当前位置:文档之家› A2O工艺中的反硝化除磷及其强化

A2O工艺中的反硝化除磷及其强化

A2O工艺中的反硝化除磷及其强化
A2O工艺中的反硝化除磷及其强化

化学除磷理论及规范

化学除磷 6.7.1 污水经二级处理后,其出水总磷不能达到要求时,可采用化学除磷工艺处理。污水一级处理以及污泥处理过程中产生的液体有除磷要求时,也可采用化学除磷工艺。 化学除磷可采用生物反应池的前置投加、后置投加和同步投加,也可采用多点投加。 化学除磷设计中,药剂的种类、剂量和投加点宜根据试验资料确定。 化学除磷的药剂可采用铝盐、铁盐,也可采用石灰。用铝盐或铁盐作混凝剂时,宜投加离子型聚合电解质作为助凝剂。 采用铝盐或铁盐作混凝剂时,其投加混凝剂与污水中总磷的摩尔比宜为~3。化学除磷时应考虑产生的污泥量。 化学除磷时,对接触腐蚀性物质的设备和管道应采取防腐蚀措施。 条文说明: 化学除磷 关于化学除磷应用范围的规定。 《城镇污水处理厂污染物排放标准》(GB18918)规定总磷的排放标准:当达到一级A标准时,在2005年12月31日前建设的污水厂为1mg/l,2006年1月1日起建设的污水厂为l。一般城市污水经生物除磷后,较难达到后者的标准,故可辅以化学除磷,以满足出水水质的要求。 强化一级处理,可去除污水中绝大部分磷。上海白龙港城市污水厂试验表明,当FeCl3投加量为40~80mg/l,或Al2(SO4)3•18H2O投加量为60~80mg/l 时,进出水磷酸盐磷浓度分别为2~9mg/l和~l,去除率为60~95%。 污泥厌氧处理过程中的上清液、脱水机的过滤液和浓缩池上清液等,由于在厌氧条件下,有大量含磷物质释放到液体中,若回流入污水处理系统,将造成污水处理系统中磷的恶性循环,因此应先进行除磷,一般宜采用化学除磷。 关于药剂投加点的规定。 以生物反应池为界,在生物反应池前投加为前置投加,在生物反应池后投加为后置投加,投加在生物反应池内为同步投加,在生物反应池前后都投加为多点投加。

污水处理生物除磷工艺.

污水处理生物除磷工艺 (一)缺氧好氧活性污泥法(A/O工艺) 当以除磷为主时,可采用无内循环的厌氧/好氧工艺,基本工艺流程如下图所示。 厌氧/好氧工艺流程 1. 设计参数 A/O工艺生物除磷设计参数见下表 A/O工艺生物除磷设计参数 2. 工艺计算 缺氧好氧活性污泥法生物除磷的工艺计算包括厌氧池(区)容积、好氧池(区)容积。具体计算公式见下表。

A/O工艺生物除磷容积基计算公式 (二)弗斯特利普( Phostrip) 除磷工艺 Phostrip工艺是由Levin在1965年首先提出的,该工艺是在回流污泥的分流 管线上增设一个脱磷池和化学沉淀池而构成的,其工艺流程见下图。

该工艺将在常规的好氧活性污泥法工艺中增设厌氧释磷池和化学沉淀池。工艺流程为:部分回流污泥(约为进水量的10%~20% )通过旁流进入厌氧池,在厌氧池中的停留时间为8~ 12h, 使磷由固相中释放,并转移到水中;脱磷后的污泥问流到好氧池中继续吸磷,厌氧池上清液含有高浓度磷(可高达100mg/L 以上),将此上清液排入石灰混凝沉淀池进行化学处理生成磷酸钙沉淀,该含磷污泥可作为农业肥料,而混凝沉淀池出水应流入初沉池再进行处理。Phostrip工艺不仅通过高磷剩余污泥除磷,而且还通过化学沉淀除磷。该工艺具有生物除磷和化学除磷双重作用,所以Phostrip工艺具有高效脱氮除磷功能。 Phostrip工艺比较适合于对现有工艺的改造,只需在污泥回流管线上增设少量小规模的处理单元即可,且在改造过程中不必中断处理系统的正常运行。总之,Phostrip工艺受外界条件影响小,工艺操作灵活,脱氮除磷效果好且稳定。但该工艺存在流程复杂、运行管理麻烦、处理成本较高等缺点。 四、厌氧/缺氧/好氧活性污泥法脱氮除磷工艺 需要同时脱氮除磷时,可采用厌氧/缺氧/好氧(A2/O)工艺,基本工艺流程如下图。 A2/O工艺脱氮除磷流程 (一)一般规定 进入系统的污水应符合下列要求: (1) 脱氮时,污水中的五日生化需氧量(BOD5 )与总凯氏氮(TKN)之比宜大于4 ; (2) 除磷时,污水中的BOD5与总磷( TP)之比宜大于17 ; (3) 同时脱氮、除磷时,宜同时满足前两款的要求; (4) 好氧池(区)剩余碱度宜大于70mg/L( 以碳酸钙CaC03计);

