当前位置:文档之家› 大型循环流化床锅炉风量控制与燃烧优化调整

大型循环流化床锅炉风量控制与燃烧优化调整

大型循环流化床锅炉风量控制与燃烧优化调整
大型循环流化床锅炉风量控制与燃烧优化调整

大型循环流化床锅炉风量控制与燃烧优化调整

文章摘要:

摘要:总风量控制、一二次风比例、燃煤粒度以及返料风的控制是循环流化床锅炉燃烧优化控制的重要参数。本文就大型循环流化床锅炉临界流化风量的测试及重要影响因素进行了讨论,同时从CFB锅炉燃烧运行优化调整方面进行技术探讨。

关键词:循环流化床锅炉临界流化风量燃烧优化调整

1引言

循环流化床(CFB)锅炉具有良好环保性能、燃料适应性能、负荷调节性能和燃烧效率高等优越性,是一项新型燃煤技术,目前已被电力行业所接受并向大型化电站锅炉方向快速发展。

2003年,国内一批135MW等级的循环流化床锅炉投入了商业运行,今年还会有一批同等级循环流化床锅炉投运,同时,引进技术首台300MWCFB锅炉白马发电厂工程已开工,另外约20台300MWCFB机组将在近期开工。国内相关科研单位在开发研制方面也加大了力度。西安热工研究院致力于国产大型CFB锅炉研究开发,先后设计开发国内自主知识产权50MW、100MW、200MW CFB锅炉,其中首台国内自主知识产权100MWCFB锅炉于2003年6月投入商业运行且取得了较好的运行业绩,研制开发的200MWCFB锅炉已完成性能设计,2004年开工建设,安装在江西分宜发电厂。

从这些CFB投产以来运行情况看,炉本体设计与运行情况良好,基本可以达到预期的设计要求。除了普遍存在的给煤系统故障率高、冷渣系统工作不正常外,锅炉飞灰含碳量相对较

高、点火油耗多等问题也成为目前大型CFB锅炉运行方面有待研究的问题。

临界流化风量实际为流化床锅炉安全运行的最低一次流化风量,是循环流化床锅炉设计、运行的重要参数。本文根据大型CFB锅炉临界流化风量的测试,提出了临界流化

风量的测试方法,同时针对炉料的的颗粒分布、料层厚度等对临界流化风量参数的影响进行了讨论。同时探讨风量控制、一二次风比例以及返料风的控制对燃烧优化的作用。

2临界流化风量测试及影响因素

尽管运行风量会大于临界流化风量,CFB锅炉点火启动燃油量与临界流化风量的运行掌握有很大关系。

通常将床层从固定状态转变到流化状态(或称沸腾状态)时按布风板面积计算的空气流速称为临界流化速度,即所谓的最小流化速度,相对应的风量即临界流化风量。锅炉正常运行速度必须大于临界流化速度,亦即运行一次风量必须大于临界流化风量,才能保证锅

炉不结焦。临界流化速度的计算一般采用以下经验公式:

(1)

式中:为颗粒定性尺寸(颗粒的筛分平均粒经),为气体运动粘度,分别为颗粒和气体的密度。从上式可以看出,临界流化速度除与颗粒的粒度和密度有关外,还与流体的物性有关,因此运行床温的变化将直接影响临界流化速度,而冷态状态下确定出临界流化速度是计算和运行的根本。换言之,对于特定的锅炉底料和冷态下空气的物理特性而言,颗粒的粒度筛分是确定临界流化风量的重要因素。

2.1空床布风板阻力试验

确定临界流化风量首先要测定空床布风板阻力。在不同一次风量时,测量布风板空床(布风板上未装床料)阻力,图1为冷态试验时布风板的阻力以及估算在热风温度为180℃(设计风温)时布风板阻力。

经回归得到风温20℃时空床阻力公式:

(2)

?风温20℃时的风量(,20℃);

?t℃时空床阻力();

图1 布风板阻力曲线

2.2临界流化风量的确定及影响因素

循环流化床锅炉点火底料(床层)的状态随着穿过布风板的一次风量增加,从固定床状态过渡到流态化状态。在固定床通过的风量很小时,床层压降与风量呈正比增加,并且当风量达到一定的值时,床层压降达到最大值,如果再继续增加风量,床层会突然“解锁”,进一步增加风量,床层压降仍维持不变,即床层压降维持恒定,利用床层这一特性,确定出从固定床状态过渡到流态化状态的这一转折点所对应的风量即临界流化风量。而床层的压降等于风室压力减去布风板的阻力,不同一次风量对应的布风板阻力通过式(2)计算得出。

临界流化风量测试所用的床料筛分结果如表1所示,测试结果如图2所示。

表1临界流化风量试验的床料粒度筛分

粒径(m m) >10 10~8

8~5

5~1

1~0.5

大颗粒

20

10

27.8

37.39 4.26 小颗粒0

0.1 6.91 60.1 32.82

图2临界流化风量粒度关系图3临界流化风量与料层厚度关系

显然,底料粒经对临界流化风量有决定性影响,而料层厚度的影响不大。大型CFB锅炉在每次冷态点火启动时的底料粒经与运行一段时间后的情况会有较大出入,因此,从节约燃油的角度考虑,应该对临界流化风量进行认真测试。

3燃烧优化调整

大型CFB锅炉运行燃烧优化调整,主要从以下几个方面入手:

? 燃煤粒径分布

? 风量(氧量)控制

? 一、二次风比例

? 运行料层(风室压力)

? 二次风穿透能力

? 提高分离器分离效率

? 炉内灰浓度水平(返料量控制)等等。

3.1燃煤粒径调整

CFB锅炉对入炉煤的粒径要求视煤种而异,大体按下式计算入炉煤中<1mm的份额。Vdaf+D1=(85~90)%

Vdaf--入炉煤可燃基挥发份,%;

D1 -入炉煤中?1mm的份额,%;

即低挥发份的煤粒径应小,高挥发份煤粒径应粗些,因为高挥发份煤在炉内燃烧时更容易爆裂和破碎成细颗粒,且相对更容易燃尽。因此应根据煤种不同对煤的粒径分布提出不同的要求。

燃用贫煤、无烟煤更能体现CFB锅炉的优势。根据国电热工研究院(TPRI)的研究结果,推荐贫煤、无烟煤入炉煤粒径分布特性见图4。

图4推荐贫煤、无烟煤入炉粒度图5循环流化床锅炉中的贫氧核心区

对于现有设备条件,燃煤粒径分布调整受到限制,但应尽可能调整接近设计粒度分布。避免细组分过多造成炉膛上部温度偏高,或者颗粒偏粗造成运行风量过大,磨损严重,排烟温度高等后果。

3.2运行风量与一、二次风比例调整

风量及一二次风比例的调整可以有效地改善炉内风、煤、灰的混合程度,提供最佳的燃料、供风混合方式。

TPRI通过测试某100MWCFB锅炉炉内氧量场分布发现:炉膛二次风上部有一个如图5所示的贫氧核心区,显然这是由于二次风的穿透扩散效果不佳而使氧气不能到达炉膛中部的结果,这对于核心区细颗粒的燃烧产生了负面影响。分析认为,目前100MW及135MWCFB 锅炉存在的飞灰可燃物含量高,部分原因应该是由于二次风穿透能力不足引起的。燃烧调整

优化运行参数,二次风的调整是一个重要手段。

3.3返料风的控制

大型CFB锅炉较多采用旋风分离器。目前分离器直径在6.5~9m之间。影响分离效率的主要因素包括切向进口风速、烟气温度和粘度、灰粒径、进口颗粒浓度以及分离器自身的结构尺寸等等。上述因素在理论方面已有较多研究。

