当前位置:文档之家› Structure and star formation in disk galaxies I. Sample selection and near infrared imaging

Structure and star formation in disk galaxies I. Sample selection and near infrared imaging

Structure and star formation in disk galaxies I. Sample selection and near infrared imaging
Structure and star formation in disk galaxies I. Sample selection and near infrared imaging

a r X i v :a s t r o -p h /0303613v 2 28 M a r 2003

Mon.Not.R.Astron.Soc.000,1–9(2003)Printed 2February 2008

(MN L A T E X style ?le v1.4)

Structure and star formation in disk galaxies I.Sample

selection and near infrared imaging

J.H.Knapen 1,2,R.S.de Jong 3,S.Stedman 1and D.M.Bramich 4

1University

of Hertfordshire,Department of Physical Sciences,Hat?eld,Herts AL109AB 2Isaac Newton Group of Telescopes,Apartado 321,E-38700Santa Cruz de La Palma,Spain

3Space Telescope Science Institute,3700San Martin Drive,Baltimore,MD 21218,USA 4School of Physics and Astronomy,University of St.Andrews,Scotland KY169SS

Accepted March 2003.Received ;in original form

ABSTRACT

We present near-infrared imaging of a sample of 57relatively large,Northern spiral galaxies with low inclination.After describing the selection criteria and some of the basic properties of the sample,we give a detailed description of the data collection and reduction procedures.The K s λ=2.2μm images cover most of the disk for all galaxies,with a ?eld of view of at least 4.2arcmin.The spatial resolution is better than an arcsec for most images.We ?t bulge and exponential disk components to radial pro?les of the light distribution.We then derive the basic parameters of these components,as well as the bulge/disk ratio,and explore correlations of these parameters with several galaxy parameters.

Key words:galaxies:spiral –galaxies:structure –infrared:galaxies

1INTRODUCTION

Near-infrared (NIR)imaging of galaxies is a better tracer of the underlying stellar structure than optical imaging,for two reasons.Firstly,the e?ects of extinction by dust in the galaxy are much reduced (an order of magnitude from V to K ),and secondly,the NIR emission is a better tracer of the older stellar populations,which contain most of the stellar mass.The combined e?ect of these two factors is that NIR emission is a more accurate tracer of the mass in galaxies.This is also why the fraction of galactic bars,mostly de-void of current star formation (SF),is higher as determined from NIR than from optical surveys (~70%versus ~55%,e.g.,Sellwood &Wilkinson 1993;Mulchaey &Regan 1997;Knapen,Shlosman &Peletier 2000;Eskridge et al.2000).The main technical problems in NIR imaging of spi-ral disks are the high background at 2.2micron,and the relatively small size of NIR array detectors.Detectors with 1024×1024pixels,such as the ones used for the present pa-per,have only been in use since about 1996,and many of the cameras built around such arrays have been constructed to exploit the higher spatial resolution in the NIR,and/or the possibilities of adaptive optics (e.g.,KIR on the CFHT,Doyon et al.1998;UFTI on UKIRT,Roche et al.2002).So whereas optical surveys of galaxy disks have been performed for decades,resulting,among many other results,in galaxy catalogues such as the RC3(de Vaucouleurs et al.1991),NIR only now starting to be published (e.g.,2MASS:Skrutskie et

al.1997,Jarrett et al.2003;Seigar &James 1998a,1998b;Moriondo et al.1999;M¨o llenho?&Heidt 2001;Eskridge et al.2002;this paper).The NIR cameras we used for the presently described project have been designed as a com-promise between sampling the best seeing conditions and a relatively wide ?eld of view (INGRID on the 4.2m William Herschel Telescope,Packham et al.2003),or speci?cally for wide-?eld imaging (PISCES on the 2.3m Bok telescope,Mc-Carthy et al.2001).The presently described survey o?ers several advantages over most of the other studies mentioned above,namely by o?ering a set of high-resolution (the me-dian value for the FWHM seeing across our sample is 0.90arcsec),well-sampled (pixel size 0.24arcsec for all but 4im-ages),reasonably deep images of a representative sample of nearby,not highly inclined,Northern spiral galaxies.Decomposition of galaxy light in bulge and disk com-ponents has received renewed attention in recent years (e.g.,Andredakis,Peletier &Balcells 1995;Byun &Freeman 1995;de Jong 1996a;Graham 2001;M¨o llenho?&Heidt 2001).One of the main reasons for this renewed attention stems

from the realisation that not all spheroids have R

1

n

Sersic (1968)type pro?les.Furthermore,it has been sug-gested that the shape of the bulge and its relation to the disk may hold clues about the formation history of the galaxy components (e.g.,Courteau,de Jong &Broeils 1996;An-

2J.H.Knapen et al.

generally believed that early-type spiral galaxies have bulges with de Vaucouleurs-like pro?les(i.e.Sersic n values of order 4)and late-type spiral galaxies bulges with exponential-like pro?les with n~1,probably with a continuum in between.It has been suggested that the exponential bulges in late-type spiral galaxies are the result of bar instabilities driving gas toward the centre and scattering star in the vertical direc-tion by buckling resonances,while the de Vaucouleurs type bulges are the result of accretion and merging events,prob-ably early in the history of the galaxy(e.g.,Courteau et al. 1996;Aguerri,Balcells&Peletier2001).An alternative view was put forward by Andredakis et al.(1995),who proposed that the outer parts of R1

4bulge in a collisionless N-body simulation,he could indeed lower the n value of the resulting bulge,but not to values lower than n=2.

In this paper,we present NIR imaging in the2.2micron K s band of a complete sample of57nearby,not highly in-clined,Northern spiral galaxies of all types.We also present ?ts to the separate bulge and disk components on the basis of radial surface brightness pro?les.Optical broad(B,I)and narrow(Hα)band imaging of all galaxies in our sample will be presented in Paper II(Knapen et al.2003).In Paper III (J.H.Knapen,in preparation)we study the morphology of the Hαemission in the central few kiloparsecs of the sample galaxies to explore the relative frequencies of,for instance, central peaks or nuclear rings among the sample.Correla-tions with morphological type or nuclear non-stellar activity will then be explored.In further papers,we will use ellipse ?ts to the NIR images to explore the parameters of the bars in the sample galaxies,and will use disk scale lengths to in-vestigate whether,and in what fashion,these are a?ected by emission from young stars in areas of current star formation. The currently presented data set o?ers many more oppor-tunities for study,and as examples we mention the study by Block et al.(2001)who derived gravitational torques due to bars from our NIR images,and the one by Jogee et al. (2002),who used one of our NIR images,of NGC5248,to argue for the dynamical connection of the di?erent compo-nents identi?ed in that galaxy.

2THE SAMPLE

2.1Sample selection

Our sample of galaxies was selected from the list of Elmegreen and Elmegreen(1987),which contains708galax-ies from the Second Reference Catalogue of Bright Galax-ies(RC2;de Vaucouleurs et al.1976).The Elmegreen and Elmegreen sample was selected to included all those galax-ies listed in the RC2with declinationδ>?35?,inclina-tion i<60?and inclination-corrected diameter at25mag arcsec?2,D25,greater than2arcmin.Our sample of57 galaxies was extracted from this large sample to give a smaller subset,primarily for analysis of the spiral arm prop-erties,as follows:

?All galaxies of4.2arcmin and above in diameter(D25) were selected to ensure that we could isolate the spiral arms,

?Galaxies withδ

This gave a sample of57galaxies(Table1)of which six have a diameter larger than10arcmin.The limitations of galaxy catalogues are various,due to their adopted criteria of inclusion and their degree of completeness.The RC2from which the original sample was chosen is,as implied by its title,magnitude limited.No attempt has been made by us to investigate selection e?ects in the sample,but we note that the range of galaxies included in our sample is by nature limited in apparent diameter,brightness,and thus also in redshift z.This is a factor which must be taken into account with any conclusions drawn from the data.

Our sample of spiral galaxies covers the full range of morphological types from SA to SB,the full range of Hub-ble types,and the complete range of arm class from1to 12(Elmegreen and Elmegreen1987)?.The sample contains normal and active galaxies;isolated,companion and clus-ter member galaxies;disturbed and undisturbed galaxies; barred and un-barred galaxies;galaxies with and without extensive massive star forming regions;and galaxies with and without nuclear rings or other nuclear structure.Some of the most important of such basic parameters of the sam-ple galaxies are given in Table1.Stedman&Knapen(2001) present graphically the distribution of the sample galaxies as a function of morphological type,arm class,bar type, disk diameter,ellipticity,and systemic velocity,and we thus refer to the?gures in that paper.

Of the sample galaxies,23%are barred(RC3type SB), 26%are un-barred(SA)and51%are mixed(SX),giving a total of74%of galaxies with bar structure.This is con-sistent with the?ndings of,e.g.,Knapen et al.(2000),who estimate a bar fraction of approximately2/3rds for all galax-ies.Again based on classi?cations from the RC3,25%of the sample galaxies possess an inner ring structure,30%pos-sess an inner s-shaped structure and45%are mixed.The sample covers the full range of Hubble types from S0/a to Sm,with a marked excess of type bc and c galaxies.In fact,these two classes of open armed spirals contribute40% of the total.Every arm class is represented in the sample, with45%of the galaxies in classes7,8,9and12,denoting grand design spiral arm structure.Our sample galaxies are fairly evenly distributed in recession velocity,lying mostly between750km s?1and1750km s?1,with a few galaxies at velocities between2000and3000km s?1.We checked the NASA/IPAC Extragalactic Database(NED)for nuclear ac-tivity in our galaxies.As listed in Table1,27galaxies(52%)?Elmegreen&Elmegreen(1987)de?ne arm classes as follows: arm class1=chaotic,fragmented,unsymmetrical arms,2=frag-mented spiral arm pieces with no regular pattern,3=fragmented arms uniformly distributed around the galactic centre,4=only one prominent arm;otherwise fragmented arms,5=two symmet-ric,short arms in the inner regions;irregular outer arms,6=two symmetric inner arms;feathery ringlike outer structure,7=two symmetric,long outer arms;feathery or irregular inner arms, 8=tightly wrapped ringlike arms,9=two symmetric inner arms; multiple long and continuous outer arms,and12=two long sym-

Structure and star formation in disk galaxies I.Sample selection and near infrared imaging3

are listed as showing some type of nuclear activity,of which almost half(13)are Seyferts and most others LINERs.

