F] +[SnF5]- + N2F2 (1分)(共5分) 4-5 A与F2、BF3反应得到一种四氟硼酸盐,它的阳离子水解能定量地生成A和HF,而同时得到的O2和H2O2的量却因反应条件不同而不同。写出这个阳离子的化学式和它的合成反应的化学方程式,并用化学方程式和必要的推断对它的水解反应产物作出解释。 答案: 阳离子的化学式为NF4+。(1分) NF3 + F2 + BF3 = NF4+BF4-(1分) NF4+水解反应首先得到HOF (否则写不出配平的NF4+水解反应):

高中化学奥林匹克竞赛-有机化学的几个基本反应

重排 酮肟在酸性条件下发生重排生成烃基酰胺的反应。1886年由德国化学家.贝克曼首先发现。常用的贝克曼重排试剂有硫酸、五氯化磷、贝克曼试剂(氯化氢在乙酸-乙酐中的溶液)、多聚磷酸和某些酰卤等。反应时酮肟受酸性试剂作用,形成一个缺电子氮原子,同时促使其邻位碳原子上的一个烃基向它作分子内 1,2-迁移,其反应过程如下: 贝克曼重排是立体专一性反应。在酮肟分子中发生迁移的烃基与离去基团(羟基)互为反位。在迁移过程中迁移碳原子的构型保持不变,例如: 贝克曼重排反应可用于确定酮类化合物的结构。工业上利用环己酮肟发生贝克曼重排,大量生-己内酰胺,它是合成耐纶6(见聚己内酰胺)的单体。 亲电取代反应

亲电取代反应一种亲电试剂取代其它官能团的化学反应,这种被取代的基团通常是氢,但其他基团被取代的情形也是存在的。亲电取代是芳香族化合物的特性之一.芳香烃的亲电取代是一种向芳香环系,如苯环上引入官能团的重要方法。其它另一种主要的亲电取代反应是脂肪族的亲电取代。 亲电加成反应 亲电加成反应是烯烃的加成反应,是派电子与实际作用的结果。派键较弱,派电子受核的束缚较小,结合较松散,因此的作为电子的来源,给别的反应物提供电子。反应时,把它作为反应底物,与它反应的试剂应是缺电子的化合物,俗称亲电试剂。这些物质又酸中的质子,极化的带正电的卤素。又叫马氏加成,由马可尼科夫规则而得名:“烯烃与氢卤酸的加成,氢加在氢多的碳上”。广义的亲电加成亲反应是由任何亲电试剂与底物发生的加成反应。 在烯烃的亲电加成反应过程中,氢正离子首先进攻双键(这一步是定速步骤),生成一个碳正离子,然后卤素负离子再进攻碳正

历年高中化学奥赛竞赛试题及标准答案

中国化学会第21届全国高中学生化学竞赛(省级赛区)试题题号1 2 3 4 5 6 7 8 910 11 总分 满分12 6 1 29 100 得分 评卷人 ●竞赛时间3小时。迟到超过半小时者不能进考场。开始考试后1小时内不得离场。时间到,把试卷 (背面朝上)放在桌面上,立即起立撤离考场。 ●试卷装订成册,不得拆散。所有解答必须写在指定的方框内,不得用铅笔填写。草稿纸在最后一页。 不得持有任何其他纸张。 ●姓名、报名号和所属学校必须写在首页左侧指定位置,写在其他地方者按废卷论处。 ●允许使用非编程计算器以及直尺等文具。 第1题(12分) 通常,硅不与水反应,然而,弱碱性水溶液能使一定量的硅溶解,生成Si(OH)4。1-1已知反应分两步进行,试用化学方程式表示上述溶解过程。 早在上世纪50年代就发现了CH5+的存在,人们曾提出该离子结构的多种假设,然而,直至1999年,才在低温下获得该离子的振动-转动光谱,并由此提出该离子的如下结构模型:氢原子围绕着碳原子快速转动;所有C-H键的键长相等。 1-2该离子的结构能否用经典的共价键理论说明?简述理由。 1-3该离子是( )。 A.质子酸 B.路易斯酸 C.自由基 D.亲核试剂 2003年5月报道,在石油中发现了一种新的烷烃分子,因其结构类似于金刚石,被称为“分子钻石”,若能合成,有可能用做合成纳米材料的理想模板。该分子的结构简图如下:

1-4该分子的分子式为; 1-5该分子有无对称中心? 1-6该分子有几种不同级的碳原子? 1-7该分子有无手性碳原子? 1-8该分子有无手性? 第2题(5分) 羟胺和用同位素标记氮原子(N﹡)的亚硝酸在不同介质中发生反应,方程式如下: NH2OH+HN﹡O2→A+H2O NH2OH+HN﹡O2→B+H2O A、B脱水都能形成N2O,由A得到N﹡NO和NN﹡O,而由B只得到NN﹡O。 请分别写出A和B的路易斯结构式。 第3题(8分) X-射线衍射实验表明,某无水MgCl2晶体属三方晶系,呈层形结构,氯离子采取立方最密堆积(ccp),镁离子填满同层的八面体空隙;晶体沿垂直于氯离子密置层的投影图如下。该晶体的六方晶胞的参数:a=363.63pm,c=1766.63pm;p=2.53g·cm-3。 3-1以“”表示空层,A、B、C表示Cl-离子层,a、b、c表示Mg2+离子层,给出 三方层型结构的堆积方式。 2计算一个六方晶胞中“MgCl2”的单元数。 3假定将该晶体中所有八面体空隙皆填满Mg2+离子,将是哪种晶体结构类型? 第4题(7分) 化合物A是一种热稳定性较差的无水的弱酸钠盐。用如下方法对其进行分析:将A与惰性填料混合均匀制成样品,加热至400℃,记录含A量不同的样品的质量损失(%),结果列于下表: 样品中A的质量分数/% 20 50 70 90 33.3 样品的质量损失/%7.4 18.5 2 5.8 利用上述信息,通过作图,推断化合物A的化学式,并给出计算过程。

2014-2017全国高中生化学竞赛(初赛)试题及解析

第28届中国化学奥林匹克初赛试题 第1题(6分)合成氨原料气由天然气在高温下与水和空气反应而得。涉及的主要反应如下:(1)CH4(g)+H2O(g)→CO(g)+3H2(g) (2)2CH4(g)+O2(g)→2CO(g)+4H2(g) (3)CO(g)+H2O(g)→H2(g)+CO2(g) 假设反应产生的CO全部转化为CO2,CO2被碱液完全吸收,剩余的H2O通过冷凝干燥除去。进入合成氨反应塔的原料气为纯净的N2和H2。 1-1为使原料气中的N2和H2的体积比为1∶3,推出起始气体中CH4和空气的比例。设空气中O2和N2的体积比为1∶4,所有气体均按理想气体处理。 1-2计算反应(2)的反应热。已知: (4)C(s)+2H2(g)→CH4(g)ΔH4=-74.8kJ mol-1 (5)C(s)+1/2O2(g)→CO(g)ΔH5=-110.5kJ mol-1 第2题(5分)连二亚硫酸钠是一种常用的还原剂。硫同位素交换和核磁共振实验证实,其水溶液中存在亚硫酰自由基负离子。 2-1写出该自由基负离子的结构简式,根据VSEPR理论推测其形状。 2-2连二亚硫酸钠与CF3Br反应得到三氟甲烷亚磺酸钠。文献报道,反应过程主要包括自由基的产生、转移和湮灭(生成产物)三步,写出三氟甲烷亚磺酸根形成的反应机理。 第3题(6分)2013年,科学家通过计算预测了高压下固态氮的一种新结构:N8分子晶体。其中,N8分子呈首尾不分的链状结构;按价键理论,氮原子有4种成键方式;除端位以外,其他氮原子采用3种不同类型的杂化轨道。 3-1画出N8分子的Lewis结构并标出形式电荷。写出端位之外的N原子的杂化轨道类型。 3-2画出N8分子的构型异构体。

