当前位置:文档之家› HONEYWELL霍尔元件2SSM使用手册

HONEYWELL霍尔元件2SSM使用手册

HONEYWELL霍尔元件2SSM使用手册
HONEYWELL霍尔元件2SSM使用手册

霍尔传感器工作原理

半导体薄片置于磁感应强度为 B 的磁场中,磁场方向垂直于薄片,如图所示。当有电流 I 流过薄片时,在垂直于电流和磁场的方向上将产生电动势 EH ,这种现象称为霍尔效应,该电动势称为霍尔电势,上述半导体薄片称为霍尔元件。 原理简述如下:激励电流 I 从 a 、 b 端流入,磁场 B 由正上方作用于薄片,这时电子 e 的运动方向与电流方向相反,将受到洛仑兹力 FL 的作用,向内侧偏移,该侧形成电子的堆积,从而在薄片的 c 、 d 方向产生电场 E 。电子积累得越多, FE 也越大,在半导体薄片 c 、 d 方向的端面之间建立的电动势 EH 就是霍尔电势。 由图可以看出,流入激励电流端的电流 I 越大、作用在薄片上的磁场强度B 越强,霍尔电势也就越高。磁场方向相反,霍尔电势的方向也随之改变,因此霍尔传感器能用于测量静态磁场或交变磁场。 半导体薄片置于磁感应强度为 B 的磁场中,磁场方向垂直于薄片,如图所示。当有电流 I 流过薄片时,在垂直于电流和磁场的方向上将产生电动势 EH ,这种现象称为霍尔效应,该电动势称为霍尔电势,上述半导体薄片称为霍尔元件。 原理简述如下:激励电流 I 从 a 、 b 端流入,磁场 B 由正上方作用于薄片,这时电子 e 的运动方向与电流方向相反,将受到洛仑兹力 FL 的作用,向内侧偏移,该侧形成电子的堆积,从而在薄片的 c 、 d 方向产生电场 E 。电子积累得越多, FE 也越大,在半导体薄片 c 、 d 方向的端面之间建立的电动势 EH 就是霍尔电势。 由图可以看出,流入激励电流端的电流 I 越大、作用在薄片上的磁场强度B 越强,霍尔电势也就越高。磁场方向相反,霍尔电势的方向也随之改变,因此霍尔传感器能用于测量静态磁场或交变磁场。

霍尔元件应用

霍尔元件应用 霍尔元件之作用原理也就是霍尔效应,所谓霍耳效应如图1 所示,系指将电流I 通至一物质,并对与电流成正角之方向施加磁场B 时,在电流与磁场两者之直角方向所产生的电位差V 之现象。此电压是在下列情况下所产生的,有磁场B 时,由于弗莱铭(Fleming)左手定则,使洛仁子力(即可使流过物质中之电子或正孔向箭头符号所示之方向弯曲的力量:(Lorentz force)发生作用,而将电子或正孔挤向固定输出端子之一面时所产生。电位差V 之大小通常决定于洛仁子力与藉所发生之电位差而将电子或正孔推回之力(亦即前者之力等于后者之力),而且与电流I 乘以磁场B 之积成比例。比例常数为决定于物质之霍耳常数除以物质在磁场方向之厚度所得之值。 图1 霍尔组件之原理 在平板半导体介质中,电子移动(有电场)的方向,将因磁的作用(有磁场),而改变电子进的方向。电场与磁场互相垂直时,其传导的载子(电子或电),将集中于平板的上下两边,因而形成电位差存在的现象。该电位差即霍尔 电压(霍尔电压)在实际的霍尔组件中,一般使用物质中之电流载子为电子的N 型半导体材料。将一定之输入施加至霍尔组件时之输出电压,利用上述之关系予以分析时,可以获致下列的结论:(1) 材料性质与霍尔系数乘以电子移动度之积之平方根成正比。(2) 材料之形状与厚度之平方根之倒数成正比。由于上述关系,实际的霍尔组件中,可将霍尔系数及电子移动度大的材料加工成薄的十字形予以制成。 图2 系表示3~5 端子之霍尔组件的使用方法,在三端子霍尔元件之输出可以产生输入端子电压之大致一半与输出信号电压之和的电压,而在四端子及五端子霍尔组件中,在原理上虽然可以免除输入端子电压的影响,但实际上即使

霍尔传感器制作实训报告

佛山职业技术学院 实训报告 课程名称传感器及应用 报告内容霍尔传感器制作与调试 专业电气自动化技术 班级08152 姓名陈红杰‘’‘’‘’‘’‘’‘’‘’‘ 学号31 二0一0年六月 佛山职业技术学院

《传感器及应用》 霍尔传感器制作实训报告 班级08152学号31 姓名陈红杰时间2009-2010第二学期项目名称霍尔传感器电路制作与 指导老师张教雄谢应然调试 一、实验目的与要求: 1.对霍尔传感器的实物(电路部分)进行一个基本的了解。 2.了解双层PCB板以及一定(霍尔传感器)的焊接排版的技术和工艺。 二、实验仪器、设备与材料: 1.认识霍尔传感器(电路部分)的元件(附图如下): 2.焊接电路PCB板(双层)和对电路设计的排版工艺的了解。 3.对霍尔传感器的电路原理图进行基本的分析(附图如下):

