当前位置:文档之家› 杂题选(刘汝佳)

杂题选(刘汝佳)

蒙特卡罗方法完整教程(WORD文档内附有源码)

Monte Carlo 方法法 §1 概述 Monte Carlo 法不同于确定性数值方法,它是用来解决数学和物理问题的非确定性的(概率统计的或随机的)数值方法。Monte Carlo 方法(MCM ),也称为统计试验方法,是理论物理学两大主要学科的合并:即随机过程的概率统计理论(用于处理布朗运动或随机游动实验)和位势理论,主要是研究均匀介质的稳定状态。它是用一系列随机数来近似解决问题的一种方法,是通过寻找一个概率统计的相似体并用实验取样过程来获得该相似体的近似解的处理数学问题的一种手段。运用该近似方法所获得的问题的解in spirit 更接近于物理实验结果,而不是经典数值计算结果。 普遍认为我们当前所应用的MC 技术,其发展约可追溯至1944年,尽管在早些时候仍有许多未解决的实例。MCM 的发展归功于核武器早期工作期间Los Alamos (美国国家实验室中子散射研究中心)的一批科学家。Los Alamos 小组的基础工作刺激了一次巨大的学科文化的迸发,并鼓励了MCM 在各种问题中的应用[2]-[4]。“Monte Carlo ”的名称取自于Monaco (摩纳哥)内以赌博娱乐而闻名的一座城市。 Monte Carlo 方法的应用有两种途径:仿真和取样。仿真是指提供实际随机现象的数学上的模仿的方法。一个典型的例子就是对中子进入反应堆屏障的运动进行仿真,用随机游动来模仿中子的锯齿形路径。取样是指通过研究少量的随机的子集来演绎大量元素的特性的方法。例如,)(x f 在b x a <<上的平均值可以通过间歇性随机选取的有限个数的点的平均值来进行估计。这就是数值积分的Monte Carlo 方法。MCM 已被成功地用于求解微分方程和积分方程,求解本征值,矩阵转置,以及尤其用于计算多重积分。 任何本质上属随机组员的过程或系统的仿真都需要一种产生或获得随机数的方法。这种仿真的例子在中子随机碰撞,数值统计,队列模型,战略游戏,以及其它竞赛活动中都会出现。Monte Carlo 计算方法需要有可得的、服从特定概率分布的、随机选取的数值序列。 §2 随机数和随机变量的产生 [5]-[10]全面的论述了产生随机数的各类方法。其中较为普遍应用的产生随机数的方法是选取一个函数)(x g ,使其将整数变换为随机数。以某种方法选取0x ,并按照)(1k k x g x =+产生下一个随机数。最一般的方程)(x g 具有如下形式: m c ax x g mod )()(+= (1) 其中 =0x 初始值或种子(00>x ) =a 乘法器(0≥a ) =c 增值(0≥c ) =m 模数 对于t 数位的二进制整数,其模数通常为t 2。例如,对于31位的计算机m 即可取1 312 -。这 里a x ,0和c 都是整数,且具有相同的取值范围0,,x m c m a m >>>。所需的随机数序{}n x 便可由下式得

蒙特卡罗算法的简单应用

一、蒙特卡洛算法 1、含义的理解 以概率和统计理论方法为基础的一种计算方法。也称统计模拟方法,是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法,它是将所求解的问题同一定的概率模型相联系,用计算机实现统计模拟或抽样,以获得问题的近似解。 2、算法实例 在数值积分法中,利用求单位圆的1/4的面积来求得Pi/4从而得到Pi 。单位圆的1/4面积是一个扇形,它是边长为1单位正方形的一部分。只要能求出扇形面积S1在正方形面积S 中占的比例K=S1/S 就立即能得到S1,从而得到Pi 的值。怎样求出扇形面积在正方形面积中占的比例K 呢?一个办法是在正方形中随机投入很多点,使所投的点落在正方形中每一个位置的机会相等看其中有多少个点落在扇形内。将落在扇形内的点数m 与所投点的总数n 的比m/n 作为k 的近似值。P 落在扇形内的充要条件是 221x y +≤ 。 已知:K= 1s s ,K ≈m n ,s=1,s1=4P i ,求Pi 。 由1 s m s n ≈,知s1≈*m s n =m n , 而s1=4P i ,则Pi=*4m n 程序: /* 利用蒙特卡洛算法近似求圆周率Pi*/ /*程序使用:VC++6.0 */ #include #include #include #define COUNT 800 /*循环取样次数,每次取样范围依次变大*/ void main() { double x,y; int num=0; int i; for(i=0;i

