当前位置:文档之家› 第3章 刚体力学基础汇总

第3章 刚体力学基础汇总

第3章  刚体力学基础汇总
第3章  刚体力学基础汇总

第3章 刚体力学基础

一、基本要求

1.理解质点及刚体转动惯量、角动量的概念,并会计算质点及刚体(规则形状刚体)的转动惯量、角动量; 2.理解刚体绕定轴转动的转动定律,并应用它来求解定轴转动刚体力矩和角加速度等问题; 3.会计算力矩的功、刚体的转动动能、刚体的重力势能,会应用机械能守恒定律解答刚体定轴转动问题;

4.掌握刚体的角动量定理和角动量守恒定律,并会分析解决含有定轴转动刚体系统的力学问题(质点与刚体碰撞类问题等)。

二、基本内容

(一)本章重点和难点:

重点:刚体绕定轴转动定律及角动量守恒定律。

难点:刚体绕定轴转动系统的角动量守恒定律及其应用。 (二) 知识网络结构图:

??????

???????????????????角动量守恒定律定轴转动定律基本定律转动动能角动量冲量矩转动惯量力矩基本物理量

(三)容易混淆的概念:

1.转动惯量和质量

转动惯量反映刚体转动状态改变的难易程度,即刚体的转动惯性大小的量度;质量反映质点运动状态改变的难易程度,即质点的惯性大小的量度。

2.平动动能和转动动能

平动动能是与质量和平动速度的平方成正比;转动动能是与转动惯量和角速度的平方成正比。

(四)主要内容:

1.描述刚体定轴转动的角位置θ,角位移θ?、角速度ω和角加速度α(β)等物理量

t t d d ,d d ωαθω==

角量与线量的关系:

2n t ωαω

θr a r a r v r s ====

2.转动惯量--转动质点对转轴的转动惯量,等于转动质点的质量m 成以质点到转轴的距离r 的平方。2J

m r =?

(1)质量连续分布的刚体:

?=m

r J d 2

线分布:dl dm ?=λ λ-质量线分布刚体,单位长度的质量。 面分布:dS dm ?=σ σ- 质量面分布刚体,单位面积的质量。 体分布:dV dm ?=ρ ρ 质量体分布刚体,单位体积的质量。 (2)质量离散分布刚体的转动惯量:2

i

J m r

=?∑

(3)平行轴定理 2

C J J md =+

3.刚体绕定轴转动的转动定律—刚体的合外力矩等于转动惯量乘以角加速度。

t J

J M d d ω

α==

i i i M M r F ==?∑∑

力矩:

F r M ?= 力对轴的力矩大小:θsin rF M =

4.刚体绕定轴转动的动能定理--合外力矩对刚体所作的功,等于刚体转动动能的增量。

2

1

222111

22

W Md J J θθθωω==

-? 2

1

W Md θθθ=? 力矩的功

221

ωJ E k =

刚体绕定轴转动的转动动能:

对于质点、刚体组成的系统,动能定理仍然适用,系统的动能包括系统内所有质点的平

动动能和刚体的转动动能。

5.刚体转动系统机械能守恒定律--当转动刚体系统内力只有保守力矩作功,其他外力矩和非保守内力矩不作功或作的总功为零,则整个系统机械能守恒。

21

常量2

k p c E E J mgh ω+=

+= P c E mgh = 刚体的重力势能

6.角动量定理与角动量守恒定律 (1)角动量—质点位矢与动量的叉积。

运动质点对某一定点的角动量:v m r p r L

?=?= 刚体绕定轴转动的角动量:ωJ L =

(2)角动量定理--对一固定轴,作用于系统的合外力矩的冲量矩等于系统对该轴的角动量的增量。

?-=1

2

ωω

J J Mdt

2

1

t t Mdt ?

冲量矩:力矩的时间积累效应。

(3)角动量守恒定律--若刚体所受合外力矩为零时,刚体的角动量守恒。 当0=M 时,常量==ωJ L (五)思考问答:

问题1 以恒定角速度转动的飞轮上有两个点,一个点在飞轮的边缘,另一个点在转轴与边缘之间的一半处。试问:在t ?时间内,哪一个点运动的路程较长?哪一个点转过的角度较

大?哪一个点具有较大的线速度、角速度、线加速度和角加速度?

答:刚体绕定轴转动时,刚体内的任意各点具有相同的角速度、角加速度;各点的线速度、线加速度与角量之间的关系为:2,,ωαωτr a r a r v n ===。所以飞轮边缘处的点的运动路程较长;两点转过的角度一样大;边缘的点具有较大的线速度、线加速度,两点的角速度、角加速度一样大。

问题2 如果一个刚体所受合外力为零,其合力矩是否也一定为零?如果刚体所受合外力矩

为零,其合外力是否也一定为零?

答: 合外力为零时,其合力矩不一定为零。合外力矩为零时,其合外力不一定为零,刚体绕定轴O 在纸平面内转动,其中12212,2F F r r ==,其合力矩

M=02211=-r F r F ,但其合力

03121≠=+=F F F F 。

问题3 有两个飞轮。一个是木制的,周围镶上铁质的轮缘。另一个是铁质的,周围镶上木制的轮缘。若这两个飞轮的半径相同,总质量相等,以相同的角速度绕通过飞轮中心的轴转动,哪一个飞轮的动量较大? 答:从转动动能22

1

ωJ E k =

可知,当两者ω相同时,J 越大的飞轮,其K E 也越大。由 ?=dm

r J 2可得木制飞轮的转动惯量为:

22

2221m 2

1

(m 21R M M R M R R M J ??

?

??-=+=+=木总铁木铁木木)

而铁制飞轮的转动惯量为:2222212121R M M R m M R m R M J ???

??-=??? ??+=+=铁总木铁木铁铁

由于两个飞轮的半径相同,且木铁M M 2

1

21?,所以铁木J J ?,即木制的飞轮动能较大。

问题4 如果一个质点系的总角动量等于零,能否说此质点系中每一个质点都是静止的?如果一个质点系的总角动量为一常量,能否说作用在质点系上的合外力为零?

答:由于()v m r P r L

?=?=,所以,角动量不仅取决于矢径r 、动量v m 的量值,还取

决于矢径与动量之间的夹角(取向),因此,总角动量为零,可以有两种情况:第一,每一个质点的角动量都不为零,但总和为零,则每一个质点不可能静止;第二,每一个质点的角动量都为零,此时,可以使每一个质点都静止,也可以是矢径与速度相互平行。综上可知,每一质点不一定都静止。此外,角动量守恒的条件是合外力矩为零,而合外力不一定是零。 问题 5 下面几个物理量中,那些与原点的选择有关?那些无关?(1)位矢;(2)位移;(3)速度;(4)角动量。

答:位移,速度与参考系选择有关,与坐标原点选择无关;位矢、角动量既与参考系选择有

关,也与坐标原点选择有关。

问题6 转动惯量的物理意义是什么,大小和什么有关?

答: 转动惯量的物理意义是:描述刚体作转动时保持其原运动状态的性质——转动惯性。转动惯量的大小不仅与刚体的质量有关,也与转轴的位置有关,也就是说与刚体的总质量和相对于转轴的分布有关。

问题7 为什么在研究刚体运动时,要研究力矩的作用?力矩和哪些因素有关?