实炉运行中,返料风量的控制对于炉内灰浓度和灰平衡的建立具有相当重要的意义。返料风量过小将引起炉内灰浓度偏低,返料不畅,造成燃烧效率降低;返料风量过大将造成返料风沿立管反窜至分离器下部,从而破坏分离器内气固两相流复杂的径向速度分布,破坏符合高效分离效率的流场。TPRI在某100MWCFB锅炉上对返料风的调整取得了燃烧优化的良好效果。

4结论

结合实炉运行测试经验,指明了大型CFB锅炉运行燃烧优化调整重点方向。以期对大型CFB 锅炉运行优化提出指导。

参考文献:

P.巴苏,循环流化床锅炉的设计与运行,科学技术出版社,1994年。

蒋敏华,等,大型循环流化床锅炉技术,国家电力公司热工研究院,1998年6月。

蒋敏华,等,NERC在循环流化床燃烧技术领域的研究与开发热力发电1999年2月。

岑可法等,循环流化床锅炉理论设计与运行,中国电力出版社,1998年。

高洪培,山西振兴集团240t/h循环流化床锅炉调试报告,国家电力公司热工研究院技术报告,2000年。

作者简介:

高洪培(1969?),男,工学硕士,高级工程师,现在西安热工研究院从事循环流化床锅炉研发和运行技术研究工作。

地址:陕西省西安市兴庆路80号,710032

EMAIL:gaohongpei@https://www.doczj.com/doc/c912979216.html,

锅炉燃烧调整总结

#2 炉优化调整 机组稳定运行已有3个多月,但在调试结束后我厂#2机组在3月份前在满负荷时床温在960℃左右,总风量大,风机电流大,厂用电率居高不下,一直困扰着我们。通过三个月的分析、调整,近期床温整体回落,总结出主要原因有以下两点: 一、煤颗粒度的差异。前一段时间负荷300MW时床温高炉膛差压在,下部压力,近期炉膛差压在,下部压力,这说明锅炉外循环更好了,分离器能捕捉更多的物料返回炉膛,同时也减少了飞灰含碳量,否则小于1mm的煤粒份额太多分离器使分离效率下降,小于1mm 细颗粒太多就烧成煤粉炉的样子,从而导致高床温细颗粒全给飞灰含碳量做贡献了,大于10mm煤粒太多就烧成鼓泡床了,导致水冷壁磨损加剧爆管、冷渣器不下渣和燃烧恶化等一系列问题,所以控制好入炉煤粒度(1—9mm)是保证燃烧的前提,当煤颗粒度不合适时只能通过加大风量使床温下降,在煤颗粒度不合适时加负荷一定要先把风量加起来,否则负荷在300MW时床温会上升到接近980℃,甚至会因床温高被迫在高负荷时解床温高MFT保护,如果处理不当造成结焦造成非停。所以循环流化床锅炉控制煤粒度是决定是否把锅炉烧成真正循环流化床最为重要的因素,可以说粒度问题解决了,锅炉90%的问题都解决了,国内目前最好的煤破碎系统为三级筛分两级破碎。 二、优化燃烧调整。3月份以来#2炉床温虽然整体下降,但仍不够理想,由于我厂AGC投入运行中加减负荷频繁,所以在负荷变

化时锅炉床温变化幅度较大,在最大出力和最小出力时床温相差接近200℃,不断的调整风煤配比使其达到最优燃烧工况,保证床温维持在850℃-900℃。负荷150MW时使总风量维持32万NM3/h左右,一次流化风量21万NM3/h,二次风量11万NM3/h左右,同时关小下二次风小风门(开度20%左右,减小密相区燃烧,提高床温)和开大上二次小风门(开度40%左右,增强稀相区燃烧,提高循环倍率),可使床温维持850℃左右,正常运行中低负荷时一次风量保证最小临界流化风量的前提下尽可能低可使床温维持高一点,以保证最佳炉内脱硫脱硝温度。负荷300MW时总风量维持62万NM3/h左右,一次风量27万NM3/h左右,二次风量35万NM3/h左右,同时开大下二次小风门(开度80%左右,增强密相区扰动,降低床温),关小上二次小风门(开度60%左右,使稀相区进入缺氧燃烧状态),因为东锅厂设计原因,二次上下小风门相同开度情况下上二次风是下二次风风量的三倍,所以加减负荷时根据负荷及时调整二次小风门开度对床温影响较大。高负荷时在床温不高的情况下尽量减小一次风,以达到减少磨损的目的,二次风用来维持总风量,高负荷时床温尽量接近900℃,以达到最佳炉内脱硫脱硝温度,同时加负荷时停止部分或全部冷渣器,床压高一点增强蓄热量可降低床温,减负荷相反,稳定负荷后3台左右冷渣器可保证床压稳定。 在优化燃烧调整基本成熟的基础上,配合锅炉主管薛红军进行全负荷低氧量燃烧运行,全负荷使床温尽量靠近900℃。根据#2炉目前脱硝系统运行情况,负荷150MW时根据氧量及时减减小二次风,

锅炉燃烧优化调整方案

锅炉燃烧优化调整方案 为提高锅炉效率,降低辅机耗电率,保持煤粉“经济细度”的要求,力争机械不完全燃烧损失和制粉系统能耗之和最小;保证锅炉设备安全、各经济指标综合最优和环保参数达标排放,制定以下燃烧优化调整方案: 1、优先运行A、B、C、D层煤粉燃烧器,低负荷时运行 B、C、D层煤粉燃烧器,负荷增加时,根据需要依次投入E、F层煤粉燃烧器,运行中应平均分配各层燃烧器出力(可通过各分离器出口风粉温度、压力是否一致判断,通过调整各容量风门偏置维持各容量风门后磨煤机入口风压一致来实现),各层煤粉燃烧器出力应在24~28t/h(根据单只燃烧器设计热负荷,19.65MJ/kg热值对应出力6.1t/h,17.5 MJ/kg 热值对应出力 6.85t/h),单侧运行的磨煤机出力不得超过30t/h(通过节流单侧运行磨煤机热风调节门,维持单侧运行磨煤机总风压偏低正常双侧运行磨煤机0.7~1.0kPa,调整容量风门偏置来实现),在此原则基础上,及时减少煤粉燃烧器运行层数或对角停运燃烧器,一方面,可发挥低氮燃烧器自身的稳定能力,另一方面,较高的煤粉浓度有利于在低氧环境中,集中煤粉挥发分中的含氮基团将NO还原为N2,此外,运行下层燃烧器增加了煤粉到燃尽区(富氧区)的停留时间,可充分利用含氮基团将NO还原为N2,从而降低SCR

入口NOx。 2、锅炉氧量保持:(1)供热期,负荷150~180MW氧量 3.0~5.0%;负荷180~210MW氧量 2.5~ 4.0%;负荷大于210MW氧量2.0~3.2%。(2)非供热期,负荷150~200MW氧量3.2~ 5.5%;负荷200~250MW氧量2.7~4.0%;负荷大于250MW氧量2.0~3.5%。(3)正常情况下,锅炉氧量按不低于2.5%保持,不能超出以上规定区间;环保参数超限,异常处理时,氧量最低不低于1.5%,异常处理结束后应及时恢复正常氧量。通过以上原则保证锅炉不出现高、低温硫腐蚀、受热面壁温超限、空预器差压增大,同时为降低飞灰含碳量、再热器减温水量、排烟温度、引送风机耗电率提供保障。 3、运行中保持二次风与炉膛差压不低于0.3kPa,掺烧贫瘦煤较多时,周界风风门开度在锅炉蒸发量500t/h以下可关至10%(周界风量太大时,相当于二次风过早混入一次风,因而对着火不利),大负荷时周界风风门开度不超过35%,除保持托底二次风至少70%以上开度,其余二次风采用倒塔配风方式。 4、燃尽风量占总风量的20~30%(燃尽风量之和与锅炉总风量的比值),低负荷压低限,优先使用下层燃尽风,锅炉蒸发量600t/h以下最多使用两层燃尽风(燃尽风使用原则:锅炉蒸发量430t/h以上燃尽风A层开50~80%;锅炉蒸发量500t/h以上燃尽风B层逐渐开启至全开;锅炉蒸发