We conclude that although the sample is limited by its selection criteria,most importantly a lower limit on diameter and is therefore not“complete”in a strictly statistical sense, it is internally consistent and a fair,representative sample of all galaxies within the selection parameters,i.e.,bright, relatively face-on spiral galaxies.

3OBSER V ATIONS AND DATA REDUCTION 3.1INGRID observations

Images of all but four of our sample galaxies were obtained through the K s?lter with the INGRID NIR camera(Pack-ham et al.2003)at the Cassegrain focus of the4.2m William Herschel Telescope(WHT).The INGRID camera is built around a1024×1024pixel Hawaii detector array(HgCaTe), and gives a projected pixel size of0.242arcsec?with a?eld of view of4.2×4.2arcmin.Observations for this programme were made during a total of six allocated observing nights (May14-16,2000,Nov.8&12,2000and Dec.7,2000),while additional images were collected during a number of service nights(Nov.3,Dec.4,2000;March9,Oct.4,2001;and Jan.4,2002).The image of NGC3351was obtained dur-ing the commissioning of INGRID,on the night of March 18,2000.Conditions during most of the nights were good, photometric and with good seeing.Whereas for some galax-ies images could only be obtained on one night,many were observed during di?erent nights.The images of worst qual-ity in terms of sky subtraction are of a number of galaxies around RA=14h,which could only be observed during our May2000nights,when the observations were hampered by clouds.Total exposure times range from6to100minutes on source,as listed in Table2.Typical1σbackground noise is 20.5mag arcsec?2,depending on the observing time,down to21.7mag arcsec?2for our longest exposure,of NGC7741. This compares favourably with the value given for2MASS images of bright galaxies,of20.0mag arcsec?2(Jarrett et al.2003).

The observing strategy consisted of small blocks of galaxy observations,each of some5minutes duration,in-terspersed with similar blocks of exposures of a nearby area of background sky,for an equal amount of time.The blocks consisted of4pointings,where in each pointing the galaxy centre was displaced by about10arcsec on the array.Each of these pointings in turn was built up from3to5individ-ual exposures of20to12seconds,co-averaged to produce one FITS?le after60second total exposure time.The high background in the K s?lter,variable and mostly dependent on the temperature of the outside air and the telescope,set the limit to the length of the individual exposures.The so-called dither pattern of4pointings serves to eliminate the bad pixels during the reduction,while the background sky exposures are paramount for sky subtraction(see below).

Whenever conditions were photometric,standard stars

?The pixel size of INGRID is0.238arcsec as of March22nd, 2001.The few images we obtained after this date were re-gridded from the list of Hawarden et al.(2001)were observed at regular intervals during the night.

3.2INGRID data reduction

The data reduction was performed using a combination of standard and purpose-built IRAF and IDL tasks.The main reduction script has been adapted from a set of IDL proce-dures originally written by F.Rigaut and R.Doyon to re-duce images taken with the KIR camera on the CFHT.The ?rst step is the creation of a background frame from o?set sky exposures taken before and after the galaxy frames.The di?erent background frames are combined using an iterative median combination algorithm in order to remove stellar images and bad pixels which may be present in the individ-ual exposures.In each of the(normally three)iterations the individual frames are compared with the median-combined frame produced from them,and any pixels which lead to peaks or troughs in the combined image of more than three times the noise are set to unde?ned in the o?ending single frame in the next iteration.

The background frame is then subtracted from each individual galaxy frame,and the background-subtracted galaxy frames are median-combined into the reduced image. In this latter step,bad pixels are masked out,and?at?eld-ing is done on the individual frames.Since the galaxy is at a slightly di?erent position in each individual frame,the position of either the nucleus of the galaxy or of a star in the?eld is determined and used to shift the images before combining them.

Where several images of the same galaxy were available, either taken during the same night or on di?erent nights, these images were averaged after registering them using the positions of a number of foreground stars,and/or the nu-cleus of the galaxy.The procedures used for the alignment were very similar to those described in§3.4,below,for the registering of NIR and optical images.What we will refer to as“?nal”images are those which have been registered with the optical images of our data set(as described in detail in Paper II).

Photometric calibration was performed by comparison of the?nal,combined,images with the reduced images as obtained on individual photometric nights.For those nights, calibration constants were derived from the observations of photometric standard stars.We measured the total?ux in the two images in a circular aperture centred on the nucleus of the galaxy,making sure that exactly the same area was taken for both the photometrically calibrated and the?nal image.Correcting for background and pixel size,which are in some cases di?erent in the photometric and?nal images, we thus calibrate the?nal images.

3.3PISCES observations and data reduction Images of four of our sample galaxies were obtained using the PISCES camera on the Bok2.3m telescope of the Stew-ard Observatory,on Oct.17(NGC6946)and18(NGC628, 1068,6184),1999.The PISCES camera(McCarthy et al. 2001)uses the same kind of array as INGRID,but gives pixels of0.′′5on the sky.The details of the observations,

4J.H.Knapen et al.

0210.SXS3Sb563516011.6163420.398 0337A.SXS8Sc 5.92281012.7107613.766 0488.SAR3Sab 5.33301511.15226929.3142 062874.SAS5Sc10.5916259.956569.747 0864.SXT5Sbc 4.75282011.4156020.097 1042.SXT6Sc 4.79271511.56137316.781 106877RSAT3Sb Sy1Sy27.1322709.61113714.470 1073.SBT5SBc 4.95161511.47121115.274 1169.SXR3Sba 4.23342812.2238733.7163 1179.SXR6SBc 4.93273512.6178021.2103 1300.SBT4SBb/SB0 6.2123510611.11156818.891 2775.SAR2Sa 4.332715511.03135417.082 2805.SXT7 6.352812511.52173428.0136 2985PSAT2Sab LINER 4.6326011.18132222.4109 3184.SXT6Sc HII7.491413510.365938.742 3227.SXS1P S0/Sb Sy1.5 5.473415511.1115720.6100 3344RSXR4Sbc7.191610.45586 6.130 335195.SBR3SBb HII Sbrst7.46341310.537788.139 336896.SXT2Sab Sy LINER7.6833510.118978.139 3486.SXR5Sbc Sy27.19308011.056827.436 3631.SAS5Sbc591111.01115821.6105 3726.SXR5Sbc 6.25331010.9184917.082 3810.SAT5Sc 4.32321511.3599416.982 4030.SAS4 4.29312712.02146025.9126 4051.SXT4Sbc Sy1.5 5.353013510.8372517.082 4123.SBR5SBbc Sbrst HII 4.493013511.98132925.3123 4145.SXT7Sc HII/LINER 5.943110011.78101620.7100 4151PSXT2*Sab Sy1.5 6.35325011.599520.398 4242.SXS8Sd/SBd51282511.375177.536 425499.SAS5Sc 5.492010.44240716.881 430361.SXT4Sc HII Sy2 6.591410.18156915.274 4314.SBT1SBa LINER 4.2121811.439639.747 4321100.SXS4Sc LINER HII7.412223010.05158616.881 4395.SAS9*Sd/SBd LINER Sy1.813.212314710.64320 3.618 4450.SAS2Sab LINER 5.3123017510.9195616.881 4487.SXT6Sc 4.253410012.26103719.997 4535.SXS5SBc7.1932010.59195716.881 454891.SBT3SBb LINER Sy 5.452615010.9648616.881 457958.SXT3Sab LINER Sy1.9 5.99269510.48151916.881 4618.SBT9SBbc HII 4.24242511.225447.335 4689.SAT4Sc 4.332411.6161916.881 4725.SXR2P SBb Sy210.76323510.11120612.460 473694RSAR2Sab Sy2LINER11.23241058.99310 4.321 5247.SAS4Sc 5.69202010.5135722.2108 5248.SXT4Sbc Sy2HII 6.2123111010.97115322.7110 5334.SBT5*SBc 4.22311511.99138224.7120 5371.SXT4Sb/SBb LINER 4.2926811.32255337.8183 5457101.SXT6Sc28.89148.31241 5.426 5474.SAS6P Scd/SBcd HII 4.821811.28273 6.029 5850.SBR3SBb 4.382014011.54255628.5138 5921.SBR4SBbc LINER 4.982413011.49148025.2122 5964.SBT7 4.222714512.6144724.7120 6140.SBS6P 6.32319511.8191018.690 6384.SXR4Sb LINER 6.29353011.14166326.6129 6946.SXT6Sc HII11.59229.6152 5.527 7727SXS1P Sa 4.71283511.5181423.3113 7741.SBS6SBc 4.453417011.8475512.360

Structure and star formation in disk galaxies I.Sample selection and near infrared imaging5 are described in McCarthy et al.(2001)and only the es-

sentials are repeated here.The PISCES camera has an8.5

arcmin circular?eld of view and the galaxies were mosaiced

with a few central images and many overlapping images in the outer parts,interspaced with sky o?set images.Flat-?elds were created by di?erencing a number of early and late twilight images.The?at?elded object images were sky subtracted by weight-averaged and clipped o?set sky frames. The object images were corrected for image distortions and then optimally combined using cross-correlations for posi-tional o?sets and using airmass coe?cient calibrations for intensity matching.E?ective exposure times range typically from about1000s in the outer regions to2000s in the cen-tre.Seeing on the combined images is2.5arcsec for the Oct. 17observation and1.5arcsec for those of Oct.18.Calibra-tion was performed by observing standard star?elds from the list of Hunt et al.(1998)at least4times a night at sev-eral airmasses,to allow accurate calculation of airmass and colour terms.