x=rand()*1.0/RAND_MAX;/*RAND_MAX=32767,包含在中*/ y=rand()*1.0/RAND_MAX; i f((x*x+y*y)<=1) num++; /*统计落在四分之一圆之内的点数*/ } printf("Pi值等于:%f\n",num*4.0/COUNT); printf("RAND_MAX=%d\n",RAND_MAX); 3、应用的范围 蒙特·卡罗方法在金融工程学,宏观经济学,计算物理学(如粒子输运 计算、量子热力学计算、空气动力学计算)等领域应用广泛。 4、参考书籍 [1]蒙特卡罗方法及其在粒子输运问题中的应用[2]蒙特卡罗方法引论

浅析蒙特卡洛方法原理及应用

浅析蒙特卡洛方法原理及应用 于希明 (英才学院1236103班测控技术与仪器专业6120110304) 摘要:本文概述了蒙特卡洛方法产生的历史及基本原理,介绍了蒙特卡洛方法的最初应用——蒲丰投针问题求圆周率,并介绍了蒙特卡洛方法在数学及生活中的一些简单应用,最后总结了蒙特卡洛方法的特点。 关键词:蒙特卡洛方法蒲丰投针生活应用 蒙特卡洛方法(Monte Carlo method),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。它是以概率统计理论为基础, 依据大数定律( 样本均值代替总体均值) , 利用电子计算机数字模拟技术, 解决一些很难直接用数学运算求解或用其他方法不能解决的复杂问题的一种近似计算法。蒙特卡洛方法在金融工程学,宏观经济学,计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算)等领域应用广泛。 一、蒙特卡洛方法的产生及原理 蒙特卡洛方法于20世纪40年代美国在第二次世界大战中研制原子弹的“曼哈顿计划”计划的成员S.M.乌拉姆和J.冯·诺伊曼首先提出。数学家冯·诺伊曼用驰名世界的赌城—摩纳哥的Monte Carlo—来命名这种方法,为它蒙上了一层神秘色彩。在这之前,蒙特卡洛方法就已经存在。1777年,法国数学家蒲丰(Georges Louis Leclere de Buffon,1707—1788)提出用投针实验的方法求圆周率π。这被认为是蒙特卡洛方法的起源。 其基本原理如下:由概率定义知,某事件的概率可以用大量试验中该事件发生的频率来估算,当样本容量足够大时,可以认为该事件的发生频率即为其概率。因此,可以先对影响其可靠度的随机变量进行大量的随机抽样,然后把这些抽样值一组一组地代入功能函数式,确定结构是否失效,最后从中求得结构的失效概率。蒙特卡洛法正是基于此思路进行分析的。 设有统计独立的随机变量Xi(i=1,2,3,…,k),其对应的概率密度函数分别为fx1,fx2,…,fxk,功能函数式为Z=g(x1,x2,…,xk)。首先根据各随机变量的相应分布,产生N组随机数x1,x2,…,xk值,计算功能函数值Zi=g(x1,x2,…,xk)(i=1,2,…,N),若其中有L组随机数对应的功能函数值Zi≤0,则当N→∞时,根据伯努利大数定理及正态随机变量的特性有:结构失效概率,可靠指标。 二、蒲丰投针问题 作为蒙特卡洛方法的最初应用, 是解决蒲丰投针问题。1777 年, 法国数学家蒲丰提出利用投针实验求解圆周率的问题。设平面上等距离( 如为2a) 画有一些平行线, 将一根长度为2l( l< a) 的针任意投掷到平面上, 针与任一平行线相交的频率为p 。针的位置可以用针的中心坐标x 和针与平行线的夹角θ来决定。任意方向投针, 便意味着x与θ可以任意取一值, 只是0≤x ≤a, 0≤θ≤π。那么, 投针与任意平行线相交的条件为x ≤ l sinθ。相交频率p 便可用下式求