高中化学竞赛用书推荐

高中化学竞赛用书推荐 常规/高考类: 化学岛 用户名: 密码:woaihuaxuedao 以下是另一个公邮 icholand. 密码:huaxuedaogongyou 提供公共邮箱的目的还是方便大家交流,如果遇到超出流量限制的问题,可以直接把邮件转发出去。 尽管以前有XX的Gbaopan。。但是貌似很多人并不清楚密码。。 附上: 部分优秀资料帖索引 《高中化学重难点手册》(华中师范大学出版社,王后雄老师主编);历年高考试题汇编(任何一种,最好有详细解析的,比如三年高考两年模拟);《高中化学读本》(很老的人民教育出版社甲种本化学教材,最近有更新版本);《高中化学研究性学习》(龙门书局,施华、盛焕华主编)南师大化科院创办的《化学教与学》每年的十套高考模拟题题型新颖质量比较高,可作为江苏预赛的模拟卷,不少5月份预赛原题就出自本套模拟题。 初赛类: 比较经典的有《化学高考到竞赛》(陕西师范大学出版社,李安主编,比较老);《高中化学奥林匹克初级本》(江苏教育出版社,段康宁主编);《高中化学竞赛初赛辅导》(陕西师范大学出版社,李安、苏建祥主编);《高中化学竞赛热点专题》(湖南师范大学出版社,肖鹏飞、苏建祥、周泽宇主编,版本比较老,但编排体系不错);最新奥林匹克竞赛试题评析·高中化学》(南京师范大学出版社,马宏佳主编,以历年真题详细解析为主,可作为课外指导);《最新竞赛试题选编及解析高中化学卷》(首都师范大学出版社);《化学竞赛教程》(华东师范大学出版社,三本,王祖浩、邓立新、施华等人编写,适合同步复习),还有一套西南师范大学出版社的《奥林匹克竞赛同步教材·高中化学》(分高一、高二和综合卷,综合卷由严先生、吴先生、曹先生等参加编写,绝对经典),还有浙江大学出版社《高中化学培优教程》AB教程、《金牌教程·高一/二化学》(邓立新主编,南京大学出版社)。江苏省化学夏令营使用的讲义是马宏佳主编的《全国高中化学竞赛标准教程》(东南大学出版社),简明扼要,但由于不同教授编写不同章节,参差不齐;春雨出版的《冲刺金牌·高中化学奥赛辅导》(任学宝主编,吉林教育出版社)、《冲刺金牌·高中化学奥赛解题指导》(孙夕礼主编,吉林教育出版社)。《赛前集训·高中化学竞赛专题辅导》(施华编著,体现他的竞赛培训思维,华东师范大学出版社) 比较新颖的包括浙江大学出版社的林肃浩主编的竞赛系列《高中化学竞赛实战演练》(高一、高二)、《高中化学竞赛解题方法》、《冲刺高中化学竞赛(省级预赛)》、《冲刺高中化学竞赛(省级赛区)》、《高中化学竞赛解题方法》、《决战四月:浙江省高中化学竞赛教程(通向金牌之路)》《金版奥赛化学教程》(高一、高二、·综合)都是近年来体系、选题新颖的竞赛资料,足见浙江省对化学竞赛的重视,端木非常推荐。南京教研室刘江田老师2010年5月份主编的《高中化学竞赛全解题库》(南京大学出版社)选择了近年来省级赛区真题和各地新颖的预赛题,解析详细,适合缺少老师指导的同学参考。 决赛类: 比较经典的有《高中化学奥林匹克高级本》(江苏教育出版社,段康宁主编,完全按照大学的思路);《金牌之路高中化学竞赛辅导》以及配套解题指导书(陕西师范大学出版社,李安主编);《高中化学竞赛决赛辅导》(陕西师范大学出版社,李安、苏建祥主编);《历届国际化学奥林匹克竞赛试题分析》(学苑出版社);《最新国际国内化学奥林匹克竞赛优化解题题典》(吉林教育出版社),还有浙江大学出版社的浙江大学出版社《高中化学培优教程》“专题讲座”,《高中化学奥赛一