3.4Final data sets

Since we are interested in comparing the NIR images with the optical images we have obtained for our sample galax-ies,we have used a special procedure to make the NIR im-ages directly comparable to the others.This procedure is described in detail in Paper II,where we also describe the optical observations and their reduction,but in outline the following was done.We determined the positions of three foreground stars(or failing that,two stars plus the galaxy nucleus)in each of the images to be combined,as well as in an astrometrically calibrated image which we obtained from the Digitized Sky Survey(DSS).From these positions,an IRAF script we developed calculates the translation,rota-tion,and scaling needed for each image.It also determines which image has the highest resolution(smallest pixels)and the largest extent.Finally,the rotation needed to place the image set in an RA,dec orientation is determined from the position of the stars in the DSS image.Images are then ro-tated,translated and scaled in such a way that the resulting images are correctly oriented,have the pixel size of the image with the smallest pixels,and the extend of that covering the largest area.Those images covering a smaller area are?lled with zero-valued pixels.Even though the resulting images may contain many more pixels,and are thus much larger, this is the only way to ensure that no information is lost. Table2gives the size of the fully reduced K s images,but be-fore the operations described immediately above.The area given in the Table thus represents the useful size of the NIR images.Table2also lists with which telescope the images were obtained,as well as the total on-source exposure time and the spatial resolution.The NIR images of all galaxies are shown in Fig.1.

4BULGE/DISK DECOMPOSITION

In recent years,performing bulge/disk(B/D)decomposi-tions in two dimensions,i.e.,on the full image,instead of in one dimension,on the luminosity pro?les,has become the accepted norm(e.g.,Byun&Freeman1995;de Jong1996a;NGC0210WHT24 1.04 4.2 NGC0337A WHT28 1.04 4.2 NGC0488WHT45 1.68 4.9 NGC0628Bok N/A 1.5511.0 NGC0864WHT240.94 4.2 NGC1042WHT45 2.16 4.8 NGC1068Bok N/A 1.649.6 NGC1073WHT24 1.02 4.2 NGC1169WHT240.78 4.2 NGC1179WHT280.89 4.2 NGC1300WHT32 1.03 5.2 NGC2775WHT120.78 4.2 NGC2805WHT48 1.06 4.2 NGC2985WHT20 1.14 4.2 NGC3184WHT240.89 5.1 NGC3227WHT120.73 4.7 NGC3344WHT240.85 4.9 NGC3351WHT12 1.147.4 NGC3368WHT80.77 5.0 NGC3486WHT240.83 4.9 NGC3631WHT380.87 4.2 NGC3726WHT120.69 4.2 NGC3810WHT120.69 4.2 NGC4030WHT300.69 4.2 NGC4051WHT120.74 4.8 NGC4123WHT280.76 4.2 NGC4145WHT36 1.04 4.2 NGC4151WHT120.75 4.8 NGC4242WHT24 1.26 4.2 NGC4254WHT120.82 4.2 NGC4303WHT19 1.06 4.8 NGC4314WHT35 2.02 4.2 NGC4321WHT120.76 5.0 NGC4395WHT20 1.04 4.8 NGC4450WHT120.89 4.7 NGC4487WHT130.83 4.2 NGC4535WHT120.77 5.0 NGC4548WHT120.81 4.8 NGC4579WHT120.98 4.8 NGC4618WHT28 1.16 4.2 NGC4689WHT120.81 4.2 NGC4725WHT240.97 6.0 NGC4736WHT190.98 5.2 NGC5247WHT120.81 4.8 NGC5248WHT120.79 4.8 NGC5334WHT160.94 4.2 NGC5371WHT120.91 4.2 NGC5457WHT6 3.03 4.2 NGC5474WHT16 1.00 4.2 NGC5850WHT120.93 4.2 NGC5921WHT12 1.02 4.2 NGC5964WHT320.82 4.2 NGC6140Bok N/A 1.748.0 NGC6384WHT80.70 4.2 NGC6946Bok N/A 2.3111.6 NGC7727WHT560.82 4.2 NGC7741WHT750.90 4.8

6J.H.Knapen et al.

Figure1.K s images of all galaxies in the sample.North is up and East to the left in all images,and the scale of each individual image is indicated by the white bar in the bottom right corner,which represents a length of1arcmin.Indicative contours are shown at surface brightness levels of17and15mag arcsec?2for all galaxies,except the following,for which contours are shown at16and15mag arcsec?2: NGC2775,NGC3368,NGC4030,NGC4051,NGC4254,NGC4303,NGC4535,NGC4548,NGC4736,NGC5248,NGC6384. 2003).We have made2D?ts to our K-band images using

the GIM2D code(Simard et al.2002).Unfortunately,due to

limitations in the signal-to-noise ratio and image extent,and

due to mosaicing imperfections,2D?tting of our K-band

images proved to be highly unstable.We therefore resorted

to1D B/D?tting,pointing out that at least the resulting

disk parameters(and most of the bulge parameters)will be

equal within the errors of the?t in the1D and2D cases(de

Jong1996a;MacArthur et al.2003).In addition,for face-

on galaxies1D and2D?tting is nearly identical when no

non-axisymmetric features(bars,arms)are?tted and error

weighting is done consistently.

We used the IRAF ellipse?tting tasks to?t radial pro-

?les to the surface brightness distribution in all images.We

used sets of?xed position angle ellipticity for each galaxy,as

taken from the RC3and checked with our NIR and optical

(Paper II)images.The resulting azimuthally averaged pro-

?les are shown in Fig.2.The1D?tting technique we used

is very similar to the one described in de Jong(1996a),with

some modi?cations re?ecting the investigations described by

MacArthur et al.(2003).The Levenberg-Marquardt nonlin-

ear least-squares?tting technique was used.For the disks we used exponential pro?les,for the bulges Sersic pro?les.Be-fore?tting,the model pro?les were convolved with Gaussian seeing pro?les with FWHMs equal to the FWHMs measured on foreground stars in the images.To reduce the e?ects of uncertainties in the seeing pro?les,we discarded the inner few points,namely those with radii less than two tenths of the FWHM seeing value.Relative weights of the pro?le data points were set to re?ect photon statistics,uncertain-ties due to sky measurement errors,seeing errors and errors due to unmodelled features.The latter correction is neces-sary because the light pro?les contain features that are not modelled,like bars and spiral arms,which cause residuals in the?t(see e.g.,de Jong1996a,his?g.3).Not taking the unmatched components into account will result in reduced χ2values much larger than1.We have used an uncertainty of0.05mag rms at each data point due to unmatched com-ponents in our weighting scheme.

As shown by MacArthur et al.(2003),?tting Sersic pro-?les with a free n value is very unstable and often results in non-physical results.We have used a similar grid search technique as them,?tting the pro?les with?xed Sersic n values,with n ranging from0.5to5in steps of0.1.Unlike MacArthur et al.(2003),we did not use a combination of an inner and a globalχ2to select the best?t,but used only theχ2of the whole pro?le?t to select the best?t.

All?ts were repeated with the maximum sky error es-timate added and subtracted from the luminosity pro?le. This provides a reliable estimate of the uncertainties in the bulge and disk parameters,as it has shown before that sky errors dominate B/D decompositions(e.g.,de Jong1996a; MacArthur et al.2003).The?ts of many galaxies had large errors because of the limited?eld of view of the detector compared to the galaxy size and the limits of mosaicing in

Figure2.Continued.

eters if the uncertainty in their central surface brightness (μ0)or disk scale length(h)was larger than30%or if the ?tted scale length was larger than half the image size.Like-wise,bulge?ts were rejected if the error in the e?ective ra-dius(R e,B)or in the surface brightness at this radius(μe,B) was larger than30%,if R e,B was smaller than the FWHM of the seeing,or if n≤0.8(as is the case for NGC3351and NGC7741which have disturbed centres).This strict selec-tion leaves only13of the57galaxies with both reliable disk and bulge parameters.In Fig.2we show the?ts for all those galaxies where either bulge or disk?t was reliable.

Fitting results for those galaxies with at least a reliable bulge or a reliable disk?t are presented in Fig.3and Table3. Fits are not plotted for those galaxies where both bulge and disk parameters could not reliably be determined.Bulge or disk parameters that were poorly determined are marked by a star in Fig.2.

In what follows,photometric parameters were corrected for Galactic foreground extinction following the precepts of Schlegel,Finkbeiner&Davis(1998).Distances to put measurements at an absolute scale were obtained from the Nearby Galaxies Catalog(Tully1988).Disk surface bright-nesses were corrected to face-on values using the fully trans-parent correction ofμi0=μ0?2.5log(1??),where the ellipticities?were taken from the RC3but double-checked with the outer parts of the images.