实验开始,每组会得到分发的元件,我先由霍尔传感器的电路原理图开始分析,将每个元件插放好位置,这点很重要,如果出了问题那么会使电路不能正常工作,严重的还有可能导致电路元件受损而无法恢复。所以我先由霍尔传感器的电路原理图开始着手,分析清楚每个元件的指定位置,插放好了之后再由焊接,最后要把多余的脚剪掉。 整个电路的元件除了THS119是长脚直插式元件之外,其余的元件均为低位直插或者贴板直插。 焊接的过程中,所需要注意的事情就是不能出现虚焊脱焊或者更严重的烙铁烫坏元件的表壳封装损坏印制电路板等。这些都是在焊接的整个过程中要注意的事情。 比如,焊接三端稳压管7812时,要考虑到电路板的外壳封装和三端稳压管7812的散热问题,如果直插焊接的话那么就会放不进塑料外壳里,还有直插没有折引脚的话对三端稳压管7812的散热影响很大。综合这些因素再去插放焊接元件,效果会好很多。 又比如,焊接THS119的时,原本PCB板在设计的时已经排好版了,就是在TL082的背面插放THS119。这样的设计很巧妙,能够保证每一个THS119插进去焊接完了之后都能很好地与塑料外壳严密配合安放进去。因为这是利用了IC引脚与PCB板的间距来实现定距离的,绝不会给焊接带来任何麻烦。 最后,顺便提及一下,在保证能将每一个元件正确地焊接在印制电路板上的前提条件下要尽量将元件插放焊接得美观。 五、实验心得体会 (1)首先,从整个霍尔传感器来看,设计的电路的合理性,元件的选用,还有焊接的制作工艺是保证整个电路能正常工作前提。 (2)在学习电子电路的过程中,急需有一个过度期,焊接霍尔传感器电路的过程当中就会得到一个这样的练习。 (3)简单的说就是,拿到一张电路原理图未必做得出一个比较好的产品,这里需要对整个电路设计的元件参数的考虑和排版,元件插放等等。只有将这些问题逐一解决了,才能做好一个电路,也只有这样才能做好一个产品。 (4)霍尔电压随磁场强度的变化而变化,磁场越强,电压越高,磁场越弱,电压越低。霍尔电压值很小,通常只有几个毫伏,但经集成电路中的放大器放大,就能使该电压放大到足以输出较强的信号。若使霍尔集成电路起传感作用,需要用机械的方法来改变磁场强度。 六、实验收获 从拿到第一个元件开始,我仍然没有太多的收获,直到开始分析整个电路原理图的时候才慢慢开始了解到一些确实精巧的设计,可以说是独具匠心,到整个霍尔传感器电路完成之后才算是明白了一二。 在此,我具体地说说。首先,为什么不用一个普通的稳压管替代Z2这个精密稳压集成电路TL431呢?我查阅相关资料知道它的温度范围宽能在 区间工作。将其的R、C脚并焊再串上一个电阻来等效代替电

常用霍尔元件封装图以及霍尔元件对应型号和霍尔的应用

常用霍尔元件封装图以及霍尔元件对应型号和霍尔的应用 三脚插片封装是霍尔元件常用的一种封装形式,它的英文简称是 TO-92或 者SlP-3。三脚插片封装都有标准尺寸,在厚度上会有细微的厚薄之分,但不影 响使用。常用的三脚插片封装霍尔元件型号有 YS4仆.YS43F,YS44E,YS188,YS282 等等。单极,双极锁存,全极性霍尔所用三脚插片封装形式最多,可用于无刷电 机,速度检测,家用电器,玩具设备,便携式电子等所有工控领域。 霍尔三脚插片 TO-92/SIP-3 封装图 管腿说明:1?电源2.地3?输出

霍尔三脚贴片SOT-23封装图 霍尔元件封装形式中的三脚贴片封装(SOT-23)是一种小型化的封装,它 的封装体积有大有小,贴片封装相比插片封装在安装上更便捷,也更节省人工。 常用的霍尔元件三脚贴片封装型号有: YS39E,YS1254,YS3254,YS282等。

霍尔四脚贴片 SOT-23-4封装图 狂9±口】 OE IE 0 方 霍尔元件四脚贴片(SOT-23-4)封装形式,这种封装形式的霍尔有四个管脚, 双输入,双输出。四脚贴片霍尔常用型号有: HG-106C,HG106A,HG166A,HW101A,HW108A 等等,并且以线性霍尔元件居多。 主要用于磁场检测,仪器仪表,电流传感器等。 一样接 F?ning _ ? ■;jFζκ; fc / 1-, 続 ,J 入力“ InPUt B) ■ ????g - 厂士 04 F≡= ∣?∣ L∩ ■ 0~0?1

霍尔四脚插片DIP-4封装图 霍尔元件四脚插片( DIP-4)封装形式,四脚插片霍尔常用 型号有: HG-302C,HG-302A,HG-362A,HW-300B,HW-302B,HW-322B 等等,四脚插片封装 是双输入,双输出。以线性霍尔元件居多。 HG 系列四脚霍尔主要用于恒流源, HW 系列四脚霍尔主要用于恒压源。多用于电流传感器,高斯计等磁检测产品中。 1 ---- - Γ M -?≡- NE b□ — Γ M r 熾一 接続 Pinning 入力 InPUt 出力 OUtPUt ??fc? ■ " ??, ? ? 4(+) _ _ 0.95-EJ 汁 02