全国高中学生化学竞赛基本要求

全国高中学生化学竞赛基本要求 1. 本基本要求旨在明确全国高中学生化学竞赛初赛及决赛试题的知识水平,作为试 题命题的依据。本基本要求不包括国家代表队选手选拔赛的要求。 2. 现行中学化学教学大纲、普通高中化学课程标准及高考说明规定的内容均属初赛 要求。高中数学、物理、生物、地理与环境科学等学科的基本内容包括与化学相关的我国 基本国情、宇宙、地球的基本知识等也是化学竞赛的内容。初赛基本要求对某些化学原理 的定量关系、物质结构、立体化学和有机化学作适当补充,一般说来,补充的内容是中学 化学内容的自然生长点。 3. 决赛基本要求是在初赛基本要求的基础上作适当补充和提高。 4. 全国高中学生化学竞赛是学生在教师指导下的研究性学习,是一种课外活动。针对 竞赛的课外活动的总时数是制定竞赛基本要求的重要制约因素。本基本要求估计初赛基本 要求需40单元每单元3小时的课外活动注:40单元是按高一、高二两年约40周,每周一单元计算的;决赛基本要求需追加30单元课外活动其中实验至少10单元注:30单元是按10、11和12月共三个月约14周,每周2~3个单元计算的。 5. 最近三年同一级别竞赛试题涉及符合本基本要求的知识自动成为下届竞赛的要求。 6. 本基本要求若有必要做出调整,在竞赛前4个月发出通知。新基本要求启用后, 原基本 要求自动失效。 1. 有效数字在化学计算和化学实验中正确使用有效数字。定量仪器天平、量筒、移 液管、滴定管、容量瓶等等测量数据的有效数字。数字运算的约化规则和运算结果的有效 数字。实验方法对有效数字的制约。 2. 气体理想气体标准状况态。理想气体状态方程。气体常量R。体系标准压力。分 压定律。气体相对分子质量测定原理。气体溶解度亨利定律。 3. 溶液溶液浓度。溶解度。浓度与溶解度的单位与换算。溶液配制仪器的选择。重 结晶的方法及溶质/溶剂相对量的估算。过滤与洗涤洗涤液选择、洗涤方式选择。重结晶 和洗涤溶剂包括混合溶剂的选择。胶体。分散相和连续相。胶体的形成和破坏。胶体的分类。胶体的基本结构。 4. 容量分析被测物、基准物质、标准溶液、指示剂、滴定反应等基本概念。酸碱滴 定曲线酸碱强度、浓度、溶剂极性对滴定突跃影响的定性关系。酸碱滴定指示剂的选择。 以高锰酸钾、重铬酸钾、硫代硫酸钠、EDTA为标准溶液的基本滴定反应。分析结果的计算。分析结果的准确度和精密度。

高中化学奥林匹克竞赛实验试题集锦

高中化学奥林匹克竞赛实验试题集锦(浙江省) 1. 下列实验现象描述和解释都合理的是 ( ) 2. 如右图所示装置,a 、c 为弹簧夹,b 为分液漏斗旋塞,欲检验该装置的气密性,下列操作属必需的是 ( ) A .关闭a ,打开 b 、 c ,液体不能顺利流下 B .关闭a 、c ,打开b ,液体不能顺利流下 C .关闭c ,打开a 、b ,液体不能顺利流下 D .关闭a 、c ,拔掉分液漏斗上口的橡胶塞,打开b ,液体不能顺利流下。 3. 下列实验操作或实验原理的说法中正确的是( ) A .用如图装置进行蒸馏实验 B .用如图装置分离氯化钠、碘固体混合物 C .用裂化汽油提取溴水中溴 D .用如图装置灼烧碳酸钙制取少量氧化钙 4. 下列选择或操作均正确的是 ( )

A..装置Ⅰ适合用于吸收氨气。 B..装置Ⅱ适合用于分离乙酸乙酯和碳酸钠饱和溶液。 C..装置Ⅲ适合用于高温煅烧石灰石。 D..装置Ⅳ适合用于分馏乙醇和乙酸。 5.(10分)实验室用如图装置制备1-溴丁烷。已知有关物质的性质如下表: 实验操作流程如下所示: 回答下列问题: ⑴回流装置C中漏斗一半扣在水面下、一半露在水面上的原因是_____________________; ⑵回流过程中生成1-溴丁烷的化学方程式_________________________________________; ⑶实验中往烧瓶中加1∶1的硫酸溶液,目的是________;

A.加水作反应的催化剂 B.降低硫酸浓度,以减少溴元素被氧化为Br2 C.降低硫酸浓度,以防止较多正丁醇转化成烯烃、醚等副反应发生 ⑷制得的1-溴丁烷粗产物经常显红色,上述操作流程中为了除去红色杂质要加入试剂X溶液再洗涤,下列试剂中最合适作为试剂X的是; A.水B.饱和NaHCO3C.KI溶液D.饱和NaHSO3E.NaOH溶液 ⑸下图为常压蒸馏和减压蒸馏的装置图,减压蒸馏中毛细管的作用是。蒸馏操作时,蒸馏的速率不宜过快,原因是________________________________________。 6.(8分)乙酰苯胺是一种常用的解热镇痛药的主要成分。已知:纯乙酰苯胺是无色片状晶体,熔点114℃,不溶于冷水,可溶于热水;乙酸酐遇水反应生成乙酸。 实验室可用苯胺跟乙酸酐反应、或苯胺跟冰醋酸加热来制取乙酰苯胺,且苯胺与乙酸酐的反应速率远大于与冰醋酸反应的速率。反应式为: 用苯胺与乙酸酐为原料制取和提纯乙酰苯胺的实验步骤如下: ①在装有磁力搅拌子的100mL圆底烧瓶中,依次加入5.0 mL苯胺(密度1.04 g/mL)、 20 mL水,在搅拌下分批次加入6.0 mL乙酸酐(密度1.08 g/mL),搅拌2小时至反应完全。 ②反应完全后,及时把反应混合物转移到烧杯中,冷却、抽滤、洗涤,得粗产品; ③将粗产品转移至烧杯中,加入适量水配制成80℃的饱和溶液,再加入过量20%的水。稍冷后,加半匙活性炭,搅拌下将溶液煮沸3~5 min,过滤I,用少量沸水淋洗烧杯和漏斗中的固体,合并滤液,冷却结晶,过滤Ⅱ、洗涤、晾干得乙酰苯胺纯品。 (1)若不搅拌会有结块现象,结块将导致的后果是;