Many combinations between the various bulge and disk parameters can be investigated,but with so few reliable de-

Structure and star formation in disk galaxies I.Sample selection and near infrared imaging7

NGC0337A21.08+0.08

?0.0825.73+5.49

?7.42

0.9+0.1

?0.1

19.79+0.30

?0.32

65.40+20.32

?38.61

NGC048816.35+0.13

?0.379.20+0.87

?2.65

1.8+0.1

?0.3

16.64+0.15

?0.30

34.18+3.81

?7.40

NGC062818.24+0.03

?0.1422.44+0.80

?3.20

1.5+0.1

?0.1

17.68+0.05

?0.12

82.42+5.86

?9.40

NGC086418.36+0.34

?1.096.81+1.37

?6.74

3.0+0.3

?1.0

17.47+0.09

?0.18

31.86+3.20

?5.22

NGC104218.64+0.21

?0.406.42+0.78

?1.73

2.1+0.2

?0.4

18.69+0.07

?0.10

49.40+6.88

?9.23

NGC116916.42+0.12

?0.137.22+0.59

?0.71

1.6+0.1

?0.1

16.81+0.10

?0.12

33.49+2.97

?3.68

NGC117919.31+0.07

?0.145.54+0.34

?0.68

1.7+0.1

?0.1

18.92+0.04

?0.08

31.57+2.33

?5.01

NGC130016.56+0.03

?0.117.24+0.17

?0.48

1.9+0.1

?0.1

18.05+0.06

?0.10

48.71+2.39

?9.73

NGC277516.34+0.26

?0.289.27+1.55

?2.12

2.4+0.2

?0.2

15.95+0.15

?0.19

26.20+2.28

?3.17

NGC322714.36+0.11

?0.202.86+0.16

?0.32

1.9+0.1

?0.2

16.27+0.12

?0.17

25.64+3.11

?4.74

NGC335115.45+0.03

?0.039.46+0.18

?0.18

0.8+0.1

?0.1

16.58+0.06

?0.05

45.44+5.30

?5.48

NGC363117.21+0.11

?0.0310.30+0.69

?0.27

1.8+0.1

?0.1

18.65+0.16

?0.08

64.58+7.11

?5.32

NGC381016.15+0.25

?0.133.43+0.59

?0.37

1.5+0.2

?0.1

15.68+0.12

?0.06

15.96+1.70

?0.91

NGC405114.85+0.18

?0.193.22+0.29

?0.34

2.5+0.2

?0.2

17.24+0.15

?0.14

48.23+11.97

?17.52

NGC430315.03+0.09

?0.034.46+0.19

?0.09

1.3+0.1

?0.1

16.51+0.06

?0.04

39.54+3.72

?3.68

NGC453516.19+0.21

?0.113.98+0.42

?0.27

2.1+0.2

?0.1

17.57+0.07

?0.04

63.45+11.07

?11.28

NGC468919.10+0.14

?0.3114.79+1.83

?5.07

2.1+0.1

?0.2

17.78+0.07

?0.18

42.95+5.58

?11.15

NGC472516.46+0.13

?0.1316.16+1.35

?1.55

2.5+0.1

?0.1

17.30+0.14

?0.14

83.67+15.25

?21.72

NGC524718.88+0.05

?0.1523.38+1.58

?3.03

2.3+0.1

?0.1

18.22+0.13

?0.30

90.97+16.96

?31.96

NGC537116.20+0.03

?0.036.06+0.17

?0.17

1.8+0.1

?0.1

17.14+0.05

?0.05

51.44+6.52

?10.73

NGC545718.63+0.14

?0.0621.82+2.23

?1.64

2.1+0.1

?0.1

17.50+0.06

?0.06

128.07+17.13

?14.97

NGC547419.46+0.03

?0.0318.16+0.75

?0.75

0.9+0.1

?0.1

19.71+0.13

?0.13

81.29+24.87

?30.05

NGC585017.50+0.14

?0.2514.05+1.46

?2.68

2.9+0.1

?0.2

18.25+0.33

?0.41

39.11+10.05

?19.20

NGC592115.54+0.12

?0.223.59+0.27

?0.50

1.6+0.1

?0.2

17.37+0.23

?0.26

30.43+10.74

?23.89

NGC614019.79+0.06

?0.0822.74+4.66

?6.34

1.1+0.1

?0.1

19.03+0.40

?0.59

43.45+8.51

?17.11

NGC638416.81+0.27

?0.159.99+1.83

?1.43

1.9+0.2

?0.1

16.96+0.24

?0.20

41.09+9.27

?12.77

NGC694616.09+0.22

?0.0412.24+1.47

?0.30

2.2+0.2

?0.1

16.95+0.10

?0.02

127.18+21.50

?2.28

NGC772716.18+0.14

?0.249.14+0.87

?1.56

2.4+0.1

?0.2

17.28+0.29

?0.39

29.58+5.32

?8.90

NGC774118.88+0.04

?0.048.43+0.36

?0.36

0.6+0.1

?0.1

18.38+0.05

?0.07

38.76+1.93

?8.14

8J.H.Knapen et al. Type–B/T-0.750.047 Type–μe,B0.460.169 Type–M B0.810.002 n–M B-0.540.083 Type–n-0.530.090

Structure and star formation in disk galaxies I.Sample selection and near infrared imaging9

McCarthy D.W.,Ge J.,Hinz J.L.,Finn R.A.,de Jong R.S.,

2001,PASP,113,353

M¨o llenho?C.,Heidt J.,2001,A&A,368,16

Moriondo G.,Ba?a C.,Casertano S.,et al.,1999,A&AS,137,

101

Mulchaey J.,Regan M.,1997,ApJ,482,L135

Packham C.,Thompson K.,Zurita,A.,et al.,2003,MNRAS,

submitted

Roche P.F.,et al.,2002,Proc Spie4841,Instrument Design and

Performance for Optical/IR Ground-Based Telescopes,eds.

M.Iye and A.F.M.Moorwood

Sandage A.,Bedke J.,1994,Washington,DC:Carnegie Institu-

tion of Washington with The Flintridge Foundation

Schlegel D.J.,Finkbeiner D.P.,Davis M.,1998,ApJ,500,525

Sersic J.L.,1968,Cordoba,Argentina:Observatorio Astronomico

Seigar M.S.,James P.A.,1998a,MNRAS,299,672

Seigar M.S.,James P.A.,1998b,MNRAS,299,685

Sellwood J.A.,Wilkinson A.,1993,Rep.Prog.Phys.,56,173

Simard L.,Willmer C.N.A.,Vogt N.P.,et al.,2002,ApJS,142,

1

Skrutskie M.F.,et al.,1997,in The Impact of Large Scale Near-

IR Sky Surveys,ed.F.Garzon et al.(Dordrecht:Kluwer),

187

Stedman S.,Knapen J.H.,2001,Ap&SS,276,517

Tran,K.-V.,Simard,L.,Illingworth,Franx,M.,2003,ApJ,in

press(astro-ph/0302292)

Trujillo I.,Asensio Ramos A.,Rubi?n o-Mart′?n J. A.,Graham

A.W.,Aguerri J.A.L.,Cepa J.,Guti′e rrez C.M.,2002,MN-

RAS,333,510

Tully,R.B.1988,Cambridge and New York,Cambridge Univer-

sity Press

Figure 3.Various disk and bulge parameters as function of

morphological T-type and Sersic n bulge shape parameter.Non-

barred galaxies are indicated by A,barred galaxies by B and X

are used for intermediate types.The errorbars indicate the me-

dian errors for the plotted galaxies.

10J.H.Knapen et al.

Figure2.Surface brightness pro?les(solid line)for all our sample galaxies,with maximum uncertainty due to errors in the subtraction of sky background indicated by the dotted lines.Bulge/disk decompositions are only plotted if at least one component had errors less

Structure and star formation in disk galaxies I.Sample selection and near infrared imaging11

12J.H.Knapen et al.

Structure and star formation in disk galaxies I.Sample selection and near infrared imaging13

14J.H.Knapen et al.

Structure and star formation in disk galaxies I.Sample selection and near infrared imaging15

16J.H.Knapen et al.

This figure "panel1.jpg" is available in "jpg" format from: https://www.doczj.com/doc/c713097733.html,/ps/astro-ph/0303613v2

This figure "panel2.jpg" is available in "jpg" format from: https://www.doczj.com/doc/c713097733.html,/ps/astro-ph/0303613v2

This figure "panel3.jpg" is available in "jpg" format from: https://www.doczj.com/doc/c713097733.html,/ps/astro-ph/0303613v2

多功能6位电子钟说明书

多功能6位电子钟说明书 一、原理说明: 1、显示原理: 显示部分主要器件为2位共阳红色数码管,驱动采用PNP型三极管驱动,各端口配有限流电阻,驱动方式为扫描,占用P1.0~P1.6端口。冒号部分采用4个Φ3.0的红色发光,驱动方式为独立端口驱动,占用P1.7端口。 2、键盘原理: 按键S1~S3采用复用的方式与显示部分的P3.5、P3.4、P3.2口复用。其工作方式为,在相应端口输出高电平时读取按键的状态并由单片机支除抖动并赋予相应的键值。 3、迅响电路及输入、输出电路原理: 迅响电路由有源蜂鸣器和PNP型三极管组成。其工作原理是当PNP型三极管导通后有源蜂鸣器立即发出定频声响。驱动方式为独立端口驱动,占用P3.7端口。 输出电路是与迅响电路复合作用的,其电路结构为有源蜂鸣器,4.7K定值电阻R16,排针J3并联。当有源蜂鸣器无迅响时J3输出低电平,当有源蜂鸣器发出声响时J3输出高电平,J3可接入数字电路等各种需要。驱动方式为迅响复合输出,不占端口。 输入电路是与迅响电路复合作用的,其电路结构是在迅响电路的PNP型三极管的基极电路中接入排针J2。引脚排针可改变单片机I/O口的电平状态,从而达到输入的目的。驱动方式为复合端口驱动,占用P3.7端口。 4、单片机系统: 本产品采用AT89C2051为核心器件(AT89C2051烧写程序必须借助专用编程器,我们提供的单片机已经写入程序),并配合所有的必须的电路,只具有上电复位的功能,无手动复位功能。 二、使用说明: 1、功能按键说明: S1为功能选择按键,S2为功能扩展按键,S3为数值加一按键。 2、功能及操作说明:操作时,连续短时间(小于1秒)按动S1,即可在以上的6个功能中连

star法撰写成就故事范例

1. 由于是浙江选考生,在高中第一次选考中化学只取得了91分的成绩,只剩下一次选考机会,成绩说好不算好,说坏不算坏的情况下,提升有些困难。不知道该放弃还是继续参加考试。如果不能达到97或100的成绩,可能会被目标大学相同的同学在高考上拉开差距。晚上也睡不好觉,经过一段时间的调整心态,说服自己还是奋力一搏。于是到选考前我每天利用下课时间翻看化学书和整理笔记,努力记住容易混淆的基础知识点,每天晚自习刷一张化学模拟卷,自批订正纠错,找到了自己很多弱点和盲点,并针对的做专题练习。终于在四月选考中达到了97的目标。虽然很累,但是为了实现离考上理想大学的目标更进一步,还是值得的。 专业知识技能——基础化学知识 可迁移技能——记忆、纠错(找到自己的弱点)、反省、整理、权衡利弊 自我管理技能——自我控制、抗压、调整心态、坚持不懈 2. 上个学期选专业时想要进入生物科学专业,但是看到报名的人数有点多,招收人数与报名人数之比大约是1/2,要经过面试淘汰一部分人。而且在看到身边的同学都非常优秀的情况下,竞争压力有些大,我心中也有些底气不足。但我还是迫使自己鼓起勇气报了名。报名之后,我上网了解记住了一些生物科学的知识,回忆了我高中时期学习生物的一些知识和经历,找到一些我可能在面试中能够用到的素材。并在脑海中模拟了几个面试中可能会提到的问题,并想了想如何回答。此外也找到我们寝室作为生命科学学院教授的新生之友询问了一些情况。到了面试那天,我准备的其中一些素材和回答派上了用场,顺利地应对面试教授提出的问题,通过了面试,成功进入生物科学专业,提升了我的信心。 专业知识技能——生物科学部分知识 可迁移技能——记忆、模拟(假想)、询问求助、面试交流、做好充分准备 自我管理技能——鼓起勇气(自我调节心态)、有信心的、自我控制 3. 小时候老师说我钢笔字写的挺好的,在小学的钢笔字比赛中获了奖,我可能