答:一个静止的刚体能够获得平动加速度的原因是:相对它的质心而言所受的合外力不为零。一个静止的刚体相对某一转轴能够获得角加速度的原因是:刚体所受到的相对转轴的合外力矩不为零。因此,刚体的转动是与其受到的相对转轴的合外力矩密切相关的。

取z 轴为刚体转动的固定轴时,对转动有贡献的合外力矩是∑=

iz

z M

M ,其中

i i i iz r F M θsin =,i F 是作用在刚体上的第i 个外力,在转动轴平面内的分量,而i r 是转轴

(z 轴)到i F 作用点的距离,i θ是i r 与i F 间由右手定则决定的夹角。所以,对z 轴的力矩不但与各外力在转动平面内分量的大小i F 有关,还与i F 的作用线和z 轴的垂直距离(力臂)

i i i r d θsin =的值有关。

问题8 在定轴转动中,质点与刚体发生碰撞时动量是否守恒?

答:质点与定轴转动的刚体发生碰撞时,转轴作用于刚体的力(外力)不为零,且比较大,不能忽略,故系统的动量不守恒。只有在合外力矩为零时,角动量守恒。

问题9 在一个系统中,如果该系统的角动量守恒,动量是否一定会守恒?反之,如果该系统的动量守恒,角动量是否一定守恒?

答:不一定。当作用于一个系统的合外力矩为零时,合外力(即外力的矢量和)不一定为零,所以该系统的角动量守恒时,动量不一定守恒。同理,当对一个系统作用的合外力为零时(即外力的矢量和),合外力矩不一定为零,所以该系统的动量守恒时,角动量也不一定守恒。

三、解题方法

1.刚体绕定轴转动的特征:刚体内每个质点都在与转轴垂直的平面内作圆周运动,每个质点的角速度、角加速度均相同;但因每个质点距转轴的距离不同,即作圆周运动的半径不同,故各质点的线速度,线加速度不同。

2.类比方法:与质点动力学相似,刚体绕定轴转动存在一些与质点直线运动相对应的定理和定律(刚体绕定轴转动运动学公式与质点直线运动学公式、刚体绕定轴转动定律与牛顿第二定律),利用与质点动力学类比,便于对刚体绕定轴转动定理和定律的记忆和理解。

3.解动力学问题时,定理、定律的选择技巧:到目前为止,我们已学习了牛顿运动定律、动量定理、动量守恒定律、动能定理、功能原理、机械能守恒定律、角动量守恒定律等。我们会迂到质点平动、刚体转动、综合等问题,在解这些动力学问题时,如何选择其中的某些定理、定律来解题呢?

我们在解动力学问题过程中,通常是首先考虑能否用功能原理(或机械能守恒定律)求解;因功、能都是标量,而且都是状态量,可不考虑过程中发生的复杂细节。其次,平动问题:考虑能否用动量定理或动量守恒定律求解;转动问题:考虑能否用角动量定理或角动量守恒定律求解。 因(角)动量是矢量,稍复杂一些。再考虑能否用牛顿运动定律求解。

4.根据问题涉及物理量,确定解题路径:

(1)如问题涉及到加速度,应首选动力学方法。应用牛顿定律、转动定律以及运动学规律,可求得几乎所有的基本力学量。

(2)如问题不涉及加速度,但涉及时间,应选择(角)动量方法:考虑用动量定理和角动量定理处理问题。

(3)如问题不涉及加速度,又不涉及时间,应选择能量方法:考虑用动能定理或功能原理、机械能守恒定律处理问题。

(4)如问题不涉及加速度,又不涉及时间,且是碰撞等作用:应选择(角)动量守恒方法: 对平动问题:可首选考虑用动量守恒定律;对有转动问题:可首选考虑用角动量守恒定律处理问题。

注:1.动量守恒定律适用于平动问题;角动量守恒定律适用于转动问题。 2.分析问题要紧紧抓住运动过程和运动状态。

四、解题指导

刚体转动惯量的计算(平行轴定理应用)

1.如图所示,求大圆盘的实心部分对O 轴(垂直于盘面)的转动惯量。 (已知 r R 2= ,大盘质量为M ,小盘质量为m )

[分析] 由于转动惯量有可加性,所以先分别求出大盘和小盘对O 轴的转动惯量,再把小盘的除去即得大盘实心部分对O 轴的转动惯量。

解:大盘对O 轴的转动惯量:212

1

MR J =

小盘对O 轴的转动惯量:2

22

3mr J =

。 所以实心部分对O 轴的转动惯量为:

角动量守恒定律的应用

2.匀质细棒,可绕其一端的水平光滑固定轴O 转动,原来静止悬挂在竖直位置,今有一质

量为m 的小球以水平速度v 与其相碰撞,如图所示,则在碰撞过程中,小球和棒组成的系统对O 点的???????守恒。 解:(提示:小球和棒组成的系统在碰撞过程中,因为棒除受到球和棒相互作用的内力外,还受到棒由于碰撞致使轴对其的冲击力,这个力是系统的外力,与内力相比较不能忽略,作用系统的合外力不为零,所以系统的动量不守恒;在碰撞过程中,小球的重力、棒的重力对轴O 的力矩为零,轴对棒的支持力和冲击力对轴的力矩也为零,所以作用于系统的外力对轴O 的力矩为零,故系统的角动量守恒。)

刚体定轴转动定律的应用

3.图示系统,弹簧劲度系数k ,质量1m 的物体置于光滑水平面上,定滑轮半径为r ,转动惯量为J ,开始时系统静止,弹簧无伸长,求物体2m 由静止下降距离h 时的速度大小。

解:(提示:可用牛顿定律和刚体转动定律求解或用机械能守恒定律求解)

解:方法一 用牛顿定律和刚体转动定律求解。

首先将三个物体示力图画出,其中:

T2T2T1

T1,F F F F '='=

2m 下降的距离y 即代表弹簧伸长量。

由牛顿定律得1m 和2m 的运动方程:

2222121313(2)2222

J J J MR mr M r mr =-=

-=-2211

(43)(43)28

M m r M m R =

-=-

P 2

F T2

F 'T2

m

O

a

m ky F 1T1=-

a

m F g m 2T22=-

由刚体转动定律得:

α

J r F r F =-T1T2 及αr a =

联立以上各式求得加速度:

2

212/r J m m ky g m a ++-=

又因为:

y

v v

y y t v t v a d d d d d d d d =?== 所以:

y r

J m m ky

g m v v v

h

d /d 2

212 0

++-=?

?