燃气锅炉运行的燃烧事故原因分析及应对措施

燃气锅炉运行的燃烧事故原因分析及应对 措施 民 鲁南铁合金发电厂 文章分析电厂燃气锅炉在运行中发生回火或脱火,灭火及炉膛爆炸事故维护管理,运行监视调整等各方面原因,提出了响应的预防措施,用以提高燃气锅炉安全运行控制水平,确保正常运行。 1、燃气锅炉的回火,脱火的原因及预防措施 影响回火、脱火的根本原因有:燃气的流速,燃气压力的高低,燃烧配置状况,结合各电厂燃气锅炉燃烧运行中回火或脱火,从实际可以看出,回火或脱火大多数是调节燃气流速,燃气压力判断不准确及燃烧设备配置状况差别。下面我主要从这两个方面来分析回火或脱火的原因 1.1回火将燃烧器烧坏,严重时还会在燃烧管道发生燃气爆炸,脱火能使燃烧不稳定,严重时可能导致单只燃烧器或炉膛熄火。气体燃料燃烧时有一定的速度,当气体燃料在空气中的浓度处于燃烧极限浓度围,且可燃气体在燃烧器出口的流速低于燃烧速度时,火焰就会向燃料来源的方向传播而产生回火。炉温越高火焰传播速度就越快,则越产生回火。反之,当可燃气体在燃烧器的流速高于燃烧速度时,会使着火点远离燃烧器而产生脱火,低负荷运行时炉温偏低,更易产生脱火。例如2#燃气炉,炉膛压力不稳定,忽大忽小,烟气中CO2和O2的表计指示有显著变化,火焰的长度及颜色均有变化,并且还有一只

燃烧器烧坏,说明有回火或脱火现象,影响安全运行,气体燃料的速度时由压力转变而来的,如若气体管道压力突然变化或调压站的调压器及锅炉的燃气调节阀的特性不佳,便会使入炉的压力忽高忽低,以及当风量调节不当等均有可能造成燃烧器出口气流的不稳定,而引起回火或脱火,经以上分析可知,我们采取控制燃气的压力,保持在规定的数值,为防止回火或脱火在燃气管上装了阻火器,当压过低时未能及时发现,采取防火器,可使火焰自动熄灭,得到很好效果。1.2在燃气锅炉的燃烧过程中,一旦发生回火或脱火,应迅速查明原因,及时处理。 1.2.1首先应检查燃气压力正常与否,若压力过低,应对整个燃气管道进行检查,若锅炉房总供气管道压力降低,先检查调节站调压器的进气压力,发现降低时及时与供气站联系,要求提高供气的压力;若进气压力不正常,则应检查调节器是否有故障,并及时加以排除,同时可以投入备用调压器并开启旁通阀。若采取以上措施仍无效,则应检查整个燃气管道中是否有泄漏,应关闭的阀门是否关闭,若仅炉前的燃气管道压力降低,则应检查该段管道上的各阀门是否正常,开度是否合适,是否出现泄漏情况。当燃气压力无法恢复到正常值时,应减少运行的燃烧器数据,降低负荷运行,直至停止锅炉运行。 1.2.2如若燃压过高,应分段检查整个燃气管道上的各调节阀是否正常,其次检查个燃烧器的风门开度是否合适,检查风道上的总风压和燃烧器前风压是否偏高等,并作出相应的调整。 2、燃气的锅炉灭火及预防

锅炉燃烧调整

锅炉燃烧调整 一、燃烧调整的目的和任务 锅炉燃烧工况的好坏,不但直接影响锅炉本身的运行工况和参数变化,而且对整个机组运行的安全、经济均将有着极大的影响,因此无论正常运行或是启停过程,均应合理组织燃烧,以确保燃烧工况稳定、良好。锅炉燃烧调整的任务是: l、保证锅炉参数稳定在规定范围并产生足够数量的合格蒸汽以满足外界负荷的需要; 2、保证锅炉运行安全可靠; 3、尽量减少不完全燃烧损失,以提高锅炉运行的经济性; 4、使NOxSOx及锅炉各项排放指标控制在允许范围内。 燃烧工况稳定、良好,是保证锅炉安全可靠运行的必要条件。燃烧过程不稳定不但将引起蒸汽参数发生波动,而且还将引起未燃烬可燃物在尾部受热面的沉积,以致给尾部烟道带来再燃烧的威胁。炉膛温度过低不但影响燃料的着火和正常燃烧,还容易造成炉膛熄火。炉膛温度过高、燃烧室内火焰充满程度差或火焰中心偏斜等,将引起水冷壁局部结渣,或由于热负荷分布不均匀而使水冷壁和过热器、再热器等受热面的热偏差增大,严重时甚至造成局部管壁超温或过热器爆管事故。 燃烧工况的稳定和良好是提高机组运行经济性的可靠保证。只有燃烧稳定了,才能确保锅炉其它运行工况的稳定;只有锅炉运行工况稳定了,才能保持蒸汽的高参数运行。此外,锅炉燃烧工况的稳定、良好,是采用低氧燃烧的先决条件,采用低氧燃烧,对降低排烟热损失、提高锅炉热效率,减少NOx和SOx的生成都是极为有效的。 提高燃烧的经济性,就要求保持合理的风、粉配合,一、二次风配比,送、吸风配合和保持适当高的炉膛温度。合理的风、粉配合就是要保持炉膛内最佳的过剩空气系数;合理的二、二次风配比就是要保证着火迅速,燃烧完全;合理的送、吸风配合就是要保持适当的炉膛负压。无论在稳定工况或变工况下运行时,只要这些配合、比例调节得当,就可以减少燃烧损失,提高锅炉效率。对于现代火力发电机组,锅炉效率每提高l%,整个机组效率将提高约0.3—0.4%,标准煤耗可下降3—4g/(kW?h)。 要达到上述目的,在运行操作时应注意保持适当的燃烧器一、二次风配比,即保持适当的一、二次风的出口速度和风率,以建立正常的空气动力场,使风粉均匀混合,保证燃烧良好着火和稳定燃烧。此外,还应优化燃烧器的组合方式和进行各燃烧器负荷的合理分配,加强锅炉风