双污泥系统脱氮除磷的研究

双污泥系统脱氮除磷的研究 近年来,由于生活污水和工业废水中氮磷的排放,水体富营养化现象依然呈现出不断加剧的趋势,因而如何控制水中氮磷的含量仍然是当前水环境研究的重点. 现行的污水处理厂大都采用传统的生物脱氮除磷处理工艺,基本原理都是厌氧-好氧-缺氧工艺,或者其改进后的工艺,如UCT、 MUCT、 VIP及JHB工艺等[1]. 碳源充足的条件下,这些工艺都可以达到很好的脱氮除磷效果. 然而我国大多数地区城市污水中碳源比较缺乏[2, 3, 4, 5],尤其是氨氮含量比较高[6]时,这一现象更为明显. 因而污水厂需要另外添加碳源来实现氮磷的更好去除,如甲醇、乙酸钠等[7, 8],但这进一步提高了污水厂的运行费用. 最近有研究者提出把剩余污泥厌氧发酵液作为外加碳源用于补充污水中碳源的不足[9, 10, 11, 12, 13, 14]. 虽然污泥厌氧发酵液可以改善污水中碳源情况,但是目前只限于实验室实验研究阶段,大规模应用仍然存在很大难度,同时污泥中可能含有的有毒有害物质会破坏污水处理的微生物系统,实际应用之前应慎重考虑. 因而如何通过工艺改进提高碳源的有效利用率,从而实现氮磷的高效去除仍然是处理低浓度碳源废水的重中之重. Kuba等[15]在1996年提出的双污泥脱氮除磷系统,近年来有不少学者进行了研究[2, 3, 16, 17, 18]. 和传统的好氧脱氮除磷系统相比,该工艺可以节约50%的COD,并且氧气的消耗和污泥的产量也有一定程度的减少; 但是该工艺存在一定的缺陷,即出水中会残留部分氨氮而无法达到排放标准. 因此,本研究在双污泥系统的基础上,进一步改良该工艺,使反应器中残留的氨氮发生硝化反应,并且生成的硝酸盐或者亚硝酸盐可进一步作为电子受体进行反硝化除磷,从而提高系统的脱氮除磷效率. 通过与传统的多级厌氧-好氧-缺氧系统(多级SBR)进行对比,探究改良后的工艺对氮磷去除效率,最大程度地提高碳源的利用效率,以期为低碳源废水的处理提供一定的理论依据. 1 材料与方法 1.1 实验装置及运行方法 整个实验分为实验组和对照组,具体的工艺运行流程见图 1. 实验组由主流SBR和侧流SBR两个反应器组成,对照组由单个反应器组成,图 1中的多个反应器只是一个反应器不同的运行阶段. 反应器由有机玻璃制成,有效容积为4 L,每次进水、排水均为3 L. 反应器底部安装曝气盘进行微孔曝气,由曝气泵及气体流量计控制曝气量. 每个反应器配有强力搅拌器,保证泥水的均匀混合. 每天运行3个周期,并采用微电脑时控开关自动控制曝气和搅拌. 实验组为改良型双污泥系统,两个反应器的污泥是各自独立的,不存在污泥之间的回流交换,只是在上清液之间存在回流交换. 改良之处是在原来的缺氧段之间增加了两段微曝气阶段(如图 1红色框内所示),控制曝气量0.50 L ·min-1,侧流SBR控制曝气量1.5 L ·min-1; 对照组采用控制曝气量1.5 L ·min-1. 搅拌速度控制在250 r ·min-1,污泥停留时间(SRT)控制在15 d,整个过程中不控制pH值.

反硝化小结

A2N反硝化除磷: A2N(Anaerobic /Anoxic /Nitrification) 连续流反硝化除磷脱氮工艺是基于特殊的反硝化聚磷菌(Denitrifying Phosphate Removal Bacteria, 简称DPB) 缺氧吸磷的理论而开发的新工艺, 是采用生物膜法和活性污泥法相结合的双污泥系统。与传统的生物除磷脱氮工艺相比较, A2N 工艺具有“一碳两用”、节省曝气和回流所耗费的能源、污泥产量低以及各种不同菌群各自分开培养的优点 1.基本原理: 厌氧区:DPB吸收VFA转化为PHA(PHB PHV影响)作为缺氧段反硝化吸磷的电子供体, 并将体内聚磷酸分解为磷酸盐。 挥发酸是通过主动运输进入细胞,且糖原经过ED?EMP途径提 供还原力,多聚磷酸盐水解提供ATP和释放磷酸盐于体外,最终产生PHA。

主要影响因素:硝酸盐影响?(硝酸盐存在,会使普通反硝化细菌优先使用COD作电子供体进行反硝化,影响DPB合成PHA)HRT长:充分吸收COD合成PHA,为缺氧段反硝化除磷提供电子供体;HRT 过长造成无效释磷(无有机物吸附也无PHA合成),造成总的吸磷效率下降。大部分COD进入硝化段被微生物好氧降解, 硝化段由于好氧异养菌的过量繁殖, 影响了硝化效果。硝化段去除的大量COD既不利于系统的脱氮, 也不利于除磷。尽量缩短HRT,提高处理效率。 丙酸为碳源时,PAO将吸收丙酸转化为聚3 - 羟基戊酸盐( PHV)和聚3 - 羟基- 2 - 甲基戊酸盐( PH2MV)。乙酸为碳源时,PAO 将吸收乙酸转化为PHB.(影响)

生物膜硝化段:(自养硝化细菌:厌氧段COD/N比不宜过高)氨氮的氧化,为缺氧吸磷提供电子受体。 主要影响因素:生物膜段存在微缺氧环境(DO:4 mg/L过高影响反硝化,脱氮效果降低;过低影响硝化,出水氨氮增加,甚至影响反硝化除磷),形成同步硝化反硝化,有利于脱氮,保持较长HRT,脱氮效率提高?(缺氧段反硝化除磷需要硝酸盐氮作电子受体) 缺氧区:厌氧合成的PHA 被降解并合成糖原,同时过量摄取污水中的磷合成聚磷酸盐。PHA作为电子供体,NO3-作为电子受体,过量吸磷。主要影响因素:电子供体(厌氧段吸收PHA),电子受体(硝酸盐氮与亚硝酸盐氮作为电子受体?反硝化速率与硝酸盐氮的浓度无关),随HRT的延长而降低? 后曝气:DPB 污泥不经好氧段直接回流到厌氧段后污泥解体(DO:1.5 ~2.0 mg/L过高:污泥解体)对反硝化气体的吹脱,有益于污泥浓缩;对剩余P的好氧吸收。 缺点:多设了二沉池;中间沉淀池流量分配比较大时系统脱氮效果