积分得:

2

2122/2r J m m kh gh m v ++-=

方法二 用机械能守恒定律求解

取21,m m 、弹簧、滑轮、绳子和地球为系统,对于这一系统,只有保守内力(重力、弹簧力)做功,其它外力不做功,非保守内力做功之和为零,因此系统的机械能守恒。取弹簧原长处为弹性势能的零点,2m 下降h 时,物体21,m m 的速度为v ,滑轮的转动角速度为

ω,则:

222221*********ky J v m v m gh m o ++++

-=ω

得:

2

2122/2r J m m kh gh m v ++-=

4.唱机的转盘绕通过圆盘中心的固定竖直轴转动,唱片放上后,将受到转盘的摩擦力作用而随着转盘转动。设唱片可以视为质量为m ,半径为R 的圆盘,唱片与转盘之间的摩擦因数为μ,如图所示求唱片刚放上去时受到的摩擦力矩和唱片从刚放上去到具有角速度ω时所需的时间。

解:(提示:先用微积分法求出唱片所受的摩擦力矩,再由刚体定轴转动定律求解) 唱片之所以转动是因为受到转盘施加的力矩即摩擦力矩的作用,它是唱片转动的动力矩。为计算唱片所受的摩擦力矩,在唱片上选取一半径为r ,宽度为r d 的圆环,其质量为:

r r m d 2d ??=πσ(

2R m

πσ=

则圆环所受到的摩擦力矩为:

rgr

r mgr M d 2d d f πμσμ==

整个唱片所受到的摩擦力矩为:

??

==R

r r g M M 0

2

f f d 2d πμσmgR R

g μπ

μσ32

3123==

再由刚体定轴转动定律:

t J J M d d f ωα== ??=ωω 0 0 f d d t M J t

g R mgR mR M J t μωμω

ω433221

2f

=

==

角动量守恒定律的应用

5.图示一质量为m ,长为l 的均匀细棒,可以在水平面内绕通过其中心的竖直轴O 转动,

开始时棒静止,今有一质量为m '的小球,以水平速度u 与棒的一端垂直相碰,设碰撞是完全弹性碰撞。求碰撞后小球弹回的速率和棒的角速度。

解:(提示:从角动量守恒定律和机械能守恒定律着手分析)

对由球和棒所组成的系统,在小球与棒碰撞的过程中,对轴O 的角动量守恒。设碰撞后小球以速率v 弹回,棒以角速度ω转动,由系统碰撞前后的角动量守恒:

22l v m J l u

m '-='ω

又因为系统作完全弹性碰撞,机械能守恒,则:

22221

2121v m J u m '+='ω

2

121ml J =

联立得:

l m m u m )3(12'+'=

ω, m m m m u v '+'-=

3)

3(

m '

五、能力训练

1.均匀细棒可以绕通过一端O 且与棒垂直的水平光滑轴转动,今使棒从水平位置由静止开始下落,下落位置摆动到竖直位置的过程中,则( )。 (A )角速度从小到大,角加速度从大到小 (B )角速度从小到大,角加速度从小到大 (C )角速度从大到小,角加速度从大到小 (D )角速度从大到小,角加速度从小到大。

2.如图所示一匀质细杆质量为m 、长为l ,绕通过杆一端并与杆成θ角的轴的转动惯量为( )。 (A )231ml (B )2

121ml (C )θ22

sin 31ml (D )θ

22cos 21ml

3.一个绕固定水平轴O 作匀速转动的转盘,如图所示,在同一水平直线上,从相反方向射入两颗质量相同、速率相同的子弹。 且子弹留在圆盘中,则子弹入射后,转盘的角速度为( )。 (A )增大 (B )减小 (C )不变 (D )不能确定。

4.一轻质细绳绕在具有水平转轴的定滑轮上,绳下端挂一质量为 m 的物体,此时滑轮的角加速度为α。若将物体取下,改用大小等于mg 、方向竖直向下的力拉绳子,则滑轮的角加速度将----------------------------------------------( )。

(A )变大 (B )不变 (C )变小 (D )不确定

5.如图所示,长为l 的轻杆,两端各固定质量为m 和m 2的小球,杆可绕水平光滑O 轴转动,O 距两端距离各为

3l 和3

2l 。初始静止在竖直状态,另有一质量为m 的小球以水平初速度0v 与杆端的小球m 做对心碰撞,碰后以2

v 的速度返回,则杆所获得的角速度为( )。

2m

m

(A )

l v 230 (B )l v

20 (C )

l v 430 (D )l

v 40 6.一水平细棒上对称地串着两个质量为m 的小球,细棒长为d 5,且通过中心垂直棒的轴

转动,小球离轴的距离为d ,如图所示当转速达到0ω时,两球开始向棒两端滑动,此时撤去外力,任棒自由转动,在此后过程中,棒与小球系统的( )。 (A )动能和动量守恒 (B )动能和角动量守恒 (C )只有动量守恒 (D )只有角动量守恒

7.花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为0I ,角速度为

0ω;然后将两臂合拢,使其转动惯量变为03

2I 时,角速度变为=ω??????????。

8.一轻绳跨过两个质量为m 、半径均为R 的均匀圆盘状滑轮,绳的两端分别系着质量为m 和m 2的重物,系统由静止释放,绳与两滑轮无相对滑动,求重物的加速度和两滑轮间绳的张力。

9.一匀质细棒长为l 2,质量为M ,可竖直平面内绕过其中心的水平轴转动,开始静止于水平位置。一质量为m 的小球,以速度0v 垂直落到棒端与棒发生弹性碰撞,求小球碰撞后的回跳速度及棒的转动角速度。(不考虑重力作用)

10.如图所示装置,质量kg m 161=的实心圆柱体A 的半径为cm r 15=,绕固定水平轴转动,阻力忽略不计。一条轻柔的绳子绕在其上,另一端系一个质量kg m 0.82=惯物体B 。求:(1)物体B 由静止开始下降s 0.1的距离;(2)绳的张力。

题10图 题11图 题12 图

11.以质量为m ',半径为R 的均匀圆盘,通过其中心且与盘面垂直的水平轴以角速度ω转

动。若在某时刻,一质量为m 的小碎块从盘边缘裂开,且恰好沿垂直方向上抛,问它可能达到的高度是多少?破裂后圆盘的角动量为多大?

12. 在光滑水平面上有一杆,其质量为kg m 0.11=,长cm l 40=,可绕通过其中点并与之垂直的轴转动。一质量为kg m 102=的子弹,以s m v /200=的速度射入杆端,其方向与杆及轴正交,试求所得到得角速度。

13. 一质量为kg 0.20的小孩,站在一半径为m 00.3,转动惯量为2450kgm 的静止水平转台边缘上,此转台可绕通过转台中心的数值轴转动,转台与轴间的摩擦不计。如果此小孩相对转台以s m /00.1的速率沿转台边缘行走,问转台的角速率有多大?

14.质量为m ',半径为R 的转台,以角速度a ω转动,转轴的摩擦略去不计,(1)有一质量为m 的蜘蛛垂直地落在转台边缘上,此时,转台的角速度ωb 为多少?(2)若蜘蛛随后慢慢的爬向转台中心,当它离转台中心的距离为r 时,转台的角速度ωc 为多少?设蜘蛛下落前距离转台很近。

15.如图所示,A 与B 两飞轮的轴杆可由摩擦啮合器使

之连接,A 轮的转动惯量J 1=10.0kg ?m 2

。开始时B 轮静止,A 轮以n 1=600r ?min

1

-的转速转动,然后使A 与

B 连接,因而B 轮得到加速度而A 轮减速,直到两轮的转速都等于n=200r ?min

1

-为止。求(1)B 轮的转动惯量; 题15图

(2)在啮合过程中损失的机械能。

16.在上一章的冲击摆问题中,若以质量为m '的均匀细棒代替柔绳,子弹速度的最小值应为多少?

