当前位置:文档之家› KYJS-6000全自动变频抗干扰介质损耗测试仪

KYJS-6000全自动变频抗干扰介质损耗测试仪

KYJS-6000全自动变频抗干扰介质损耗测试仪
KYJS-6000全自动变频抗干扰介质损耗测试仪

KYJS-6000全自动变频抗干扰介质损耗

测试仪

操作手册

成都开元中试电力科技有限公司

目录

一、前言

二、安全措施

三、可测试参数

四、性能特点

五、技术指标

六、测量方式及原理

七、常见设备接线方法

八、仪器功能简介

九、仪器操作步骤

十、注意事项

十一、仪器的成套性

十二、售后服务

一、前言

介损测量是绝缘试验中很基本的方法,可以有效地发现电器设备绝缘的整体受潮劣化变质,以及局部缺陷等。在电工制造、电气设备安装、交接和预防性试验中都广泛应用。变压器、互感器、电抗器、电容器以及套管、避雷器等介损的测量是衡量其绝缘性能的最基本方法。

KYJS-6000全自动变频介损测试仪突破了传统的电桥测量方式,采用变频电源技术,利用单板机、和现代化电子技术进行自动频率变换、模/数转换和数据运算;达到抗干扰能力强、测试速度快、精度高、全自动数字化、操作简便;电源采用大功率开关电源,输出45Hz和55Hz纯正弦波,自动加压,可提供最高10千伏的电压;自动滤除50Hz干扰,适用于变电站等电磁干扰大的现场测试。广泛适用于电力行业中变压器、互感器、套管、电容器、避雷器等设备的介损测量。

二、安全措施

1、使用本仪器前一定要认真阅读本手册。

2、仪器的操作者应具备一般电气设备或仪器的使用常识。

3、本仪器户内外均可使用,但应避开雨淋、腐蚀气体、尘埃过浓、高温、阳光直射等场所使用。

4、仪表应避免剧烈振动。

5、对仪器的维修、护理和调整应由专业人员进行。

6、在任何接线之前必须用接地电缆把仪器接地端子与大地可靠连接起来。

7、由于测试设备产生高电压,所以测试人员必须完全严格遵守安全操作规程,防止他人接触高压部件和电路。直接从事测试的人员必须完全了解高压测试线路,及仪器操作要点。非从事测试人员必须远离高压测试区,测试区必须用栅栏或绳索、警视牌等清楚表示出来。

8、仪器的调整维修和维护,必须在不加电情况下进行,如果必须加电,则操作者必须非常熟悉本仪器高压危险部件。

9、保险管损坏时,必须确保更换同样的保险,禁止更换不同型号保险或将保险直接短路使用。

10、仪器出现故障时,必须立即关闭高压开关和电源总开关,关闭仪器。

三、可测试参数

KYJS-6000仪器可测量下列参数并数字显示:

被测试品的电容量值CX,以pF或nF为单位,1nF=1000pF。

被测试品的介质损耗值tgδ。仪器显示TG符号,此数值以百分值表示,即读取值直接加上“%”就是试品介损值。

施加试品的电压值Vcx,以kV为单位。

试验频率F,单位Hz。

四、性能特点

1、仪器采用矢量电流法,测量电容、介质损耗及其它参数。测试结果精度高,便于实现自动化测量。

2、仪器采用了变频技术来消除现场50Hz工频干扰,即使在强电磁干扰的环境下也能测得可靠的数据。

3、仪器采用大屏幕点阵液晶显示器,测试过程通过汉字菜单提示既直观又

便于操作。

4、仪器操作简便,测量过程由微处理器控制,只要选择好合适的测量方式,

数据的测量就可在微处理器控制下自动完成。

5、一体化机型,内附标准电容和高压电源,便于现场测试,减少现场接线。

6、仪器测量准确度高,可满足油介损测量要求,因此只需配备标准油杯,

和专用测试线即可实现油介损测量。

7、设CVT测试功能,可实现CVT的自激法测试,无需外置附件。

8、接地试品真正反接线测量,小电容接地试品,测试准确。

9、过流保护功能,在试品短路或击穿时仪器不受损坏。

10、接地保护功能,当仪器不接地线或接地不良时,仪器不进入正常程序,

不输出高压。

五、技术指标

1.量程:

a)电容值:4pF-50nF(10KV)

b)介损值:0~100%

2.精度:

a)电容精度:±(1%·读数+2pF)

b)介损精度:±(1%·读数+0.04%)

3.分辨率:

电容分辨率:最小可分辨0.01 pF

介损分辨率:最小可分辨0.001%

4.高压电源:功率2kV A,最高10kV电压输出,45Hz、50Hz、55Hz可选;

45Hz与55Hz自动切换测量。

5.工作环境:

工作电源:AC220V ±10%,50Hz±1Hz

工作温度:-20℃~40℃

环境湿度:≤80%,不结露

6、体积:430mm×320mm×350mm

7、净重:27kg

六、测量方式及原理

按被测试品是否接地分两种测量方式,即正接线测量方式和反接线测量方式。两种测量方式的原理如图一所示:

高压输出端Icx R 高压输出端

C N

(a)正接线测量(b)反接线测量

图一

在高压电源的10kV侧,高压分两路,一路给机内标准电容C N,此电容介损非常小,可以认为介损为零,即为纯容性电流,此电流I CN可做为容性电流基准。在Cx试品一侧,试品电流Icx通过采样电阻R采入机内,此Icx可分解成水平分量和垂直分量见图二所示,通过计算水平分量与垂直分量的比值即可得到tg

δ值。

在图一(a)中Cx为非接地试品,试品电流Icx从试品末端进入采样电阻R,得到全电流值,在图一(b)中Cx为接地试品,机内Cx端直接接地,电流Icx 从试品高压端到机内采样电阻取得全电流值。

R

(a)电流矢量法(b)试品等效电路

图二

七、常见设备的接线方法

1.仪器引出端子说明:

HV ——仪器的测量引线高压端(带危险电压)。

CX ——正接线时试品电流输入端。

——仪器的接地端,使用时与大地可靠相接

2.测量标准电容BR16,见图三和图四所示:

图三为标准电容器BR16的标准接线方法,为正接线方式。

图四为反接线方式,将标准电容BR16一端强行接地。

注意:HV插口输出10kv危险电压,将高压绝缘电缆插在HV插口上。

图三标准电容BR16正接线(非接地试品)接线法

图四标准电容器BR16反接线(接地试品)接线法

3.测量标准电容BR26或标准介损器DB-100等,见图五和图六所示:

图五标准电容正接线BR26或标准介损器DB-100等(非接地试品)接线法

图六标准电容器BR26或标准介损器DB-100等反接线(接地试品)接线法

3.串级式电压互感器:

1)常规法:采用正接法测量,见图七所示:

A

HV Cx端

(高压电缆)X (低压屏蔽电缆)

图七

X接地点打开,使A,X相连后接仪器HV端,低压端所有绕组短接后接Cx端。

注:此方法试验电压为2~3KV,并且高压A、X短路时要注意X端引线与端子盒保持一定距离。

2)末端屏蔽法(正接线方式),见图八,可施加10KV电压,由于电压在AX绕组的不等压分布,电容量值比常规法要小很多。

Cx端(低压屏蔽电缆)

图八末端屏蔽法接线

3)末端加压法(正接线方式)见图九所示,此方法受X点耐压限制,只能施加2.5~3KV电压,同样,电容值误差较大。

A

X

HV(高压电缆)端(低压屏蔽电缆)

图九末端加压法接线

4.电容式电压互感器(CVT):

1)测量中压互感器tgδ的方法

如图十所示,用反接线方式测量,将C2末端δ与C1首端相连,接仪器HV 口(用高压电缆)X T悬空,中压互感器二次线圈短路接地。

由于C1 +C2远大于C B,所以此方法测得的tgδ≈tgδB。

C1 C1 HV

高压电缆C2 C2 C B

δ

δ

X T

图十中压互感器(反接线)

如果现场C B值较小,现场干扰又较大,反接线所测得的数据误差可能较大,这时可选择正接线方式测量。首先把CVT二次引线全部断开,并将二次线圈短路,然后接仪器的C X测量线。X T悬空。接线方式见图十一所示:

C1 C1 HV

高压电缆C2 C2 C B

δ Cx端

(低压屏蔽电缆)δ Cx X T

图十一中压互感器(正接线)

2)C1、tgδ1和C2、tgδ2自动测量

自动测量电容C1、C2和tgδ1、tgδ2的接线如图十二所示。由中间变压器励磁加压,X T点接地,主电容C1高压端用CX线接仪器的C X端,分压电容C2的δ端用高压电缆接仪器的HV高压端。高压电缆的分布电容和仪器内的分布电容在出厂时进行了整定,仪器自动进行换算,保证测量精度。

高压电缆!!!