STAR法成就故事复习过程

S T A R法成就故事

1、由于家里比较贫穷,因此大学以前就没有接触过电脑,第一节上计算机文化基础时,一点也不明白,年轻人难免有好胜之心,因此我认真学习课本,遇到不懂的问题及时向同学及老师请教,由于考试考word等办公软件,因此我上网浏览资料,下载了office教程,一有时间就去机房实践,不明白就请教机房老师,经过许多次的练习,我终于掌握了计算机基础知识,通过了考试。 这个故事中,琢磨、实践是可迁移技能,word等软件知识是专业知识技能,认真是自我管理技能。 2、大一的时候,我没有拿到奖学金,看到有的同学拿到奖学金后的兴奋,我心里暗暗下定决心要在大二拿到奖学金。为了实现这个目标,我付出了许多。上课时认真听讲,做好课堂笔记,课下认真做好老师布置的作业,有不懂的问题及时向老师和同学请教,考前做好复习。经过一年的努力,获得了染整专业知识,并且在大二成功获得了奖学金。 这个故事中,认真是自我管理技能,请教、获得是可迁移技能,染整知识是专业技能。 3、大学寒假春节我在超市当售货员。我主要销售零食。一方面加强了有关销售零食知识的学习,虚心向其他店员请教。一方面了解实际情况,在短时期适应下来。及时上岗工作走上正轨,负起了超市店员的职责。工作几周后对商品的规划与陈列有了了解,感受到市场的学问与超市零售的知识是如此的深广。在期间发生过意外但通过冷静的自省,认识自己的不足,整体上因参与营运时间较短,操作不够自如外,这是由于经验少。经过超市员工的共同的努力,我们

的销售有了明显的增长。而我在严格要求的基础之上,发现问题,消减漏洞,作一名称职的超市店员。 这个故事中,严格、虚心是自我管理技能,适应、发现、请教是可迁移技能,销售零食知识是专业技能。 4、我学会了使用CAD软件。这学期我们学习了AUTO CAD 课程,我真切地体 会到了这种绘图系统的实用性。首先熟悉用户界面,学习新建图形、绘制简单图形的操作。掌握坐标及数据的输入方法,绘出下面所示图形,打开工具栏的方法,打开“对象捕捉”工具栏。同时学会利用栅格绘制图形。设定CAD图形界限的方法,掌握绘制CAD图形的基本绘图命令熟练运用对象捕捉定点工具,精确绘制图形熟悉圆、圆弧、椭圆、点等画法掌握CAD各种图形编辑命令,如镜像、偏移、阵列等的用法和功能了解选择图形对象的多种方法掌握设定图层的方法养成按照图层绘制不同属性对象的画图习惯。在今后的学习工作中,好好利用CAD,再接再厉,更加努力的学习,希望在以后的学习中能够熟练掌握这门技术。 这个故事中,熟悉、学会、利用是可迁移技能,CAD知识是专业知识技能,努力、熟练是自我管理技能。 5、上大学以来,一直就想找个机会锻炼一下自己,在大二暑假我去了浙江向胜体育器材厂做社会实践。在工作中,我对机械的自动化有了更深的了解,对工作中出现的问题,我也及时地向老师傅请教,很快就学会了机器的操作方法,由于车间条件恶劣,养成了吃苦耐劳的精神,看着生产线上我做的零件,我感觉特别有成就感。 这个故事中,请教是可迁移技能,吃苦耐劳是自我管理技能,机器操作方法是专业知识技能。

七彩闹钟说明书

七彩时钟使用说明书 本产品融合了万年历之时间、日期、星期、温度的显示,特别适合居家办公使用。 一、功能简介 ★正常时间功能:显示时间、日期(从2000年至2099年)、星期、温度,并可实现12/24小时制的转换。 ★闹钟和贪睡功能:每日闹铃,闹铃音乐有8首可选,同时可开启贪睡功能。 ★环境温度显示功能:温度测量00C-500C或320F-1220F并可进行摄氏/华氏温度转换。★七彩灯功能:可发出七种颜色的光,循环变色。 二、功能操作 ⑴.时间日期设置 ★上电后显示正常状态.按SET键进入时间、日期的设置,并以下列顺序分别设置小时分钟、年、月、日、星期等,通过UP/DOWN键配合来完成设置。 时→分→年→月→日→正常显示 ★设置范围:时为1-12或0-23,分为0-59,年为2000-2099.月为1-12.日为1-31;在日期设置的同时,星期由MON 3=. SUN相应的自动改变。 ★在设置状态,也可按AL键或无按键1分钟退出设置,并显示当前所设置的时间。 ★在正常状态,按UP键进行12和24小时转换。 ⑵、闹钟和贪睡设置 ★在正常状态,按AL键一次进入闹钟模式。 ★在闹钟状态,按SET键进入闹铃设定状态,以下列顺序分别设置小时、分钟、贪睡、音乐,通过UP/DOWN键配合来完成其设置。 时→分→贪睡→音乐→退出 ★在设置状态,如果无按键1分钟或按MODE键退出设置,并显示当前所设置的时间。 ★在闹钟状态,通过UP键开启闹铃的标志,按第二次UP键开启贪睡功能。 闹铃→Zz贪睡→OFF ★当闹钟到达设定时间,响闹1分钟;当贪睡时间到达响闹,按SET键取消响闹或按任意键停止响闹。 ★贪睡的间隔延续时间范围设定:1-60分钟。 ★当闹铃及贪睡的标志未开启时,即闹铃和贪睡同时关闭,只有在闹铃标志开启时,重按UP,贪睡功能才有效。 ⑶、温度转换 在正常状态,按DOWN键可以进行摄氏l华氏温度间的相互转换。 ⑷、按TAP可开启夜灯,5秒钟自动熄灭。 ⑸、把开关置ON或DEMO位置开启七彩灯。 ⑹、可使用外接直流电源:4.5V 100MA的变压器。 三、注意事项: 1、避免猛烈冲击、跌落。 2、勿置阳光直射、高温、潮湿的地方。 3、避免使用带有腐蚀性化学成份的液体和硬布来抹擦本产品表面。 4、当屏幕显示混乱时,拔出钮扣电池,重新装上恢复原始状态,使显示恢复正常。 5、切勿新旧电池混在一起使用,在屏幕显示不清楚时请及时更换新电池。 6、如长时间不使用时钟时,请将电池取出,以免电池漏液损坏本机。 7、请勿随意拆开产品调整内部元件参数。

STAR简历法则

STAR法则,即为Situation Task Action Result的缩写,具体含义是: Situation: 事情是在什么情况下发生 Task: 你是如何明确你的任务的 Action: 针对这样的情况分析,你采用了什么行动方式 Result: 结果怎样,在这样的情况下你学习到了什么 简而言之,STAR法则,就是一种讲述自己故事的方式,或者说,是一个清晰、条理的作文模板。不管是什么,合理熟练运用此法则,可以轻松的对面试官描述事物的逻辑方式,表现出自己分析阐述问题的清晰性、条理性和逻辑性。 详细释义 STAR法则,500强面试题回答时的技巧法则,备受面试者成功者和500强HR的推崇(宝洁HR培训资料有专门的讲座讨论如何用此法则检验面试者过往事迹从而判断其能力)。 如果对面试技巧和人力资源招聘理论有所了解的同学应该听说过,没听说也无所谓,现在知道也不迟。由于这个法则被广泛应用于面试问题的回答,尽管我们还在写简历阶段,但是,写简历时能把面试的问题就想好,会使自己更加主动和自信,做到简历,面试关联性,逻辑性强,不至于在一个月后去面试,却把简历里的东西都忘掉了(更何况有些朋友会稍微夸大简历内容) 在我们写简历时,每个人都要写上自己的工作经历,活动经历,想必每一个同学,都会起码花上半天甚至更长的时间去搜寻脑海里所有有关的经历,争取找出最好的东西写在简历上。 但是此时,我们要注意了,简历上的任何一个信息点都有可能成为日后面试时的重点提问对象,所以说,不能只管写上让自己感觉最牛的经历就完事了,要想到今后,在面试中,你所写的经历万一被面试官问到,你真的能回答得流利,顺畅,且能通过这段经历,证明自己正是适合这个职位的人吗? 编辑本段 示例 写简历时就要准备好面试时的个人故事,以便应付各种千奇百怪的开放性问题。 为了使大家轻松应对这一切,我向大家推荐“个人事件模块”的方法,以使自己迅速完成这看似庞大的工程。 一,头脑风暴+STAR法则——〉个人事件模块 1.1,头脑风暴。 在脑海里仔细想出从大一到大四自己参与过所有活动(尤其是能突出你某些能力的活动),包括: 1,社团活动职务时间所做事情 2,在公司实习的经历职务时间所做过的事情 3,与他人一起合作的经历(课题调研,帮助朋友办事) (回忆要尽量的详细,按时间倒序写在纸上,如大一上学期发生。。。。。。大一下学期发生。。。。。。。如此类推) 我相信这一步,很多朋友都已经做了,但是仅仅这样就满足了,就直接写在简历上当完事了,那是不行的,想提高竞争力,还得继续。。 1.2,STAR法则应用 将每件事用S T A R 四点写出,将重要的事情做成表格 例大一辩论比赛获得冠军 S 系里共有5支队伍参赛,实力。。。,我们小组。。。。。