六、参考答案

1.A ; 2. C ; 3. B ; 4. A ; 5. A ; 6. D ; 7.02

3ω ;

8.g

a 41

=

, mg J F F 811T1T =+=α;

9.033v m M m

M v +-=

, L

m M m v )3(60+=

ω; 10.(1) m s 45.2=;(2)N F T 2.39=; 11.(1)g

R h 22

2ω=

;(2)ω221R m m L ??

?

??-'=; 12.1

1.29-='s ω;13.120105

2.9--?-=s ω;

14.(1)m m m a b 2+''=ωω;(2)2

222mr

R m R m a

c +''=ωω; 15.(1)220.20kgm J =;(2)J E 4

1032.1?-=?;16.gl m

m v 24'

=

第五章_刚体力学_习题解答

5.1、一长为l 的棒AB ,靠在半径为r 的半圆形柱面上,如图所示。今A 点以恒定速度0v 沿水平线运动。试求:(i)B 点的速度B v ;(ii)画出棒的瞬时转动中心的位置。 解:如图,建立动直角系A xyz -,取A 点为原点。B A AB v v r ω=+? ,关键是求ω 法1(基点法):取A 点为基点,sin C A AC A CO A A v v r v v v v ωθ=+?=+=+ 即sin AC A r v ωθ?= ,AC r ω⊥ ,化成标量为 ω在直角三角形OCA ?中,AC r rctg θ= 所以200sin sin sin cos A AC v v v r rctg r θθ θωθθ === 即2 0sin cos v k r θωθ = 取A 点为基点,那么B 点的速度为: 20023 00sin [(cos )sin ] cos sin sin (1)cos B A AB v v v r v i k l i l j r v l l v i j r r θωθθθθθθ=+?=+?-+=-- 法2(瞬心法):如图,因棒上C 点靠在半圆上,所以C 点的速度沿切线方向,故延长OC ,使其和垂直于A 点速度线交于P 点,那么P 点为瞬心。 在直角三角形OCA ?中,sin OA r r θ = 在直角三角形OPA ?中,2 cos sin AP OA r r r ctg θ θθ == 02 cos ()sin A PA PA PA r v r k r j r i i v i θωωωωθ=?=?-=== ,即20sin cos v r θωθ = 取A 点为基点,那么B 点的速度为: 2002300sin [(cos )sin ] cos sin sin (1)cos B A AB v v v r v i k l i l j r v l l v i j r r θωθθθ θθ θ=+?=+?-+=-- 5.2、一轮的半径为r ,竖直放置于水平面上作无滑动地滚动,轮心以恒定速度0v 前进。求轮缘上任一点(该点处的轮辐与水平线成θ角)的速度和加速度。 解:任取轮缘上一点M ,设其速度为M v ,加速度为M a

第05章刚体力学基础学习知识补充

第五章 刚体力学基础 一、选择题 1 甲乙两人造卫星质量相同,分别沿着各自的圆形轨道绕地球运行,甲的轨道半径较小,则与乙相比,甲的: (A)动能较大,势能较小,总能量较大; (B)动能较小,势能较大,总能量较大; (C)动能较大,势能较小,总能量较小; (D)动能较小,势能较小,总能量较小; [ C ]难度:易 2 一滑冰者,以某一角速度开始转动,当他向内收缩双臂时,则: (A)角速度增大,动能减小; (B)角速度增大,动能增大; (C)角速度增大,但动能不变; (D)角速度减小,动能减小。 [ B ]难度:易 3 两人各持一均匀直棒的一端,棒重W ,一人突然放手,在此瞬间,另一个人感到手上承受的力变为: (A)3w ; (B) 2w (C) 43w ; (D) 4 w 。 [ D ]难度:难 4 长为L 、质量为M 的匀质细杆OA 如图悬挂.O 为水平光滑固定转轴,平衡时杆竖直下垂,一质量为m 的子弹以水平速度0v 击中杆的A 端并嵌入其内。那么碰撞后A 端的速度大小: (A)M m mv +12120; (B) M m mv +330 ; (C) M m mv +0 ; (D) M m mv +330。 [ B ]难度:中 L

5 一根质量为m 、长为l 的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动.抬起另一端使棒竖直地立起,如让它掉下来,则棒将以角速度ω撞击地板。如图将同样的棒截成长为2 l 的一段,初始条件不变,则它撞击地板时的角速度最接近 于: (A)ω2; (B) ω2; (C) ω; (D) 2ω。 [ A ]难度:难 6 如图:A 与B 是两个质量相同的小球,A 球用一根不能伸长的绳子拴着,B 球用橡皮拴着,把它们拉到水平位置,放手后两小球到达竖直位置时绳长相等,则此时两球的线速度: (A)B A v v = (B) B A v v < (C) B A v v > (D)无法判断。 [ C ]难度:中 7 水平圆转台上距转轴R 处有一质量为m 的物体随转台作匀速圆周运动。已知物体与转台间的静摩擦因数为μ,若物体与转台间无相对滑动,则物体的转动动能为: (A)mgR E k μ41≤ (B) mgR E k μ2 1 ≤ (C) mgR E k μ≤ (D) mgR E k μ2≤ [ B ]难度:中 8 一匀质细杆长为l ,质量为m 。杆两端用线吊起,保持水平,现有一条线突然断开,如图所示,则断开瞬间另一条绳的张力为: (A) mg 43 (B) mg 41 (C) mg 2 1 (D) mg [ B ]难度:难 9 一根均匀棒AB ,长为l ,质量为m ,可绕通过A 端且与其垂直的固定轴在竖直面内自由摆动,已知转动惯量为2 3 1 mgl .开始时棒静止在

第五章 刚体力学(答案)

一、选择题 [ C ] 1、(基础训练2)一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1 和m 2的物体(m 1<m 2),如图5-7所示.绳 与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力 (A) 处处相等. (B) 左边大于右边. (C) 右边大于左边. (D) 哪边大无法判断. 【提示】逆时针转动时角速度方向垂直于纸面向外,由于(m 1<m 2),实际上滑轮在作减速转动,角加速度方向垂直纸面向内,所以,由转动定律21()T T R J β-=可得:21T T > (或者:列方程组:1112 2212m g T m a T m g m a T R T R J a R ββ-=??-=???-=? ?=?? ,解得:()()122 12m m gR m m R J β-=++,因为m 1<m 2,所以β<0,那么由方程120T R T R J β-=<,可知,21T T >) [ B ] 2、(基础训练5)如图5-9所示,一静止的均匀细棒,长为L 、质量为m 0,可 绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为2 01 3 m L .一质量为m 、速率为v 的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为v 2 1,则此时棒的角速度应为 (A) 0v m m L . (B) 03v 2m m L . (C) 05v 3m m L . (D) 07v 4m m L 【提示】把细棒与子弹看作一个系统,该系统所受合外力矩为零, 所以系统的角动量守恒: 20123v mvL m L m L ω??=+ ??? ,即可求出答案。 [ C ] 3、(基础训练7)一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图5-11射来两个质量相同,速度大小相同,方向相反并在一条直线 上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度ω (A) 增大. (B) 不变. (C) 减小. (D) 不能确定. 【提示】把三者看成一个系统,则系统所受合外力矩为零,所以系统的角动量守恒。设L 为一颗子弹相对于转轴O 的角动量的大小,则有 图5-7 m m 图5-11 v ? 2 1 v ? 俯视图 图5-9