图十二全自动测量C1、C2和tgδ1、tgδ2的接线

3) CVT变比测量

CVT变比测量的接线如图十三所示,将仪器HV端用高压电缆连接到CVT主电容C1的高压端,将CVT的二次绕组用专用电缆连接到仪器的CVT变比测量端子。

高压电缆!!!

图十三CVT变比测量

5.套管试验:

1)对于单独的套管(未安装到变压器)测量导电杆对测屏的电容和介损值,高压端HV加导电杆,C X接测屏,用正接线法进行测量。

2)对于安装到变压器上的套管由于导电杆与绕组连接的关系,必须将A、

B、C、O套管的导电杆短路接HV高压端,Cx端接不同套管的测屏,

用正接线法测量电容和介损值。

6.变压器器身的介质损耗测量:

变压器的外壳因直接接地,所以仪器用反接线方式测量。测量部位按下

表进行。

注意:高压由HV插口引出,将高压电缆一端插入HV插口,另一端接被测线圈高压端。Cx插口不用。

测量线圈和接地部位

母线母线

图十四断路器断口电容试验接线

7.断路器断口电容试验

断口电容的介损及电容测量时,将高压电缆和Cx测量电缆加到断口电

容两端,用正接线方式测量。如图十四所示:

8.电流互感器:

1)链式或串级式结构的电流互感器:这类电流互感器现场测量可按一次

对二次绕组用正接线方式测量,或将二次绕组全部接地用反接线方式

进行测量。

2)电容型电流互感器:最外层有末屏引出端,试验时,可采用正接线进

行一次绕组相对末屏的tgδ及电容的测量。

9.测量时注意事项

1)在试验现场发生刮风天气时,要人扶绝缘杆、避免高压端接触不良造

成测试数据不稳、不对或仪器复位等现现象。

2)高压电缆HV插口的金属体带10kV危险高电压。

3)用发电机供电时,请选用50Hz 测试。

八、仪器功能简介

仪器面板见图十五所示:

1.显示器——160×80点阵液晶显示器,显示菜单和各种提示信息及测量结果。

2.辉度调节▲——此按键可改变显示器的显示对比度。

3.F1键——修改菜单内容,采用循环滚动方式。

4.F2键——修改菜单内容,采用循环滚动方式。

5.选择键F3——选择菜单项,被选中项反白字体显示。

6.确认和打印按键F4——菜单选择好之后,按此键测试,测试完毕,按此键打印测量数据。

7.辉度调节▼——此按键可改变显示器的显示对比度。

8.高压允许开关——高压电源通电和关闭。

9.打印机。

10.电源开关——整机电源的开启和关闭。

11.电源座——交流220V±10%,50Hz电源输入口,带保险仓。

12.自激法电流输出端——测量CVT的专用端子。

13.接地——为接地线接线端子。

14.CVT变比输入插座——是测量CVT变比信号的测量输入端,由专用低压电缆连接,此电缆单层屏蔽,长10m,接CVT升压变的初级。

15.C X插座——是试品信号的测量输入端,正接线时由专用低压电缆连接,此电缆单层屏蔽带特制鳄鱼夹,长10m,接试品低端。反接线时此端空置。

16.HV插座——高压引出端子,由高压电缆连接,接试品高压端。输出10kV 高压。

15

14 16

13

12

7

11

2 10

8

9

图十五

九、仪器操作步骤

1.测量前准备:

1)用接地线一端接仪器的接地柱,另一端接可靠的大地,保证仪器外壳处在地电位上。

2)正接线时:将高压电缆插头插入后门HV插座中,将高压电缆接地端头接入接地柱中,将另一端的黑色鳄鱼夹夹到被测试品的高端引线上,红色鳄鱼夹悬空或与黑色鳄鱼夹并联使用。将C X低压电缆插入C X插座中,另一端的红色夹子夹试品的低端或末屏等,黑色夹子接地或悬空或接屏蔽装置。

3)反接线时:将高压电缆插头插入后门HV插座中,将高压电缆接地端头接入接地柱中,将另一端的红色鳄鱼夹夹到被测试品的高端引线上,黑色夹子悬空或接屏蔽装置。Cx插座不用。

2.打开电源开关,计算机进行自检,若地线接好,液晶屏显示中文主菜单如图十六所示。若没接地线或地线不良则显示“检查接地”。

3.菜单选择:

1)按F3 键可移动光标至各菜单项,并循环指示。被选中项为一只小手光标指示。选择键的流程见图十七所示。

2)在光标当前所示项目,按F1、F2键可进行该项菜单的变更,并循环指示,流程见图十八所示。

3)将菜单变更至与测试要求相对应后即可按选择键进行下个项目的选择。

图十六

图十八

图十九 图二十 4.测试:打开高压允许开关,当光标在测试项目上时,按确认键则: 1)若选项中为“正”或“反”接线,则仪器显示见图十九(异频方式)所示。首先显示“45HZ 正在加高压”,随电压上升黑块走到相应位置,之后显示“45HZ 正在测试”。45HZ 测量完成后,进行55HZ 测量显示“55HZ 正在测试”。之后,显示测量结果见图二十所示,此时光标指示打印机图标,按确认键打印报告。测量结果的意义如下:

TG:试品的损耗因数tgδ值

CX:测量的电容值

Vcx:施加电压值

F:试验频率

接线方式:正接线、反接线、CVT

日期:试验日期

打印结束后,关闭电源开关,测试完毕。

2)若选项中为“CVT”则仪器显示见图二十一所示。此时可以选择最大保护电流1-10A和保护电压1-3kV,测试时必须把高压允许开关处在开启

位置,仪器自动测试施加电压值,当电压达到预设值后或电流达到保护

值后,开始测试,显示实际施加电压值。打印结束后,关闭电源开关,

测试结束,可拆线收工或测试下一个试品。

图二十一

5.打印:测量结果显示后,打印数据按“打印”键。

十、注意事项

1.遵守本单位的高压试验安全工作规程。

2.高压试验必须由2名以上工作人员参加,1人操作,1人监护。

3.接线完毕后,由1人负责检查。

4.测试结束后,首先关闭高压允许开关,关掉高压电源,然后关闭电源开关。

严禁带电拆装高压电缆

5.仪器出现不正常现象,首先关闭高压允许开关,关闭高压电源,然后关闭电源开关。

6.反接线校验标准介损器时,将标准介损器放在绝缘物体上,离地

60-100cm,将高压电缆接头悬空吊起远离地面,避免高压线夹对地

的分布参数影响数据。

7.反接线测试时低于500P,建议使用细线悬空。(为防止因天气潮湿而引起的泄漏,需用细线,以防测试数据有误)