生物脱氮除磷原理及工艺

生物脱氮除磷原理及工艺 1 引言 氮和磷是生物的重要营养源,随着化肥、洗涤剂和农药普遍使用,天然水体中氮、磷含量急剧增加,水体中蓝藻、绿藻大量繁殖,水体缺氧并产生毒素,使水质恶化,对水生生物和人体健康产生很大的危害。然而, 我国现有的城市污水处理厂主要集中于有机物的去除,污(废)水一级处理只是除去水中的沙砾及悬浮固体;在好氧生物处理中,生活污水经生物 降解,大部分的可溶性含碳有机物被去除。同时产生N NH -3、N NO --3和- 34PO 和-24 SO ,其中25%的氮和19%左右的磷被微生物吸收合成细胞,通过排泥得到去除;二级生物处理则是去除水中的可溶性有机物,能有效地降低污水中的5BOD 和SS , 但对N 、P 等营养物只能去除10%~ 20% , 其结果远不能达到二级排放标准。因此研究开发经济、高效的, 适于现有污水处理厂改造的脱氮除磷工艺显得尤为重要。 2 生物脱氮除磷机理 2.1 生物脱氮机理 污水生物脱氮的基本原理就是在将有机氮转化为氨态氮的基础上,先利用好氧段经硝化作用,由硝化细菌和亚硝化细菌的协同作用,将氨氮通过反硝化作用转化为亚硝态氮、硝 态氮,即,将3NH 转化为N NO --2和N NO --3。在缺氧条件下通过反硝化作用将硝氮转 化为氮气,即,将N NO -- 2(经反亚硝化)和N NO --3(经反硝化)还原为氮气,溢出水面释放到大气,参与自然界氮的循环。水中含氮物质大量减少,降低出水的潜在危险性,达到从废水中脱氮的目的[1]。 ○ 1硝化——短程硝化:O H HNO O NH 22235.1+→+ 硝化——全程硝化(亚硝化+硝化):O H HNO O NH 22235.1+???→?+亚硝酸菌 3225.0HNO HNO O ??→?+硝酸菌 ○ 2反硝化——反硝化脱氮:O H H CO N OH CH CH HNO 2222333][222+++→+ 反硝化——厌氧氨氧化脱氮:O H N HNO NH 22232+→+ ][35.122233H O H N HNO NH ++→+

除磷废水处理站设计方案

除磷废水处理站设计方 案 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

含磷废水治理工程工艺技术设计初步方案天津普蓝环保工程有限公司 2013年3月25日

目录 一、工程概况 (2) 二、设计依据、规范、范围及原则 (2) 三、设计水量与水质 (5) 四、废水处理工艺设计 (7) 五、污水处理系统性能及技术参数 (9) 六、建筑结构设计 (29) 七、电气控制设计 (31) 八、运行费用估算 (34) 九、组织机构及人员编制 (35) 十、项目实施 (37) 十一、项目管理 (38) 十二、工程投资报价 (40) (1)主要构筑物投资估算 (40) (2)主要处理设备及材料投资报价 (40) (3)工程总投资 (42) 十三、技术服务 (43) 十四、售后服务 (44)

一、工程概况 某污水处理厂在进行污水深度处理及回用过程中,采用双膜技术所排放的RO泥水中磷酸盐含量出现超标,废水中含有不同浓度的磷酸盐,该类废水具有连续性排放、水质成份复杂,其危害性比较大,这些RO浓水如不经处理就直接排放,将对周围的生态环境造成严重的影响(对地表水、土壤、作物造成严重污染),并将影响周围居民的身心健康。 随着国家经济的发展,人民生活水平的不断提高,国家对环境保护越来越重视,已成为企业发展的重要课题。对环保的日益重视和人民环保意识的提高,废水污染解决与否直接关系企业的生存和发展。因此,无论从企业发展还是从改善水资源、保护水环境,做好该厂这类废水的治理工程建设是十分必要。 该公司领导十分重视环保工作,贯彻科学发展观,重点研究、探索循环发展经济,企业节约水资源,降低生产成本,减少污水排放量,计划实行污水综合治理,以期采用合理可靠地解决方式去除排放浓水中的磷酸盐,以供该单位领导和有关部门参阅、决策和实施。 项目名称:污水回用处理RO浓水 工程规模:14000t/d

除磷工艺比较与选择

污水除磷工艺比较与选择 化学除磷 1. 1.1 化学除磷原理 化学除磷主要是通过化学沉析过程完成的,化学沉析是指通过向污水中投加无机金属盐药剂与污水中溶解性的盐类(如磷酸盐)反应生成颗粒状、非溶解性的物质。实际上投加化学药剂后,污水中进行的不仅是沉析反应,同时还发生着化学絮凝作用,即形成的细小的非溶解状的固体物互相粘结成较大形状的絮凝体。 污水沉析反应可以简单的理解为:水中溶解状的物质,大部分是离子状物质转换为非溶解、颗粒状形式的过程,絮凝则是细小的非溶解状的固体物互相粘结成较大形状的过程,所以絮凝不是相转移过程。絮凝是用于改善沉淀池的沉淀效果,而沉析则用于污水中溶解性磷的去除。 1.2 化学除磷药剂 为了生成非溶解性的磷酸盐化合物,用于化学除磷的化学药剂主要是金属盐药剂和氢氧化钙。许多高价金属离子药剂投加到污水中后都会与污水中的溶解性磷离子结合生成难溶解性的化合物,但出于经济原因考虑,用于磷沉析的金属盐药剂主要是Fe3+盐、Fe2+盐和Al3+盐,这些药剂是以溶液和悬浮液状态使用的。除金属盐药剂外,氢氧化钙也用作沉析药剂,反应生成不溶于水的磷酸钙。 表1 污水净化常用药剂

铝盐的混凝沉淀 Al 2(SO 4 ) 3 + 6H 2 O----2Al(OH) 3 +3SO 4 2-+6CO 2 Al 2 (SO 4 ) 3 + 2PO 4 ----2AlPO 4 +3SO 4 2- 在pH为6.0—6.5的条件下,每1mol的磷需要加铝1.5-3.0 mol。如果水显碱性,在加铝之前应先降低pH以减少Al(OH) 3 沉淀。 铁盐的混凝沉淀 Fe 2(SO 4 ) 3 + 3HCO 3 ----Fe(OH) 3 +2SO 4 2-+3CO 2 Fe3+ + PO 43----FePO 4 ↓pH=5~5.5 每1mol磷需要加铁(Fe3+) 1.5—3 mol,最佳pH为5.0。 对磷含量为5mg/l左右的二级处理水,通过投加100-200mg/l的氯化铁 ( FeCl 3.6H 2 O)就可以得到90%以上的磷去除率。 金属氢氧化物会形成大块的絮凝体,这对于沉析产物的絮凝是有利的,同时还会吸附胶体状的物质、细微悬浮颗粒。需要注意的是有机物在以化学除磷为目的化学沉析反应中的沉析去除是次要的,但在分离时有机性胶体以及悬浮物的凝结在絮凝体中则是决定性的过程。