电子闹钟说明书

本电子闹钟的设计是以单片机技术为核心,采用了小规模集成度的单片机制作的功能相对完善的电子闹钟。硬件设计应用了成熟的数字钟电路的基本设计方法,并详细介绍了系统的工作原理。硬件电路中除了使用AT89C51外,另外还有晶振、电阻、电容、发光二极管、开关、喇叭等元件。在硬件电路的基础上,软件设计按照系统设计功能的要求,运用所学的汇编语言,实现的功能包括‘时时-分分-秒秒’显示,设定和修改定时时间的小时和分钟、校正时钟时间的小时、分钟和秒、定时时间到能发出一分钟的报警声。 一芯片介绍 AT89C51是一种带4K字节FLASH存储器的低电压、高性能CMOS 8位微处理器,俗称单片机。AT89C51是一种带2K字节闪存可编程可擦除只读存储器的单片机。单片机的可擦除只读存储器可以反复擦除1000次。该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,AT89C51是它的一种精简版本。AT89C51单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案,外形及引脚排列如图1-1所示。 图1-1 AT89C51引脚图 74LS573 的八个锁存器都是透明的D 型锁存器,当使能(G)为高时,

Q 输出将随数据(D)输入而变。当使能为低时,输出将锁存在已建立的数据电平上。输出控制不影响锁存器的内部工作,即老数据可以保持,甚至当输出被关闭时,新的数据也可以置入。这种电路可以驱动大电容或低阻抗负载,可以直接与系统总线接口并驱动总线,而不需要外接口。特别适用于缓冲寄存器,I/O 通道,双向总线驱动器和工作寄存器。外形及引脚排列如图1-2所示。 图1-2 74LS573引脚图

智慧树大学生就业与创业指导章节标准答案

第一章单元测试 ?名称大学生就业与创业指导 ?对应章节第一章 ?成绩类型分数制 ?截止时间 2017-12-01 23:59 ?题目数5 ?总分数 100 ?说明: ?评语: ?提示:选择题选项顺序为随机排列,若要核对答案,请以选项内容为准100 ?第1部分 ?总题数:5 ? 1 【多选题】(20分) 关于职业发展模型,以下描述正确的是:() A. 职业选择或定位时,自我方面主要考虑能力与需求,职业方面要了解要求与回馈。 B. 当个人的能力符合职业的要求时,组织对个人较满意。 C. 当职业的回馈满足个人的需求时,个人对组织较满意。 D. 任何职业选择要同时考虑组织满意度与职业满意度两个维度。 正确 查看答案解析 ? ?本题总得分:20分 2 【多选题】(20分)

职业对技能的要求通常可分为三种类别,分别是:( ) A. 知识技能 B. 可迁移技能 C. 管理技能 D. 自我管理技能 正确 查看答案解析 ? ?本题总得分:20分 3 【多选题】(20分) STAR成就故事深度分析法,是有效分析个人能力的方式。对“STAR”原则描述正确的是:() A. Situation情境——当时面对什么困难? B. Target目标——你的目标是什么? C. Action行动——你做了什么? D. Result结果——效果如何?你有什么收获? 正确 查看答案解析 ? ?本题总得分:20分 4 【多选题】(20分)

参加大型招聘会时,应注意:() A. 最好提前通过招聘会网络发布的信息了解企业和岗位 B. 带一个版本的简历即可,看到中意的企业就投递 C. 要有针对性地投递简历,主动提问交流 D. 及时记录投递简历情况、公司名称、应聘岗位、联系人等。 正确 查看答案解析 ? ?本题总得分:20分 5 【多选题】(20分) 获取就业信息的渠道有:() A. 网络 B. 招聘会 C. 实习实践 D. 人际资源 E. 直接与用人单位联系 正确 第二章单元测试 ?名称大学生就业与创业指导

小型数字系统-定时闹钟说明书

XX 学院 课程设计说明书(20XX / 20XX学年第一学期) 课程名称:嵌入式系统设计 题目:定时时钟 专业班级:XXXXXXXXXXXX 学生姓名:XXX 学号:XXXXXXXX 指导教师:XXXXXX 设计周数:2周 设计成绩: 二OXX年X 月XX 日

定时时钟设计说明书 1.选题意义及背景介绍 电子钟在生活中应用非常广泛,而一种简单方便的数字电子钟则更能受到人们的欢迎。所以设计一个简易数字电子钟很有必要。本电子钟采用AT89C52单片机为核心,使用12MHz 晶振与单片机AT89C52 相连接,通过软件编程的方法实现以24小时为一个周期,同时8位7段LED数码管显示时间的小时、分钟和秒,并在计时过程中具有整点报时、定时闹钟功能。时钟设有起始状态,时钟显示,设置时钟时,设置时钟分,设置闹钟时和设置闹钟分共六个状态。电子钟设有四个操作按钮:KEY1(MODE)、KEY2(PLUS)、KEY3(MINUS)、KEY4(RESET),对电子钟进行模式切换和设置等操作。 2.1.1方案设计 2.1.2系统流程框图 AT89C52 按钮 数码管显示 开启电源 初始显示d.1004-22 循环检测按键状态 闹铃 KEY1是否按下模式切换KEY2是否按下 数字加 KEY3是否按下 数字减

2.1.3电路设计 (整体电路图)

(已封装的SUB1 内部图) 2.1.4主要代码 1)通过循环实现程序的延时 void delay(uint z) { uint x, y; for (x = 0; x=second1 && second

C++电子闹钟设计说明书

电子闹钟设计说明书 一、实现的功能 一个简单的电子闹钟设计程序,和一般的闹钟的功能差不多。首先此程序能够同步电脑上的显示时间,保证时间的准确性;24小时制,可以根据自己喜欢的铃声设置闹钟提示音,还能自己设置提示语句,如“时间到了该起床了”,“大懒虫,天亮了,该起床了”等等,所以这是一个集实用和趣味于一体的小程序。 二、设计步骤 1、打开Microsoft Visual C++ 6.0,在文件中点击新建,在弹出框内选择MFC AppWizard[exe]工程,输入工程名张卢锐的闹钟及其所在位置,点击确定,如图所示。 2、将弹出MFC AppWizard-step 1对话框,选择基本对话框,点击完成,如图所示。

然后一直点下一步,最后点完成,就建立了一个基于对话窗口的程序框架,如图所示。 3、下面是计算器的界面设计 在控件的“编辑框”按钮上单击鼠标左键,在对话框编辑窗口上合适的位置按下鼠标左键并拖动鼠标画出一个大小合适的编辑框。在编辑框上单击鼠标右键,在弹出的快捷莱单中选择属性选项,此时弹出Edit属性对话框,以显示小时的窗口为例,如图所示,在该对话框中输入ID属性。

在控件的“Button”按钮上单击鼠标左键,在对话框上的合适的位置上按下鼠标左键并拖动鼠标画出一个大小合适的下压式按钮。在按钮上单击鼠标右键,在弹出的快捷菜单中选择属性选项,此时也弹出Push Button属性对话框,以数字按钮打开为例,如图所示,在该对话框中输入控件的ID值和标题属性。 按照上面的操作过程编辑其他按钮对象的属性。 表1 各按钮和编辑框等对象的属性 对象ID 标题或说明 编辑框IDC_HOUR 输入定时的整点时间 编辑框IDC_MINUTE 输入定时的分钟数 编辑框IDC_FILE 链接提示应所在地址 编辑框IDC_WARING 自己编辑显示文本 按钮IDC_OPEN 打开 按钮IDC_IDOK 闹钟开始 按钮IDC_CHANGE 重新输入 静态文本IDC_STATIC 界面上的静态文本,如时,分,备注完成后界面如图所示。

star法则成就故事例文

star法则成就故事例文 【--党风廉政建设】 在求职的时候我们会遇到各种各样的面试官,如何在面对不同面试官时都能从容的应对是很多人思考的问题,除了做好充分的准备之外,还需要了解star法则,因为它同基本企业管理中的十大定律一样是面试官常用的,而今天我们就来介绍几个star法则成就故事例文。本站为大家整理的相关的star法则成就故事例文,供大家参考选择。 star法则成就故事例文 什么叫star法则 首先我们需要先了解star法则的意思。所谓star法则是指情境、任务、行动、结果四个词的缩写,其中情境是指事情是在什么情况下发生的;任务是指你是如何明确任务的;行动是指针对这样的情况分析后采取了什么样的行动方式;结果是指最后取得什么样的结果并且学习到了什么。 如果将四项连接起来,star法则可以理解为:案例在什么情况下发生发生之后当事人如何明确案例中给到自己的任务对任务进行分析然后采取对应的行动最后取得什么样的结果并且从中学习到什么,简单的来说它就是一种让面试者讲述自己故事的方式,可以看出面试者阐述问题时的条理性和逻辑性等等。 star法则成就故事例文 用STAR法来撰写成就故事 请写下生活中令你有成就感的具体事件然后对其进行分析,看看你在其中使用了那些技能(尤其是可迁移技能)。 这些成就故事不一定是在工作或学习上的,也可以是课外活动或家庭生活中发生的,比如同学聚会,一次美好而难忘的旅游等等,他们不必是惊天动地的大事,只要符合两条标准就可以被视为成就 (1)你喜欢做这件事时体验到的感受 (2)你为完成他所带来的结果感到自豪。 如果你同时还获得了他人的认可和表扬那就更好了,不过这并不重要。 在撰写成就故事时,每一个故事都应当包含一下要素: 当时的情况(Situation)

STAR法则详解

STAR法则详解 一.什么是STAR法则? The STAR (Situation, Task, Action, Result) format is a job interview technique used by interviewers to gather all the relevant information about a specific capability that the job requires. This interview format is said to have a higher degree of predictability of future on-the-job performance than the traditional interview. STAR法则是情境(situation)、任务(task)、行动(action)、结果(result)四项的缩写。STAR法则是一种常常被官使用的工具,用来收集面试者与工作相关的具体信息和能力。STAR法则比起传统的面试手法来说,可以更精确地预测面试者未来的工作表现。

Situation: The interviewer wants you to present a recent challenge and situation in which you found yourself. 情境:面试官希望你能描述一个最近遇到的挑战或情况。 T ask: What did you have to achieve? The interviewer will be looking to see what you were trying to achieve from the situation. 任务:你必须要完成什么任务?面试者想要知道的是你在上述情境下如何去明确自己的任务。 Action: What did you do? The interviewer will be looking for information on what you did, why you did it and what were the alternatives.