8.高压电缆损坏时,可以用低压CX线悬空使用,本产品高低压电缆接线方式相同,可以互换使用。

9.测量完毕必须关闭高压允许开关。

10.测试数据以异频为主,工频数据仅作为参考。

十一、仪器的成套性

十二、售后服务

仪器自购买之日起12个月内属产品质量问题免费包修包换,终身提供保修和技术服务。如发现仪器有不正常情况或故障请与公司及时联系,以便为您安排最便捷的处理方案。

AI-6000F介质损耗测试仪

AI-6000F介质损耗测试仪 AI-6000F介质损耗测试仪是发电厂、变电站等现场或实验室测试各种高 压电力设备介损正切值及电容量的高精度测试仪器。仪器为一体化结构,内置介损测试电桥,可变频调压电源,升压变压器和SF6 高稳定度标准 电容器。测试高压源由仪器内部的逆变器产生,经变压器升压后用于被试 品测试。频率可变为45Hz或55Hz,55Hz或65Hz,采用数字陷波技术,避开了工频电场对测试的干扰,从根本上解决了强电场干扰下准确测量的 难题。同时适用于全部停电后用发电机供电检测的场合。该仪器配以绝缘 油杯可测试绝缘油介质损耗。 AI-6000F全自动介质损耗仪是发电厂、变电站等现场或实验室测试各种高压电力设备介损正切值及电容量的高精度测试仪器。仪器为一体化结构,内置介损测试电桥,可变频调压电源,升压变压器和SF6 高稳定度标准电容器。测试高压源由仪器内部的逆变器产生,经变压器升压后用于被试品测试。频率可变为45Hz或55Hz,55Hz或65Hz,采用数字陷波技术,避开了工频电场对测试的干扰,从根本上解决了强电场干扰下准确测量的难题。同时适用于全部停电后用发电机供电检测的场合。该仪器配以绝缘油杯可测试绝缘油介质损耗。 1. 超大液晶中文显示 仪器配备了大屏幕(105mm×65mm)中文菜单界面,屏显分为左右两部分,左边为功能菜单区,右边为相关状态信息提示,每一步都非常清楚,操作人员不需要专业培训就能使用。一次操作,微机自动完成全过程的测量,是目前非常理想的介损测量设备。 2. 海量存储数据 仪器内部配备有日历芯片和大容量存储器,能将检测结果按时间顺序保存,随时可以查看历史记录,并可以打印输出; 3. 科学先进的数据管理 仪器数据可以通过U盘导出,可在任意一台PC机上通过我公司专用软件,查看和管理数据并可生成工作报告。

介质损耗详解

1、介质损耗 什么就是介质损耗:绝缘材料在电场作用下,由于介质电导与介质极化得滞后效应,在其内部引起得能量损耗。也叫介质损失,简称介损。 2、介质损耗角δ 在交变电场作用下,电介质内流过得电流相量与电压相量之间得夹角(功率因数角Φ)得余角(δ)。简称介损角。 3、介质损耗正切值tgδ 又称介质损耗因数,就是指介质损耗角正切值,简称介损角正切。介质损耗因数得定义如下: 如果取得试品得电流相量与电压相量,则可以得到如下相量图: 总电流可以分解为电容电流Ic与电阻电流IR合成,因此: 这正就是损失角δ=(90°-Φ)得正切值。因此现在得数字化仪器从本质上讲,就是通过测量δ或者Φ得到介损因数。 测量介损对判断电气设备得绝缘状况就是一种传统得、十分有效得方法。绝缘能力得下降直接反映为介损增大。进一步就可以分析绝缘下降得原因,如:绝缘受潮、绝缘油受污染、老化变质等等。 测量介损得同时,也能得到试品得电容量。如果多个电容屏中得一个或几个发生短路、断路,电容量就有明显得变化,因此电容量也就是一个重要参数。 4、功率因数cosΦ 功率因数就是功率因数角Φ得余弦值,意义为被测试品得总视在功率S中有功功率P所占得比重。功率因数得定义如下: 有得介损测试仪习惯显示功率因数(PF:cosΦ),而不就是介质损耗因数(DF:tgδ)。一般cosΦ

(1) 容量与误差:实际电容量与标称电容量允许得最大偏差范围、一般使用得容量误差有:J级±5%,K 级±10%,M级±20%、 精密电容器得允许误差较小,而电解电容器得误差较大,它们采用不同得误差等级、 常用得电容器其精度等级与电阻器得表示方法相同、用字母表示:D级—±0、5%;F级—±1%;G级—±2%;J级—±5%;K级—±10%;M级—±20%、 (2) 额定工作电压:电容器在电路中能够长期稳定、可靠工作,所承受得最大直流电压,又称耐压、对于结构、介质、容量相同得器件,耐压越高,体积越大、 (3) 温度系数:在一定温度范围内,温度每变化1℃,电容量得相对变化值、温度系数越小越好、 (4) 绝缘电阻:用来表明漏电大小得、一般小容量得电容,绝缘电阻很大,在几百兆欧姆或几千兆欧姆、电解电容得绝缘电阻一般较小、相对而言,绝缘电阻越大越好,漏电也小、 (5) 损耗:在电场得作用下,电容器在单位时间内发热而消耗得能量、这些损耗主要来自介质损耗与金属损耗、通常用损耗角正切值来表示、 (6) 频率特性:电容器得电参数随电场频率而变化得性质、在高频条件下工作得电容器,由于介电常数在高频时比低频时小,电容量也相应减小、损耗也随频率得升高而增加、另外,在高频工作时,电容器得分布参数,如极片电阻、引线与极片间得电阻、极片得自身电感、引线电感等,都会影响电容器得性能、所有这些,使得电容器得使用频率受到限制、 不同品种得电容器,最高使用频率不同、小型云母电容器在250MHZ以内;圆片型瓷介电容器为300MHZ;圆管型瓷介电容器为200MHZ;圆盘型瓷介可达3000MHZ;小型纸介电容器为80MHZ;中型纸介电容器只有8MHZ、 不同材质电容器,最高使用频率不同、COG(NPO)材质特性温度频率稳定性最好,X7R次 之,Y5V(Z5U)最差、 贴片电容得材质规格 贴片电容目前使用NPO、X7R、Z5U、Y5V等不同得材质规格,不同得规格有不同得用途、下面我们仅就常用得NPO、X7R、Z5U与Y5V来介绍一下它们得性能与应用以及采购中应注意得订货事项以引起大家得注意、不同得公司对于上述不同性能得电容器可能有不同得命名方法,这里我们引用得就是敝司三巨电子公司得命名方法,其她公司得产品请参照该公司得产品手册、

AI-6000K全自动介质损耗测试仪说明书

AI-6000K全自动介质损耗测试仪说明书 一、产品简介: 介损测量是绝缘试验中很基本的方法,可以有效地发现电器设备绝缘的整体受潮劣化变质,以及局部缺陷等。在电工制造、电气设备安装、交接和预防性试验中都广泛应用。变压器、互感器、电抗器、电容器以及套管、避雷器等介损的测量是衡量其绝缘性能的最基本方法。AI-6000K自动抗干扰精密介损测试仪突破了传统的电桥测量方式,采用变频电源技术,利用单片机、和现代化电子技术进行自动频率变换、模/数转换和数据运算;达到抗干扰能力强、测试速度快、精度高、全自动数字化、操作简便;电源采用大功率开关电源,输出45Hz和55Hz纯正弦波,自动加压,可提供最高10千伏的电压;自动滤除50Hz干扰,适用于变电站等电磁干扰大的现场测试。广泛适用于电力行业中变压器、互感器、套管、电容器、避雷器等设备的介损测量。 二、安全措施 1、使用本仪器前一定要认真阅读本手册。 2、仪器的操作者应具备一般电气设备或仪器的使用常识。 3、本仪器户内外均可使用,但应避开雨淋、腐蚀气体、尘埃过浓、高温、阳光直射等场所使用。 4、仪表应避免剧烈振动。 5、对仪器的维修、护理和调整应由专业人员进行。 6、在任何接线之前必须用接地电缆把仪器接地端子与大地可靠连接起来。 7、由于测试设备产生高电压,所以测试人员必须完全严格遵守安全操作规程,防止他