蒙特卡罗基本思想

蒙特卡罗方法简介 蒙特卡罗模型(Monte Carlo method),又称统计模拟法、随机抽样技术。由S.M.乌拉姆和J.冯·诺伊曼在20世纪40年代为研制核武器而首先提出。在这之前,蒙特卡罗方法就已经存在。1777年,法国Buffon提出用投针实验的方法求圆周率∏。这被认为是蒙特卡罗方法的起源。是一种以概率统计理论为指导的非常重要的数值计算方法。是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。蒙特卡罗(Monte Carlo)方法,或称计算机随机模拟方法,是一种基于“随机数”的计算方法。这一方法源于美国在第一次世界大战进研制原子弹的“曼哈顿计划”。该计划的主持人之一、数学家冯·诺伊曼用驰名世界的赌城—摩纳哥的Monte Carlo—来命名这种方法,为它蒙上了一层神秘色彩。而蒙特·卡罗方法正是以概率为基础的方法。考虑平面上的一个边长为1的正方形及其内部的一个形状不规则的“图形”,如何求出这个“图形”的面积呢?Monte Carlo方法是这样一种“随机化”的方法:向该正方形“随机地”投掷N个点落于“图形”内,则该“图形”的面积近似为M/N。 蒙特卡罗模型的基本思想是,为了求解数学、物理、工程技术以及管理等方面的问题,首先建立一个概率模型或随机过程,使它们的参数,如概率分布或数学期望等问题的解;然后通过对模型或过程的观察或抽样试验来计算所求参数的统计特征,并用算术平均值作为所求解的近似值。对于随机性问题,有时还可以根据实际物理背景的概率法则,用电子计算机直接进行抽样试验,从而求得问题的解答。从理论上来说,蒙特卡罗方法需要大量的实验。实验次数越多,所得到的结果才越精确。 科技计算中的问题比这要复杂得多。比如金融衍生产品(期权、期货、掉期等)的定价及交易风险估算,问题的维数(即变量的个数)可能高达数百甚至数千。对这类问题,难度随维数的增加呈指数增长,这就是所谓的“维数的灾 难”(Course Dimensionality),传统的数值方法难以对付(即使使用速度最快的计算机)。Monte Carlo方法能很好地用来对付维数的灾难,因为该方法的计算复杂性不再依赖于维数。以前那些本来是无法计算的问题现在也能够计算量。为提高方法的效率,科学家们提出了许多所谓的“方差缩减”技巧。

蒙特卡罗方法学习总结

图1-1 蒙特卡罗方法学习总结 核工程与核技术2014级3班张振华20144530317 一、蒙特卡罗方法概述 1.1蒙特卡罗方法的基本思想 1.1.1基本思想 蒙特卡罗方的基本思想就是,当所求问题的解是某个事件的概率,或者是某个随机变量的数学期望,或者是与概率、数学期望有关的量时,通过某种试验方法,得出该事件发生的频率,或者该随机变量若干个具体观察值的算术平均值,通过它得到问题的解。 1.1.2计算机模拟打靶游戏 为了能更为深刻地理解蒙特卡罗方法的基本思想,我们学习了蒲丰氏问题和打靶游戏两大经典例子。下面主要对打靶游戏进行剖析、计算机模拟(MATLAB 程序)。 设某射击运动员的弹着点分布如表1-1 所示, 首先用一维数轴刻画出已知该运动员的弹 着点的分布如图1-1所示。研究打靶游戏,我 们不用考察子弹的运动轨迹,只需研究每次“扣动扳机”后的子弹弹着点。每一环数对应唯一确定的概率,且注意到概率分布函数有单调不减和归一化的性质。首先我们产生一个在(0,1)上均匀分布的随机数(模拟扣动扳机),然后将该随机数代表的点投到P 轴上(模拟子弹射向靶上的一个确定点),得到对应的环数(即子弹的弹着点),模拟打靶完成。反复进行N 次试验,统计出试验结果的样本均值。样本均值应当等于数学期望值,但允许存在一定的偏差,即理论计算值应该约等于模拟试验结果。 clear all;clc; N=100000;s=0; for n=1:N %step 4.重复N 次打靶游戏试验