反硝化聚磷菌同步解决脱氮除磷两大问题

反硝化聚磷菌同步解决脱氮除磷两大问题 01 反硝化除磷机理 反硝化除磷就是在厌氧 /缺氧环境交替运行的条件下,易富集一类兼有反硝化作用和除磷作用的兼性厌氧微生物,该聚磷菌能利用 NO3-作为电子受体,通过它们的代谢作用同时完成过量吸磷和反硝化过程。最大限度地减少碳源需求量,实现了能源和资源的双重节约。反硝化除磷能节省 COD 约 50%,节省氧约 30%,剩余污泥量减少 50%左右。 大量实验室和生产性规模的生物除磷脱氮研究也表明,当微生物依次经过厌氧、缺氧和好氧 3个阶段后,约占 50%的聚磷菌既能利用氧气又能利用NO3-作为电子受体来聚磷,即反硝化聚磷菌(DPB的除磷效果相当于总聚磷菌的 50%左右)。这些发现一方面说明了硝酸盐亦可作为某些微生物氧化PHB 的电子受体,另一方面也证实了在污水的生物除磷系统中的确存在着 DPB 属微生物,而且通过驯化可得到富集 DPB 的活性污泥。 02 反硝化除磷工艺 该技术对城市污水特别是 C/N 比较低的污水有很好的处理效果。目前满足 DPB 所需环境和基质的工艺有单双两级。在单级工艺中,DPB 细菌、硝化细菌及非聚磷异养菌同时存在于悬浮增长的混合液中,顺序经历厌氧/缺氧/好氧 3种环境,最具代表性的是 BCFS 工艺。在双级工艺中,硝化细菌独立于DPB 而单独存在于某一反应器中,Dephanox 工艺和A2N 工艺是最具代表性的双级工艺。

1、BCFS 工艺 BCFS 工艺是在 UCT 工艺及原理的基础上开发的。 其工艺流程如图 1。改进在于增加了 2个反应池,接触池与混合池;增加了 2个混合液循环 Q1和Q3 。 接触池的功能为:回流污泥和来自厌氧池的混合液在池中充分混合,吸附剩余 COD;有效防止污泥膨胀。 混和池的功能为:最大程度地保证污泥再生而不影响反硝化或除磷;容易控制 SVI;最大程度地利用 DPB 以获得最少的污泥产量。 混合液循环Q1 的功能是为了增加硝化或同时反硝化的机会,从而获得良好的出水氮浓度。Q3则是起辅助回流污泥向缺氧池补充硝酸盐氮的作用。 BCFS 将生物、化学除磷工艺合并,是在线磷分离与离线磷沉淀的生物与化学除磷结合方式,充分利用反硝化聚磷菌的反硝化除磷和脱氮双重作用,来实现磷的完全去除和氮的最佳去除过程。由于充分利用BCFS 工艺中的污泥龄易满足硝化细菌增长所需的生长条件,污泥产

化学除磷设计计算

化学除磷设计计算 (1)药剂投加点 化学除磷工艺可按化学药剂的投加地点来分类,实际中常采用的有:前置除磷、同步除磷和后置除磷。 前置除磷 前置除磷工艺的特点是化学药剂投加在沉砂池中、初沉池的进水渠(管)中、或者文丘里渠(利用涡流)中。其一般需要设置产生涡流的装置或者供给能量以满足混合的需要。相应产生的沉析产物(大块状的絮凝体)在初沉池中通过沉淀被分离。如果生物段采用的是生物滤池,则不允许使用铁盐药剂,以防止对填料产生危害(产生黄锈)。 前置除磷工艺由于仅在现有工艺前端增加化学除磷措施,比较适合于现有污水处理厂的改建,通过这一工艺步骤不仅可以除磷,而且可以减少生物处理设施的负荷。常用的化学药剂主要是石灰和金属盐药剂。前置除磷后控制剩余磷酸盐的含量为,完全能满足后续生物处理对磷的需要。 同步除磷 同步除磷是目前使用最广泛的化学除磷工艺,在国外约占所有化学除磷工艺的50%。其工艺是将化学药剂投加在曝气池出水或二沉池进水中,个别情况也有将药剂投加在曝气池进水或回流污泥渠(管)中。目前已确定对于活性污泥法工艺和生物转盘工艺可采用同步化学除磷方法,但对于生物滤池工艺能否将药剂投加在二次沉淀池进水中尚值得探讨。 后置除磷 后置除磷是将沉析、絮凝以及被絮凝物质的分离在一个与生物处理相分离的设施中进行,因此也叫二段法工艺。一般将化学药剂投加到二沉池后的一个混合池中,并在其后设置絮凝池和沉淀池(或气浮池)。 对于要求不严的受纳水体,在后置除磷工艺中可采用石灰乳液药剂,但必须 进行中和。 对出水pH值加以控制,如可采用CO 2 采用气浮池可以比沉淀池更好地去除悬浮物和总磷,但因为需要恒定供应空气因而运行费用较高。 后置除磷考虑利用滤池,也就是采用微过滤的方式。在二沉池出水管道加药,