人接触高压部件和电路。直接从事测试的人员必须完全了解高压测试线路,及仪器操作要点。非从事测试人员必须远离高压测试区,测试区必须用栅栏或绳索、警视牌等清楚表示出来。 8、仪器的调整维修和维护,必须在不加电情况下进行,如果必须加电,则操作者必须非常熟悉本仪器高压危险部件。 9、保险管损坏时,必须确保更换同样的保险,禁止更换不同型号保险或将保险直接短路使用。 10、仪器出现故障时,关闭电源开关,等待一分钟之后再检查。 三、可测试参数 仪器可测量下列参数并数字显示: 被测试品的电容量值CX,以pF或nF为单位,1nF=1000pF。 被测试品的介质损耗值tgδ,以%显示。 四、性能特点 1、仪器采用复数电流法,测量电容、介质损耗及其它参数。测试结果精度高,便于实现自动化测量。 2、仪器采用了变频技术来消除现场50Hz工频干扰,即使在强电磁干扰的环境下也能测得可靠的数据。 3、仪器采用大屏幕液晶显示器,测试过程通过汉字菜单提示既直观又便于操作。

工频介电常数及介质损耗测试仪

工频介电常数及介质损耗测试仪 GCSTD-C 产 品 技 术 方 案 书 北京冠测精电仪器设备有限公司材料电极液体电极

GCSTD-C工频介电常数及介质损耗测试仪 满足标准: GB/T1409-2006 测量电气绝缘材料在工频、音频、高频下电容率和介质损耗因数的推荐方法 GB/T 5654-2007 液体绝缘材料相对电容率、介质损耗因数和直流电阻率的测量 GB/T 21216-2007 绝缘液体测量电导和电容确定介质损耗因数的试验方法 GB/T 1693-2007 硫化橡胶介电常数和介质损耗角正切值的测定方法 GB/T 5594.4-1985__电子元器件结构陶瓷材料性能测试方法__介质损耗角正切值的测试方法 …………………………………………………………………………………………… 一、产品概述 本仪器是一种先进的测量介质损耗(tgδ)和电容容量(Cx)的仪器,测量各种绝缘材料、绝缘套管、绝缘液体、电力电缆、电容器、互感器、变压器等高压设备的介质损耗(tgδ)和电容容量(Cx)。具有操作简单、中文显示、打印、使用方便、无需换算、自带高压,抗干扰能力强,测试时间短等优点。 本测试仪采用变频电源技术,利用单片机和电子技术进行自动频率变换、模/数转换和数据运算,达到抗干扰能力强、测试速度快、精度高、操作简便的功能。 二、性能特点 1、仪器测量准确度高,可满足油介损测量要求,因此只需配备标准油杯,和专用测试线即可实现油介损测量。 2、采用变频技术来消除现场50Hz工频干扰,即使在强电磁干扰的环境下也能测得可靠的数据。 3、过流保护功能,在试品短路或击穿时仪器不受损坏。 4、内附标准电容和高压电源,便于现场测试,减少现场接线。 5、仪器采用大屏幕液晶显示器,测试过程通过汉字菜单提示既直观又便于操作。 三、技术指标 技术指标 1、试验环境温度:10℃~30℃(LCD液晶屏应避免长时间日照) 2、相对湿度:20%~80% 3、供电电源:电压:220V±10% 4、外形尺寸:长*宽*高=470mm*320mm*360mm 5、重量:16kg 6、输出功率:1.5KV A

SX-9000全自动介质损耗测试仪使用说明书

SX-9000全自动介质损耗测试仪使用说明书全自动介质损耗测试仪 使 用 讲 明 书

目录 1概述 (2) 2技术指标 (2) 3内部结构与工作原理 (3) 4使用和操作 (5) 5注意事项 (9) 6仪器成套性 (9) 7保管及免费修理期限 (9) 8附录1、2、3…………………………………..……...(10-12) 1.概述 SX-9000(CVT)型全自动介质损耗测试仪是在我公司生产智能化介质 损耗测量仪和变频(异频)抗干扰介质损耗测试仪之后,研制成功第五代 一种新型的测量仪,随着城乡电网改造的持续深入,更高电站越来越多, 倒相法、移相法,已不能满足现场测试需求,异频测量(变频),把50HZ 变成其它频率,能够排除干扰。但由于电子技术的限制,其变频后的频率 一样离50HZ有一定距离,其50Hz条件下的电容值cx及tgδ值是换算模拟出来的,与真实工频测试有一定的距离,专门对少数被试品,测出数据 就有明显误差,通过综合比较,现研制一种新型介质损耗测量仪,其原理 不改变频率,能得到50HZ条件下电容值cx及tgδ值,提升测量可靠性和准确性,完全抑制电场干扰,满足电场下的使用要求,SX-9000(CVT)型全自动介质损耗测试仪体积最小,重量最轻,便于携带。有灵活的扩展性, 通过接口与运算机连接,使用强大的软件附件,对仪器升级,人性化设计,

全自动操作本仪器适合500kv及以下电站有干扰现场的试验。本仪器通过 国家电力研究所及行业专家的鉴定,并获得国家高电压计量站的校准证书。 ●具有多种测量方式,可选择正/反接线、内/外标准电容器、CVT和内/外试验电压进行测量。正接线可测量高压介损。 ●测量电容式电压互感器(CVT)时,无需其它外接设备。 ●内置SF6标准电容器,tgδ<0.005%,受空气湿度阻碍小。 ●抗干扰成效好;能有效地排除强烈的电场干扰对测量的阻碍,适用 于500kv极其以下电站的强干扰现场试验。 ●高压短路和突然断电时,仪器能迅速切断高压,并发出警告信息。 ●测量重复性好,电压线性好(测量准确度不受电压阻碍) ●一体化结构,重量适中,便于携带。 ●大屏幕带背光中文液晶显示器信息提示操作,使用方便。 ●仪器自带打印机,及时储存测试数据。 ●高压电缆连接至试品,保证安全;仪器未接地报警,安全措施完备。 2.技术指标 2.1额定工作条件 2.1.1环境温度:0~40℃(当温度超出20℃±5℃时,每变化10℃仪器差不多误差的改变量不超过差不多误差限的1/2。) 2.1.2相对湿度:30%~85% 2.1.3供电电源:市电。电压:220V±22V, 频率:50±1Hz 2.2外型尺寸:a×b×h,mm:450×330×380 2.3仪重视量:不大于18kg 2.4电子电路功耗:不大于40VA 2.5测量范畴: 2.5.1介质损耗(tgδ): 0~1 辨论率0.0001 2.5.2电容量(Cx): ≤60000PF 最小辨论率0.01P F 2.5.2.1内接方式 试验电压试品电容量

NDJS抗干扰介质损耗测试仪.