x=rand(); %step 1.产生在(0,1)上均匀分布的随机数if(x<=0.1) %step 2.若随机数落在(0.0,0.1)上,则代表弹着点在7环g=7; s=s+g; %step 3.统计总环数elseif(x<=0.2) %step 2.若随机数落在(0.1,0.2)上,则代表弹着点在8环g=8;s=s+g; elseif(x<=0.5) %step 2.若随机数落在(0.2,0.5)上,则代表弹着点在9环g=9;s=s+g; else %step 2.若随机数落在(0.5,1.0)上,则代表弹着点在10环 g=10;s=s+g; end end gn_th=7*0.1+8*0.1+9*0.3+10*0.5; %step 5.计算、输出理论值fprintf('理论值:%f\n',gn_th); gn=s/N; %step 6.计算、输出试验结果 fprintf('试验结果:%f\n',gn);1.2蒙特卡罗方法的收敛性与误差 1.2.1收敛性 由大数定律可知,应用蒙特卡罗方法求近似解,当随机变量Z 的简单子样数N 趋向于无穷大(N 充分大)时,其均值依概率收敛于它的数学期望。 1.2.2误差 由中心极限定理可知,近似值与真值的误差为N Z E Z N αλ<-)(?。式中的αλ的值可以根据给出的置信水平,查阅标准正态分布表来确定。 1.2.3收敛性与误差的关系 在一般情况下,求具有有限r 阶原点矩()∞

(完整版)蒙特卡洛算法详讲

Monte Carlo 法 §8.1 概述 Monte Carlo 法不同于前面几章所介绍的确定性数值方法,它是用来解决数学和物理问题的非确定性的(概率统计的或随机的)数值方法。Monte Carlo 方法(MCM ),也称为统计试验方法,是理论物理学两大主要学科的合并:即随机过程的概率统计理论(用于处理布朗运动或随机游动实验)和位势理论,主要是研究均匀介质的稳定状态[1]。它是用一系列随机数来近似解决问题的一种方法,是通过寻找一个概率统计的相似体并用实验取样过程来获得该相似体的近似解的处理数学问题的一种手段。运用该近似方法所获得的问题的解in spirit 更接近于物理实验结果,而不是经典数值计算结果。 普遍认为我们当前所应用的MC 技术,其发展约可追溯至1944年,尽管在早些时候仍有许多未解决的实例。MCM 的发展归功于核武器早期工作期间Los Alamos (美国国家实验室中子散射研究中心)的一批科学家。Los Alamos 小组的基础工作刺激了一次巨大的学科文化的迸发,并鼓励了MCM 在各种问题中的应用[2]-[4]。“Monte Carlo ”的名称取自于Monaco (摩纳哥)内以赌博娱乐而闻名的一座城市。 Monte Carlo 方法的应用有两种途径:仿真和取样。仿真是指提供实际随机现象的数学上的模仿的方法。一个典型的例子就是对中子进入反应堆屏障的运动进行仿真,用随机游动来模仿中子的锯齿形路径。取样是指通过研究少量的随机的子集来演绎大量元素的特性的方法。例如,)(x f 在b x a <<上的平均值可以通过间歇性随机选取的有限个数的点的平均值来进行估计。这就是数值积分的Monte Carlo 方法。MCM 已被成功地用于求解微分方程和积分方程,求解本征值,矩阵转置,以及尤其用于计算多重积分。 任何本质上属随机组员的过程或系统的仿真都需要一种产生或获得随机数的方法。这种仿真的例子在中子随机碰撞,数值统计,队列模型,战略游戏,以及其它竞赛活动中都会出现。Monte Carlo 计算方法需要有可得的、服从特定概率分布的、随机选取的数值序列。 §8.2 随机数和随机变量的产生 [5]-[10]全面的论述了产生随机数的各类方法。其中较为普遍应用的产生随机数的方法是选取一个函数)(x g ,使其将整数变换为随机数。以某种方法选取 0x ,并按照)(1k k x g x =+产生下一个随机数。最一般的方程)(x g 具有如下形式: m c ax x g mod )()(+= (8.1) 其中 =0x 初始值或种子(00>x ) =a 乘法器(0≥a ) =c 增值(0≥c ) =m 模数

蒙特卡罗算法与matlab(精品教程)