污水处理中的化学除磷

污水处理中的化学除磷 磷的去除有化学除磷生物除磷两种工艺,生物除磷是一种相对经济的除磷方法,但由于该除磷工艺目前还不能保证稳定达到l出水标准的要求,所以要达到稳定的出水标准,常需要采取化学除磷措施来满足要求。 化学除磷是通过化学沉析过程完成的,化学沉析是指通过向污水中投加无机金属盐药剂,其与污水中溶解性的盐类,如磷酸盐混合后,形成颗粒状、非溶解性的物质,这一过程涉及的是所谓的相转移过程,反应方程举例如式1。实际上投加化学药剂后,污水中进行的不仅仅是沉析反应,同时还进行着化学絮凝反应,所以必须区分化学沉析和化学絮凝的差异。 FeCl3+K3PO4→FePO4↓+3KCl式1 污水沉析反应可以简单的理解为:水中溶解状的物质,大部分是离子状物质转换为非溶解、颗粒状形式的过程,絮凝则是细小的非溶解状的固体物互相粘结成较大形状的过程,所以絮凝不是相转移过程。 在污水净化工艺中,絮凝和沉析都是极为重要的,但絮凝是用于改善沉淀池的沉淀效果,而沉析则用于污水中溶解性磷的去除。如果利用沉析工艺实现相的转换,则当向污水中投加了溶解性的金属盐药剂后,一方面溶解性的磷转换成为非溶解性的磷酸金属盐,也会同时产生非溶解性的氢氧化物(取决于PH值)。另一方面,随着沉析物的增加及较小的非溶解性固体物聚积成较大的非溶解性固体物,使稳定的胶体脱稳,通过速度梯度或扩散过程使脱稳的胶体互相接触生成絮凝体。最后通过固—液分离步骤,得到净化的污水和固一液浓缩物(化学污泥),达到化学除磷的目的。 根据化学沉析反应的基础,为了生成磷酸盐化合物,用于化学除磷的化学药剂主要是金属盐药剂和氢氧化钙(熟石灰)。许多高价金属离子药剂投加到污水中后,都会与污水中的溶解性磷离子结合生成难溶解性的化合物。出于经济原因,用于磷沉析的金属盐药剂主要是Fe3+、Al3+和Fe2+盐和石灰。这些药剂是以溶液和悬浮液状态使用的。二价铁盐仅当污水中含有氧,能被氧化成三价铁盐时才能使用。Fe2+在实际中为了能被氧化常投加到曝气沉砂池或采用同步沉析工艺投加到曝气池中,其效果同使用Fe3+一样,反应式如式2、3。 Al3++PO43-→AlPO4↓pH=6~7 式2 Fe3++PO43-→FePO4↓pH=5~式3 与沉析反应相竞争的反应是金属离子与OH的反应,所以对于各种不同的金属盐产品应注意的是金属的离子量,反应式如式4、5。 Al3++3OH-→Al(OH)3↓式4 Fe3++3OH-→Fe(OH)3式5 金属氢氧化物会形成大块的絮凝体,这对于沉析产物的絮凝是有利的,同时还会吸附胶体状的物质、细微悬浮颗粒。需要注意的是有机物在以化学除磷为目的化学沉析反应中的沉析去除是次要的,

反硝化除磷技术概述

反硝化除磷技术概述 土建学院 季斌 摘 要:反硝化除磷技术是废水生物除磷的一个新方式,能够解决废水处理工艺运行中碳源不足、污泥产量大和好氧阶段曝气能耗大等问题,因而受到环境保护领域的关注。文章对反硝化除磷的机理、影响因素、现有工艺及研究现状做出综述。 关键词:废水处理;反硝化除磷;DPBs ;缺氧吸磷 Abstract :As a new way to achieve waste water biological phosphorus removal, denitrifying phosphorus removal technology can resolve problems such as organic deficiency, large production of sludge and big energy consumption. It gets much attention from environmental protection domain. The mechanisms, effect factors, processes and research status of denitrifying phosphorus removal were reviewed and discussed in the paper. Key words :wastewater treatment ;denitrifying dephosphatation ;DPBs ;anoxic phosphorus uptake 污水脱氮除磷技术因能有效控制水体富营养化,因而是现阶段污水生物处理技术研究的热点问题。传统的生物脱氮除磷是利用硝化菌和反硝化菌脱氮、聚磷菌PAOs(Phosphorus accumulating organism)除磷达到去除目的。由于释磷和反硝化菌反硝化都需要碳源,两种菌争夺进水中的碳源,当可用碳源量不足时,磷的去除效率将受到影响。1993年荷兰Delft 大学Kuba 等发现集反硝化与除磷于一身的一类兼性厌氧微生物——反硝化聚磷菌DPBs(Denitrifying phosphorus removal bacteria), 它能利用2O 或X - NO 作为电子受体在缺氧 环境下达到去除磷的作用。反硝化除磷有着广泛的应用前景,文章接着介绍了反硝化除磷的影响因素和相关常见的工艺。 1. 反硝化除磷的机理 如下图,厌氧条件下,乙酸分子扩散进入DPBs 的细胞后,与ATP 水解反应耦合,活化成CH 3CH 2~C O A ,其中所需能量由多聚磷酸盐(Poly-P n )的水解提供;部分乙酰辅酶A 经TCA 循环代谢提供合成PHB(聚β-羟基丁酸盐,一种常见细菌内含物)所需的还原力,其余的乙酰辅酶A(约90%)被转化为PHB, 作为储备的营养物质。 缺氧条件下,DPBs 为了生长,利用储存的PHB 作为碳源和能源,通过氧化磷酸化产生ATP , X -NO 作为电子受体被还原成2N ;由于A TP/ADP 增大,而外界污水中磷酸盐丰富, 多聚磷酸盐的合成受到促进,因而能够“过量吸磷”,在细胞内重新储存多聚磷酸盐。后经过剩余污泥的排放而达到最终的除磷的目的,当然剩余污泥需进一步的处理。 图1 反硝化除磷机理示意图

水处理生物脱氮除磷工艺

生物脱氮除磷工艺 第一节 概述 一、营养元素的危害 氮素物质对水体环境和人类都具有很大的危害,主要表现在以下几个方面: 氨氮会消耗水体中的溶解氧; 氨氮会与氯反应生成氯胺或氮气,增加氯的用量; 含氮化合物对人和其它生物有毒害作用:① 氨氮对鱼类有毒害作用;② NO 3- 和NO 2-可被转化为亚硝胺——一种“三致”物质;③ 水中NO 3-高,可导致婴儿患变性血色蛋白症——“Bluebaby ”; 加速水体的“富营养化”过程;所谓“富营养化”就是指水中的藻类大量繁殖而引起水质恶化,其主要因子是N 和P (尤其是P );解决的办法主要就是要严格控制污染源,降低排入水环境的废水中的N 、P 含量;对于城市废水来说,利用传统的活性污泥法进行处理,对N 的去除率一般只有40%左右,对磷的去除率一般只有20~30%。 二、脱氮的物化法 1、氨氮的吹脱法: -++?+OH NH O H NH 423 2 2每 3 采用斜发沸石作为除氨的离子交换体。 出水 折点加氯法脱氯工艺流程