霍尔元件测量磁场

4.1.1. 霍尔元件测量磁场 置于磁场中的载流导体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场。这个现象是霍普金斯大学研究生霍尔于1879年发现的,后被称为霍尔效应。根据霍尔效应,人们用半导体材料制成霍尔元件,它具有对磁场敏感、结构简单、体积小、频率响应宽、输出电压变化大和使用寿命长等优点。利用它可以测量磁场;可以研究半导体中载流子的类别和特性等;也可以利用它制作传感器,用于磁读出头、隔离器,转速仪等。量子霍耳效应更是当代凝聚态物理领域最重要的发现之一,它在建立国际计量的自然基准方面也起了重要的作用。 【实验目的】 1.了解霍耳效应法测量磁场的原理和方法。 2.测定所用霍耳片的霍耳灵敏度。 3.用霍耳效应法测量通电螺线管轴线上的磁场。 4.用霍耳效应法测量通电线圈和亥姆霍兹线圈轴线上的磁场,验证磁场叠加原理,验证亥姆霍兹线圈中央存在均匀磁场。 【实验原理】 1.霍耳效应及其测磁原理 把一块半导体薄片(锗片或硅片等)放在磁感应强度大小为B 的磁场中(B 的方向沿z 轴方向),如图4.5.1所示。从薄片的四个 侧面A 、A ’、D 、D ’上分别引出两对 电极,沿纵向(即x 轴正向)通以电流 I H ,则在薄片的两个横向面D 、D ’之间 就会产生电势差,这种现象称为“霍耳 效应”,产生的电势差称为霍耳电势差。 根据霍耳效应制成的磁电变换元件称为 霍耳元件。霍耳效应是由洛伦兹力引起 的,当放在垂直于磁场方向的半导体薄片 通以电流后,薄片内定向移动的载流子 受到洛伦兹力F B : B v F B ?=q (4.5.1) 式中,q 、v 分别是载流子的电荷和移动速度。载流子受力偏转的结果使电荷在D 、D ’两端 面积聚而形成电场(图4.5.1中设载流子是负电荷,故F B 沿y 轴负方向),这个电场又给载流子一个与F B 反设方向的电场力F E 。设E 表示电场强度,U DD ’表示D 、D ’间的电势差,b 表示薄片宽度,则 b U q qE F DD E ' == (4.5.2) 达到稳定状态时,电场力和洛伦兹力平衡,有 E B F F = 即 b U q qvB DD ' = 图4.5.1 霍尔效应原理图

磁场的测定(霍尔效应法)汇总

霍尔效应及其应用实验 (FB510A型霍尔效应组合实验仪)(亥姆霍兹线圈、螺线管线圈) 实 验 讲 义 长春禹衡时代光电科技有限公司

实验一 霍尔效应及其应用 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,这个现象是霍普金斯大学研究生霍尔于1879年发现的,后被称为霍尔效应。如今霍尔效应不但是测定半导体材料电学参数的主要手段,而且利用该效应制成的霍尔器件已广泛用于非电量的电测量、自动控制和信息处理等方面。在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更广泛的应用前景。掌握这一富有实用性的实验,对日后的工作将有益处。 【实验目的】 1.了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识。 2.学习用“对称测量法”消除副效应的影响,测量试样的S H I ~V 和M H I ~V 曲线。 3.确定试样的导电类型。 【实验原理】 1.霍尔效应: 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场H E 。如图1所示的半导体试样,若在X 方向通以电流S I ,在Z 方向加磁场B ,则在Y 方向即试样A A '- 电极两侧就开始聚集异号电荷而产生相应的附加电场。电场的指向取决于试样的导电类型。对图1(a )所示的N 型试样,霍尔电场逆Y 方向,(b )的P 型试样则沿Y 方向。即有 ) (P 0)Y (E )(N 0)Y (E H H 型型?>?< 显然,霍尔电场H E 是阻止载流子继续向侧面偏移,当载流子所受的横向电场力H E e ?

霍尔元件及其应用

霍尔元件及其应用 霍尔元件及其应用 摘要: 霍尔元件是一种基于霍尔效应的磁传感器,已发展成一个品种多样的磁传感器产品族,并已得到广泛的应用。本文简要介绍其 工作原理,产品特性及其典型应用。 1 引言 霍尔器件是一种磁传感器。用它们可以检测磁场及其变化,可在各种与磁场有关的场合中使用。霍尔器件以霍尔效应为其工作基础。 霍尔器件具有许多优点,它们的结构牢固,体积小,重量轻,寿命长,安装方便,功耗小,频率高(可达1MHZ),耐震动,不怕灰尘、油污、水汽及盐雾等的污染或腐蚀。 霍尔线性器件的精度高、线性度好;霍尔开关器件无触点、无磨损、输出波形清晰、无抖动、无回跳、位置重复精度高(可达μm级)。取用了各种补偿和保护措施的霍尔器件的工作温度范围宽,可达-55℃~150℃。 按照霍尔器件的功能可将它们分为: 霍尔线性器件和霍尔开关器件。前者输出模拟量,后者输出数字量。 按被检测的对象的性质可将它们的应用分为:直接应用和间接应用。前者是直接检测出受检测对象本身的磁场或磁特性,后者是检测受检对象上人为设置的磁场,用这个磁场来作被检测的信息的载体,通过它,将许多非电、非磁的物理量例如力、力矩、压力、应力、位置、位移、速度、加速度、角度、角速度、转数、转速以及工作状态发生变化的时间等,转变成电量来进行检测和控制。 2 霍尔效应和霍尔元件 2.1 霍尔效应 如图1所示,在一块通电的半导体薄片上,加上和片子表面垂直的磁场B,在薄片的横向两侧会出现一个电压,如图1中的VH,这种现象就是霍尔效应,是由科学家爱德文·霍尔在1879年发现的。VH称为霍尔电压。

(a)霍尔效应和霍尔元件 这种现象的产生,是因为通电半导体片中的载流子在磁场产生的洛仑兹力的作用下,分别向片子横向两侧偏转和积聚,因而形成一个电场,称作霍尔电场。霍尔电场产生的电场力和洛仑兹力相反,它阻碍载流子继续堆积,直到霍尔电场力和洛仑兹力相等。这时,片子两侧建立起一个稳定的电压,这就是霍尔电压。 在片子上作四个电极,其中C1、C2间通以工作电流I,C1、C2称为电流电极,C3、C4间取出霍尔电压VH,C3、C4称为敏感电极。将各个电极焊上引线,并将片子用塑料封装起来,就形成了一个完整的霍尔元件(又称霍尔片)。 (1) 或(2) 或(3) 在上述(1)、(2)、(3)式中VH是霍尔电压,ρ是用来制作霍尔元件的材料的电阻率,μn是材料的电子迁移率,RH 是霍尔系数,l、W、t分别是霍尔元件的长、宽和厚度,f(I/W)是几何修正因子,是由元件的几何形状和尺寸决定的,I是工作电流,V是两电流电极间的电压,P是元件耗散的功率。由(1)~(3)式可见,在霍尔元件中,ρ、RH、μn决定于元件所用的材料,I、W、t和f(I/W)决定于元件的设计和工艺,霍尔元件一旦制成,这些参数均为常数。因此,式(1)~(3)就代表了霍尔元件的三种工作方式所得的结果。(1)式表示电流驱动,(2)式表示电压驱动,(3)式可用来评估霍尔片能承受的最大功率。 为了精确地测量磁场,常用恒流源供电,令工作电流恒定,因而,被测磁场的磁感应强度B可用霍尔电压来量度。 在一些精密的测量仪表中,还采用恒温箱,将霍尔元件置于其中,令RH保持恒定。 若使用环境的温度变化,常采用恒压驱动,因和RH比较起来,μn随温度的变化比较平缓,因而VH受温度变化的影响较小。 为获得尽可能高的输出霍尔电压VH,可加大工作电流,同时元件的功耗也将增加。(3)式表达了VH能达到的极限——元件能承受的最大功耗。