第一章:Monte Carlo方法概述 讲课人:Xaero Chang | 课程主页: https://www.doczj.com/doc/ca13109206.html,/notes/intro2mc 本章主要概述Monte Carlo的一些基础知识,另外包括一个最简单的用Monte Carlo方法计算数值积分的例子。 一、Monte Carlo历史渊源 Monte Carlo方法的实质是通过大量随机试验,利用概率论解决问题的一种数值方法,基本思想是基于概率和体积间的相似性。它和Simulation有细微区别。单独的Simulation只是模拟一些随机的运动,其结果是不确定的;Monte Carlo 在计算的中间过程中出现的数是随机的,但是它要解决的问题的结果却是确定的。 历史上有记载的Monte Carlo试验始于十八世纪末期(约1777年),当时布丰(Buffon)为了计算圆周率,设计了一个“投针试验”。(后文会给出一个更加简单的计算圆周率的例子)。虽然方法已经存在了200多年,此方法命名为Monte Carlo则是在二十世纪四十年,美国原子弹计划的一个子项目需要使用Monte Carlo方法模拟中子对某种特殊材料的穿透作用。出于保密缘故,每个项目都要一个代号,传闻命名代号时,项目负责人之一von Neumann灵犀一点选择摩洛哥著名赌城蒙特卡洛作为该项目名称,自此这种方法也就被命名为Monte Carlo方法广为流传。 十一、Monte Carlo方法适用用途 (一)数值积分 计算一个定积分,如,如果我们能够得到f(x)的原函数F(x),那么直接由表达式: F(x1)-F(x0)可以得到该定积分的值。但是,很多情况下,由于f(x)太复杂,我们无法计算得到原函数F(x)的显示解,这时我们就只能用数值积分的办法。如下是一个简单的数值积分的例子。 数值积分简单示例 如图,数值积分的基本原理是在自变量x的区间上取多个离散的点,用单个点的值来代替该小段上函数f(x)值。 常规的数值积分方法是在分段之后,将所有的柱子(粉红色方块)的面积全部加起来,用这个面积来近似函数f(x)(蓝色曲线)与x轴围成的面积。这样做

蒙特卡罗方法的基本思想与解题步骤

1 蒙特卡罗方法的基本思想与解题步骤 蒙特卡罗方法也称随机模拟法、随机抽样技术或统计试验法,其基本思想是:为了求解数学、物理、工程技术或生产管理等方面的问题,首先建立一个与求解有关的概率模型或随机过程,使它的参数等于所求问题的解,然后通过对模型或过程的观察或抽样试验来计算所求参数的统计特征,最后给出所求解的近似值。概率统计是蒙特卡罗方法的理论基础,其基本手段是随机抽样或随机变量抽样,对于那些难以进行的或条件不满足的试验而言,是一种极好的替代方法。 蒙特卡罗方法可以解决随机性问题和确定性问题,求解确定性问题的基本步骤如下:(1)建立一个与求解有关的概率模型,使求解为所构建模型的概率分布或数学期望;(2)对模型进行随机抽样观察,即产生随机变量;(3)用算术平均数作为所求解的近似平均值,给出所求解的统计估计值的方差或标准差,即解的精度。 2 伪随机数的产生 利用蒙特卡罗方法以模拟一个实际问题,需要用到各种随机变量,因此随机数的产生非常重要。在计算机上的产生随机数的方法有三类:(1)把已有的随机数表输入机器;(2)用物理方法产生真正的随机数;(3)用数学方法产生伪随机数。利用数学方法产生随机数具有占有内存小,产生速度快,便于重复,不受计算机条件限制等优点,因而被大量使用。因利用数学方法产生的随机数是根据确定的递推公式计算的,存在周期现象,不满足真正随机数的要求,这种随机数称为伪随机数。在实际应用中,只要伪随机数能通过一系列统计检验,我们还是可以把它当做“真正”的随机数来应用。 产生随机数的数学方法,最常应用的有: 同余法。其中,剩同余法和混合同余法能够产生周期长且统计性质优的数值序列,因而应用也最广。 平方取中法。当位数较少时,产生的伪随机数领导于零的较多,位数越来越多时,偏于零的就会越来越少。 易位指令加法。方法简便,速度较快,其所产生的随机数随机性一般较好,但周期不定,且通常很短;随着初选值的不同,所产生的随机数序列长度也有很大差异。 3 随机数的检验 随机数的统计检验,就是根据(0,1)上均匀总体简单子样式的性质来研究所产生的随机数序列的相应性质,进行比较鉴别,视其差异显著与否,决定取舍。如果所产生的伪随机数经过各类检验,其差异均不显著,我们即接受其为均匀总体随机数的子样。