基于声波测温的电站锅炉燃烧优化控制系统

基于声波测温的电站锅炉燃烧优化控制系统 项目建议书 华北电力大学

一目前电站锅炉燃烧系统存在的问题 1.1 共性问题 1.1.1 两对矛盾需要解决 ①锅炉效率()与污染排放(NOx)之间的矛盾 当我们追求高的锅炉效率的时候,势必要使煤粉在炉充分燃烧。要达到这一目的,则需要提高炉燃烧温度以及使用较高的过量空气系数,而这两方面都会增加污染的排放。反之,则锅炉效率较低。炉的高温燃烧还会带来水冷壁结渣等事故的发生。因此需要在两者之间做出最佳的折中选择。 ②锅炉排烟热损失()和机械未完全燃烧热损失()之间的矛盾 对于锅炉效率影响最大的两项热损失—排烟热损失()和机械未完全燃烧热损失()—而言,也存在类似的矛盾。提高炉燃烧温度以及使用较高的过量空气系数,可以降低机械未完全燃烧热损失(),但是排烟热损失()则会随之增加。因此也需要在两者之间做出最佳的折中选择。 1.1.2 四个优化问题需要解决 ①锅炉效率()与污染排放(NOx)的联合优化 通过寻找最佳的二次风门和燃尽风门组合,建立良好的炉燃烧空气动力场,可以达到锅炉效率()与污染排放(NOx)的共赢。 ②锅炉排烟热损失()和机械未完全燃烧热损失()的联合优化 通过寻找最佳的烟气含氧量(O2)设定值,可以达到锅炉排烟热损失()和机械未完全燃烧热损失()的共赢。 ③汽温控制方案的优化 联合调节燃烧器和喷水,尽量使用燃烧器摆角等方式来调节汽温而减少减温水的使用量,可以较大幅度的提高机组热效率。 ④防止炉结渣的优化 这可以通过以下方法实现:一是寻找最佳的煤粉和二次风门、燃尽风门的组合,调整均衡燃烧,防治火焰偏斜;二是调节炉膛出口温度目标值;三是组织合理的吹灰优化。 1.1.3 炉膛三个参数的测量需要解决

锅炉燃烧调整总结

锅炉燃烧调整总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

#2 炉优化调整 机组稳定运行已有3个多月,但在调试结束后我厂#2机组在3月份前在满负荷时床温在960℃左右,总风量大,风机电流大,厂用电率居高不下,一直困扰着我们。通过三个月的分析、调整,近期床温整体回落,总结出主要原因有以下两点: 一、煤颗粒度的差异。前一段时间负荷300MW时床温高炉膛差压在1.5KPa,下部压力2.6KPa,近期炉膛差压在2.1KPa,下部压力3.6KPa,这说明锅炉外循环更好了,分离器能捕捉更多的物料返回炉膛,同时也减少了飞灰含碳量,否则小于1mm的煤粒份额太多分离器使分离效率下降,小于1mm细颗粒太多就烧成煤粉炉的样子,从而导致高床温细颗粒全给飞灰含碳量做贡献了,大于10mm煤粒太多就烧成鼓泡床了,导致水冷壁磨损加剧爆管、冷渣器不下渣和燃烧恶化等一系列问题,所以控制好入炉煤粒度(1—9mm)是保证燃烧的前提,当煤颗粒度不合适时只能通过加大风量使床温下降,在煤颗粒度不合适时加负荷一定要先把风量加起来,否则负荷在300MW时床温会上升到接近980℃,甚至会因床温高被迫在高负荷时解床温高MFT保护,如果处理不当造成结焦造成非停。所以循环流化床锅炉控制煤粒度是决定是否把锅炉烧成真正循环流化床最为重要的因素,可以说粒度问题解决了,锅炉90%的问题都解决了,国内目前最好的煤破碎系统为三级筛分两级破碎。 二、优化燃烧调整。3月份以来#2炉床温虽然整体下降,但仍不够理想,由于我厂AGC投入运行中加减负荷频繁,所以在负荷变

化时锅炉床温变化幅度较大,在最大出力和最小出力时床温相差接近200℃,不断的调整风煤配比使其达到最优燃烧工况,保证床温维持在850℃-900℃。负荷150MW时使总风量维持32万NM3/h左右,一次流化风量21万NM3/h,二次风量11万NM3/h左右,同时关小下二次风小风门(开度20%左右,减小密相区燃烧,提高床温)和开大上二次小风门(开度40%左右,增强稀相区燃烧,提高循环倍率),可使床温维持850℃左右,正常运行中低负荷时一次风量保证最小临界流化风量的前提下尽可能低可使床温维持高一点,以保证最佳炉内脱硫脱硝温度。负荷300MW时总风量维持62万NM3/h左右,一次风量27万NM3/h左右,二次风量35万NM3/h左右,同时开大下二次小风门(开度80%左右,增强密相区扰动,降低床温),关小上二次小风门(开度60%左右,使稀相区进入缺氧燃烧状态),因为东锅厂设计原因,二次上下小风门相同开度情况下上二次风是下二次风风量的三倍,所以加减负荷时根据负荷及时调整二次小风门开度对床温影响较大。高负荷时在床温不高的情况下尽量减小一次风,以达到减少磨损的目的,二次风用来维持总风量,高负荷时床温尽量接近900℃,以达到最佳炉内脱硫脱硝温度,同时加负荷时停止部分或全部冷渣器,床压高一点增强蓄热量可降低床温,减负荷相反,稳定负荷后3台左右冷渣器可保证床压稳定。 在优化燃烧调整基本成熟的基础上,配合锅炉主管薛红军进行全负荷低氧量燃烧运行,全负荷使床温尽量靠近900℃。根据#2炉目前脱硝系统运行情况,负荷150MW时根据氧量及时减减小二次

锅炉燃烧调整配风规定

通知 国电东胜热电有限公司发电部第007号2011-12-01 锅炉燃烧调整方案 氧量控制表 控制锅炉氧量的意义: 煤粉燃烧是一种化学反应的过程。氧量的多少对化学反应速度影响较大,高温条件下有较高的化学反应速度,但若物理混合速度低,氧气浓度下降,可燃物得不到充足的氧气供应,结果燃烧速度也必然下降。适量的空气供应,是为燃料提供足够的氧气,它是燃烧反应的原始条件。空气供应不足,可燃物得不到足够的氧气,也就不能达到完全燃烧。但空气量过大,又会导致炉温下降及排烟损失增大。 1)入炉总风量的大小与锅炉热效率的高低密切相关,总风量过大会使排烟热损失增加;总风量过小,则会使煤粉燃烧不充分,烟气中CO含量、飞灰可燃物含量和炉渣可燃物含量增加,致使化学和机械未完全燃烧损失增加;总风量的大小也对主汽温和再热汽温产生影响,因此选取合理的入炉总风量,可使总的热损失最小,锅炉热效率达到最高,同时在低负荷时又能保持较高的汽温。 2)炉膛—风箱压差 在锅炉负荷与炉膛出口氧量不变的条件下,炉膛—风箱压差的高低关系到辅助风、燃料风和燃烬风彼此间风量的比例,比例大小对煤粉燃烧的稳定性、燃烬性及NOx的排放量有极大的影响,因此选择合理的炉膛—风箱压差,会提高锅炉的安全性和经济性。 3)燃尽风风量 燃烧器最上层为燃烬风喷口,燃烬风的作是实现分级燃烧,减少热力型NOx生成,补充燃烧后期所需氧。燃尽风风量的大小影响NOx的排放量和碳粒子的燃烬程度。不足容易产生CO,因而使灰熔点温度大大降低。这时,即使炉膛出口烟温不高,仍会形成结渣。燃用挥发份大的煤时,更容易出现这种现象。 4)燃料与空气混合不充分。 燃料与空气混合不充分时,即使供给足够的空气量,也会造成一些局部地区空气多一些,另一些局部地区空气少一些。在空气少的地区就会出现还原性气体,而使灰熔点降低,造成结渣。