目录 一、概述 . (2) 二、工作原理 (2) 三、主要技术参数 (3) 四、仪器面板介绍 (4) 五、操作方法说明: (5) 六、接线 . (6) 七、注意事项 (7) 八、仪器成套性 (8) 九、参考接线方法 (8) 一、概述 NDJS 型抗干扰介质损耗测试仪,是发电厂、变电站等现场全自动测量各种高压电力设备介损正切值及电容量的高精度仪器。由于采用了变频技术能保证在强电场干扰下准确测量。仪器在 GWS-4基础上增加了中文菜单操作功能, 一次操作,微机自动完成全过程的测量。是目前最理想的介损测量设备。 该仪器同样适用于车间、试验室、科研单位测量高压电器设备的tg δ及电容量;对绝缘油的损耗测试、更具有方便、简单、准确等优点。 该仪器可用正、反接线方法测量不接地或直接地的高压电器设备。 仪器内部装备了高压升压变压器, 并采取了过零合闸、防雷击等安全保护措施。试验过程中输出 0.5KV ~10kV 不同等级的高压,操作简单、安全。

二、工作原理 在交流电压作用下, 电介质要消耗部分电能, 这部分电能将转变为热能产生损耗。这种能量损耗叫做电介质的损耗。当电介质上施加交流电压时, 电介质中的电压和电流间存在相角差Ψ, Ψ的余角δ称为介质损耗角, δ的正切tg δ称为介质损耗角正切。tg δ值是用来衡量电介质损耗的参数。仪器测量线路包括一标准回路(Cn 和一被试回路(Cx ,如图 1所示。标准回路由内置高稳定度标准电容器与测量线路组成, 被试回路由被试品和测量线路组成。测量线路由取样电阻与前置放大器和A /D 转换器组成。通过测量电路分别测得标准回路电流与被试回路电流幅值及其相位等, 再由单片机运用数字化实时采集方法, 通过矢量运算便可得出试品的电容值和介质损耗正切值。 仪器内部已经采用了抗干扰措施,保证在外电场干扰下准确测量。 图 1 测量原理图 1. 仪器结构 测量电路:傅立叶变换、复数运算等全部计算和量程切换、变频电源控制等。控制面板:打印机、键盘、显示和通讯中转。 变频电源:采用 SPWM 开关电路产生大功率正弦波稳压输出。

高压套管的介质损耗测试

三高压套管的介质损耗测试 (一)试验目的 高压套管大量采用油纸电容型绝缘结构,这类绝缘结构具有经济实用的优点。但当绝缘中的纸纤维吸收水分后,纤维中的β氢氧根之间的相互作用变弱,导电性能增加,机械性能变差,这是造成绝缘破坏的重要原因。受潮的纸纤维中的水分,可能来自绝缘油,也可能来自绝缘中原先存在的局部受潮部分,这类设备受潮后,介质损耗因数会增加。 液体绝缘材料如变压器油,受到污染或劣化后,极性物质增加,介质损耗因数也会从清洁状态下的0.05%左右上升到0.5%以上。 除了用介质损耗因数的大小及变化趋势判断设备的绝缘状况外,电容量的变化也可以发现电容型设备的绝缘的损坏。如一个或几个电容屏发生击穿短路,电容量会明显增加。 由此可见,测量绝缘介质的介质损耗因数及电容量可以有效地发现绝缘的老化、受潮、开裂、污染等不良状况。 (二)试验接线及试验设备 1、介质损耗因数的定义 绝缘介质在交流电压作用下的等值回路及相量图如图3-1所示。 图3-1绝缘介质在交流电压作用下的等值回路及相量图众所周知,在某一确定的频率下,介质可用确定的电阻与一确定的电容并联来等效,流过介质的电流由两部分组成,I CX为电容性电流的无功分量,I RX为电阻性电流的有功分量,介质的有功损耗将引起绝缘的发热,同时介质也存在着散热,而发热、散热跟表面积等有关,为此应测试与体积相对无关的量来判断绝缘状况,为此测试有功损耗除以无功损耗的值,此比值即为介质损耗因数。 Q=U·I CX P=U·I RX

则 Q P = CX RX I I =tgδ(3-1) 从公式(3-1)可以看到图3-1中介质损耗因数即为介质损失角δ的正切值tgδ。 2 几种典型介损测试仪的原理接线图 国外从20年代即开始使用西林电桥测量tgδ,目前介损测试电桥已向全自动、高精度、良好抗干扰性能方向发展,比较经典的有三种原理即西林型电桥、电流比较型电桥及M型电桥。下面分别作简要的介绍: (1)西林电桥的原理图3-2所示 图3-2西林电桥的原理图 图中当电桥平衡时,G显示为零,此时 3 R Z x= 4 Z Z x 根据实部虚部各相等可得: tgδ=ωR4C4 C≈ R R Cn 3 4 (当tgδ<<1 时) 根据R3、C4、R4的值可计算得出tgδ、 C的值。 从原理上讲,西林电桥测介质损耗没 有误差,但由于分布电容是无所不在的, 尤其是Cn必须有良好的屏蔽,当反接法 时,必须屏蔽掉B点对地的分布电容,正 接法时,必须屏蔽掉C点与B点间的分布 电容,但由于屏蔽层的采用增加了C4、 R4及R3两端的分布电容带来了新的误 差,以R3正接法为例,R3最图3-3

关于介质损耗的一些基本概念

关于介质损耗的一些基本概念 (泛华电子) 1、介质损耗 什么是介质损耗:绝缘材料在电场作用下,由于介质电导和介质极化的滞后效应,在其内部引起的能量损耗。也叫介质损失,简称介损。 2、介质损耗角δ 在交变电场作用下,电介质内流过的电流相量和电压相量之间的夹角(功率因数角Φ)的余角(δ)。简称介损角。 3、介质损耗正切值tgδ 又称介质损耗因数,是指介质损耗角正切值,简称介损角正切。介质损耗因数的定义 如下: 如果取得试品的电流相量和电压相量,则可以得到如下相量图: 总电流可以分解为电容电流Ic和电阻电流IR合成,因此: 这正是损失角δ=(90°-Φ)的正切值。因此现在的数字化仪器从本质上讲,是通过测量δ或者Φ得到介损因数。 测量介损对判断电气设备的绝缘状况是一种传统的、十分有效的方法。绝缘能力的下降直接反映为介损增大。进一步就可以分析绝缘下降的原因,如:绝缘受潮、绝缘油受污染、老化变质等等。

测量介损的同时,也能得到试品的电容量。如果多个电容屏中的一个或几个发生短路、断路,电容量就有明显的变化,因此电容量也是一个重要参数。 4、功率因数cosΦ 功率因数是功率因数角Φ的余弦值,意义为被测试品的总视在功率S中有功功率P所占的比重。功率因数的定义如下: 有的介损测试仪习惯显示功率因数(PF:cosΦ),而不是介质损耗因数(DF:tgδ)。一般cosΦ

介质损耗详解

1、介质损耗 什么是介质损耗:绝缘材料在电场作用下,由于介质电导和介质极化的滞后效应,在其内部引起的能量损耗。也叫介质损失,简称介损。 2、介质损耗角δ 在交变电场作用下,电介质内流过的电流相量和电压相量之间的夹角(功率因数角Φ)的余角(δ)。简称介损角。 3、介质损耗正切值tgδ 又称介质损耗因数,是指介质损耗角正切值,简称介损角正切。介质损耗因数的定义如下: 如果取得试品的电流相量和电压相量,则可以得到如下相量图: 总电流可以分解为电容电流Ic和电阻电流IR合成,因此: 这正是损失角δ=(90°-Φ)的正切值。因此现在的数字化仪器从本质上讲,是通过测量δ或者Φ得到介损因数。 测量介损对判断电气设备的绝缘状况是一种传统的、十分有效的方法。绝缘能力的下降直接反映为介损增大。进一步就可以分析绝缘下降的原因,如:绝缘受潮、绝缘油受污染、老化变质等等。 测量介损的同时,也能得到试品的电容量。如果多个电容屏中的一个或几个发生短路、断路,电容量就有明显的变化,因此电容量也是一个重要参数。 4、功率因数cosΦ 功率因数是功率因数角Φ的余弦值,意义为被测试品的总视在功率S中有功功率P所占的比重。功率因数的定义如下:

有的介损测试仪习惯显示功率因数(PF:cosΦ),而不是介质损耗因数(DF:tgδ)。一般 cosΦ

异频全自动介质损耗测试仪技术规范书

产品技术规范书 (图片仅供参考) 设备名称:异频全自动介质损耗测试仪型号: 生产厂家: 产品编码: 品牌:

一、概述 异频全自动介质损耗测试仪是发电厂、变电站等现场或实验室测试各种高压电力设备介损正切值及电容量的高精度测试仪器。仪器为一体化结构,内置介损测试电桥,可变频调压电源,升压变压器和SF6 高稳定度标准电容器。测试高压源由仪器内部的逆变器产生,经变压器升压后用于被试品测试。频率可变为50Hz、47.5Hz\52.5Hz、45Hz\55Hz、60Hz、57.5Hz\62.5Hz、55Hz\65Hz,采用数字陷波技术,避开了工频电场对测试的干扰,从根本上解决了强电场干扰下准确测量的难题。同时适用于全部停电后用发电机供电检测的场合。该仪器配以绝缘油杯加温控装置可测试绝缘油介质损耗。 二、性能特点 1、超大液晶中文显示 操作简单,仪器配备了高端的全触摸液晶显示屏,超大全触摸操作界面,每过程都非常清晰明了,操作人员不需要额外的专业培训就能使用。轻轻点击一下就能完成整个过程的测量,是目前非常理想的智能型介损测量设备。 2、海量存储数据 仪器内部配备有日历芯片和大容量存储器,保存数据200组,能将检测结果按时间顺序保存,随时可以查看历史记录,并可以打印输出。 3、科学先进的数据管理 仪器数据可以通过U盘导出,可在任意一台PC机上通过我公司专用软件,查看和管理数据。 4、多种测试模式 仪器能够分别使用内高压、外高压、内标准、外标准、正接法、反接法、自激法等多种方式测试;在外标准外高压情况下可以做高电压(大于10kV)介质损耗。 5、CVT测试一步到位 该仪器还可以测试全密封的CVT(电容式电压互感器)C1、C2的介损和电容量,实现了C1、C2的同时测试。该仪器还可以测试CVT变比和电压角差。 6、不拆高压引线测量CVT 仪器可在不拆除CVT高压引线的情况下正确测量CVT的介质损耗值和电容值。 7、CVT反接屏蔽法测量C0

高压介质损耗测试仪

FS3001 变频高压介质损耗测试仪 一、概述 FS3001变频高压介质损耗测试仪用于现场抗干扰介损测量,或试验室精密介损测量。仪器为一体化结构,内置介损电桥、变频电源、试验变压器和标准电容器等。采用变频抗干扰和傅立叶变换数字滤波技术,全自动智能化测量,强干扰下测量数据非常稳定。测量结果由大屏幕液晶显示,自带微型打印机可打印输出。 二、主要功能特点 1、抗干扰能力强 采用变频抗干扰技术,在200%干扰下仍能准确测量,而且测试数据非常稳定。为适应国外60Hz电网需要,还具有60Hz电源自动识别和55/65Hz自动双变频功能。 2、测量精度高 FS3001不仅能在现场做抗干扰测量,也能满足试验室精密测量要求(如油介损测量)。其核心是一个精密高压数字电桥,采用全数字处理和电桥自校准等多种先进技术,配合高精度的三端结构标准电容,实现高精度介损测量。仪器所有量程输入电阻低于2Ω,消除了测量电缆附加电容的影响。 3、多种安全保护措施,确保人身和试验设备安全 高压保护:试品短路、击穿或高压电流波动,能以短路方式高速切断输出。 低压保护:误接380V,电源波动或突然断电,启动保护,不会引起过电压。 接地保护:仪器接地失灵使外壳带危险电压时,启动接地保护。 C V T:高压电压和电流、低压电压和电流四个保护限,不会损坏设备;误选菜单不会输出激磁电压。 防误操作:两级电源开关;电压、电流实时显示;多次按键确认;接线端子高/低压分明;声光报警。

防“容升”:测量大容量试品时会出现电压抬高的“容升”效应,仪器能自动跟踪输出电压,保持试验电压恒定。 抗震性能:仪器采用独特抗震设计,可耐受强烈长途运输震动、颠簸而不会损坏。 高压电缆:为耐高压绝缘导线,可拖地使用。 三、外接附件测量功能 1、外接高压电容器进行高电压介损试验 2、外接液体油杯、控温仪进行绝缘油介损试验 3、外接固体绝缘材料测量电极,测量固体绝缘材料切片的介质损耗。 四、用户可根据需要定制绝缘电阻测量功能 测量方式:电阻/吸收比/极化指数 试验电压:直流100~10000V逐伏设置 电压精度:±(设置值×2%+10V) 短路电流:不小于100mA 测量范围:100kΩ~1000GΩ 测量精度:100kΩ~10GΩ时为5%(试验电压不低于250V) 10GΩ~100GΩ时为5%(试验电压不低于2500V) 100GΩ~1000GΩ时为10%(试验电压不低于10000V) 抗干扰:工频5mA 接线方式:正接线或反接线 快速放电:有 测量时间:电阻约30秒(30~99秒时间可调),吸收比60秒,极化指数10分钟 五、技术指标 准确度:Cx: ±(读数×1%+1pF) tgδ: ±(读数×1%+0.00040) 抗干扰指标:变频抗干扰,在200%干扰下仍能达到上述准确度 电容量范围:内施高压:3pF~60000pF/10kV 60pF~1μF/0.5kV 外施高压:3pF~1.5μF/10kV 60pF~30μF/0.5kV 分辨率:最高0.001pF,4位有效数字 tgδ范围:不限,分辨率0.001%,电容、电感、电阻三种试品自动识别。 试验电流范围:10μA~1A 内施高压:设定电压范围:0.5~10kV 最大输出电流:200mA

介质损耗试验

电容和介质损耗测量 一试验目的 测量介质损耗的目的是判断电气设备的绝缘状况。测量介质损耗因数在预防性试验中是不可缺少的项目。因为电气设备介质损耗因数太大,会使设备绝缘在交流电压作用下,许多能量以热的形式损耗,产生的热量将升高电气设备绝缘的温度,使绝缘老化,甚至造成绝缘热击穿。绝缘能力的下降直接反映为介质损耗因数的增大。进一步就可以分析绝缘下降的原因,如:绝缘受潮、绝缘油受污染、老化变质等等。所以,在出厂试验时要进行介质损耗的试验,运行中的电气设备亦要进行此种试验。测量介质损耗的同时,也能得到试品的电容量。电容量的明显变化,反映了多个电容中的一个或几个发生短路、断路。 二概念及原理 介质损耗是绝缘材料在电场作用下,由于介质电导和介质极化的滞后效应,在其内部引起的能量损耗。也叫介质损失,简称介损。 在交流电压作用下,电介质内流过的电流相量和电压相量之间的夹角为功率因数角(Φ),而余角(δ)简称介损角。 介质损耗正切值δ tg又称介质损耗因数,是指介质损耗角正切值,简称介损角正切。 介质损耗因数(δ tg)的测量在电气设备制造、绝缘材料电气性能的鉴定、绝缘的试验等都是不可缺少的。因为测量绝缘介质的δ tg值是判断绝缘情况的一个较灵敏的试验方法。在交流电压作用下,绝缘介质不仅有电导的损耗,还有极化损耗。介质损耗因数的定义如下:

如果取得试品的电流相量和电压相量,则可以得到如下相量图: 合成,因此: 总电流可以分解为电容电流Ic和电阻电流I R 这正是损失角δ=(90°-Φ)的正切值。因此现在的数字化仪器从本质上讲,是通过测量δ或者Φ得到介损因数。有的介损测试仪习惯显示功率因数(PF:cos Φ),而不是介质损耗因数(DF:tgδ)。一般cosΦ