1、铝盐除磷 4343AlPO PO Al →++ + 一般用Al 2(SO 4)3,聚氯化铝(PAC )和铝酸钠(NaAlO 2) 2、铁盐除磷:FePO 4 Fe(OH)3 一般用FeCl 2、FeSO 4 或 FeCl 3 Fe 2(SO 4)3 3、石灰混凝除磷 O H PO OH Ca HPO OH Ca 23452423))((345+→++--+ 向含磷的废水中投加石灰,由于形成OH -,污水的pH 值上升,磷与Ca 2+反应,生成羟磷灰石。 第二节 生物脱氮工艺与技术 一、活性污泥法脱氮传统工艺 1、Barth 提出的三级活性污泥法流程: 第一级曝气池的功能:① 碳化——去除BOD 5、COD ;② 氨化——使有机氮转化为氨氮; 第二级是硝化曝气池,投碱以维持pH 值; 第三级为反硝化反应器,可投加甲醇作为外加碳源或引入原废水。 该工艺流程的优点是氨化、硝化、反硝化分别在各自的反应器中进行,反应速率较快且较彻底;但七缺点是处理设备多,造价高,运行管理较为复杂。 2、两级活性污泥法脱氮工艺 与前一工艺相比,该工艺是将其中的前两级曝气池合并成一个曝气池,使废水在其中同时实现碳化、氨化和硝化反应,因此只是在形式上减少了一个曝气池,并无本质上的改变。 二、缺氧——好氧活性污泥法脱氮系统(A —O 工艺)

关于化学除磷工艺的设计规范

关于化学除磷工艺的设计规范! 磷的去除有化学除磷生物除磷两种工艺,生物除磷是一种相对经济的除磷方法,但由于该除磷工艺目前还不能保证稳定达到0.5mg/l出水标准的要求,所以要达到稳定的出水标准,常需要采取化学除磷措施来满足要求。因此,在室外排水设计规范 GB50014-2006(2014年版)中对于化学除磷设计做了以下几个规定: 1、关于化学除磷应用范围的规定。 《城镇污水处理厂污染物排放标准》GB 18918规定的总磷的排放标准:当达到一级A标准时,在2005年12月31日前建设的污水厂为1mg/L,2006年1月1日起建设的污水厂为0.5mg/L。一般城镇污水经生物除磷后,较难达到后者的标准,故可辅以化学除磷,以满足出水水质的要求。

强化一级处理,可去除污水中绝大部分磷。上海白龙港污水厂试验表明,当FeCl3投加量为40mg/L~ 80mg/L,或Al2(SO4)3·18H2O投加量为60mg/L ~80mg/L时,进出水磷酸盐磷浓度分别为2mg/L~9mg/L和0.2mg/L~1.1mg/L,去除率为60%~95%。 污泥厌氧处理过程中的上清液、脱水机的过滤液和浓缩池上清液等,由于在厌氧条件下,有大量含磷物质释放到液体中,若回流入污水处理系统,将造成污水处理系统中磷的恶性循环,因此应先进行除磷,一般宜采用化学除磷。 2、关于药剂投加点的规定。 以生物反应池为界,在生物反应池前投加为前置投加,在生物反应池后投加为后置投加,投加在生物反应池内为同步投加,在生物反应池前、后都投加为多点投加。 前置投加点在原污水处,形成沉淀物与初沉污泥一起排除。前置投加的优点是还可去除相当数量的有机物,因此能减少生物处理的负荷。后置投加点是在生物处理之后,形成的沉淀物通过另设的固液分离装置进行分离,这一方法的出水水质好,但需增建固液分离设施。同步投加点为初次沉淀池出水管道或生物反应池内,形成的沉淀物与剩余污泥一起排除。多点投加点是在沉砂池、

污水处理中的化学除磷的工艺和方法

污水处理中的化学除磷的工艺和方法 磷的去除有化学除磷生物除磷两种工艺,生物除磷是一种相对经济的除磷方法,但由于该除磷工艺目前还不能保证稳定达到0.5mg/l出水标准的要求,所以要达到稳定的出水标准,常需要采取化学除磷措施来满足要求。 化学除磷是通过化学沉析过程完成的,化学沉析是指通过向污水中投加无机金属盐药剂,其与污水中溶解性的盐类,如磷酸盐混合后,形成颗粒状、非溶解性的物质,这一过程涉及的是所谓的相转移过程,反应方程举例如式1。实际上投加化学药剂后,污水中进行的不仅仅是沉析反应,同时还进行着化学絮凝反应,所以必须区分化学沉析和化学絮凝的差异。 FeCl3+K3PO4→FePO4↓+3KCl 式1 污水沉析反应可以简单的理解为:水中溶解状的物质,大部分是离子状物质转换为非溶解、颗粒状形式的过程,絮凝则是细小的非溶解状的固体物互相粘结成较大形状的过程,所以絮凝不是相转移过程。 在污水净化工艺中,絮凝和沉析都是极为重要的,但絮凝是用于改善沉淀池的沉淀效果,而沉析则用于污水中溶解性磷的去除。如果利用沉析工艺实现相的转换,则当向污水中投加了溶解性的金属盐药剂后,一方面溶解性的磷转换成为非溶解性的磷酸金属盐,也会同时产生非溶解性的氢氧化物(取决于PH值)。另一方面,随着沉析物的增加及较 小的非溶解性固体物聚积成较大的非溶解性固体物,使稳定的胶体脱稳,通过速度梯度或扩散过程使脱稳的胶体互相接触生成絮凝体。最后通过固—液分离步骤,得到净化的污水和固一液浓缩物(化学污泥),达到化学除磷的目的。 根据化学沉析反应的基础,为了生成磷酸盐化合物,用于化学除磷的化学药剂主要是金属盐药剂和氢氧化钙(熟石灰)。许多高价金属离子药剂投加到污水中后,都会与污水中的溶解性磷离子结合生成难溶解性的化合物。出于经济原因,用于磷沉析的金属盐药剂主要是Fe3+、Al3+和Fe2+盐和石灰。这些药剂是以溶液和悬浮液状态使用的。二价 铁盐仅当污水中含有氧,能被氧化成三价铁盐时才能使用。Fe2+在实际中为了能被氧化常投加到曝气沉砂池或采用同步沉析工艺投加到曝气池中,其效果同使用Fe3+一样,反应式如式2、3。 Al3++PO43-→AlPO4↓pH=6~7 式2 Fe3++PO43-→FePO4↓pH=5~5.5 式3 与沉析反应相竞争的反应是金属离子与OH的反应,所以对于各种不同的金属盐产品 应注意的是金属的离子量,反应式如式4、5。 Al3++3OH-→Al(OH)3↓式4 Fe3++3OH-→Fe(OH)3 式5 金属氢氧化物会形成大块的絮凝体,这对于沉析产物的絮凝是有利的,同时还会吸附胶体状的物质、细微悬浮颗粒。需要注意的是有机物在以化学除磷为目的化学沉析反应中的沉析去除是次要的,但在分离时有机性胶体以及悬浮物的凝结在絮凝体中则是决定性的过程。 沉析效果是受PH值影响的,金属磷酸盐的溶解性同样也受PH的影响。对于铁盐最佳PH值范围为5.0~5.5,对于铝盐为6.0~7.0,因为在以上PH值范围内FePO4或AIPO4