锅炉燃烧优化调整方案

锅炉燃烧优化调整方案 萨拉齐电厂的2×300MW CFB锅炉是采用哈尔滨锅炉股份有限公司具有自主知识产权的CFB锅炉技术设计和制造的,锅炉型号HG-1065/17.6-L.MG,是亚临界参数、一次中间再热自然循环汽包炉、紧身封闭、平衡通风、固态排渣、全钢架悬吊结构的循环流化床锅炉,燃用混合煤质,锅炉以最大连续负荷(即BMCR工况)为设计参数,锅炉的最大连续蒸发量为1065t/h。循环物料的分离采用高温绝热旋风分离器,锅炉采用支吊结合的固定方式,受热面采用全悬吊方式,空气预热器、分离器采用支撑结构;锅炉启动采用床下和床上联合点火启动方式。 萨拉齐电厂锅炉主要技术参数: 一、优化燃烧调整机构

为了积极响应公司号召,使我厂锅炉燃烧优化调整工作有序进行,做到调整后锅炉更加安全、经济运行,我厂成立了锅炉优化燃烧调整小组: 1、组织机构: 组长: 杨彦卿 副组长:冀树芳、贺建平 成员:刘玉俊、蔚志刚、李京荣、范海水、谷威、孔凡林、薛文祥、于斌 2、工作职责: 1)负责制定锅炉优化燃烧调整的工作计划; 2)负责编制锅炉优化燃烧调整方案及锅炉运行中问题的检查汇总; 3)负责组织实施锅炉优化燃烧调整工作,保证锅炉长周期连续稳定运行。 二、优化燃烧调整工作内容: 1、入炉煤粒度调整: 1)CFB锅炉对入炉煤粒径分布要求很高,合理的粒径分布是影响锅炉燃烧安全稳定和经济的最重要因素之一,入炉煤粒径对锅炉的影响有以下几点:a)入炉煤细粒径比例较少,粗颗粒比例多,阻力相应增加锅炉流化所需一次风量增大,细颗粒逃逸出炉内的几率增高,锅炉飞灰含碳量上升;b)入炉煤细颗粒比例多,粗颗粒比例少,在相同的一次风量下锅炉床层上移,床温升高,

锅炉燃烧调整

[分享]锅炉燃烧的监视与调整 锅炉燃烧, 调整 锅炉燃烧的监视与调整 1. 燃烧调整的任务炉内燃烧调整的任务可归纳为四点: (1)保证燃烧供热量适应外界负荷的需要,以维持蒸汽压力、温度在正常范围内。 (2)保证着火和燃烧稳定,燃烧中心适当,火焰分布均匀,不烧坏燃烧器,不引起水冷壁、过热器等结渣和超温爆管。(燃烧的安全性) (3)燃烧完全,使机组运行处于最佳经济状况。提高燃烧的经济性,减少对环境的污染。(经济性) (4)对于平衡通风的锅炉来说,应维待一定的炉膛负压。 2. 燃烧火焰监视煤粉的正常燃烧,应具有光亮的金黄色火焰,火色稳定、均匀,火焰中心在燃烧室中部,不触及四周水冷壁;火焰下部不低于冷灰斗一半的深度,火焰中不应有煤粉分离出来,也不应有明显的星点,烟囱的排烟应呈淡灰色。 ① 火焰亮白刺眼:风量偏大,这时炉膛温度较高; ② 火焰暗红:风量过小、煤粉太粗、漏风多,此时炉膛温度偏低; ③ 火焰发黄、无力:煤的水分偏高或挥发分低。 3. 燃料量的调整由于直吹式制粉系统出力的大小直接与锅炉蒸发量相匹配,当负荷变化时,通过①调节给煤机的转速或②启停制粉系统来适应负荷变化的需要。 (1)负荷变动大,即需启动或停止一套制粉系统。 在确定制粉系统启、停方案时,必须考虑到燃烧工况的合理性,如投运燃烧器应均衡、保证炉膛四角都有燃烧器投入运行等。以韩二600MW锅炉为例: ① 75%~100%B-MCR时,运行五台磨; ② 55%~75%B-MCR时,运行四台磨; ③ 40%~55%B-MCR,只有三台磨煤机运行。

④ 40%B-MCR以下时,两台磨运行。 而当锅炉负荷小于50%B-MCR时,应投入油枪稳定燃烧。同时为了保持低负荷时燃烧的经济性,在停用制粉系统时,应注意先停上层燃烧器所对应的磨煤机,而保持下层燃烧器的运行。 (2)负荷变化不大,可通过调节运行中的制粉系统出力来解决。 1) 锅炉负荷增加,要求制粉系统出力增加,应: ① 先增加磨煤机的通风量(开大磨煤机进口风量挡板),利用磨煤机内的少量存粉作为增负荷开始时的缓冲调节; ② 然后增大给煤量(加大给煤机的转速); ③ 同时开大相应的二次风门,使燃煤量适应负荷。 2) 锅炉负荷降低时,则减少给煤量和磨煤机通风量以及二次风量。 4. 风量的调整锅炉的负荷变化时,送入炉内的风量必须与送入炉内的燃料量相适应,同时也必须对引风量进行相应的调整。 入炉的总风量包括一次风和二次风,以及少量的漏风。单元制机组通常配有一、二次风机各两台。一次风机负责将煤粉送入炉内,故运行中的一次风量按照一定的风煤比来控制;二次风机就是送风机,燃烧所需要的助燃空气主要是送风机送入炉膛的,所以入炉总风量主要是通过调节二次风量来调节的。而调节的目标就是在不同负荷下维持相应的氧量设定值(锅炉氧量定值设为锅炉负荷的函数)。 (1) 总风量的调节方法1) 送风大小的判断 ① 锅炉控制盘上装有O2量表,运行人员根据表计的指示值,通过控制烟气中的CO2和O2含量,从而控制炉内过量空气系数的大小。使其尽可能保持为最佳值,以获得较高的锅炉效率。 ② 锅炉在运行中,除了用表计分析判断之外,还要注意分析飞灰、灰渣中的可燃物含量,观察炉内火焰及排烟颜色等,综合分析炉内工况是否正常。如前所述:火焰炽白刺眼,风量偏大,O2量表计的指示值偏高,可能是送风量过大,也可能是锅炉漏风严重,送风调整时应予以注意;火焰暗红不稳,风量偏小时,O2量表计值偏小,此时火焰末端发暗且有黑色烟怠,烟气中含有CO并伴随有烟囱冒黑烟等。 2) 总风量的调节 ①是通过电动执行机构操纵送风机进口导向挡板或动叶倾角,改变其开度来实现的。

提高电站锅炉燃烧效率的优化技术(标准版)

When the lives of employees or national property are endangered, production activities are stopped to rectify and eliminate dangerous factors. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 提高电站锅炉燃烧效率的优化技 术(标准版)

提高电站锅炉燃烧效率的优化技术(标准版)导语:生产有了安全保障,才能持续、稳定发展。生产活动中事故层出不穷,生产势必陷于混乱、甚至瘫痪状态。当生产与安全发生矛盾、危及职工生命或国家财产时,生产活动停下来整治、消除危险因素以后,生产形势会变得更好。"安全第一" 的提法,决非把安全摆到生产之上;忽视安全自然是一种错误。 燃料在锅炉的炉膛中燃烧释放热能,经过金属壁面传热使锅炉中的水转化成具有一定压力和温度的过热蒸汽,随后把蒸汽送入汽轮机,由汽轮驱动进行发电。燃烧优化技术能够有效提高锅炉燃烧的效率并减少污染。本文重点分析能够提高电站锅炉燃烧效率的优化技术。 电站锅炉燃烧优化技术发展 我国经济发展逐渐从粗放型转入集约型,对电站锅炉的燃烧不仅要追求经济效益还要实现安全性及环保性。目前,我国电站锅炉燃烧优化技术取得了长足的进步但还存在一些比较严重的问题。为了保证电能的及时供应,燃煤机组及燃煤技术得到迅速的发展,但电站锅炉的自动化水平仍然非常低。20世纪70年代测量技术的改进有效促进煤炭燃烧效率的提高。氧化锆氧量计大大提高了锅炉燃烧后释放的烟气内氧气含量检测的准确性,在我国各个电站得到普遍应用,另外风速监测技术也是诞生在20世纪70年代的优化技术。 我国在20世纪80年代进行了技术改进,平均煤炭消耗大大降低,