C电子闹钟设计说明书

C电子闹钟设计说 明书

电子闹钟设计说明书 一、实现的功能 一个简单的电子闹钟设计程序,和一般的闹钟的功能差不多。首先此程序能够同步电脑上的显示时间,保证时间的准确性;24小时制,能够根据自己喜欢的铃声设置闹钟提示音,还能自己设置提示语句,如“时间到了该起床了”,“大懒虫,天亮了,该起床了”等等,因此这是一个集实用和趣味于一体的小程序。 二、设计步骤 1、打开Microsoft Visual C++ 6.0,在文件中点击新建,在弹出框内选择MFC AppWizard[exe]工程,输入工程名张卢锐的闹钟及其所在位置,点击确定,如图所示。 2、将弹出MFC AppWizard-step 1对话框,选择基本对话框,点

击完成,如图所示。 然后一直点下一步,最后点完成,就建立了一个基于对话窗口的程序框架,如图所示。 3、下面是计算器的界面设计 在控件的“编辑框”按钮上单击鼠标左键,在对话框编辑窗口上合适的位置按下鼠标左键并拖动鼠标画出一个大小合适的编辑框。在编辑框上单击鼠标右键,在弹出的快捷莱单中选择属性选

项,此时弹出Edit属性对话框,以显示小时的窗口为例,如图所示,在该对话框中输入ID属性。 在控件的“Button”按钮上单击鼠标左键,在对话框上的合适的位置上按下鼠标左键并拖动鼠标画出一个大小合适的下压式按钮。在按钮上单击鼠标右键,在弹出的快捷菜单中选择属性选项,此时也弹出Push Button属性对话框,以数字按钮打开为例,如图所示,在该对话框中输入控件的ID值和标题属性。 按照上面的操作过程编辑其它按钮对象的属性。 表1 各按钮和编辑框等对象的属性

三个成就故事

指导 预习课本第三章,根据课本P61页的小练习为例, 用STARL法来编写三个成就故事: 1)S:Situation(情境,背景)“在什么情景下发生的?” 2)T:Task(任务)“当时你的任务和目标是什么?” 3)A:Action(行动)“你采取了哪些行动?” 4)R:Result(结果)“最后结果怎么样?” 5)L:Learning(学习):“我从中学到了…” 内容包括:专业技能;可迁移技能;自我管理技能三种。 (请直接打字或粘贴,不要用附件形式) 成就故事一: 这个是我第一次从商的故事,发生在我上高一时的寒假。当时马上就要过新年了,也正是那时苹果最好卖,每年都是那时家里的苹果拉到省城批发,可是那一年父亲在忙着准备过年的物资,没法出去卖苹果。于是,我爸就叫我去,当时我是不愿意去的,心里也害怕,但是我爸说他像我这个年纪的时候就快成家了,把我训了一顿。因此,有了我第一次外出卖苹果的经历。由于我是第一次出去,就只拉了2000斤苹果,让我自己看着卖,就这样自己跟随货车到了省城。在水果批发市场我第一次感受到了挣钱不容易,好多商贩看我年纪小过来坑我,好在我出来时,对价格有了大概的了解,没被唬住。在闲时,我就向别人请教,问问他们怎么卖的怎

么对付商贩的胡搅蛮缠。渐渐地,我也有了自己的方法,那就是说话要硬气,有底气,去唬他们,让商贩跟着自己的节奏走。在那呆了三天,我就把家里的苹果批发完了,当时心里可激动了。在以后,放假回家,就由我代替父亲去省城卖水果。当时我就体会到了父亲的用意,男孩子就需要磨练,只有迈出第一步,才会有第二步......自己才有勇气独立面对以后的生活。 我认识到,在生活中,要大胆尝试,自己不去做,永远不知道自己有多优秀。从这,我就开始慢慢脱离学生时代的幼稚天真,慢慢接触社会。从我开口与商贩周旋的时候我就体会到做人要有自信,有底气,只有这样,别人才不会小瞧你,有时,会有不错的效果,当你的自信占了上风,你离成功就不远了。 成就故事二: 我的第二个成就故事是大一暑假自己出去打工。当时,学校放假早,我不打算早早回家,于是瞒着父母自己找工作,开始的时候打算跟着同学一起去山东青岛,后来人家招满了人,就没去成。我在学校留了两天,听说富士康招人就打算去看看,在体检的时候我改变了主意,决定离开。我经过多方打听知道,那年电子市场不景气厂里没有多少活做,老工人都没多少活做,更何况我们这些学生工。因此我再次回到

闹钟功能说明文档

一、功能描述 本工程包括矩阵键盘和数码管显示模块,共同实现一个带有闹钟功能、可以设置时间的数字时钟。具体功能如下: 1.数码管可以显示时十位、时个位、分十位、分个位、秒十位、秒个位。 2.上电后,数码管显示000000,并开始每秒计时。 3.按下按键0进入时间设置状态。再按下按键0退出时间设置状态,继续 计时。 4.在时间设置状态,通过按键1来选择设置的时间位,在0~5之间循环选 择。 5.在时间设置状态,通过按键2来对当前选择的时间位进行加1。 6.在计时状态下,按下按键14,进入闹钟时间点设置状态。再按下按健 15,退出闹钟设置状态。 7.在闹钟设置状态,按下按键13选择设置的时间位,此时可以按下所需要 的按键序号设置对应闹钟时间。 8.当前时间与所设置的时间点匹配上了,蜂鸣器响应5秒。 二、平台效果图

三、实现过程 首先根据所需要的功能,列出工程顶层的输入输出信号列表。

我们把工程分成四个模块,分别是数码管显示模块,矩阵键盘扫描模块,时钟计数模块,闹钟设定模块。 1.数码管显示模块 本模块实现了将时钟数据或者闹钟数据显示到七段译码器上的功能。 七段译码器引脚图: 根据七段译码器的型号共阴极或者共阳极,给予信号0或1点亮对应的led灯,一个八段数码管称为一位,多个数码管并列在一起可构成多位数码管,它们的段选(a,b,c,d,e,f,g,dp)连在一起,而各自的公共端称为位选线。显示时,都从段选线送入字符编码,而选中哪个位选线,那个数码管便会被点亮。数码管的8段,对应一个字节的8位,a对应最低位,dp 对应最高位。所以如果想让数码管显示数字0,那么共阴数码管的字符编码为00111111,即;共阳数码管的字符编码为11000000。 在轮流显示过程中,每位数码管的点亮时间为1~2ms,由于人的视觉暂留现象及发光二极管的余辉效应,尽管实际上各位数码管并非同时点亮,但只要扫描的速度足够快,给人的印象就是一组稳定的显示数据,不会有闪烁感,动态显示的效果和静态显示是一样的,能够节省大量的I/O端口,而且功耗更低。 本模块采用6个七段译码器显示闹钟小时分钟秒位,使用一个计数器不停计数0-5,每个数字代表一个七段译码器,在对应的七段译码器给予对应的字符编码,以此达到扫描数码管显示数据的功能。 信号列表如下:

木头闹钟说明书

木头闹钟说明书 产品功能 ●同屏显示年、月、日、时、分、星期功能: ●闹钟及贪睡功能:贪睡功能开启后,闹钟可以6次闹响,每次闹响间隔5分钟。没有开启贪睡功能,闹响 1分钟后,闹钟功能自动关闭; ●时间记忆功能:不使用AC / DC适配器时,LED屏不显示,但时钟内部会继续正常计时,当连接上适配器时,时钟会自动显示当前正常的时间,无需重新设置; ● 1/4小时制转换功能; ●省电模式:每天下午6点至第二天早上7点,LED显示亮度会自动降低,使人的视觉感到舒适。 使用方法 走时及闹铃设置 ●将AC / DC适配器插上电源,把6V直流电压插头接入时钟6V接口,LED数字屏即发亮显示; ●按住SET键3秒进入设定模式,再按动SET键,每按动一次,年、月、日、时、分将依次闪烁。要设置年、月、日、时、分,只要改变在闪烁的数字即可,按动UP和DOWN 键均可调节,设置结束按SET键,时 钟回到正常的走时状态。星期的设定是全自动的, 它会随着时间的设置而自动改变。●设置闹铃时间,