高二化学竞赛辅导培训计划

高二化学竞赛辅导培训计划 一、辅导思想 1、举全备课组之力参与竞赛辅导。 2、辅导教师认真备课、上课,精心辅导。 3、辅导教师严格学生课堂管理。 4、强调竞赛辅导纪律,关注参赛学生进出教室。 二、辅导要求 教师方面:1.多研讨,多做题。 2.加强资料的搜集和分类管理。 3.做好学生的出勤和考试管理。 学生方面:1.加强出勤,保证出满勤; 2.创造条件,使学生能在足够时间完成相关内容。 3.加强指导,努力提高学生的兴趣和信心。 三、辅导计划 1.把选拔出的选手组成竞赛班,以讲座的形式复习基础知识,这个阶段是较大规模的复习训练。 2.进入专题训练。以小专题的形式加强训练。 3. 模拟考试。这个阶段主要任务是设计模拟竞赛试卷,改卷,评卷。取材范围广,如历届赛题,培训题等等。这一阶段要求老师与学生充分发挥主观能动性,认真严肃对待每一次测试,限时保质保量完成。 四、做好竞赛学生工作 1. 抓好竞赛学生的思想工作 2. 引导竞赛学生掌握正确的学习方法 3. 抓好课堂教学中基础知识的掌握与竞赛能力的培养 4. 抓好知识的拓宽、加深,培养竞赛拔尖人才 五、辅导时间 利用晚上化学自习进行,其它时间待定 六、负责老师: 每位教师按要求精心组织竞赛内容,力求习题精选,知识点覆盖全面,涉及常见易错点。当堂讲解知识点及习题,有针对性和突破性的专题辅导。 七、辅导措施: 1、注重基础知识训练。 由于竞赛命题大多以课本为依据,因此在辅导时要紧扣课本,严格按照由浅入深、由易到难、由简到繁、循序渐进的原则,适时联系课本内容。 2、不拘泥于课本,适当扩展深度。 由于竞赛题目往往比平时考试试题难,教师必须在课本的基础上加以延伸、拓

第五届Chemy化学奥林匹克竞赛联赛试题

第五届Chemy化学奥林匹克竞赛联赛试题 ·竞赛时间3小时。迟到超过半小时者不能进考场。开始考试后1小时内不得离场。时间到,把试卷(背面朝上)放在桌面上,立即起立撤离考场。 ·试卷装订成册,不得拆散。所有解答必须写在指定的方框内,不得用铅笔填写。草稿纸在最后一页。不得持有任何其他纸张。 ·姓名、报名号和所属学校必须写在首页左侧指定位置,写在其他地方者按废卷论处。 第1题(13分) 1-1氢化锂铝是有机反应常用的还原剂,过量的氢化锂铝常使用叔丁醇淬灭,写出淬灭过程的反应方程式。 1-2工业上常以黄铜矿为原料制备胆矾。方法为将黄铜矿在一定条件下氧化焙烧,后用水浸取即可得到胆矾。写出该法制备胆矾的反应方程式。 1-3锂金属的液氨溶液与乙炔反应无气体生成,产物均为二元化合物,写出反应的化学方程式。 1-4在农场中,常在潮湿的仓库中放置几片磷化铝片剂用于杀灭害虫。该过程应用了什么化学原理?试用化学术语表达之。 1-5实验室常用氯酸钾在二氧化锰催化的条件下分解制备少量氧气。然而在没有催化剂时,氯酸钾加热至熔化也不会放出气体。试写出没有催化剂的条件下氯酸钾加热分解的化学方程式。 1-6核化学是军工业的重要组成部分。研究发现锕-227是一种不稳定的同位素,其会自发衰变生成钫-223,写出衰变反应方程式。 第2题(11分) 配合物可看作正负电荷相互作用而形成的一种酸碱加合物。配合物中的配体按配位原子的个