蒙特卡罗算法

蒙特卡洛算法 算法简介: 蒙特·卡罗方法(Monte Carlo method),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。蒙特·卡罗方法的名字来源于摩纳哥的一个城市蒙地卡罗,该城市以赌博业闻名,而蒙特·卡罗方法正是以概率为基础的方法。 与它对应的是确定性算法。 蒙特·卡罗方法在金融工程学,宏观经济学,计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算)等领域应用广泛。 背景知识: 蒙特卡洛是摩纳哥公国第一大城市,与澳门、美国拉斯维加斯并称世界三大赌城。位于地中海沿岸,首都摩纳哥之北,建于阿尔卑斯山脉突出地中海的悬崖之上。景色优美,是地中海地区旅游胜地。市内建有豪华的旅馆、俱乐部、歌剧院、商店、游泳池、温泉浴室、运动场等娱乐设施。城内开设有蒙特卡洛大赌场。赌场建于1865年,为双层楼建筑,上有钟楼、塔厅和拱形亭阁,还饰以若干人物雕塑,庭前棕榈树成行,还辟有花园,旁边有大酒店和酒吧间。整个城市在旺季时,约有赌场70多个,约有赌室3500间左右。蒙特卡罗赌场由国家经营。当地的其他活动,许多也带有赌博色彩。游客住的旅店房间,有抽奖的号码,中奖的免付部分房费。早餐的牛奶麦片粥里,如遇上金属牌子,亦可领奖。该城只有1万人口,但每天报纸销量可达100万份,因为报纸上都印有可能得奖的号码。游客最后离境,购买的车票上也印有彩票号码,于离境前开彩。经营赌业是摩纳哥的主要经济来源,每年都从赌业中收取高额外汇利润。 蒙特卡洛算法简单描述: 以概率和统计理论方法为基础的一种计算方法。将所求解的问题同一定的概率模型相联系,用计算机实现统计模拟或抽样,以获得问题的近似解。比如,给定x=a,和x=b,你要求某一曲线f和这两竖线,及x轴围成的面积,你可以起定y轴一横线y=c 其中c>=f(a) and c>=f(b),很简单的,你可以求出y=c,x=a,x=b,及x轴围成的矩形面积,然后利用随机参生生大量在这个矩形范围之类的点,统计出现在曲线上部点数和出现在曲线下部点的数目,记为:doteUpCount,nodeDownCount,然后所要求的面积可以近似为doteDownCounts所占比例*矩形面积。 问题描述: 在数值积分法中,利用求单位圆的1/4的面积来求得Pi/4从而得到Pi。单位圆的1/4面积是一个扇形,它是边长为1单位正方形的一部分。只要能求出扇形面积S1在正方形面积S中占的比例K=S1/S就立即能得到S1,从而得到Pi的值。怎样求出扇形面积在正方形面积中占的比例K呢?一个办法是在正方形中随机投入很多点,使所投的点落在正方形中每一个位置的

蒙特卡罗算法与matlab(精品教程)