实验五用霍尔元件测量磁场

实验五用霍耳元件测量磁场 一、实验目的 1.了解霍耳效应的产生机理。 2.掌握用霍耳元件测量磁场的基本方法。 二、实验仪器 霍尔效应实验仪。 三、实验原理 1、什么叫做霍耳效应? 若将通有电流的导体置于磁场B之中,磁场B(沿z轴)垂直于电流I H(沿x轴)的方 向,如图1 U H,这个现象称 为霍耳效应。 图1 霍耳效应原理 这一效应对金属来说并不显著,但对半导体非常显著。霍耳效应可以测定载流子浓度及载流子迁移率等重要参数,以及判断材料的导电类型,是研究半导体材料的重要手段。还可以用霍耳效应测量直流或交流电路中的电流强度和功率以及把直流电流转成交流电流并对它进行调制、放大。用霍耳效应制作的传感器广泛用于磁场、位置、位移、转速的测量。(1)用什么原理来解释霍耳效应产生的机理? 霍耳电势差是这样产生的:当电流I H通过霍耳元件(假设为P型)时,空穴有一定的漂移速度v,垂直磁场对运动电荷产生一个洛沦兹力 ) (B v F? =q B(1)式中q为电子电荷。洛沦兹力使电荷产生横向的偏转,由于样品有边界,所以有些偏转的载流子将在边界积累起来,产生一个横向电场E,直到电场对载流子的作用力F E=q E与磁场作用的洛沦兹力相抵消为止,即 E B v q q= ?) ((2)这时电荷在样品中流动时将不再偏转,霍耳电势差就是由这个电场建立起来的。

如果是N 型样品,则横向电场与前者相反,所以N 型样品和P 型样品的霍耳电势差有不同的符号,据此可以判断霍耳元件的导电类型。 (2)如何用霍耳效应侧磁场? 设P 型样品的载流子浓度为p ,宽度为b ,厚度为d 。通过样品电流I H =pqvbd ,则空穴的速度v =I H /pqvbd ,代入(2)式有 pqbd B I E H = ?=B v (3) 上式两边各乘以b ,便得到 d B I R pqd B I Eb U H H H H == = (4) pq R H 1= 称为霍耳系数。在应用中一般写成 U H =K H I H B . (5) 比例系数K H =R H /d =1/pqd 称为霍耳元件灵敏度,单位为mV/(mA ·T)。一般要求K H 愈大愈好。K H 与载流子浓度p 成反比。半导体内载流子浓度远比金属载流子浓度小,所以都用半导体材料作为霍耳元件。K H 与片厚d 成反比,所以霍耳元件都做的很薄,一般只有0.2mm 厚。 由(5)式可以看出,知道了霍耳片的灵敏度K H ,只要分别测出霍耳电流I H 及霍耳电势差U H 就可算出磁场B 的大小。这就是霍耳效应测磁场的原理。 2、如何消除霍耳元件副效应的影响? 在实际测量过程中,还会伴随一些热磁副效应,它使所测得的电压不只是U H ,还会附加另外一些电压,给测量带来误差。 这些热磁效应有埃廷斯豪森效应,是由于在霍耳片两端有温度差,从而产生温差电动势U E ,它与霍耳电流I H 、磁场B 方向有关;能斯特效应,是由于当热流通过霍耳片(如1,2端)在其两侧(3,4端)会有电动势U N 产生,只与磁场B 和热流有关;里吉-勒迪克效应,是当热流通过霍耳片时两侧会有温度差产生,从而又产生温差电动势U R ,它同样与磁场B 及热流有关。 除了这些热磁副效应外还有不等位电势差U 0,它是由于两侧(3,4端)的电极不在同一等势面上引起的,当霍耳电流通过1,2端时,即使不加磁场,3和4端也会有电势差U 0产生,其方向随电流I H 方向而改变。 因此,为了消除副效应的影响,在操作时我们要分别改变I H 的方向和B 的方向,记下四组电势差数据,作运算并取平均值: 由于U E 方向始终与U H 相同,所以换向法不能消除它,但一般U E <

霍尔元件简介及应用

霍尔元件简介及应用 霍尔元件之作用原理也就是霍尔效应,所谓霍耳效应如图1所示,系指将电流I 通至一物质,并对与电流成正角之方向施加磁场B 时,在电流与磁场两者之直角方向所产生的电位差V 之现象。此电压是在下列情况下所产生的,有磁场B 时,由于弗莱铭(Fleming)左手定则,使洛仁子力(即可使流过物质中之电子或正孔向箭头符号所示之方向弯曲的力量:(Lorentz force)发生作用,而将电子或正孔挤向固定输出端子之一面时所产生。电位差V 之大小通常决定于洛仁子力与藉所发生之电位差而将电子或正孔推回之力(亦即前者之力等于后者之力),而且与电流I 乘以磁场B 之积成比例。比例常数为决定于物质之霍耳常数除以物质在磁场方向之厚度所得之值。 图1 霍尔组件之原理