介质损耗

电介质在交变电场作用下,所积累的电荷有两种分量:(1)有功功率。一种为所消耗发热的功率,又称同相分量;(2)无功功率,又称异相分量。异相分量与同相分量的比值即称为介质损耗。 通常用正切tanδ表示。tanδ=1/WCR(式中W为交变电场的角频率;C为介质电容;R为损耗电阻)。介电损耗角正切值是无量纲的物理量。可用介质损耗仪、电桥、Q表等测量。对一般陶瓷材料,介质损耗角正切值越小越好,尤其是电容器陶瓷。仅仅只有衰减陶瓷是例外,要求具有较大的介质损耗角正切值。橡胶的介电损耗主要来自橡胶分子偶极化。在橡胶作介电材料时,介电损耗是不利的;在橡胶高频硫化时,介电损耗又是必要的,介质损耗与材料的化学组成、显微结构、工作频率、环境温度和湿度、负荷大小和作用时间等许多因素有关。 电介质损耗(dielectric losses ):电介质中在交变电场作用下转换成热能的能量。这些热会使电介质升温并可能引起热击穿,因此,在电绝缘技术中,特别是当绝缘材料用于高电场强度或高频的场合,应尽量采用介质损耗因数(即电介质损耗角正切tgδ,它是电介质损耗与该电介质无功功率之比)较低的材料。但是,电介质损耗也可用作一种电加热手段,即利用高频电场(一般为0.3~300 兆赫)对电介质损耗大的材料(如木材、纸、陶瓷等)进行加热。这种加热由于热量产生在介质内部,比外部加热的加热速度快、热效率高,且加热均匀。频率高于300兆赫时,达到微波波段,即为微波加热(家用微波炉即据此原理)。 电介质损耗按其形成机理可分为弛豫损耗、共振损耗和电导损耗。前两者分别与电介质的弛豫极化和共振极化过程有关。对于弛豫损耗,当交变电场的频率ω=1/τ时,介质损耗达到极大值,τ为组成电介质的极性分子和热离子的弛豫时间。对于共振损耗,当电场频率等于电介质振子固有频率(共振)时,损失能量最大。电导损耗则是由贯穿电介质的电导电流引起,属焦耳损耗,与电场频率无关。 电容介质损耗和电流电压相位角之间的关系 又称介电相位角。反映电介质在交变电场作用下,电位移与电场强度的位相差。在交变电场作用下,根据电场频率、介质种类的不同,其介电行为可能产生两种情况。对于理想介质电位移与电场强度在时间上没有相位差,此时极化强度与交变电场同相位,交流电流刚好超前电压π/2。对于实际介质而言,电位移与电场强度存在位相差。此时介质电容器交流电流超前电压的相角小于π/2。由此,介质损耗角等于π/2与介质电容器交流电流超差电压的相角之差。 介质损耗角是在交变电场下,电介质内流过的电流向量和电压向量之间的夹角(即功率向量角ф)的余角δ,简称介损角。介质损耗角(介损角)是一项反映高压电气设备绝缘性能的重要指标。介损角的变化可反映受潮、劣化变质或绝缘中气体放电等绝缘缺陷,因此测量介损角是研究绝缘老化特征及在线监测绝缘状况的一项重要内容。 介质损耗检测的意义及其注意问题 (1)在绝缘设计时,必须注意绝缘材料的tanδ 值。若tanδ 值过大则会引起严重发热,使绝缘加速老化,甚至可能导致热击穿。而在直流电压下,tanδ 较小而可用于制造直流或脉冲电容器。

油介损测试仪说明书

油介损测试仪说明书 由于输入输出端子、测试柱等均有可能带电压,在插拔测试线、电源插座时,会产生电火花,小心电击, 避免触电危险,注意人身安全! 安全要求 请阅读下列安全注意事项,以免人身伤害,为了避免可能发生的危险,只可在规定的范围内使用。 —防止火灾或人身伤害 正确地连接和断开。当测试导线与带电端子连接时,请勿随意连接或断开测试导线。 注意所有终端的额定值。为了防止火灾或电击危险,请注意所有额定值和标记。 请勿在潮湿环境下操作。 请勿在易爆环境中操作。 -安全术语 警告:警告字句指出可能造成人身伤亡的状况或做法。

目录 一、概述 (5) 二、控制面板 (6) 三、油杯简介 (7) 四、工作原理 (9) 五、主要技术指标 (11) 六、操作 (12) 一、概述 HTYJS-H绝缘油介质损耗测试仪是用于绝缘油等液体绝缘介质的介质损耗角及体积电阻率的高精密仪器。一体化结构。内部集成了介损油杯、温控仪、温度传感器、介损测试电桥、交流试验电源、标准电容器、高阻计、直流高压源等主要部件。其中加热部分采用了当前最为先进的高频感应加热方式,该加热方式具备油杯与加热体非

接触、加热均匀、速度快、控制方便等优点。交流试验电源采用AC-DC-AC转换方式,有效避免市电电压及频率波动对介损测试准确性影响,即便是发电机发电,该仪器也能正确运行。内部标准电容器为SF6充气三极式电容,该电容的介损及电容量不受环境温度、湿度等影响,保证仪器长时间使用后仍然精度一致。 仪器内部采用全数字技术,全部智能自动化测量,配备了大屏幕(240×180)液晶显示器,全中文菜单,每一步骤都有中文提示,测试结果可以打印输出,操作人员不需专业培训就能熟练使用。 在使用本仪器之前,务必先仔细阅读本使用说明书!二、控制面板 图一控制面板图 1.键盘区 a)背光:控制液晶屏背光灯的开关;

介质损耗测试仪正接法测试过程与方法

https://www.doczj.com/doc/c512653937.html,时基电力 介质损耗测试仪正接法测试过程与方法 什么是正接法 正接法是用于测量高压电气设备介质损耗因数(δ)的一种接线方法,与正接法相对的还有‘反接法’,正接法测量介质损耗因数值小,反接法测量介质损耗因数值偏大,与反接法相比,正接法测试可以有效的减少防晕层表面电阻对介质损耗因数测试值的影响。 现场测量时,根据被试设备接地情况正确选择正接法或反接法。 正接法接线流程方法 当被试设备的低压测量端或二次端对地绝缘时,采用该方法。 将红色专用高压电缆从仪器后侧的HVx端上引出,高压屏蔽线皮接被试设备高压端。 将黑色专用低压电缆从仪器面板上的Cx端引出,低压芯线接被试设备低压端L 如下图,低压屏蔽线接被试设备屏蔽端E。(试品无屏蔽端则悬空)HVx及Cx 的芯线与屏蔽线之间严禁短接,否则无法取样,无法测量。

https://www.doczj.com/doc/c512653937.html,时基电力 按照上图接好连接线之后,打开主机电源,屏幕显示主界面菜单,选择测量方式,该仪器提供两种测量方式,a:工频,b:异频测量,工频测量时在现场无干扰或者干扰较小时所采取的测量方式,它相对异频测量法效率要高,如果对仪器的原理不是特别了解,建议您选择异频方式测量,其次,选择测量方式,除了上述正接法,反接发之外还有一种是CVT的接法,按照实际的接线方式选择测量方式,随着CVT互感器越来越多,我们在后期也会更新一部分相关的技术文章,再次,选择测量电压,互干器、电力变压器的介质损耗测量建议选用10kv。 介质损耗测试仪 全自动抗干扰介质损耗测试仪是用于工频高压作用下,测量绝缘套管、电力电缆、电容器、互感器、变压器等高压设备的介质损耗角正切值(tgδ)和电容值(Cx);最高可输出电压10kv,采用47.5、52.5双频和50Hz测量,精度更高,对抗干扰能力更强,介质损耗测试仪可用正、反接线方法测量不接地或直接接地的高压