第五章 刚体力学(答案)

一、选择题 [ C ] 1、 (基础训练2)一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和 m 2的物体(m 1<m 2),如图5-7所示.绳 与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力 (A) 处处相等. (B) 左边大于右边. (C) 右边大于左边. (D) 哪边大无法判断. 【提示】逆时针转动时角速度方向垂直于纸面向外,由于(m 1<m 2),实际上滑轮在作减速转动,角加速度方向垂直纸面向内,所以,由转动定律21()T T R J β-=可得:21T T > (或者:列方程组:1112 2212 m g T m a T m g m a T R T R J a R ββ-=??-=???-=? ?=?? ,解得:()()12212m m gR m m R J β-=++,因为m 1<m 2,所以β<0,那么由方程120T R T R J β-=<,可知,21T T >) [ B ] 2、(基础训练5)如图5-9所示,一静止的均匀细棒,长为L 、质量为m 0,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为2 01 3 m L .一质量为m 、速率为v 的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为v 2 1,则此时棒的角速度应为 (A) 0v m m L . (B) 03v 2m m L . (C) 05v 3m m L . (D) 07v 4m m L 【提示】把细棒与子弹看作一个系统,该系统所受合外力矩为零, 所以系统的角动量守恒: 20123v mvL m L m L ω??=+ ??? ,即可求出答案。 [ C ] 3、(基础训练7)一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图5-11射来两个质量相同,速度大小相同,方向相反并在一条直线 上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度ω (A) 增大. (B) 不变. (C) 减小. (D) 不能确定. 【提示】把三者看成一个系统,则系统所受合外力矩为零,所以系统的角动量守恒。设L 图5-7 m m 图5-11 v 2 1 v 俯视图 图5-9

第05章__刚体力学基础补充汇总

3 一、选择题 1甲乙两人造卫星质量相同, 分别沿着各自的圆形轨道绕地球运行, 与乙相比,甲的: (A) 动能较大,势能较小, (B) 动能较小,势能较大, (C) 动能较大,势能较小, (D) 动能较小,势能较小, 4长为L 、质量为M 的匀质细杆 轴,平 衡时杆竖直下垂,一质量为 端并嵌入其内。那么碰撞后 A 端的速度大小: 5 一根质量为m 、长为I 的均匀直棒可绕过其一端且与棒垂直 的水平光 滑固定轴转动.抬起另一端使棒竖直地立起,如让它 掉下来,则棒将以角速度 ⑷撞击地板。如图将同样的棒截成长 为少2的一段,初始条件不变,则它撞击地板时的角速度最接近 于: 6如图:A 与B 是两个质量相同的小球, A 球用一根不 能伸长的绳子拴着,B 球用橡皮拴着,把它们拉到水平位 置,放手后两小球到达竖直位置时绳长相等,则此时两球 第五章刚体力学基础 甲的轨道半径较小, 总能量较大; 总能量较大; 总能量较小; 总能量较小; C ]难度: 2 一滑冰者,以某一角速度开始转动, (A) 角速度增大,动能减小; (B) 角速度增大,动能增大; (C) 角速度增大,但动能不变; (D) 角速度减小,动能减小。 当他向内收缩双臂时,则: 3两人各持一均匀直棒的一端,棒重 受 的力变为: (A)% ; W , —人突然放手,在此瞬间, 另一个人感到手上承 (B) W 2 OA 如图悬挂.0为水平光滑固定转 m 的 子弹以水平速度v 0击中杆的 12mv 0 (A) 12m+M 3mv 0 (B) 3m + M V o mv o (C) mmM (D)倍。 (A) 2 ; (B) 42^ :A ]难度:难 (C) (D)

第五章刚体力学参考答案

第五章 刚体力学参考答案(2014) 一、 选择题 [ C ]1、【基础训练2】一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图5-7所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力 (A) 处处相等. (B) 左边大于右边. (C) 右边大于左边. (D) 哪边大无法判断. 【提示】: 逆时针转动时角速度方向垂直于纸面向外,由于m 1<m 2,实际上滑轮在作减速转动,角加速度方向垂直纸面向内,设滑轮半径为R,受右端绳子向下拉力为T 2,左端绳子向下拉力为T 1,对滑轮由转动定律得:(T 2-T 1)R=J [ D ]2、【基础训练3】如图5-8所示,一质量为m 的匀质细杆AB ,A 端靠在粗糙的竖直墙壁上,B 端置于粗糙水平地面上而静止.杆身与竖直方向成角,则A 端对墙壁的压力大 (A) 为 41mg cos . (B)为2 1 mg tg . (C) 为 mg sin . (D) 不能唯一确定 图5-8 【提示】: 因为细杆处于平衡状态,它所受的合外力为零,以B 为参考点,外力矩也是平衡的,则有: A B N f = A B f N mg += θθθlcon N l f l mg A A +=sin sin 2 三个独立方程有四个未知数,不能唯一确定。 [ C ] 3、基础训练(7)一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图5-11射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度 (A) 增大. (B) 不变. (C) 减小. (D) 不能确定. 【提示】: 把三者看作同一系统时,系统所受合外力矩为零,系统角动量守恒。 m 2 m 1 O 图5-7 O M m m 图5-11

理论力学课后答案第五章周衍柏

第五章思考题 5.1虚功原理中的“虚功”二字作何解释?用虚功原理理解平衡问题,有何优点和缺点? 5.2 为什么在拉格朗日方程中,a θ不包含约束反作用力?又广义坐标与广义力的含义如 何?我们根据什么关系由一个量的量纲定出另一个量的量纲? 5.3广义动量a p 和广义速度a q 是不是只相差一个乘数m ?为什么a p 比a q 更富有意义? 5.4既然a q T ??是广义动量,那么根据动量定理,??? ? ????αq T dt d 是否应等于广义力a θ?为什么在拉格朗日方程()14.3.5式中多出了a q T ??项?你能说出它的物理意义和所代表的物理量吗? 5.5为什么在拉格朗日方程只适用于完整系?如为不完整系,能否由式()13.3.5得出式()14.3.5? 5.6平衡位置附近的小振动的性质,由什么来决定?为什么22s 个常数只有2s 个是独立的? 5.7什么叫简正坐标?怎样去找?它的数目和力学体系的自由度之间有何关系又每一简正坐标将作怎样的运动? 5.8多自由度力学体系如果还有阻尼力,那么它们在平衡位置附近的运动和无阻尼时有何不同?能否列出它们的微分方程? 5.9 dL 和L d 有何区别?a q L ??和a q L ??有何区别? 5.10哈密顿正则方程能适用于不完整系吗?为什么?能适用于非保守系吗?为什么? 5.11哈密顿函数在什么情况下是整数?在什么情况下是总能量?试祥加讨论,有无是总能量而不为常数的情况? 5.12何谓泊松括号与泊松定理?泊松定理在实际上的功用如何? 5.13哈密顿原理是用什么方法运动规律的?为什么变分符号δ可置于积分号内也可移到积分号外?又全变分符号?能否这样? 5.14正则变换的目的及功用何在?又正则变换的关键何在? 5.15哈密顿-雅可比理论的目的何在?试简述次理论解题时所应用的步骤. 5.16正则方程()15.5.5与()10.10.5及()11.10.5之间关系如何?我们能否用一正则变换由前者得出后者? 5.17在研究机械运动的力学中,刘维定理能否发挥作用?何故? 5.18分析力学学完后,请把本章中的方程和原理与牛顿运动定律相比较,并加以评价.