第一章:Monte Carlo 方法概述
讲课人:Xaero Chang | 课程主页: https://www.doczj.com/doc/ca13109206.html,/notes/intro2mc 本章主要概述 Monte Carlo 的一些基础知识,另外包括一个最简单的用 Monte Carlo 方法计算数值积分的例子。
一、Monte Carlo 历史渊源
Monte Carlo 方法的实质是通过大量随机试验,利用概率论解决问题的一种数值方法, 基本思想是基于概率和体积间的相似性。它和 Simulation 有细微区别。单独的 Simulation 只 是模拟一些随机的运动,其结果是不确定的;Monte Carlo 在计算的中间过程中出现的数是 随机的,但是它要解决的问题的结果却是确定的。 历史上有记载的 Monte Carlo 试验始于十八世纪末期 (约 1777 年) 当时布丰 , (Buffon) 为了计算圆周率,设计了一个“投针试验”。(后文会给出一个更加简单的计算圆周率的例 子)。虽然方法已经存在了 200 多年,此方法命名为 Monte Carlo 则是在二十世纪四十年, 美国原子弹计划的一个子项目需要使用 Monte Carlo 方法模拟中子对某种特殊材料的穿透作 用。 出于保密缘故, 每个项目都要一个代号, 传闻命名代号时, 项目负责人之一 von Neumann 灵犀一点选择摩洛哥著名赌城蒙特卡洛作为该项目名称, 自此这种方法也就被命名为 Monte Carlo 方法广为流传。
十一、Monte Carlo 方法适用用途 (一)数值积分
计算一个定积分,如 ,如果我们能够得到 f(x)的原函数 F(x),那么直接由表 达式: F(x1)-F(x0)可以得到该定积分的值。但是,很多情况下,由于 f(x)太复杂,我们无法 计算得到原函数 F(x)的显示解, 这时我们就只能用数值积分的办法。 如下是一个简单的数值 积分的例子。 数值积分简单示例
如图, 数值积分的基本原理是在自变量 x 的区间上取多个离散的点, 用单个点的值来代 替该小段上函数 f(x)值。 常规的数值积分方法是在分段之后,将所有的柱子(粉红色方块)的面积全部加起来, 用这个面积来近似函数 f(x)(蓝色曲线)与 x 轴围成的面积。这样做当然是不精确的,但是 随着分段数量增加,误差将减小,近似面积将逐渐逼近真实的面积。

蒙特卡罗算法简述

蒙特卡罗算法简述 摘要:本文介绍了蒙特卡罗算法的起源,原理,描述及应用,列举了一个蒙特卡罗全局光照算法得实例及研究过程。 关键词:蒙特卡罗;全局光照;统计;自适应 一、背景 蒙特·卡罗算法(Monte Carlo method),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。蒙特·卡罗方法的名字来源于摩纳哥的一个城市蒙地卡罗,该城市以赌博业闻名,而蒙特·卡罗方法正是以概率为基础的方法。起源于早期的用几率近似概率的数学思想,它利用随机数进行统计试验,以求得的统计特征值(如均值、概率等) 作为待解问题的数值解。随着现代计算机技术的飞速发展,蒙特·卡罗算法也在不断的改进。 1946年,美国拉斯阿莫斯国家实验室的三位科学家John von Neumann,Stan Ulam 和Nick Metropolis共同发明,被称为蒙特卡洛方法。体定义是:在广场上画一个边长一米的正方形,在正方形内部随意用粉笔画一个不规则的形,现在要计算这个不规则图形的面积,蒙特卡洛(Monte Carlo)方法告诉我们,均匀的向该正方形内撒N(N 是一个很大的自然数)个黄豆,随后数数有多少个黄豆在这个不规则几何形状内部,比如说有M个,那么,这个奇怪形积与正方形的面积之比便近似于M/N,N越大,算出来的值便越精确。在这里我们要假定豆子都在一个平面上,相互之间没有重叠。蒙特卡洛方法可用于近似计算圆周率:让计算机每次随机生成两个0到1之间的数,看这两个实数是否在单位圆内。生成一系列随机点,统计单位圆内的点数与总点数,(圆面积和正方形面积之比为PI:,PI为圆周率),当随机点取得越多(但即使取10的9次方个随机点时,其结果也仅在前4位与圆周率吻合)时,其结果越接近于圆周率。就数学特性而言,特卡罗方法的发展可以追溯到18 世纪著名的蒲丰问题。777年,国科学家蒲丰(Buffon)提出用投针试验计算圆周率π值的问题。这里我们用蒲丰问题来初步说明蒙特卡罗方法的基本原理和解决问题的基本手续,蒲丰问题是这样一个古典概率问题:平面上有彼此相距为 2 a 的平行线,此平面任意投一长度为 2 l 的针,