BAUR绝缘油介损测试仪分析精确诊断广泛经济性高

DTL C BAUR 绝缘油介损测试仪 使用BAUR DTL C 仪器对绝缘油进行分析和诊断能够在科学技术工作、研究以及研发中提供有价值的信息。广泛了解绝缘油的现状对于电网运行的实际操作人员而言越发重要。BAUR DTL C 能够提供当前最准确的信息,以便对电力行业和工业的设备进行有效的绝缘油管理。 BAUR DTL C 是市场上唯一一种将测量与电阻率损耗因数 tan δ的测量以及介电常数融于一身的设备。 可制定高经济性、安全的维护计划。 BAUR DTL C 是目前全球绝缘材料测试领域的佼佼者。在实际应用中,BAUR DTL C 所提供的大量分析数据能够 帮助客户制定出更精确、更具经济性的维护规划。根据供电网络大小的不同以及绝缘油需求量的多少不同,供电商每年可节省几十万欧元。 特征 ? 介损测试测量精度可达 4.0 至 1x10-6 ? 使用两极测量比电阻率至100TΩm ? 测量介电常数 εr ? 高精确的单元电磁感应加热,控温准确 ? 功能性设计,高效率,便于操作,安全可靠,所需空间很小 ? 检测单元配有防护环电极、三个电极和石英玻璃环 ? 检测单元符合 IEC60247图3 ? 空单元校准 ? 可以在不拆卸的情况下排空检测单元(自动/手动) ? 通过测量电极中的传感器进行直接温度测量 ? 全自动测量流程由12个预编程检验标准以及10个自由编程测试流程组成 ? 多语言操作界面 ? 符合人机工程学原理设计的操作单元,带防油贴膜键盘,清晰可辨的(LCD )彩色屏幕及内置打印机 ? 使用 BAUR 软件 ITS Lite* 有效管理测 量数据 BAUR GmbH · Raiffeisenstra?e 8, 6832 Sulz, Austria · 电话 +43 (0)5522 4941-0 · 传真 +43 (0)5522 4941-3 · headoffice@baur.at · www.baur.eu 奥地利保尔公司上海代表处 · 电话:+86 21 6133 1877 · 传真:+86 21 6133 1886 · shanghaioffice@baur.at · www.baur.eu/china 分析精确、诊断广泛、经济性高 ↗全自动介质损耗因数测量 ↗预置标准 ↗高精确度 * 访问 www.baur.eu 免费下载

CVT异频全自动介质损耗测试方法及原理

GD6800异频全自动介质损耗测试仪 一、概述 GD6800异频全自动介质损耗测试仪是发电厂、变电站等现场或实验室测试各种高压电力设备介损正切值及电容量的高精度测试仪器。仪器为一体化结构,内置介损测试电桥,可变频调压电源,升压变压器和SF6 高稳定度标准电容器。测试高压源由仪器内部的逆变器产生,经变压器升压后用于被试品测试。频率可变为50Hz、47.5Hz\52.5Hz、45Hz\55Hz、60Hz、57.5Hz\62.5Hz、55Hz\65Hz,采用数字陷波技术,避开了工频电场对测试的干扰,从根本上解决了强电场干扰下准确测量的难题。同时适用于全部停电后用发电机供电检测的场合。该仪器配以绝缘油杯加温控装置可测试绝缘油介质损耗。 仪器主要具有如下特点: 1、超大液晶中文显示 操作简单,仪器配备了高端的全触摸液晶显示屏,超大全触摸操作界面,每过程都非常清晰明了,操作人员不需要额外的专业培训就能使用。轻轻点击一下就能完成整个过程的测量,是目前非常理想的智能型介损测量设备。 2、海量存储数据 仪器内部配备有日历芯片和大容量存储器,保存数据200组,能将检测结果按时间顺序保存,随时可以查看历史记录,并可以打印输出。 3、科学先进的数据管理

仪器数据可以通过U盘导出,可在任意一台PC机上通过我公司专用软件,查看和管理数据。 4、多种测试模式 仪器能够分别使用内高压、外高压、内标准、外标准、正接法、反接法、自激法等多种方式测试;在外标准外高压情况下可以做高电压(大于10kV)介质损耗。 5、CVT测试一步到位 该仪器还可以测试全密封的CVT(电容式电压互感器)C1、C2的介损和电容量,实现了C1、C2的同时测试。该仪器还可以测试CVT变比和电压角差。 6、不拆高压引线测量CVT 仪器可在不拆除CVT高压引线的情况下正确测量CVT的介质损耗值和电容值。 7、CVT反接屏蔽法测量C0 仪器可采用反接屏蔽法测量CVT上端C0的介质损耗值和电容值。 8、高速采样信号 仪器内部的逆变器和采样电路全部由数字化控制,输出电压连续可调。 9、LCR全自动测量 全自动电感、电容、电阻测量,角度显示。 10、多重保护安全可靠 仪器具备输入电压波动、高压电流、输出短路、电源故障、过压、过

介质损耗测试仪接线方法

https://www.doczj.com/doc/c512653937.html, 介质损耗测试仪接线方法 说明:仪器引出端子说明: HV --- 仪器的测量引线高压端(带危险电压)。 CX --- 正接线时试品电流输入端。 --仪器的接地端,使用时与大地可靠相接。 1.正接法(见图5) 当被测试设备的低压测量端对地绝缘时,可以采用该接线法测量。 (1)高压屏蔽线皮接被试设备高压端; 将黑色专用低压电缆从仪器面板上的Cx端引出,低压芯线接被试设备低压端L(见图11);低压屏蔽线接被试设备屏蔽端E。(试品无屏蔽端则悬空) HVx及Cx的芯线与屏蔽线之间严禁短接,否则无法取样,无法测量; 2.测量标准电容BR16,见图4和图5所示: 图4为标准电容器BR16的标准接线方法,为正接线方式。 图5为反接线方式,将标准电容BR16一端强行接地。 注意:HV插口输出10kV危险电压,将高压绝缘电缆插在HV插口上 图4 标准电容BR16正接线(非接地试品)接线法

https://www.doczj.com/doc/c512653937.html, 图5 标准电容器BR16反接线(接地试品)接线法 3.测量标准电容BR26或标准介损器DB-100等,见图6和图7所示: 图6 标准电容正接线BR26或标准介损器DB-100等(非接地试品)接线法 图7标准电容器BR26或标准介损器DB-100等反接线(接地试品)接线法4.串级式电压互感器: 1)常规法:采用正接法测量,见图8所示:

https://www.doczj.com/doc/c512653937.html, 图8 常规接线法 X接地点打开,使A,X相连后接仪器HV端,低压端所有绕组短接后接Cx端。 注意:此试验电压为2~3kV,并且高压A、X短路时要注意X端引线与端子盒保持距离。 2)末端屏蔽法(正接线方式),见图9,可施加10kV电压,由于电压在AX绕组的不等压分布,电容量值比常规法要小很多。 图9 末端屏蔽法接线 3)末端加压法(正接线方式)见图10所示,此方法受X点耐压限制,只能施加2.5~3kV电压,同样,电容值误差较大。 图10 末端加压法接线 5.套管试验: 对于单独的套管(未安装到变压器)测量导电杆对测屏的电容和介损值,高压端HV加导电杆,CX 接测屏,用正接线法进行测量。 对于安装到变压器上的套管由于导电杆与绕组连接的关系,必须将A、B、C、O套管的导电杆短路接HV高压端,Cx端接不同套管的测屏,用正接线法测量电容和介损值。

相关主题
相关文档 最新文档