第05章__刚体力学基础补充

第五章刚体力学基础 一、选择题 1 甲乙两人造卫星质量相同,分别沿着各自的圆形轨道绕地球运行,甲的轨道半径较小,则与乙相比,甲的: (A)动能较大,势能较小,总能量较大; (B)动能较小,势能较大,总能量较大; (C)动能较大,势能较小,总能量较小; (D)动能较小,势能较小,总能量较小; [ C ]难度:易 2 一滑冰者,以某一角速度开始转动,当他向内收缩双臂时,则: (A)角速度增大,动能减小; (B)角速度增大,动能增大; (C)角速度增大,但动能不变; (D)角速度减小,动能减小。 [ B ]难度:易 3 两人各持一均匀直棒的一端,棒重W,一人突然放手,在此瞬间,另一个人感到手上承受的力变为:

(A)3w ; (B) 2w (C) 43w ; (D) 4 w 。 [ D ]难度:难 4 长为L 、质量为M 的匀质细杆OA 如图悬挂.O 为水平光滑固定转轴,平衡时杆竖直下垂,一质量为m 的子弹以水平速度0v 击中杆的A 端并嵌入其内。那么碰撞后A 端的速度大小: (A) M m mv +12120; (B) M m mv +330 ; (C) M m mv +0 ; (D) M m mv +330。 [ B ]难度:中 5 一根质量为m 、长为l 的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动.抬起另 一端使棒竖直地立起,如让它掉下来,则棒将以角速度ω撞击地板。如图将同样的棒截成长为 2 l 的一段,初始条件不变,则它撞击地板时的角速度最接近于: (A)ω2; (B) ω2; (C) ω; (D) 2ω。 [ A ]难度:难 6 如图:A 与B 是两个质量相同的小球,A 球用一根不能伸长的绳子拴着,B 球用橡皮拴着,把它们拉到水平位置,放手后两小球到达竖直位置时绳长相等,则此时两球的线速度: L

第5章 刚体力学

第5章 刚体力学 一、选择题(共61题) 1.如图所示,一悬绳长为l ,质量为m 的单摆和一长度为l 、质量为m 能绕水平轴自由转动的匀质细棒(细棒绕此轴转动惯量是2 31ml ),现将摆球和细棒同时从与竖直方向成θ角 的位置由静止释放,当它们运动到竖直位置时,摆球和细棒的角速度之间的关系为 ( ) A 、 21ωω> B 、21ωω= C 、 21ωω< [属性]难易度:2分;所属知识点:刚体的定轴转动 [答案] C 2.轻质绳子的一端系一质量为 m 的物体,另一端穿过水平桌面上的小孔A ,用手拉着, 物体以角速度ω绕A 转动,如图所示。若绳子与桌面之间,物体与桌面之间的摩擦均可忽 略,则当手用力F 向下拉绳子时,下列说法中正确的是( ) A 、物体的动量守恒 B 、 物体的角动量守恒 C 、 力F 对物体作功为零 D 、 物体与地球组成的系统机械能守恒 [属性]难易度:2分;所属知识点:动量守恒、机械能守恒、角动量守恒

[答案] B 3.如图,细绳的一端系一小球B ,绳的另一端通过桌面中心的小孔O 用手拉住,小球在水 平桌面上作匀速率圆周运动。若不计一切摩擦,则在用力F 将绳子向下拉动的过程中 ( ) A 、 小球的角动量守恒,动能变大 B 、 小球的角动量守恒,动能不变 C 、 小球的角动量守恒,动能变小 D 、 小球的角动量不守恒,动能变大 [属性]难易度:2分;所属知识点: 角动量守恒、动能 [答案] A 4.光滑的水平桌面上,有一长为L 2、质量为m 的匀质细杆,可绕通过其中点o ,且与杆 垂直的竖直轴自由转动,其转动惯量为 23 1mL 。开始时,细杆静止,有一个质量为m 的小球沿桌面正对着杆的一端A ,在垂直于杆长的方向上以速度v 运动,并与杆的A 端碰撞后与杆粘在一起转动,则这一系统碰撞后的转动角速度为( ) A 、 L v 2 B 、 L v 43 C 、 L v 32 D 、 L v 54 [属性]难易度:2分;所属知识点: 角动量守恒 [答案] C 5.如图所示,一静止的均匀细棒,长为l ,质量为M ,可绕通过棒的中点O ﹑且垂直于棒 长的水平轴在竖直面内自由转动,转动惯量为 212 1Ml 。一质量为m 、速度为v 的子弹在竖直方向射入棒的右端,击穿棒后子弹的速度为v 21,则此棒的角速度为( ) A 、 l M mv B 、l M mv 3 C 、 l M mv 2 D 、 l M mv 23v

刚体作业答案

一、 选择题 [ C ]1、【基础训练2】一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图5-7所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力 [ D ]2、【基础训练3】如图5-8所示,一质量为m 的匀质细杆AB ,A 端靠在粗糙的竖直墙壁上,B 端置于粗糙水平地面上而静止.杆身与竖直方向成θ角,则A 端对墙壁的压力大 (A) 为 41mg cos θ. (B)为2 1 mg tg θ. (C) 为 mg sin θ. (D) 不能唯一确定 图5-8 个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度 (A) 增大. (B) 不变. (C) 减小. (D) 不能确定. 【提示】: 把三者看作同一系统时,系统所受合外力矩为零,系统角动量守恒。 m m 图5-11