蒙特卡罗算法

蒙特卡罗算法 以概率和统计理论方法为基础的一种计算方法。将所求解的问题同一定的概率模型相联系,用电子计算机实现统计模拟或抽样,以获得问题的近似解。为象征性地表明这一方法的概率统计特征,故借用赌城蒙特卡罗命名。又称统计模拟法、随机抽样技术。由S.M.乌拉姆和J.冯·诺伊曼在20世纪40年代为研制核武器而首先提出。它的基本思想是,为了求解数学、物理、工程技术以及管理等方面的问题,首先建立一个概率模型或随机过程,使它们的参数,如概率分布或数学期望等问题的解;然后通过对模型或过程的观察或抽样试验来计算所求参数的统计特征,并用算术平均值作为所求解的近似值。对于随机性问题,有时还可以根据实际物理背景的概率法则,用电子计算机直接进行抽样试验,从而求得问题的解答。 蒙特卡罗方法有很强的适应性,问题的几何形状的复杂性对它的影响不大。该方法的收敛性是指概率意义下的收敛,因此问题维数的增加不会影响它的收敛速度,而且存贮单元也很省,这些是用该方法处理大型复杂问题时的优势。因此,随着电子计算机的发展和科学技术问题的日趋复杂,蒙特卡罗方法的应用也越来越广泛。它不仅较好地解决了多重积分计算、微分方程求解、积分方程求解、特征值计算和非线性方程组求解等高难度和复杂的数学计算问题,而且在统计物理、核物理、真空技术、系统科学、信息科学、公用事业、地质、医学,可靠性及计算机科学等广泛的领域都得到成功的应用。 蒙特卡罗(Monte Carlo)方法,又称随机抽样或统计试验方法,属于计算数学的一个分支,它是在本世纪四十年代中期为了适应当时原子能事业的发展而发展起来的。传统的经验方法由于不能逼近真实的物理过程,很难得到满意的结果,而蒙特卡罗方法由于能够真实地模拟实际物理过程,故解决问题与实际非常符合,可以得到很圆满的结果。这也是我们采用该方法的原因。蒙特卡罗方法的基本原理及思想如下:当所要求解的问题是某种事件出现的概率,或者是某个随机变量的期望值时,它们可以通过某种“试验”的方法,得到这种事件出现的频率,或者这个随机变数的平均值,并用它们作为问题的解。这就是蒙特卡罗方法的基本思想。蒙特卡罗方法通过抓住事物运动的几何数量和几何特征,利用数学方法来加以模拟,即进行一种数字模拟实验。它是以一个概率模型为基础,按照这个模型所描绘的过程,通过模拟实验的结果,作为问题的近似解。可以把蒙特卡罗解题归结为三个主要步骤:构造或描述概率过程;实现从已知概率分布抽样;建立各种估计量。蒙特卡罗解题三个主要步骤:构造或描述概率过程:对于本身就具有随机性质的问题,如粒子输运问题,主要是正确描述和模拟这个概率过程,对于本来不是随机性质的确定性问题,比如计算定积分,就必须事先构造一个人为的概率过程,它的某些参量正好是所要求问题的解。即要将不具有随机性质的问题转化为随机性质的问题。实现从已知概率分布抽样:构造了概率模型以后,由于各种概率模型都可以看作是由各种各样的概率分布构成的,因此产生已知概率分布的随机变量(或随机向量),就成为实现蒙特卡罗方法模拟实验的基本手段,这也是蒙特卡罗方法被称为随机抽样的原因。最简单、最基本、最重要的一个概率分布是(0,1)上的均匀分布(或称矩形分布)。随机数就是具有这种均匀分布的随机变量。随机数序列就是具有这种分布的总体的一个简单子样,也就是一个具有这种分布的相互独立的随机变数序列。产生随机数的问题,就是从这个分布的抽样问题。在计算机上,可以用物理方法产生随机数,但价格昂贵,不能重复,使用不便。另一种方法是用数学递推公式产生。这样产生的序列,与真正的随机数序列不同,所以称为伪随机数,或伪随机数序列。不过,经过多种统计检验表明,它与真正的随机数,或随机数序列具有相近的性质,因此可把它作为真正的随机数来使用。由已知分布随机抽样有各种方法,与从(0,1)上均匀分布抽样不同,这些方法都是借助于随机序列来实现的,也就是说,都是以产生随机数为前提的。由此可见,随机数是我们实现蒙特卡罗模拟的基本工具。建立各种估计量:一般说来,构造了概率模型并能从中抽样后,即实现模拟实验后,我们就要确定一个随机变量,作为所要求的问题的解,我们称它为无偏估计。建立各种估计量,相当于对模拟实验的结果进行考察和登记,从中得到问题的解。例如:检验产品的正品率问题,我们可以用1表示正品,0表示次品,于是对每个产品检验可以定义如下的随机变数Ti,作为正品率的估计量:于

相关主题
相关文档 最新文档