在平板半导体介质中,电子移动(有电场)的方向,将因磁力的作用(有磁场),而改变电子行进的方向。若电场与磁场互相垂直时,其传导的载子(电子或电洞),将集中于平板的上下两边,因而形成电位差存在的现象。该电位差即霍尔电压(霍尔电压)在实际的霍尔组件中,一般使用物质中之电流载子为电子的N 型半导体材料。将一定之输入施加至霍尔组件时之输出电压,利用上述之关系予以分析时,可以获致下列的结论: (1) 材料性质与霍尔系数乘以电子移动度之积之平方根成正比。 (2) 材料之形状与厚度之平方根之倒数成正比。 由于上述关系,实际的霍尔组件中,可将霍尔系数及电子移动度大的材料加工成薄的十字形予以制成。 图2系表示3~5 端子之霍尔组件的使用方法,在三端子霍尔元件之输出可以产生输入端子电压之大致一半与输出信号电压之和的电压,而在四端子及五端子霍尔组件中,在原理上虽然可以免除输入端子电压的影响,但实际上即使在无磁场时,也有起因于组件形状之不平衡等因素之不平衡电压存在。

用霍尔效应测量螺线管磁场 物理实验报告

华南师范大学实验报告 学生姓名 学 号 专 业 化学 年级、班级 课程名称 物理实验 实验项目 用霍尔效应测量螺线管磁场 实验类型 □验证 □设计 □综合 实验时间 2012 年 3 月 07 实验指导老师 实验评分 一、 实验目的: 1.了解霍尔效应现象,掌握其测量磁场的原理。 2.学会用霍尔效应测量长直通电螺线管轴向磁场分布的方法。 二、 实验原理: 根据电磁学毕奥-萨伐尔定律,通电长直螺线管线上中心点的磁感应强度为: 2 2 M D L I N B +??μ= 中心 (1) 理论计算可得,长直螺线管轴线上两个端面上的磁感应强度为内腔中部磁 感应强度的1/2: 2 2M D L I N 21B 21B +??μ? ==中心端面 (2) 式中,μ为磁介质的磁导率,真空中的磁导率μ0=4π×10-7 (T ·m/A),N 为螺线管的总匝数,I M 为螺线管的励磁电流,L 为螺线管的长度,D 为螺线管的平均直径。 三、 实验仪器: 1.FB510型霍尔效应实验仪 2.FB510型霍尔效应组合实验仪(螺线管) 四、 实验内容和步骤: 1. 把FB510型霍尔效应实验仪与FB510型霍尔效应组合实验仪(螺线管)正确连接。把励磁电流接到螺线 管I M 输入端。把测量探头调节到螺线管轴线中心,即刻度尺读数为13.0cm 处,调节恒流源2,使I s =4.00mA ,按下(V H /V s )(即测V H ),依次调节励磁电流为I M =0~±500mA ,每次改变±50mA, 依此测量相应的霍尔电压,并通过作图证明霍尔电势差与螺线管内磁感应强度成正比。 2. 放置测量探头于螺线管轴线中心,即1 3.0cm 刻度处,固定励磁电流±500mA ,调节霍尔工作电流为:I s =0~ ±4.00mA ,每次改变±0.50mA ,测量对应的霍尔电压V H ,通过作图证明霍尔电势差与霍尔电流成正比。 3. 调节励磁电流为500mA ,调节霍尔电流为 4.00mA ,测量螺线管轴线上刻度为X =0.0cm~13.0cm ,每次移动 1cm ,测各位置对应的霍尔电势差。(注意,根据仪器设计,这时候对应的二维尺水平移动刻度读数为:13.0cm 处为螺线管轴线中心,0.0cm 处为螺线管轴线的端面,找出霍尔电势差为螺线管中央一半的数值的刻度位置。与理论值比较,计算相对误差。按给出的霍尔灵敏度作磁场分布B ~X 图。) 五、 注意事项: 图1

《霍尔元件通用技术条件》编制说明

《霍尔元件通用技术条件》编制说明 (征求意见稿) 一、工作简况 1、任务来源 本项目是工业和信息化部行业标准制修订计划(工信厅科[2017] 70号),计划编号:2017-0581T-JB,项目名称“霍尔元件通用技术条件”进行修订,标准起草牵头单位:沈阳仪表科学研究院有限公司,计划应完成时间2019年。 2、主要工作过程 起草(草案、调研)阶段: 沈阳仪表科学研究院有限公司接受本标准的修订任务后,于2018年1月组织成立了标准编制工作组,制定了标准修订计划,修订工作组对霍尔元件的定义、基本参数、要求、试验方法、检验规则、标志、包装及贮存等进行了总结和归纳。 在参照了国外相关标准和1999年发布的《霍尔元件通用技术条件》的基础上,根据各参编单位提出的意见,工作组经全方位的讨论、研究、修改及补充,确立了本《工作组讨论稿》的结构框架及基本内容。 2018年8月2日和8月9日在沈阳仪表科学研究院有限公司分别召开两次编制工作组会议。会上对标准工作组讨论稿进行了逐字逐句的讨论,工作组根据各位成员的意见,对标准进行修改,形成本征求意见稿及编制说明。 征求意见阶段: 审查阶段: 报批阶段: 3、主要参加单位和工作组成员及其所做的工作等 本标准由沈阳仪表科学研究院有限公司、国家仪器仪表元器件质量监督检验中心、传感器国家工程研究中心、中国仪器仪表协会传感器分会、海宁嘉晨汽车电子技术有限公司、杭州电子科技大学等单位共同起草。 工作组主要成员:徐丹辉、李洪儒、张阳、于振毅、王松亭、郑楠、钱正洪、白茹。 工作安排:徐丹辉任修订工作组组长,全面负责标准修订工作,李洪儒、钱正洪负责对各阶段标准的审核。李洪儒、张阳负责与参编单位沟通、协调工作组内的意见。王松亭、郑楠、白茹负责标准资料收集、确定标准相关技术参数等工作。于振毅负责对资料进行总结和归纳、对各方面意见及建议的归纳分析,并提出内部修改意见。