数可分为单齿配体与多齿配体两类。 2-1试画出下列按端基配位形成配合物的结构: Fe(SCN)63-Ni(CN)42-Mn2(CO)10 2-2多齿配体有的可以作为螯合配体,有的可作为桥联配体。试画出下列各化合物的结构: Al(EDTA)-H3F4-Fe2(CO)9 2-3一些特殊的配体与一些特殊的金属可形成一些超分子化合物。现有一种由Pt(II)、邻二氮菲以及配体X所组成的超分子化合物,已知该配合物中C与Pt的质量分数分别为49.40%、33.43%,且在该配合物中,所有组成部分均为其常见配位形式。已知分子中存在S4轴(分子沿轴旋转90°做镜面操作与原分子重合),试画出该超分子化合物的骨架。 第3题(13分) 根据中学所学的知识,铁制品在空气(p(O2) = 20 kPa)中放置得到铁锈,而铁丝在装满氧气(p(O2) = 100 kPa)的广口瓶中燃烧,火星四溅并得到黑色固体。已知铁、四氧化三铁和三氧化二铁的熔点分别为1538 ℃、1597 ℃和1565 ℃。假设上述物质的焓和熵不随温度变化,此题仅从热力学角度考虑。 3-1请通过计算确定铁锈的主要成分。 3-2-1铁丝在纯氧中燃烧时的反应温度至少为______℃。 3-2-2在该温度下通过计算确定黑色固体的主要成分。 3-3计算测定三氧化二铁的熔点时需要的氧气分压(kPa)。 有关物质的热力学数据: 第4题(10分) 已知X是一种一元强酸,常温下为无色透明的液体。工业上可通过如下过程制备X:电解一定浓度的NaClO3溶液,得到一种单质气体和一种盐Y,然后Y经酸化可得X。实验测定结果表明,X中键角∠O-Cl-O有两种大小,分别为105.8°和112.8°,而X的酸根离子中,键角∠O-Cl-O只有一种。X与过量P4O10反应,得到两种产物,其中一种含两个六元环。 4-1写出X的化学式。 4-2在X的两种∠O-Cl-O键角中,哪一种键角为112.8°?简述原因。 4-3 分别写出电解NaClO3溶液时,阴阳两极的电极反应方程式。 4-4分别画出两分子X与一分子P4O10反应得到的两种产物的结构。

高中化学奥赛培训教程全集---之有机化学

黄冈中学化学奥赛培训教程系列(精美wor d版) 有机化学 第一节 有机化学基本概念和烃 1、下列构造式中: ①指出一级、二级、三级碳原子各一个。 ②圈出一级烷基、二级烷基、三级烷基各一个。 CH 3CCH 2CH 3CH 3 C CHCH 3 CH 3CH 3CHCH 2CH 3 CH 3 解析: ↓ 1℃ 2℃3℃↑↑↑三级烷基 三级烷基 一级烷基 CH 3CH 3 CHCH 3CH 3CH 3 CH 3 CH 2C CH 3C CH CH 2CH 3 2、已知下列化合物的结构简式为: (1)CH 3CHClCHClCH 3 (2)C H3CHBrCHClF (3)CH 3CHClCHCH 2CH 3CH 3 分别用透视式、纽曼式写出其优势构象。 解析:用透视式和纽曼式表示构象,应选择C 2—C 3间化学键为键轴,其余原子、原子团相当于取代基。这四个化合物透视式的优势构象为(见图) 其纽曼式的优势构象见图

3、(2000年广东省模拟题)用烃A分子式为C10H16,将其进行臭氧化后,水解得到HCHO 和A催化加氢后得烃B,B化学式为C10H20,分子中有一个六 元环,用键线式写出A,B的结构。 解析:从A催化加氢生成的B的化学式可推知,原A分子中有两个C=C键和一个六元环。从水解产物 可知,C1与C6就是原碳环连接之处HCHO的羰基,只能由 C3支链上双键臭氧化水解生成。所以A的结构为,B的结构为。 4、下列化合物若有顺反异构,写出异构体并用顺、反及E、Z名称命名。

5、(河南省98年竞赛题)写出符合C6H10的所有共轭二烯烃的异构体,并用E—Z命名法命名。 解析:

2020年全国高中化学竞赛预赛试题(山东省)