设L 为每一子弹相对与O 点的角动量大小,ω0为子弹射入前圆盘的角速度,ω为子弹射入后的瞬间与圆盘共同的角速度,J 为圆盘的转动惯量,J 子弹为子弹转动惯量,据角动量守恒定律有: 00 ()J L L J J J J J ωω ωωω+-=+= <+子弹 子弹 [ C ]4、【自测提高4】光滑的水平桌面上,有一长为2L 、质量为m 的匀质细杆,可绕过其中点且垂直于杆的竖直光滑固定轴O 自由转动,其转动惯量为 3 1mL 2 ,起初杆静止.桌面上有两个质量均为m 的小球,各自在垂直于杆的方向上,正对着杆的一端,以相同速率v 相向运动,如图5-19所示.当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在一起转动,则这一系统碰撞后的转动角速度应为 (A) L 32v . (B) L 54v . (C) L 76v . (D) L 98v . (E) L 712v . 图5-19 【提示】: 视两小球与细杆为一系统,碰撞过程中系统所受合外力矩为零,满足角动量守恒条件,所以 2221 [(2)]12 lmv lmv ml ml m l ω+=++ 可得答案(C ) [ A ] 5、【自测提高7】质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为 (A) ??? ??= R J mR v 2 ω,顺时针. (B) ??? ??=R J mR v 2ω,逆时针. (C) ??? ??+=R mR J mR v 22ω,顺时针. (D) ?? ? ??+=R mR J mR v 22ω,逆时针. 【提示】: 二、填空题 1、【基础训练8】绕定轴转动的飞轮均匀地减速,t =0时角速度为05rad ω=,t =20s 时角速度为00.8ωω=,则飞轮的角加速度β= -0.05 rad/s 2 ,t =0到 t =100 s 时间内飞轮所转过的角度θ= 250rad . O v 俯视图

上海理工大学 大学物理 第五章_刚体力学答案

一、选择题 [ C ] 1、基础训练(2)一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图5-7所示.绳 与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力 (A) 处处相等. (B) 左边大于右边. (C) 右边大于左边. (D) 哪边大无法判断. 参考答案: 逆时针转动时角速度方向垂直于纸面向外, 由于(m 1<m 2),实际上滑轮在作减速转动,角加速度方向垂直纸面向内,所以,由转动定律21()T T R J β-=可得:21T T > [ B ] 2、基础训练(5)如图5-9所示,一静止的均匀细棒,长为L 、质量为M ,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为2 3 1 ML .一质量为m 、 速率为v 的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为v 2 1 ,则此时棒的角速度应为 (A) ML m v . (B) ML m 23v . (C) ML m 35v . (D) ML m 47v . 图5-9 [ C ] 3、基础训练(7)一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图5-11射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度 (A) 增大. (B) 不变. (C) 减小. (D) 不能确定. 图5-7 m 图5-11 v 2 1 v 俯视图

[ C ] 4、自测提高(2)将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m 的重物,飞轮的角加速度为 .如果以拉力2mg 代替重物拉绳时,飞轮的角加速度将 (A) 小于 . (B) 大于 ,小于2 . (C) 大于2 . (D) 等于2 . [ A ] 5、自测提高(7)质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为 (A) ??? ??=R J mR v 2ω,顺时针. (B) ??? ??=R J mR v 2ω,逆时针. (C) ? ?? ??+=R mR J mR v 22ω,顺时针. (D) ?? ? ??+=R mR J mR v 22ω,逆时针. 二、填空题 6、基础训练(8)绕定轴转动的飞轮均匀地减速,t =0时角速度为05rad ω=,t =20s 时角速度为00.8ωω=,则飞轮的角加速度β= -0.05 rad/s 2 ,t =0到 t =100 s 时间内飞轮所转过的角度θ= 250rad . 7、基础训练(9)一长为l ,质量可以忽略的直杆,可绕通过其一端的水平光滑轴在竖直平面内作定轴转动,在杆的另一端固定着一质量为m 的小球,如图5-12所示.现将杆由水平位置无初转速地释放.则杆刚被释放时的角加速度β0= g/l ,杆与水平方向夹角为60°时的角加速度β= g/2l .

大学物理第3章刚体力学习题解答

第3章 刚体力学习题解答 3.13 某发动机飞轮在时间间隔t 内的角位移为 ):,:(43s t rad ct bt at θθ-+=。求t 时刻的角速度和角加速度。 解:23212643ct bt ct bt a dt d dt d -== -+== ωθβω 3.14桑塔纳汽车时速为166km/h ,车轮滚动半径为0.26m ,发动机转速与驱动轮转速比为0.909, 问发动机转速为每分多少转? 解:设车轮半径为R=0.26m ,发动机转速为n 1, 驱动轮转速为n 2, 汽车速度为v=166km/h 。显然,汽车前进的速度就是驱动轮边缘的线速度, 909.0/2212Rn Rn v ππ==,所以: min /1054.1/1024.93426.014.3210 166909.02909.013 rev h rev n R v ?=?===????π 3.15 如题3-15图所示,质量为m 的空心圆柱体,质量均匀分布,其内外半径为r 1和r 2,求对通过其中心轴的转动惯量。 解:设圆柱体长为h ,则半径为r ,厚为dr 的薄圆筒的质量dm 为: 2..dm h r dr ρπ= 对其轴线的转动惯量dI z 为 232..z dI r dm h r dr ρπ== 2 1 222211 2..()2 r z r I h r r dr m r r ρπ== -? 3.17 如题3-17图所示,一半圆形细杆,半径为 ,质量为 ,求对过细杆二端 轴的转动惯量。 解:如图所示,圆形细杆对过O 轴且垂直于圆形细杆所在平面的轴的转动惯量为mR 2,根据垂直轴定理z x y I I I =+和问题的对称性知:圆形细杆对过 轴的转动惯量为 1 2 mR 2,由转动惯量的可加性可求得:半圆形细杆对过细杆二端 轴的转动惯量为:21 4 AA I mR '=

刚体力学参考答案

mg —sin f A l sin 三个独立方程有四个未知数,不能唯一确定。 【提示】: 把三者看作同一系统时,系统所受合外力矩为零,系统角动量守恒。 设L 为每一子弹相对与 O 点的角动量大小,3 为子弹射入前圆盘的角速度,3为子弹射入 第五章刚体力学参考答案(2014) —、 选择题 [C ]1、【基础训练2】一轻绳跨过一具有水平光滑轴、质量为 M 的定滑轮,绳的两端分别 悬有质量为 m 和m 的物体(m v m ),如图5-7所示?绳与轮之间无相对滑动?若某时刻滑轮 沿逆时针方向转动,则绳中的张力 (A)处处相等. (B) 左边大于右边. (C)右边大于左边. (D) 哪边大无法判断. 【提示】: 逆时针转动时角速度方向垂直于纸面向外 ,由于m v m ,实际上滑轮在作减 速转动,角加速度方向垂直纸面向内 ,设滑轮半径为 R,受右端绳子向下拉 力为T 2,左端绳子向下拉力为 T i ,对滑轮由转动定律得:(T 2-T I )R=J [D ]2、【基础训练3】如图5-8所示,一质量为 m 的匀质细杆AB 壁上,B 端置于粗糙水平地面上而静止?杆身与竖直方向成 角,则 1 1 (A)为 mg pos . (B) 为 mg g 4 2 (C) 为 m?n m2 m 1 图5-7 A 端靠在粗糙的竖直墙 A 端对墙壁的压力大 .(D) 不能唯一确定 图5-8 ■: :: ; SK B 【提示】: 因为细杆处于平衡状态,它所受的合外力为零,以 B 为参考点,外力矩也是平衡的,则有: N A f B A N B mg N A lcon [C]3、基础训练(7) 一圆盘正绕垂直于盘面的水平光滑固定轴 两个质量相同,速度大小相同,方向相反并在一条直线上的子弹, 内,则子弹射入后的瞬间,圆盘的角速度 (A) 增大. (C)减小. (B) (D) 不变. 不能确定. O 转动,如图5-11射来 子弹射入圆盘并且留在盘 m <