霍尔传感器的原理及应用

第八章霍尔传感器 课题:霍尔传感器的原理及应用课时安排:2 课次编号:12 教材分析 难点:开关型霍尔集成电路的特性 重点:霍尔传感器的应用 教学目的和要求1、了解霍尔传感器的工作原理; 2、了解霍尔集成电路的分类; 3、掌握线性型和开关型霍尔集成电路的特性; 4、掌握霍尔传感器的应用。 采用教学方法和实施步骤:讲授、课堂互动、分析教具:各种霍尔元 件、霍尔传感器 各教学环节和内容 演示1: 将小型蜂鸣器的负极接到霍尔接近开关的OC门输出 端,正极接V cc端。在没有磁铁靠近时,OC门截止,蜂鸣 器不响。 当磁铁靠近到一定距离(例如3mm)时,OC门导通, 蜂鸣器响。将磁铁逐渐远离霍尔接近开关到一定距离(例 如5mm)时,OC门再次截止,蜂鸣器停响。 演示2: 将一根导线穿过10A霍尔电流传感器的铁芯,通入0.1~1A电流,观察霍尔IC的输出电压的变化,基本与输入电流成正比。 从以上演示,引入第一节霍尔效应、霍尔元件的工作原理。 第一节霍尔元件的工作原理及特性 一、工作原理 金属或半导体薄片置于磁感应强度为B的磁场中,磁场方向垂直于薄片,当有电流I流过薄片时,在垂直于电流和磁场的方向上将产生电动势E H,这种现象称为霍尔效应(Hall Effect),该电动势称为霍尔电动势(Hall EMF),上述半导体薄片称为霍尔元件(Hall Element)。用霍尔元件做成的传感器称为霍尔传感器(Hall Transducer)。

图8-1霍尔元件示意图 a)霍尔效应原理图b)薄膜型霍尔元件结构示意图c)图形符号d)外形霍尔属于四端元件: 其中一对(即a、b端)称为激励电流端,另外一对(即c、d端)称为霍尔电动势输出端,c、d端一般应处于侧面的中点。 由实验可知,流入激励电流端的电流I越大、作用在薄片上的磁场强度B越强,霍尔电动势也就越高。霍尔电动势E H可用下式表示 E H=K H IB(8-1)式中K H——霍尔元件的灵敏度。 若磁感应强度B不垂直于霍尔元件,而是与其法线成某一角度θ时,实际上作用于霍尔元件上的有效磁感应强度是其法线方向(与薄片垂直的方向)的分量,即B cosθ,这时的霍尔电动势为 E H=K H IB cosθ(8-2) 从式(8-2)可知,霍尔电动势与输入电流I、磁感应强度B成正比,且当B的方向改变时,霍尔电动势的方向也随之改变。如果所施加的磁场为交变磁场,则霍尔电动势为同频率的交变电动势。 目前常用的霍尔元件材料是N型硅,霍尔元件的壳体可用塑料、环氧树脂等制造。 二、主要特性参数 (1)输入电阻R i恒流源作为激励源的原因:霍尔元件两激励电流端的直流电阻称为输入电阻。它的数值从几十欧到几百欧,视不同型号的元件而定。温度升高,输入电阻变小,从而使输入电流I ab变大,最终引起霍尔电动势变大。使用恒流源可以稳定霍尔原件的激励电流。 (2)最大激励电流I m激励电流增大,霍尔元件的功耗增大,元件的温度升高,从而引起霍尔电动势的温漂增大,因此每种型号的元件均规定了相应的最大激励电流,它的数值从几毫安至十几毫安。 提问:霍尔原件的最大激励电流I m为宜。 A.0mA B.±0.1 mA C.±10mA D.100mA (4)最大磁感应强度B m磁感应强度超过B m时,霍尔电动势的非线性误差将明显增大,B m的数值一般小于零点几特斯拉。 提问:为保证测量精度,图8-3中的线性霍尔IC的磁感应强度不宜超过为宜。 A.0T B.±0.10T C.±0.15T D.±100Gs

大物实验报告霍尔效应【霍尔效应及其应用】

大物实验报告霍尔效应【霍尔效应及其应用】 霍尔效应是1879年美国物理学家霍尔读研究生期间在做研究 载流子导体在磁场中受力作用实验时发现的。阐述了霍尔效应的原理,霍尔元件的特点和分类以及在各个领域中的应用。霍尔效应霍尔元件应用 一、霍尔效应原理 霍尔效应是1879年美国物理学家霍尔读研究生期间在做研究 载流子导体在磁场中受力作用实验时发现的。霍尔效应是载流试样在与之垂直的磁场中由于载流子受洛仑兹力作用发生偏转而在垂直于 电流和磁场方向的试样的两个端面上出现等量异号电荷而产生横向 电势差UH的现象。电势差UH称为霍尔电压,EH称为霍尔电场强度。此时的载流子既受到洛伦兹力作用又受到与洛伦兹力方向相反的霍 尔电场力作用,当载流子所受的洛伦兹力与霍尔电场力相等时,霍尔电压保持相对稳定。 二、霍尔元件的特点和分类 1.霍尔元件的特点。霍尔元件的结构牢固,体积小,重量轻, 寿命长,安装方便,功耗小,频率高(可达1MHZ),耐震动,不怕 灰尘、油污、水汽及盐雾等的污染或腐蚀,调试方便等。霍尔元件和