2020年全国高中化学奥林匹克竞赛 山东省预赛试题 (满分100分时间120分钟) 可能用到的相对原子质量: H-1 C-12 N-14 O-16 Na-23 Mg-24 Al-27 S-32 Cl-35.5 K-39 Fe-56 Cu-64 Zn-65 Ag-108 Ba-137 一、选择题(本题包括18小题,每题2分,共36分,每题有.1.~.2.个.选项符合题意。多选错选不得分,有两个答案的只选一个且答对者得1分) 1.两位美国科学家彼得·阿格雷和罗德里克·麦金农,因为发现细胞膜水通道,以及对离子通道结构和机理研究作出的开创性贡献而获得2020年诺贝尔化学奖。他们之所以获得诺贝尔化学奖而不是生理学或医学奖是因为( )。 A.他们的研究和化学物质水有关 B.他们的研究有利于研制针对一些神经系统疾病和心血管疾病的药物 C.他们的研究深入到分子、原子的层次 D.他们的研究深入到细胞的层次 2.为了探索月球上是否有生命存在的痕迹,就要分析月球岩石中是否包藏有碳氢化合物(当然这仅仅是探索的第一步)。科学家用氘盐酸(DCl)和重水(D2O)溶液处理月球岩石样品,对收集的气体加以分析,结果只发现有一些气体状态的碳氘化合物。这个实验不能用普通盐酸,其理由是( )。 A.普通盐酸的酸性太强 B.普通盐酸具有挥发性 C.普通盐酸和月球岩石中的碳化物无法反应 D.无法区别岩石中原来含有的是碳化物,还是碳氢化合物 3.下列与“神舟五号”载人飞船有关的说法不正确 ...的是( )。 A.飞船的表面覆盖的一层石墨瓦之所以能起到保护作用是因为石墨能够耐高温 B.宇航员的食物做成大小可口的“一口酥”,目的是防止飞船内产生飘尘 C.飞船在宇宙中运行时,船舱内温度低、氧气少,无法划着火柴 D.在飞船上使用LiOH吸收多余的CO2而不使用NaOH 4.下列解释不科学 ...的是( )。 A.“水滴石穿”主要是溶解了CO2的雨水与CaCO3长期作用生成了可溶性Ca(HCO3)2的缘故B.长期盛放NaOH溶液的试剂瓶不易打开,是因为NaOH与瓶中的CO2反应导致瓶内气体减少形成“负压”的缘故 C.严格地讲,实验室使用“通风橱” 防污染是不负责任的,因为实验产生的有害气体没有得到转化或吸收 D.“雨后彩虹”与“海市蜃楼”都是自然界的光学现象,也与胶体的知识有关 5.2020年12月31日,世界上第一条商业磁悬浮铁路在上海投入运营。磁悬浮的核心

高中化学奥林匹克竞赛辅导计划

高中化学奥林匹克竞赛辅导计划 化学奥林匹克竞赛是培养化学学习兴趣,发现和培养化学人才,普及化学教育的好方式。也是提高教师教学能力,推动化学教学的有效途径。近几年来,我校在全国高中化学奥林匹克竞赛辅导中取得了一定的成绩,为了圆满完成辅导,特拟订本校高中化学奥赛培训方案。 培训情况分析: 从学生来源讲:2009年高中化学学科奥赛培训兴趣小组系由全校高一年级化学最感兴趣的学生组成,他们热爱化学,对化学学习有浓厚的兴趣与爱好,都有在省级及以上化学学科奥赛中取得好名次的信心,是一支很有希望的队伍。 培训指导思想: 1、重在能力培养,以提高学生兴趣为切入点来进行教学; 2、以提高学生自学能力为着重点,培养学生良好的学习习惯; 3、学练结合,既要不断提高学生的知识面,也要不断提升学生的解题技巧; 4、培养学生远大志向,树立为科学献身的共产主义思想; 5、不断灌输学科奥赛尖子的学习方法,以形成良好的榜样激励作用。 培训工作目标: 1、圆满完成教学计划,争取在参加高年级的学科竞赛中取得一等奖,有30%的学生获得奖励; 2、养成学生良好的自学习惯,达到学生能按要求完成自学计划制定、掌握自学课程的基本方法; 3、形成良好的竞赛心态,培养争夺奥赛金牌的夺牌意识; 培训具体措施: 1、为学生选择好培训教材,让学生便于自学; 2、坚持按计划培训,按时完成教学任务; 3、加强考练,有规律的考练计划不小于30次;