锅炉燃烧调整及优化运行

民营科技 2011年第8期2MYKJ 科技论坛锅炉燃烧调整及优化运行 孙志华刘红郭亮邢立云 (内蒙古乌海市海勃湾发电厂,内蒙古乌海016034) 锅炉的运行参数主要是过热蒸汽压力,过热蒸汽和再热蒸汽温度,饱和水位和锅炉蒸发量等,其运行过程则表现为一个复杂的参数变化过程。在实际情况下,锅炉运行工况经常是不稳定的。各种各样的原因都会引起工况变化,而最后则表现为运行参数的变化。例如当单元机组汽机所需要的蒸汽流量变动时在其他条件未变的情况下,锅炉汽压、汽温、水位都随着改变。此时,必须对锅炉的燃料量、风量、给水量等作相应的调整,才能使锅炉的蒸汽量与汽机负荷相适应,使运行的参数保持在额定值或规定的范围内。另一方面,即使在外界负荷不变的情况下,锅炉机组内部某一工况或因素的改变,同样会引起运行参数的变动,因而也需要对锅炉机组进行必要的调整工作。 1对锅炉机组运行的总要求是安全、经济,这是通过对锅炉进行监视和调整来达到的 具体讲,对运行锅炉进行监视和调整的主要任务是: 1.1保证蒸汽品质,保持正常的过热汽压,过热和再热汽温; 1.2保证蒸汽产量(即蒸发量)以满足外界负荷的需要; 1.3维持汽包的正常水位; 1.4及时进行正确的调整操作,消除各种异常,障碍和隐形事故,保持锅炉机组的正常运行。 1.5维持燃料经济燃烧,尽力减少各种热损失,提高锅炉效率。 为了完成上述任务,锅炉人员必须充分的了解各种因素对锅炉工作的影响,掌握锅炉的变化规律和实际操作技能,这是正确调节的必要条件。 2锅炉运行参数最佳值的确定方法 目前电厂运行人员习惯于把设计参数作为最佳值进行调整,往往不能达到最佳的运行效果。尤其是在低负荷工况下,锅炉运行的安全性、经济性均较差。其原因主要有三个方面:一是设计参数仅对单一设备而言,未能充分考虑系统组合;二是设备在制造、安装过程中存在一定的偏差,未能达到设计要求;三是设计参数本身取用不合理。所以应该从实际系统出发,通过试验分析、比较,为运行人员提供锅炉在不同负荷下的最佳运行方式及参数控制,这些运行方式建立在现有的设备基础上,通过运行调整可以达到或基本达到,与原设计工况相比具有合理性、准确性和可操作性。锅炉运行参数最佳值应是在不同的工况下使锅炉在实际运行时煤耗达到最小值时所对应的运行方式下的各参数。它必须通过优化调整试验才能获得。所以,需进行优化试验,确定锅炉的最佳经济运行方式及最佳运行参数。 3确定锅炉最佳运行方式及最佳运行参数值的优化试验方法优化试验方法是通过对锅炉进行性能摸底试验,全面优化调整,寻找最佳方式及相应最佳运行基准值。它包括性能摸底试验、优化调整试验两部分。 3.1锅炉性能摸底试验:收集锅炉的基本情况等的相关资料,进行锅炉典型工况下的试验,通过性能计算和能耗分析,寻找引起锅炉煤耗偏高的主要原因,从而确定锅炉优化对象。也就是要找到影响锅炉经济性的主要问题,了解锅炉设备性能有待改进的地方。 3.2锅炉优化调整试验:根据锅炉优化调整试验的结果,在现场设备消缺的基础上确定优化目标,进行锅炉优化调整试验,寻找锅炉在调峰范围内合理的运行操作方式。通过试验得出在不同负荷下锅炉主辅设备的最佳运行方式。 4影响锅炉优化运行的因素 锅炉优化运行是指输入锅炉机组燃料的热量被最大有效利用,使得锅炉各项热损失达到最小。通过对各项热损失的分析,找出锅炉的优化运行的方法,并找出提高锅炉运行经济性的途径。 只有通过热平衡才能确定锅炉机组的效率,根据热平衡结果就可以判断锅炉机组的设计和运行情况,研究锅炉机组的热平衡目的在于定量计算与分析各项能量的大小,找出引起热量损失的原因,提出减少损失的措施,提高锅炉效率,降低发电成本。5优化运行的途径 5.1加强煤质管理。 随着电厂进入商业化运营,煤质的管理显得越来越重要。灰分增加.就意味着热值减少,燃料量、电耗、金属单耗、受热面磨损都增加,燃烧的完全性与稳定性也受到很大影响,也会导致排烟热损失相对增加。所以管理好燃料是提高经济性、提高企业效益、提高上网竞争能力的关键环节之一。 5.2增加监视系统。 锅炉的一、二次风速以及炉膛断面热负荷、燃烧器区域热负荷、壁面热负荷等均根据燃用的煤质设计,这是由于燃烧、传热等过程不仅复杂,且影响因素的随机性也较太。目前在设计过程中,除了计算外,一般按推荐值选取。锅炉在运行过程中,能够定量掌握有关影响系统稳定与经济运行的诸因素是十分重要的。例如,一次风速的大小对整个系统的影响非常大,它不仅影响燃烧的稳定性,而且还涉及到锅炉的经济性。而目前运行人员在运行调整过程中,除对最终参数控制得比较严格外,对其过程变化却无法掌握。也就是说,没有一个好的监视系统。运行人员就无章可循,处于带有一定经验性的、盲目的操作状态。如果,一台200MW机组如果做好优化运行,每年能带来几十万元的效益,这并不夸张。所以提高燃烧系统优化运行的程度,它的经济效益和社会效益也同样不可低估。 6锅炉的燃烧调整 锅炉燃烧工况的好坏对锅炉机组和整个发电厂运行的经济性和安全性有很大的影响。燃烧调节的任务是:适应外界负荷的要求,在满足必须的蒸汽量和合格的蒸汽量的前提下,保证锅炉运行的安全性和经济性。对于一般固态排渣煤粉炉,进行燃烧调节的目的可具体归纳为以下几方面:保证正常稳定的汽压、汽温和蒸发量。着火稳定、燃烧中心适当,火焰分布均匀,不烧损燃烧器、过热器等设备,避免结渣。使机组运行保证最高的经济性。减少燃烧污染物的排放。 燃烧过程的经济性要求保持合理的风煤配合,一、二次风配合和送吸风配合,此外还要保持适当的炉膛温度。合理的风粉配合就是要保持最佳的过量空气系数;合理的一、二次风配合就是要保证着火迅速、燃烧安全;合理的送、引风配合就是要保持适当的炉膛负压、减少漏风。当运行工况改变时,这些配合比例调节恰当,就可以减少燃烧损失,提高锅炉效率。 锅炉运行中经常碰到的工况改变是负荷变化,当锅炉负荷变化时,必须及时调节送入炉内的燃料量和风量,使燃烧工况相应改变。在高负荷运行时,由于炉膛温度高,着火与混合条件比较好,故燃烧一般是稳定的,但这时排烟损失比较大。为了提高锅炉效率,可以根据煤质等具体条件,考虑适当降低过量空气系数运行,使排烟热损失降低。在低负荷运行时,由于燃烧减弱,投入的燃烧器数量少,故炉膛温度较低,火焰充满程度差,使燃烧不稳定,经济性也较差。低负荷时可以适当降低炉膛负压运行,以减少漏风,使炉膛温度相对有所提高。这样不但能稳定燃烧,也能减少不完全燃烧热损失,但这时必须注意安全,防止炉膛正压导致灭火伤人。由上所述可知,当运行工况改变时,燃烧调节的正确与否,对锅炉运行的安全性和经济性都有直接的影响。 结束语 锅炉的燃烧调整、优化运行是节能降耗、提高能源利用率的有效措施。它可以降低机组供电煤耗,降低发电成本,对电力企业参与电力市场竞争具有十分重要的作用。 参考文献 [1]岑可法,周昊,池作和.大型电站锅炉安全及优化运行技术[M].第二版. 北京:中国电力出版社,2003. [2]黄新元.电站锅炉运行与燃烧调整[M].第二版.北京:中国电力出版社, 2003. [3]樊泉桂.锅炉原理[M].第一版.北京:中国电力出版社,2004. 摘要:锅炉燃烧调整是运行中的主要内容之一。目前,我国大部分电厂都存在混煤燃烧现象,对锅炉燃烧调整及优化运行需求十分迫切。因此开展锅炉燃烧调整研究,以指导优化运行具有非常重要的现实意义。 关键词:锅炉;燃烧调整;优化运行