永久磁体都能在很宽的温度范围(-40℃~1 50℃)、很强的振动冲击 条件下工作,且磁场不受一般介质的阻隔。另外它的变换器组件能够和相关的信号处理电路集成到同一片硅片上,体积小,成本低,且具有较好的抗电磁干扰性能。 2.霍尔元件的分类。按照霍尔元件的结构可分为:一维霍尔元件、二维霍尔元件和三维霍尔元件。一维霍尔元件又被称为单轴霍尔元件,它的主要参数是灵敏度、工作温度和频率响应。运用此类器件时,就可将与适当的小磁钢一起运动的物体的位置、位移、速度、角度等信息以电信号的形式传感出来,达到了自动测量与控制的目的。二维霍尔元件的结构是二维平面,也被称为平面霍尔元件;三维霍尔元件通常被称为非平面霍尔元件。霍尔元件按功能可分为:线形元件、开关、锁存器和专用传感器。 三、霍尔效应的应用 人们在利用霍尔效应原理开发的各种霍尔元件已广泛应用于精 密测磁、自动化控制、通信、计算机、航天航空等工业部门及国防领域。按被检测的对象的性质可将它们的应用分为直接应用和间接应用。直接应用是直接检测出受检测对象本身的磁场或磁特性,间接应用是检测受检对象上人为设置的磁场,用这个磁场来作被检测的信息的载体,通过它将许多非电、非磁的物理量,如力、力矩、压力、应力、

霍尔效应法测量磁场

霍尔效应测磁场 霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效 应。1879年美国霍普金斯大学研究生霍尔在研究金属导电机理时发现了这种电磁现象,故称霍尔效应。后来曾有人利用霍尔效应制成测量磁场的磁传感器,但因金属的霍尔效应太弱而未能得到实际应用。随着半导体材料和制造工艺的发展,人们又利用半导体材料制成霍尔元件,由于它的霍尔效应显著而得到实用和发展,现在广泛用于非电量的测量、电动控制、电磁测量和计算装置方面。在电流体中的霍尔效应也是目前在研究中的“磁流体发电”的理论基础。近年来,霍尔效应实验不断有新发现。1980年原西德物理学家冯·克利青研究二维电子气系统的输运特性,在低温和强磁场下发现了量子霍尔效应,这是凝聚态物理领域最重要的发现之一。目前对量子霍尔效应正在进行深入研究,并取得了重要应用,例如用于确定电阻的自然基准,可以极为精确地测量光谱精细结构常数等。 在磁场、磁路等磁现象的研究和应用中,霍尔效应及其元件是不可缺少的,利用它观测磁场直观、干扰小、灵敏度高、效果明显。 【实验目的】 1.霍尔效应原理及霍尔元件有关参数的含义和作用 2.测绘霍尔元件的V H—Is,了解霍尔电势差V H与霍尔元件工作电流Is、磁感应强度B之间的关系。 3.学习利用霍尔效应测量磁感应强度B及磁场分布。 4.学习用“对称交换测量法”消除负效应产生的系统误差。 【实验原理】

霍尔效应从本质上讲,是运动的带电粒子在磁场中受洛仑兹力的作 用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。如图13-1所示,磁场B位于Z的正向,与之垂直的半导体薄片上沿X正向通以电流Is(称为工作电流),假设载流子为电子(N型半导体材料),它沿着与电流Is相反的X负向运动 。 由于洛仑兹力f L作用,电子即向图中虚线箭头所指的位于y轴负方向的B侧偏转,并使B侧形成电子积累,而相对的A侧形成正电荷积累。与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力f E的作用。随着电荷积累的增加,f E增大,当两力大小相等(方向相反)时, f L=-f E,则电子积累便达到动态平衡。这时在A、B两端面之间建立的电场称为霍尔电场E H,相应的电势差称为霍尔电势V H。 设电子按均一速度,向图示的X负方向运动,在磁场B作用下,所受洛仑兹力为: 式中:e 为电子电量,为电子的漂移平均速度,B为磁场的磁感应强度。 同时,电场作用于电子所受电场力为: 式中:E H为霍尔电场强度,V H为霍尔电势,l为霍尔元件宽度当达到动态平衡时:  (13-1) 设霍尔元件宽度为l,厚度为d ,载流子浓度为 n ,则霍尔元件的工作电流为

霍尔效应及霍尔元件基本参数的测量

霍尔效应及霍尔元件基本参数的测量 086041B班D组何韵 摘要:霍尔效应是磁电效应的一种,利用这一现象制成的各种霍尔元件,广泛地应用于工业自动化技术、检测技术及信息处理等方面.霍尔效应是研究半导体材料性能的基本方法.本实验的目的在于了解霍尔效应的原理及有关霍尔器件对材料的要求,使用霍尔效应试验组合 仪,采用“对称测量法”消除副效应的影响,经测量得到试样的V H —I M 和V H —I S 曲线,并通 过实验测定的霍尔系数,判断出半导体材料试样的导电类型、载流子浓度及载流子迁移率等重要参数. 关键词:霍尔效应hall effect,半导体霍尔元件semiconductor hall effect devices,对称测量法symmetrical measurement,载流子charge carrier,副效应secondary effect 美国物理学家霍尔(Hall,Edwin Herbert,1855-1938)于1879年在实验中发现,当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面之间会出现电势差,这一现象便是霍尔效应.这个电势差也被叫做霍尔电势差.霍尔的发现震动了当时的科学界,许多科学家转向了这一领域,不久就发现了爱廷豪森(Ettingshausen)效应、能斯托(Nernst)效应、里吉-勒迪克(Righi-Leduc)效应和不等位电势差等四个伴生效应. 在霍尔效应发现约100年后,德国物理学家克利青(Klaus von Klitzing, 1943-)等在研究极低温度和强磁场中的半导体时发现了量子霍耳效应,这是当代凝聚态物理学令人惊异的进展之一,克利青为此获得了1985年的诺贝尔物理学奖.之后,美籍华裔物理学家崔琦(Daniel Chee Tsui,1939- )和美国物理学家劳克林(Robert https://www.doczj.com/doc/c913170240.html,ughlin,1950-)、施特默(Horst L. St rmer,1949-)在更强磁场下研究量子霍尔效应时发现了分数量子霍尔效应,这个发现使人们对量子现象的认识更进一步,他们为此获得了1998年的诺贝尔物理