4、做好学生的思想工作,积极了解其学习过程中存在的问题,不让问题积累。 竞赛辅导安排 时间:从高一下学期开始一直坚持到高三上学期(9月份)。每周开讲两次。 内容:(具体内容见附表) 高一(上学期)原子结构,元素周期律;专题:氧化还原反应、离子反应。 高一(下学期)分子结构和化学健,晶体结构,卤族元素,氧族元素。 高二(上学期)氮族元素、化学反应速率、化学平衡,电解质溶液、酸碱理论 高二(下学期)烃、烃的衍生物,电化学(原电池、电解池、电镀)过渡金属、配位化学 高三(九月份)集训:历届预赛试题、历届初赛试题训练专题:加强、提高、补漏 附:培训内容 化学反应及其能量变化——化学实验的基本操作碱金属——碱金属及其化合物的性质物质的量——配制一定量物质的量溶液卤素——氯、溴、碘的性质氯离子的检验物质结构元素周期律——同周期、同主族元素性质的递变《原子结构》核外电子的运动状态核外电子排布和元素周期系元素基本性质的周期性《化学键与分子结构》离子键理论共价键理论分子间的作用力《氢和稀有气体》氢气稀有气体氧族元素环境保护——浓硫酸的性质、硫酸根离子的检验碳族元素无机非金属材料——实验习题选做实验——趣味实验制取蒸馏水、天然水的净化海带成分中碘的测定阿伏加德罗常数的测定氮族元素——氨的制取和性质、铵离子的检验化学平衡——化学反应速率和化学平衡《化学反应的速率》化学反应速率的定义及其表示方法反应速率理论简介影响化学反应速率的因素电离平衡——电解质溶液、中和滴定《电解质溶液》强电解质溶液理论弱酸、弱碱的解离平衡盐的水解酸碱理论的发展难溶性强电解质的沉淀——溶解平衡《化学平衡》化学反应的可逆性和化学平衡平衡常数标准平衡常数化学平衡移动几种重要的金属——镁铝及其化合物的性质原电池的原理、铁及其化合物的性质《溶胶》分散体系溶胶溶胶的聚沉和稳定性高分子溶液《氧化还原反应》基本概念氧化还原反应方程式的配平电极电势电解化学电源烃——乙烯的制取和性质烃的衍生物——溴乙烷的性质、乙醇的发性质苯酚的性质、乙醛的性质乙酸乙

高中化学奥赛

高中化学奥林匹克竞赛辅导讲座第1讲化学实验基础 【竞赛要求】 溶液配制(按浓度的精确度选择仪器)。重结晶及溶质、溶剂相对量的估算。过滤与洗涤(洗涤液选择、洗涤方式选择) 【知识梳理】 一、常用仪器及其使用方法 1、反应容器 (1)直接加热的仪器 ①试管适用于试剂用量极少的反应,也可用于溶解、气体的制取、净化和收集。试管可分为:普通试管和耐高温的硬质试管;一般试管和具支试管……等。试管必须用试管夹夹持或固定在铁架台的铁夹上加热。开始加热时,应注意受热均匀。 ②蒸发皿适用于蒸发和浓缩溶液,也可用于干炒固体物质。蒸发皿可直接加热也可放在石棉网上加热。用坩埚钳移动,在石棉网上冷却。 ③坩埚适用于灼热或熔融固体物质。坩埚可分为:瓷质坩埚、铁坩埚和石英坩埚。使用时应放在泥三角上直接加热。坩埚温度较高时,应用预热的坩埚钳夹持移动,放置石棉网上自然冷却。 ④燃烧匙适用于点燃的固体和气体反应。 ⑤燃烧管适用于高温下的固体和气体反应。 (2)垫石棉网加热的仪器 ①烧杯适用于试剂用量较多的反应,也可用于溶解、结晶和配制溶液。在蒸发或结晶时,烧杯的上方应放置一个表面皿,防止液体飞溅或落入灰尘。 ②烧瓶适用于加热条件下、试剂用量较多、由液态物质参加的反应,也可用于蒸馏和气体发生装置。烧瓶可分为:圆底烧瓶、平底烧瓶、蒸馏烧瓶、两口烧瓶……等。 ③锥形瓶适用于滴定反应。 (3)不加热的仪器 启普发生器适用于不需加热的固、液制备气体的反应。粉末状固体(或生成粉末状固体)不能用启普发生器。 2、称量仪器 (1)量筒 一种粗量量器,适用于量取精确度要求不高的一定体积的液体,可根据需要选用不同容量的量筒,避免操作次数过多造成误差太大。量取液体时,使视线与量筒内液体的弯月面的最低处保持水平。量筒不能加热或用于稀释溶液。 (2)移液管和吸量管

相关主题
文本预览
相关文档 最新文档