浅谈锅炉的燃烧调节方式

浅谈锅炉的燃烧调节方式 摘要:锅炉燃烧工况的好坏直接影响着锅炉机组及整个发电厂运行的安全和效益。燃烧过程是否稳定直接关系到锅炉运行的可靠性;锅炉燃烧的好坏直接影响 锅炉运行的经济性,燃烧过程的经济性要求合理的风与煤粉的配合,及保证适当 的炉膛温度。 关键词:锅炉燃烧调节方式 1 燃料量的调节 燃料量的调节是燃烧调节的重要一环。不同的燃烧设备和不同的燃料种类, 燃料量的调节方法也各不相同。 中间储仓式制粉系统的特点之一是制粉系统运行工况变化与锅炉负荷并不存 在直接的关系。当锅炉负荷发生变化时,需要调节进入炉内的燃料量,它通过投 入(或停止)喷燃器只数或改变给粉机转数、调节给粉机下粉挡板开度来实现的。当锅炉负荷变化较小时,只需改变给粉机转速就可以达到调节的目的;改变给粉 机的转数是通过平型控制器的加减完成的。当锅炉负荷变化较大时,用改变给粉 机的转数不能满足调节幅度的要求,则在不破坏内燃工况的前提下,可先以投、 停给粉机只数进行调节,而后再调节给粉机转数,弥补调节幅度大的矛盾。若上 述手段仍不能满足调节需要时,可用调节给粉机挡板开度的方法加以辅助调节。 投、停喷燃器(相应的给粉机)运行方式的调节,由于喷燃器布置方式和类 型的不同,投运方式也不相同。当需投入备用的喷燃器和给粉机时,应先开启一 次风门至所需开度,对一次风管进行吹扫;待风压正常时启动给粉机给粉,并开 启喷燃器助燃的二次风,观察着火情况是否正常。反之,在停用喷燃器时,则先 停给粉机并关闭二次风,一次风吹扫数分钟后再关闭,以防一次风管内煤分沉积。为防止停用的喷燃器受热烧坏,有时对其一、二次风门保持适当开度,以冷却喷口。给粉机转数调节的范围不宜太大,若调至过高,则不但会因煤粉浓度过大堵 塞一次风管,而且容易使给粉机超负荷和引起煤粉燃烧不完全。若转数调至过低,则在炉膛温度不太高的情况下,由于煤粉浓度不足,着火不稳,容易发生炉膛灭火。单只增加给粉机转数时,应先将转数低的给粉机增加转数,使各给粉机出力 力求均衡;减低给粉机转数时,应先减转数高的。 对于喷燃器布置在侧墙的锅炉,可先增加中间位置的喷燃器来粉,对四角布 置的喷燃器锅炉,需要相对称的增加给粉机转数。用投入或停止喷燃器运行的方 法进行燃烧调节,尚需考虑对气温的影响。在气温偏低时,投用靠炉膛后侧墙的 喷燃器或上排喷燃器。气温偏高时则停用靠炉膛后侧的喷燃器或上排喷燃器。有 时由煤粉仓死角处煤粉的堆积或煤粉自流等原因将给个别给粉机的给粉量调节带 来一定的困难。此时,对来粉量的调节将是一个细致而麻烦的工作。这就需要反 复的开、停给粉机,或开关给粉机下粉挡板,用木锤敲打、振动给粉机上部空间,促使煤粉仓内沉积的煤粉进行流动或迫使流动较大的煤粉沉积下来。这种调节操 作较为笨拙、繁重,但能达到调节要求。 2 锅炉风量的调节 当外界负荷变化需要调节锅炉出力时,随着燃料量的改变,对锅炉的风量也 需做相应的调解。 在实际运行中,从运行的经济方面来看,在一定的范围内,随着炉内过剩空 气系数的增加,可以改变燃料与空气的接触和混合,有利于完全燃烧,使化学未 完全燃烧损失和机械未完全燃烧损失降低。但是,当过剩空气系数过大时,则炉

锅炉燃烧的优化设计方案

锅炉燃烧的优化设计方案 摘要:电能是最洁净的便于使用的二次能源,但是在生产电能的同时却消耗了大量的一次能源。并对锅炉节能改造给出了建议和节能策略分析。燃烧特性是锅炉运行的基础,对于锅炉设计及运行人员,必须了解锅炉燃烧的性能、特点,不断对其进行优化设计,才能保证锅炉运行的安全性,提高其经济性。 关键词:锅炉燃烧;优化方案 Abstract: electric energy is the most clean and convenient to use the two energy, but in the production of electric energy at the same time it consumes a lot of energy. And the boiler energy transformation is proposed and energy saving strategy analysis. Combustion in boiler operation foundation, for the boiler design and operation personnel, must understand the boiler combustion performance, characteristics, continue to optimize the design, to ensure the boiler operation safety, improve its economy. Keywords: boiler; optimization scheme 采用新型密封技术改造锅炉空气预热器。空预器的漏风问题一直是影响锅炉燃烧,降低效率的威胁。通过采用新型密封技术,降低空预器漏风率,不仅减少排烟损失,降低飞灰含碳量,还可以节约厂用电,降低厂用电率。 锅炉制粉系统技术改造。通过改造磨煤机系统、密封系统,可以提高制粉效率,降低制粉单耗,从而降低煤耗。 电站循环冷却水余热再利用。通过凝汽器由循环冷却水带走的热量一般占输送总能量的15%以上,有的甚至高达25%以上,造成了能量的极大浪费。如果能采用余热利用技术把这部分能量利用起来,势必会对电厂效率提高产生明显的效果随着我国电力行业改革的不断深入,“厂网分开,竞价上网”的运行机制已成必然。对各电厂而言,保障机组的安全经济运行,努力降低发电成本,是参与竞争的必由之路。系统组成与结构一定时,机组运行的安全性和经济性主要取决于锅炉的安全经济运行,而锅炉运行的安全性和经济性主要取决于锅炉的燃烧运行调整。在火电发电成本中,燃烧费用一般要点70%以上,因此,提高锅炉燃烧系统的运行水平,对机组的节能降耗具有重要意义。 1设备概况 某厂8号炉为DG-670/13.7-8型自然循环煤粉炉,制粉系统为钢球磨中储式热风送粉系统。1991年1月投产,配200MW汽轮发电机组。设计带基本负荷,低于180MW时需投油助燃。1997年进行了分散控制系统(DCS)改造,2001年汽轮机通过通流部分改造扩充为220MW。自1992年下半年后,煤炭市场发生了变化,锅炉燃煤质量严重恶化,煤种杂乱无序,运行煤种偏离设计煤种,挥发分低、