大学物理实验讲义实验 用霍尔效应法测量磁场

实验16用霍尔效应法测量磁场 在工业生产和科学研究中,经常需要对一些磁性系统或磁性材料进行测量,被测磁场的范 围可从~10 15-3 10T (特斯拉),测量所用的原理涉及到电磁感应、磁光效应、热磁效应等。常用的磁场测量方法有核磁共振法、电磁感应法、霍尔效应法、磁光效应法、超导量子干涉器件法等近十种。 一般地,霍尔效应法用于测量10~104 -T 的磁场。此法结构较简单,灵敏度高,探头体积小、测量方便、在霍尔器件的温度范围内有较好的稳定性。但霍尔电压和内阻存在一定的温度系数,并受输入电流的影响,所以测量精度较低。 用半导体材料制成的霍尔器件,在磁场作用下会出现显着的霍尔效应,可用来测量磁场、霍尔系数、判断半导体材料的导电类型(N 型或P 型)、确定载流子(作定向运动的带电粒子)浓度和迁移率等参数。如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且利用该效应制成的霍尔器件已广泛用于非电量电测、自动控制和信息处理等方面,如测量强电流、压力、转速等,在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更为广阔的应用前景。了解这一富有实用性的实验,对于日后的工作将有益处。 【实验目的】 1. 了解霍尔效应产生的机理。 2. 掌握用霍尔器件测量磁场的原理和基本方法。 3. 学习消除伴随霍尔效应的几种副效应对测量结果影响的方法。 4. 研究通电长直螺线管内轴向磁场的分布。 【仪器用具】 TH-H/S 型霍尔效应/螺线管磁场测试仪、TH-S 型螺线管磁场实验仪。 【实验原理】 1. 霍尔效应产生的机理 置于磁场中的载流体,如果电流方向与磁场方向垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,载流体的两侧会产生一电位差,这个现象是美国霍普斯金大学二年级研究生霍尔于1879年发现的,后被称为霍尔效应,所产生的电位差称为霍尔电压。特别是在半导体样品中,霍尔效应更加明显。 霍尔电压从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子和空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的积累,从而形成附加的横向电场,即霍尔电场。对于图1-1(a )所示的N 型半导体试样,若在X 方向通以电流S I ,在Z 方向加磁场B ,试样中载流子(电子)将受到洛仑兹力大小为: evB F g =(1-1) 则在Y 方向,在试样A 、A '电极两侧就开始聚积异号电荷而产生相应的附加电场——霍尔电场。电场的指向取决于试样的导电类型,对N 型半导体试样,霍尔电场逆Y 方向,P 型半导体试样,霍尔电场则沿Y 方向,即有: 当S I 沿X 轴正向、B 沿Z 轴正向、H E 逆Y 正方向的试样是N 型半导体。

11霍尔效应及霍尔传感器应用

霍尔效应及霍尔传感器应用 霍尔效应Hall Effect是一种磁电效应,是德国物理学家霍尔1879年研究载流导体在磁场中受力的性质时发现的。 根据霍尔效应,人们用半导体材料制成霍尔元件,它具有对磁场敏感、结构简单、体积小、频率响应宽、输出电压变化大和使用寿命长等优点,因此,在测量、自动化、计算机和信息技术等领域得到广泛的应用。 通过该实验可以了解霍尔效应的物理原理以及把物理原理应用到测量技术中的基本过程。 当电流垂直于外磁场方向通过导体时,在垂直于磁场和电流方向的导体的两个端面之间出现电势差的现象称为霍尔效应,该电势差称为霍尔电势差(霍尔电压)。 霍尔效应原理 所谓霍尔效应,是指磁场作用于载流金属导体、半导体中的载流子时,产生横向电位差的物理现象。金属的霍尔效应是1879年被美国物理学家霍尔发现的。当电流通过金属箔片时,若在垂直于电流的方向施加磁场,则金属箔片两侧面会出现横向电位差。半导体中的霍尔效应比金属箔片中更为明显,而铁磁金属在居里温度以下将呈现极强的霍尔效应。 利用霍尔效应可以设计制成多种传感器。霍尔电位差UH的基本关系为 UH=RHIB/d(18) RH=1/nq(金属)(19) 式中RH——霍尔系数; n——载流子浓度或自由电子浓度; q——电子电量; I——通过的电流; B——垂直于I的磁感应强度; d——导体的厚度。 对于半导体和铁磁金属,霍尔系数表达式与式(19)不同,此处从略。 由于通电导线周围存在磁场,其大小与导线中的电流成正比,故可以利用霍尔元件测量出磁场,就可确定导线电流的大小。利用这一原理可以设计制成霍尔电流传感器。其优点是不与被测电路发生电接触,不影响被测电路,不消耗被测电源的功率,特别适合于大电流传感。 若把霍尔元件置于电场强度为E、磁场强度为H的电磁场中,则在该元件中将产生电流I,元件上同时产生的霍尔电位差与电场强度E成正比,如果再测出该电磁场的磁场强度,则电磁场的功率密度瞬时值P可由P=EH确定。 利用这种方法可以构成霍尔功率传感器。 如果把霍尔元件集成的开关按预定位置有规律地布置在物体上,当装在运动物体上的永磁体经过它时,可以从测量电路上测得脉冲信号。根据脉冲信号列可以传感出该运动物体的位移。若测出单位时间内发出的脉冲数,则可以确定其运动速度。 霍尔效应在应用技术中特别重要。 霍尔发现,如果对位于磁场(B)中的导体(d)施加一个电压(Iv),该磁场的方向垂直于所施加电压的方向,那么则在既与磁场垂直又和所施加电流方向垂直的方向上会产生另一个电压(UH),人们将这个电压叫做霍尔电压,产生这种现象被称为霍尔效应。 好比一条路,本来大家是均匀的分布在路面上,往前移动.当有磁场时,大家可能会被推到靠路的右边行走.故路(导体)的两侧,就会产生电压差.这个就叫“霍尔效应”。 方便起见,假设导体为一个长方体,长度分别为a,b,d,磁场垂直ab平面。电流经过ad,电流I =nqv(ad),n为电荷密度。设霍尔电压为VH,导体沿霍尔电压方向的电场为VH / a。

相关主题
文本预览