按动DOWN键显示屏出现AL:- -或AL:on ,每按动DOWN键一次即会转换一次。按住DOWN键3秒,时的数字在闪烁时,即可通过UP 和DOWN键进行调节,要调节分的数字,先按动SET键切换到分的闪烁,同样用UP和DOWN键进行调 节,设置结束按SET键,时钟回到正常的走时状态。闹铃闹响时,按下SET或UP键,闹铃闹响停止,并 且关闭闹钟功能,如果闹铃闹响时,按下DOWN 键闹响停止,则贪睡功能自动开启,闹铃会每隔5分钟 闹响一次,可连续6次。若贪睡闹响未达到第6次,在任何一次闹响时,按下SET或UP键,不但闹响停止,同时自动关闭贪睡功能,如果是按下DOWN键,每隔分钟会再闹响一次,直至达到6次闹响为止; ●在设定模式下,15秒内不按任何键,时钟将恢复时间显示。 12/24小时制设置 正常时间显示下,每按一次UP键,可以实现1/4小时制的转换。在12小时制式下,数字走到12,这 时在时钟的左上角将会出现亮点,表示这时已是下午时间。 电源供电 AC / DC适配器输入电压:220-230V 0HZ ,输出电压:6V /00mA。功率是:6V*0.2=1.2W将适配器6V直

写好经历简历的STAR法则

STAR法则,500强面试题回答时的技巧法则,备受面试者成功者和500强HR的推崇(宝洁HR培训资料有专门的讲座讨论如何用此法则检验面试者过往事迹从而判断其能力)。 如果对面试技巧和人力资源招聘理论有所了解的同学应该听说过,没听说也无所谓,现在知道也不迟。由于这个法则被广泛应用于面试问题的回答,尽管我们还在写简历阶段,但是,写简历时能把面试的问题就想好,会使自己更加主动和自信,做到简历,面试关联性,逻辑性强,不至于在一个月后去面试,却把简历里的东西都忘掉了(更何况有些朋友会稍微夸大简历内容) 废话少说,开讲。 在我们写简历时,每个人都要写上自己的工作经历,活动经历,想必每一个同学,都会起码花上半天甚至更长的时间去搜寻脑海里所有有关的经历,争取找出最好的东西写在简历上。 但是此时,我们要注意了,简历上的任何一个信息点都有可能成为日后面试时的重点提问对象,所以说,不能只管写上让自己感觉最牛的经历就完事了,要想到今后,在面试中,你所写的经历万一被面试官问到,你真的能回答得流利,顺畅,且能通过这段经历,证明自己正是适合这个职位的人吗? 所以,写简历时就要准备好面试时的个人故事,以便应付各种千奇百怪的开放性问题。 为了使大家轻松应对这一切,我向大家推荐“个人事件模块”的方法,以使自己迅速完成这看似庞大的工程。 一,头脑风暴+STAR法则——〉个人事件模块 1.1,头脑风暴。 在脑海里仔细想出从大一到大四自己参与过所有活动(尤其是能突出你某些能力的活动),包括: 社团活动职务时间所做事情 在公司实习的经历职务时间所做过的事情 与他人一起合作的经历(课题调研,帮助朋友办事) (回忆要尽量的详细,按时间倒序写在纸上,如大一上学期发生。。。。。。大一下学期发生。。。。。。。如此类推) 我相信这一步,很多朋友都已经做了,但是仅仅这样就满足了,就直接写在简历上当完事了,那是不行的,想提高竞争力,还得继续。。 1.2,STAR法则应用

木头闹钟说明书

精品文档 木头闹钟说明书 产品功能 ●同屏显示年、月、日、时、分、星期功能: ●闹钟及贪睡功能:贪睡功能开启后,闹钟可以6次闹响,每次闹响间隔5分钟。没有开启贪睡功能,闹响 1分钟后,闹钟功能自动关闭; ●时间记忆功能:不使用AC / DC适配器时,LED屏不显示,但时钟内部会继续正常计时,当连接上适配器时,时钟会自动显示当前正常的时间,无需重新设置; ● 1/4小时制转换功能; ●省电模式:每天下午6点至第二天早上7点,LED显示亮度会自动降低,使人的视觉感到舒适。 使用方法 走时及闹铃设置 ●将AC / DC适配器插上电源,把6V直流电压插头接入时钟6V接口,LED数字屏即发亮显示; ●按住SET键3秒进入设定模式,再按动SET键,每按动一次,年、月、日、时、分将依次闪烁。要设置年、月、日、时、分,只要改变在闪烁的数字即可,按动UP和DOWN 键均可调节,设置结束按SET键,时

钟回到正常的走时状态。星期的设定是全自动的, 它会随着时间的设置而自动改变。●设置闹铃时间,2016全新精品资料-全新公文范文-全程指导写作–独家原创 11/ 1. 精品文档 按动DOWN键显示屏出现AL:- -或AL:on ,每按动DOWN键一次即会转换一次。按住DOWN键3秒,时的数字在闪烁时,即可通过UP 和DOWN键进行调节,要调节分的数字,先按动SET键切换到分的闪烁,同样用UP和DOWN键进行调 节,设置结束按SET键,时钟回到正常的走时状态。闹铃闹响时,按下SET或UP键,闹铃闹响停止,并且关闭闹钟功能,如果闹铃闹响时,按下DOWN 键闹响停止,则贪睡功能自动开启,闹铃会每隔5分钟 闹响一次,可连续6次。若贪睡闹响未达到第6次,在任何一次闹响时,按下SET或UP键,不但闹响停止,同时自动关闭贪睡功能,如果是按下DOWN键,每隔分钟会再闹响一次,直至达到6次闹响为止; ●在设定模式下,15秒内不按任何键,时钟将恢复时间显示。 12/24小时制设置 正常时间显示下,每按一次UP键,可以实现1/4小时制的转换。在12小时制式下,数字走到12,这

STAR法则

STAR法则 沪江小编:网传500强HR面试的逻辑框架就是STAR法则,通过该法则,面试官可以基本了解一个人的做事风格以及这个人的潜质。因此,STAR法则被越来越多地运用在了简历写作和面试回答中。沪江小编就为还不熟悉STAR法则的你,详解这个面试助推剂。 一.什么是STAR法则? The STAR (Situation, Task, Action, Result) format is a job interview technique used by interviewers to gather all the relevant information about a specific capability that the job requires. This interview format is said to have a higher degree of predictability of future on-the-job performance than the traditional interview. STAR法则是情境(situation)、任务(task)、行动(action)、结果(result)四项的缩写。STAR法则是一种常常被面试官使用的工具,用来收集面试者与工作相关的具体信息和能力。STAR法则比起传统的面试手法来说,可以更精确地预测面试者未来的工作表现。Situation: The interviewer wants you to present a recent challenge and situation in which you found yourself. 情境:面试官希望你能描述一个最近遇到的挑战或情况。 Task: What did you have to achieve? The interviewer will be looking to see what you were trying to achieve from the situation. 任务:你必须要完成什么任务?面试者想要知道的是你在上述情境下如何去明确自己的任务。 Action: What did you do? The interviewer will be looking for information on what you did, why you did it and what were the alternatives. 行动:你做了什么?面试官想要了解的是你做了什么?为什么做?有没有替代方案? Results: What was the outcome of your actions? What did you achieve through your actions and did you meet your objectives. What did you learn from this experience and have you used this learning since?

桌面闹钟概要设计说明书

在线招聘系统 概 要 设 计 说 明 书 《桌面闹钟应用程序》项目组日期:2011 年 09 月 18日

1引言 (3) 1.1编写目的 (3) 1.2背景 (3) 1.3定义 (3) 1.4参考资料 (3) 2总体设计 (4) 2.1需求规定 (4) 2.2运行环境 (4) 2.3基本设计概念和处理流程 (4) 2.4结构 (5) 2.5功能器求与程序的关系 (6) 2.6人工处理过程 (6) 2.7尚未问决的问题 (6) 3接口设计 (6) 3.1用户接口 (6) 3.2外部接口 (6) 3.3内部接口 (6) 4运行设计 (7) 4.1运行模块组合 (7) 4.2运行控制 (7) 4.3运行时间 (7) 5系统数据结构设计 (7) 5.1逻辑结构设计要点 (7) 5.2物理结构设计要点 (8) 5.3数据结构与程序的关系 (8) 6系统出错处理设计 (8) 6.1出错信息 (8) 6.2补救措施 (8) 6.3系统维护设计 (9)

概要设计说明书 1引言 1.1编写目的 本文档为“桌面闹钟应用程序概要设计说明书”,主要用于为实现桌面闹钟的概要说明,描述桌面应用程序的结构框架、数据流图及数据流说明字典,以对以后程序的建设起到指导和约束作用。 1.2背景 a.软件系统的名称:桌面闹钟应用程序 b.任务提出者:乐山师范学院计算机科学与信息技术学院 开发者:陈巧林 1.3定义 与已有的桌面闹钟应用程序的繁杂、操作麻烦等特点相比,该桌面闹钟应用程序的简单易操作等特点使得其用起来更方便。 1.4参考资料 [1] 谢炎桦.《数据库管理系统构建实例》.清华大学出版社 [2] 萨师煊,王珊.<<数据库系统概论>>.北京高等教育出版社:2003.6 [3] Jeffrey P.Monanus、赵年锁译.《数据访问技术》.机械工业出版社:1999.7 [4]朱元三.《软件工程技术概论[M] 》.北京科学出版社:2002.7.1~320 [5]陈汶滨,朱小梅,任冬梅.<<软件测试技术基础>>(21世纪高等学校计算机教育实用 规划教材).清华大学出版社出版时间:2008.07.1~96 [6] 朱成立.《数据结构》.清华大学出版社:2005.12 [7]王克宏著.Java技术教程(基础篇).北京:高等教育出版社,2002.04 [8]Bruce Eckel 著.Java编程思想.北京:机械工业出版社,2004.01 [9]孙燕主编.Java2入门与实例教程.北京:中国铁道出版社,2003.01 [10]叶核亚,陈立著.Java2程序设计实用教程.北京:电子工业出版社,2003.5 [11]柯温钊著.JA V A例解教程.北京:中国铁道出版社,2001.03

相关主题
文本预览
相关文档 最新文档