锅炉燃烧调整的优化分析

锅炉燃烧调整的优化分析 发表时间:2017-07-04T11:05:16.633Z 来源:《电力设备》2017年第7期作者:刘金龙[导读] 摘要:锅炉燃烧的稳定与否,直接关系到整个机组的安全运行。锅炉燃烧工况是否正常,可以通过氧量表,炉膛负压表的指示来判断,同时配合对火焰的监视来判断。 (中天钢铁集团有限公司热电厂江苏常州 213011) 摘要:锅炉燃烧的稳定与否,直接关系到整个机组的安全运行。锅炉燃烧工况是否正常,可以通过氧量表,炉膛负压表的指示来判断,同时配合对火焰的监视来判断。正常稳定的燃烧应具有光亮的金黄色火焰,并且均与的充满整个炉膛,不应过于明亮或过暗,且不应触及四周水冷壁;火焰中心应位于炉膛的中部,下部不低于冷灰斗一半;火焰中不应有煤粉析出,不应有明亮的火星,火焰不能有忽明忽暗的脉动闪动,运行中若燃烧不稳,不仅会引起蒸汽参数的波动,影响负荷的稳定,而且还会对锅炉、蒸汽管道、汽轮机带来冲击。若发生炉膛灭火,则后果更为严重。关键词:燃烧;燃烧调整 1 影响燃烧的因素 ⑴炉膛热负荷大小。⑵送入燃料的质量(成分、发热量与均匀性)。⑶热风比例大小。⑷风温高低与风速大小。⑸风量调整。⑹火焰中心。 2 锅炉燃烧调整优化分析 为了进一步降低锅炉煤耗,有必要对影响锅炉效率的因素进行分析,找出有效的运行方式,以提高锅炉效率,达到节能增效的目的。就锅炉而言,一方面应通过调整运行方式尽量减少各种损失;另一方面,则应提高蒸汽参数,减少减温水量和排污量。在所有损失中,排烟热损失和未完全燃烧热损失占主要,因此有效地减少这些损失,能提高锅炉效率。 2.1 影响排烟热损失的因素 影响排烟热损失的主要因素是排烟温度和排烟量。一般来说,排烟温度每上升 10 ℃,则排烟热损失增加 0.6%~1%,所以要全面分析造成锅炉排烟温度升高的各种因素,制定出切实可行的措施以达到降低排烟温度,减少排烟损失,提高锅炉效率。排烟量主要由过剩空气系数和燃料中的水分来决定,而燃料中的水分则由入炉煤成分来决定。影响排烟温度和排烟量的主要因素有漏风、受热面积灰和结渣、环境温度(即空预器入口温度)和入炉煤的成分。 2.2 影响未完全燃烧热损失的因素 ⑴煤质。燃料中挥发成分含量较高时,煤粉著火容易,同时燃烧过程稳定,未完全燃烧热损失也较小。如果燃料中灰分含量较高时,则燃烧稳定性差,而且由于灰分的隔绝作用,煤的燃尽性能较差。水分对燃烧的影响主要是使燃烧著火困难,并降低燃烧区的温度,使煤粉燃尽变得困难。 ⑵煤粉细度。煤粉越细,表面积越大,越容易著火,同时所需燃烧时间越短,燃烧越完全。但煤粉过细会使制粉电耗增加,降低锅炉效率。 ⑶风量。炉膛过剩空气系数过小,会使燃料燃烧不完全,而且由于烟气中未完全燃烧物的存在,给锅炉运行带来二次燃烧的威胁,炉膛过剩空气系数过大,则排烟热损失也大,达不到经济运行的效果。 ⑷氧量。锅炉运行氧量直接影响锅炉的经济性。在不同的运行负荷下,氧量过大,导致排烟热损失和风机电耗增加;反之,虽然使得风机电耗下降,但飞灰可燃物增加,未完全燃烧热损失增加。 ⑸燃烧过程。缩短煤粉著火时间。同时,延长煤粉在炉膛中燃烧停留时间,使碳粒尽可能完全燃烧,将会降低煤粉的未完全燃烧热损失,提高锅炉效率。 2.3 锅炉燃烧调整的优化措施 ⑴降低排烟热损失。控制漏风,在运行中经常检查水封槽水位,每次吹灰后,都对看火孔和人孔门进行全面检查,关紧吹灰时吹开的看火孔,对于在运行中的制粉系统,在保证安全的情况下,尽量少用冷风,多用热风,这样可使排烟温度降低 1~1.5 ℃,提高烟道入孔门和保温层的严密性,防止烟道漏风。 ⑵防止空预器堵灰。防止机组启、停过程中油枪雾化不好。在清洗空预器时,一定要彻底清洗干净并保证烘干时间足够,防止残垢沉积于受热面,严格执行空预器吹灰,在机组启停、入炉煤中灰分的质量分数较高和燃烧不好时,增加吹灰次数。对炉膛和烟道定期全面吹灰,运行数据显示,每班对炉膛和烟道进行全面吹灰,可降低排烟温度 2~3℃。因此,要对炉膛和烟道进行及时吹灰,减少飞灰堆积。 ⑶减少未完全燃烧热损失。减少未完全燃烧热损失就要合理控制氧量。要提高锅炉运行效率,除了控制漏风、保持换热面清洁、强化燃烧外,关键是控制好锅炉运行氧量和煤粉细度,它们直接影响锅炉的运行经济性。及时掌握煤质和煤粉细度的变化,正常运行中,适当降低一次风压,提高一次风温。根据煤种调整氧量,挥发份较高的煤种保持氧量 3%~4%,挥发份较低的煤种保持氧量 2%~3%。 ⑷延长燃烧时间。在运行中可采取适当降低炉膛负压。同时适当提高底部二次风的开度,使煤粉在炉膛中充分地燃烧,适当降低火焰中心。 ①均等配风。二次风的开度一致。适用于燃烧稳定时的大负荷。优点:炉内的热负荷分布均匀。 ②束腰配风。将中部的二次风适当的关小。适用于燃烧不稳定或小负荷。优点:提高局部断面热负荷,有利于燃烧稳定。 ③鼓腰配风。将中部的二次风适当的开大。适用于炉膛温度过高或结焦。优点:切割分离燃烧中心,降低炉内温度。 ⑸锅炉燃烧系统中的两个最佳。锅炉燃烧系统中保持两个最佳,即:最佳过量空气系数与最佳煤粉细度。 ①最佳空气系数是指锅炉的排烟损失与不完全燃烧热损失之和最小的过量空气系数。它与煤种、锅炉的燃烧特性以及锅炉密封程度有关系。 ②最佳煤粉细度是指锅炉的制粉损耗与锅炉的不完全燃烧热损失之和最小的煤粉细度,它与煤的可磨性、设备特性以及煤的燃烧特性、锅炉的燃烧特性有关。 3 锅炉燃烧调整的几点建议 ⑴正常运行时,合理分配上下排,保持下大上小。 ⑵合理配风,调整火焰中心,使火焰充满炉膛,并保证煤粉与空气良好混合。

相关主题
文本预览
相关文档 最新文档