污泥反硝化除磷能力

污泥反硝化除磷能力 1 引言 在传统生物脱氮除磷工艺中,氮的去除主要是通过好氧硝化和缺氧反硝化两个独立的过程来 实现,磷则是通过厌氧释磷和好氧吸磷两步完成.因此,同步脱氮除磷需要硝化菌、反硝化菌和 聚磷菌(PAOs)同时参与.由于反硝化过程和释磷过程都需要有机物提供碳源,反硝化细菌和PAOs 之间存在竞争,所以当污水中碳源不足时,系统对氮、磷的去除效果将受到影响. 反硝化除磷菌(DNPAOs)可以利用同一碳源处理硝酸盐/亚硝酸盐和磷,从而避免了对有机碳 源的竞争.DNPAOs能在厌氧条件下将有机物转化为PHA存储在细胞内,而且能利用硝酸盐或亚硝 酸盐作为电子受体进行好氧吸磷.DNPAOs产能效率较低,污泥产量可以降低20%~30%.因此,DNPAOs在同步生物脱氮除磷中具有较大优势.颗粒污泥具有结构致密、沉降性能好、生物密度大、微生物种类多、污泥活性高、抗冲击能力强等优点.研究表明,颗粒污泥内部由于氧气渗透深度 有限可以同时存在好氧/缺氧/厌氧环境,有利于同步脱氮除磷.在SBR反应器中,通过搅拌、曝 气等选择压能够得到反硝化除磷颗粒污泥,这种颗粒污泥兼具反硝化除磷技术和颗粒污泥的优势. 反硝化除磷颗粒污泥技术作为一种新型的污水处理技术,目前尚处于实验室小试阶段,尚未 得到广泛应用,关于颗粒化过程的报道及颗粒污泥特性等的文章也不多见.为此我们进行本试验 的探究,拟为反硝化除磷颗粒污泥的颗粒化过程及其特性提供一定的实践参考和理论依据.试验 采用三套完全相同的SBR反应器R1、R2和R3,以A/O/A运行模式,接种普通絮状污泥,分别以 普通人工配水、加Ca2+人工配水和实际生活污水为进水水源,进行反硝化除磷颗粒污泥的培养,并研究反硝化除磷颗粒污泥的相关特性及其除污性能. 2 材料与方法 2.1 试验装置 本试验采用的3套SBR反应器R1、R2、R3形态结构完全相同,试验装置如图 1所示.反应器由有机玻璃加工制成,内径120 mm,外径220 mm,高800 mm,高径比H/D为6.7,有效容积7 L.SBR反应器的运行采用时间程序控制器进行自动控制,反应器全程不控温,均在室温(23~28 ℃)条件下运行.人工配水和实际生活污水由计量泵从反应器上部引入,厌氧和缺氧过程由搅拌仪实现,转速为300 r · min-1,好氧过程利用气泵从底部曝气实现.试验所用污泥取自武汉市沙湖 污水处理厂二沉池,经初步处理后投加到反应器中,初始污泥浓度约为5000 mg · L-1.

污水处理中的脱氮除磷工艺

污水处理中的脱氮除磷工艺 摘要:在陈述城市污水生物脱氮除磷机理的基础下,简单分析生物脱氮除磷的处理工艺。 关键词:脱氮除磷;机理;工艺 1 前言 城市污水中的氮、磷主要来自生活污水和部分工业废水。氮、磷的主要危害:一是使受纳水体富营养化;二是影响水源水质, 增加给水处理成本;三是对人和生物产生毒害。上述 危害严重制约了城市水环境正常功能的发挥, 并使城市缺水状况加剧,而且随着人民生 活水体的提高和环境的恶化,对水质的要求也越来越高。为了达到较好的脱氮除磷效果,环境工作者对一些传统工艺进行了改进或设计出新工艺,本文简单介绍一些脱氮除磷工艺。 2 生物脱氮原理【1】 一般来说, 生物脱氮过程可分为三步: 第一步是氨化作用, 即水中的有机氮在氨化细菌的作用下转化成氨氮。在普通活性污泥法中, 氨化作用进行得很快, 无需采取特殊的措施。第二步是硝化作用, 即在供氧充足的条件下, 水中的氨氮首先在亚硝酸菌的作用下被氧化成亚硝酸盐, 然后再在硝酸菌的作用下进一步氧化成硝酸盐。为防止生长缓慢的亚硝酸细菌和硝酸细菌从活性污泥系统中流失, 要求很长的污泥龄。第三步是反硝化作用, 即硝化产生的亚硝酸盐和硝酸盐在反硝化细菌的作用下被还原成氮气。这一步速率也比较快, 但由于反硝化细菌是兼性厌氧菌, 只有在缺氧或厌氧条件下才能进行反硝化, 因此需要为其创造一个缺氧或厌氧的环境( 好氧池的混合液回流到缺氧池) 。反应方程式如下: ( 1) 硝化反应: 硝化反应总反应式为: ( 2) 反硝化反应:

另外, 由荷兰Delft 大学Kluyver 生物技术实验室试验确认了一种新途径, 称为厌氧氨( 氮) 氧化。即在厌氧条件下,以亚硝酸盐作为电子受体,由自养菌直接将氨转化为氮, 因而不必额外投加有机底物。反应式为:NH4+NO2→N2+2H2O 3 生物除磷原理【1】 所谓生物除磷, 是利用聚磷菌一类的微生物, 在厌氧条件下释放磷。而在好氧条件下, 能够过量地从外部环境摄取磷, 在数量上超过其生理需要, 并将磷以聚合的形态储藏在菌体内, 形成高磷污泥排出系统, 达到从污水中除磷的效果。 生物除磷过程可分为3 个阶段,即细菌的压抑放磷、过渡积累和奢量吸收。首先将活性污泥处于短时间的厌氧状态时,储磷菌把储存的聚磷酸盐进行分解,提供能量,并大量吸收污水中的BOD、释放磷( 聚磷酸盐水解为正磷酸盐) ,使污水中BOD 下降,磷含量升高。然后在好氧阶段,微生物利用被氧化分解所获得的能量,大量吸收在厌氧阶段释放的磷和原污水中的磷,完成磷的过渡积累和最后的奢量吸收,在细胞体内合成聚磷酸盐而储存起来,从而达到去除BOD 和磷的目的。反应方程式如下: ( 1) 聚磷菌摄取磷: ADP+H3PO4+能量→ATP+H2O ( 2) 聚磷菌的放磷: ATP+H2O→ADP+H3PO4+能量 4.脱氮除磷工艺 4.1 AB法【2】 AB法污水处理工艺是一种新型两段生物处理工艺,是吸附生物降解法的简称。该工艺将高负荷法和两段活性污泥法充分结合起来,不设初沉池,A、B两段严格分开,形成各自的特征菌群,这样既充分利用了上述两种工艺的优点,同时也克服了两者的缺点。所以

城镇污水处理A2O工艺脱氮与除磷矛盾

A2O工艺脱氮与除磷矛盾 A2O法又称AAO法,是英文Anaerobic-Anoxic-Oxic第一个字母的简称(厌氧-缺氧-好氧法),是一种常用的污水处理工艺,可用于二级污水处理或三级污水处理,以及中水回用,具有良好的脱氮除磷效果。在传统A2O工艺的单泥系统中高效地完成脱氮和除磷两个过程,就会发生各种矛盾冲突,比如泥龄的矛盾、碳源竞争、硝酸盐及溶解氧(DO)残余干扰等。 一、传统A2O工艺存在的矛盾 1、污泥龄矛盾 传统A2/O工艺属于单泥系统,聚磷菌(PAOs)、反硝化菌和硝化菌等功能微生物混合生长于同一系统中,而各类微生物实现其功能最大化所需的泥龄不同: 1)自养硝化菌与普通异养好氧菌和反硝化菌相比,硝化菌的世代周期较长,欲使其成为优势菌群,需控制系统在长泥龄状态下运行。冬季系统具有良好硝化效果时的污泥龄(SRT)需控制在30d以上;即使夏季,若SRT<5 d,系统的硝化效果将显得极其微弱。 2)PAOs属短世代周期微生物,甚至其最大世代周期(Gmax)都小于硝化菌的最小世代周期(Gmin)。 从生物除磷角度分析富磷污泥的排放是实现系统磷减量化的唯一渠道。 若排泥不及时,一方面会因PAOs的内源呼吸使胞内糖原消耗殆尽,进而影响厌氧区乙酸盐的吸收及聚-β-羟基烷酸(PHAs)的贮存,系统除磷率下降,严重时甚至造成富磷污泥磷的二次释放;另一方面,SRT也影响到系统内PAOs和聚糖菌(GAOs)的优势生长。 在30℃的长泥龄(SRT≈10d)厌氧环境中,GAOs对乙酸盐的吸收速率高于PAOs,使其在系统中占主导地位,影响PAOs释磷行为的充分发挥。 2、碳源竞争及硝酸盐和DO残余干扰 在传统A2/O脱氮除磷系统中,碳源主要消耗于释磷、反硝化和异养菌的正常代谢等方面,其中释磷和反硝化速率与进水碳源中易降解部分的含量有很大关系。一般而言,要同时完成脱氮和除磷两个过程,进水的碳氮比(BOD5 /ρ(TN))>4~5,碳磷比(BOD5/ρ(TP))>20~30。

化学除磷简介

化 学 除 磷 简 介

污水处理厂化学除磷
一、 现状 由于广泛使用含磷洗涤剂,我国城市污水中普遍含有一定量的 磷,一般为 5-10mg/L。磷是藻类繁殖所需各种成分中的限制性因素 之一, 水体中磷含量的高低与水体富营养化程度有密切的关系。 同时, 对于引发水体富营养化而言,磷的作用远大于氮的作用,水体中磷的 浓度达到一定数值时就可以引起水体的富营养化。因此,在污水处理 中进行除磷是必要的。我国《城镇污水处理常污染物排放标准》 (GB18918-2002)中明确规定,自 2006 年 1 月 1 日起建设的污水处 理厂总磷指标的一级 A 排放标准为 0.5mg/L。 污水中的磷可以通过 化学和生物两种方法去除。生物除磷是一种相对经济的除磷方法,但 由于现阶段生物除磷工艺还无法保证出水总磷稳定达到 0.5mg/L 标准 的要求,所以常需要采用或辅助以化学除磷措施。 二、 化学除磷原理 化学除磷主要是通过化学沉析过程完成的, 化学沉析是指通过向 污水中投加无机金属盐药剂与污水中溶解性的盐类(如磷酸盐)反应 生成颗粒状、非溶解性的物质。实际上投加化学药剂后,污水中进行 的不仅是沉析反应,同时还发生着化学絮凝作用,即形成的细小的非 溶解状的固体物互相粘结成较大形状的絮凝体。
2

三、化学除磷药剂 为了生成非溶解性的磷酸盐化合物, 用于化学除磷的化学药剂主 要是金属盐药剂和氢氧化钙。 许多高价金属离子药剂投加到污水中后 都会与污水中的溶解性磷离子结合生成难溶解性的化合物, 但出于经 济原因考虑,用于磷沉析的金属盐药剂主要是 Fe 盐、Fe2+盐和 Al3+ 盐,这些药剂是以溶液和悬浮液状态使用的。除金属盐药剂外,氢氧 化钙也用作沉析药剂,反应生成不溶于水的磷酸钙。 污水化学除磷 中常用的药剂类型详见表 1。 表1
类型 名称
3+
污水净化常用药剂
分子式 状态
固体
Al2(SO4)3·18H2O
硫酸铝
Al2(SO4)3·14H2O
液体
nAl2(SO4)3·xH2O+mFe2(SO4)3·yH2O 铝盐 AlCl3 氯化铝 AlCl3+FeCl3
固体
液体
液体
聚合氯化铝
[Al2(OH)nCl6-n]m
液体
二价铁盐
硫酸亚铁
FeSO4·7H2O
固体
3

相关主题
文本预览
相关文档 最新文档