第五章 刚体力学基础 动量矩1

第五章 刚体力学基础 动量矩 班级______________学号____________姓名________________ 一、选择题 1、力kN j i F )53( +=,其作用点的矢径为m j i r )34( -=,则该力对坐标原点的力矩大小为 ( ) (A)m kN ?-3; (B )m kN ?29; (C)m kN ?19; (D)m kN ?3。 2、圆柱体以80rad /s 的角速度绕其轴线转动,它对该轴的转动惯量为24m kg ?。由于恒力矩的作用,在10s 内它的角速度降为40rad /s 。圆柱体损失的动能和所受力矩的大小为( ) (A)80J ,80m N ?;(B)800J ,40m N ?;(C)4000J ,32m N ?;(D)9600J ,16m N ?。 3、 一匀质圆盘状飞轮质量为20kg ,半径为30cm ,当它以每分钟60转的速率旋转时,其动能为 ( ) (A)22.16π J ; (B)21.8πJ ;(C )1.8J ; (D )28.1πJ 。 4、如图所示,一轻绳跨过两个质量均为m 、半径均为R 的匀 质圆盘状定滑轮。绳的两端分别系着质量分别为m 和2m 的重 物,不计滑轮转轴的摩擦。将系统由静止释放,且绳与两滑轮 间均无相对滑动,则两滑轮之间绳的张力。( ) (A)mg ; (B)3mg /2; (C)2mg ; (D)11mg /8。 5、一根质量为m 、长度为L 的匀质细直棒,平放在水平桌面 上。若它与桌面间的滑动摩擦系数为μ,在t =0时,使该棒绕过其一端的竖直轴在水平桌面上旋转,其初始角速度为 0ω,则棒停止转动所需时间为 ( ) (A)μωg L 3/20; (B) μωg L 3/0; (C) μωg L 3/40; (D) μωg L 6/0。 6、关于力矩有以下几种说法,其中正确的是 ( ) (A )内力矩会改变刚体对某个定轴的角动量(动量矩); (B )作用力和反作用力对同一轴的力矩之和必为零; (C )角速度的方向一定与外力矩的方向相同; (D )质量相等、形状和大小不同的两个刚体,在相同力矩的作用下,它们的角加速度一定相等。 7、一质量为60kg 的人站在一质量为60kg 、半径为l m 的匀质圆盘的边缘,圆盘可绕与盘面相垂直的中心竖直轴无摩擦地转动。系统原来是静止的,后来人沿圆盘边缘走动,当人相对圆盘的走动速度为2m/s 时,圆盘角速度大小为 ( ) (A) 1rad/s ; (B) 2rad/s ; (C) 2/3rad/s ; (D) 4/3rad/s 。 8、如图所示,一根匀质细杆可绕通过其一端O 的水平轴在竖直平面 内自由转动,杆长5/3m 。今使杆从与竖直方向成?60角由静止释放(g 取10m/s 2),则杆的最大角速度为( ) (A )3rad/s ; (B)πrad/s ; (C)3.0rad/s ; (D)3/2rad/s 。 9、对一个绕固定水平轴O 量相同、速率相等的子弹,并停留在盘中,则子弹射入后转 盘的角速度应 ( ) (A) 增大; (B) 减小; (C) 不变;(D) 无法确定。

第五章 刚体力学参考答案

第五章 刚体力学参考答案 一.选择题 [ C ]1、一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图5-7所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力 (A) 处处相等. (B) 左边大于右边. (C) 右边大于左边. (D) 哪边大无法判断. ) 参考答案: 逆时针转动时角速度方向垂直于纸面向外, 由于m 1<m 2,实际上滑轮在作减速转动,角加速度方向垂直纸面向内,所以,由转动定律得:(T 2-T 1)R=J [ D ]2、如图5-8所示,一质量为m 的匀质细杆AB ,A 端靠在粗糙的竖直墙壁上,B 端置于粗糙水平地面上而静止.杆身与竖直方向成q 角,则A 端对墙壁的压力大小 (A) 为 41mg cos q . (B)为21 mg tg q . (C) 为 mg sin q . (D) 不能唯一确定. ] 参考答案: 因为细杆处于平衡状态,它所受的合外力为零,以B 为参考点,外力矩平衡可有: N A =f B f A +N B =mg sin sin cos 2A A l mg f l N l θθθ=+ 三个独立方程有四个未知数,不能唯一确定。 [ B ]3、如图5-9所示,一静止的均匀细棒,长为L 、质量为M ,可绕通过棒的端点且 垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为2 31ML .一质量为m 、速率为v 的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为 v 21,则此时棒的角速度应为 ) (A) ML m v . (B) ML m 23v . (C) ML m 35v . (D) ML m 47v . 图5-9 参考答案: 把质点与子弹看作一个系统,该系统所受外力矩为零,系统角动量守恒: Lmv=Lmv/2+1/3ML 2ω 可得出答案。 m 2 m 1 O 图5-7 图5-8 v 21 v 俯视图

第五章刚体力学答案

一、选择题 [ C ]1、如图所示,A 、 B 为两个相同的绕着轻绳的 定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而 且F =Mg .设A 、B 两滑轮的角加速度分别为βA 和βB ,不计 滑轮轴的摩擦,则有 (A) βA =βB . (B) βA >βB . (C) βA <βB . (D) 开始时βA =βB ,以后βA <βB . 图5-18 提示: 设定滑轮半径为R,转动惯量为J ,如图所示,据刚体定轴转动定律M=Jβ有: 对B :FR=MgR= J βB . 对A :Mg-T=Ma TR=J βA, a=R βA, 可推出:βA <βB [ D ]2、如图5-8所示,一质量为m 的匀质细杆AB ,A 端靠在粗糙的竖直墙壁上,B 端置于粗糙水平地面上而静止.杆身与竖直方向成θ角,则A 端对墙壁的压力大小 (A) 为 41mg cos θ. (B)为2 1 mg tg θ. (C) 为 mg sin θ. (D) 不能唯一确定. [ C ]3、一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图5-11射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度ω (A) 增大. (B) 不变. (C) 减小. (D) 不能确定. 图5-8 m m 图5-11

提示: 把三者看作同一系统时,系统所受合外力矩为零, 系统角动量守恒。 设L 为每一子弹相对固定轴O 的角动量大小.故由角动量守恒定律得: J ω0+L-L=(J+J 子弹) ω ω <ω0 [ A ]4、质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为 (A) ?? ? ??= R J mR v 2 ω,顺时针. (B) ??? ??=R J mR v 2ω,逆时针. (C) ? ? ? ??+= R mR J mR v 2 2 ω,顺时针. (D) ?? ? ??+=R mR J mR v 22 ω,逆时针. 提示: 视小孩与平台为一个系统,该系统所受的外力矩为零,系统角动量守恒: 0=Rmv-J ω 可得结论。 [ C ]5、如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统 (A) 只有机械能守恒. (B) 只有动量守恒. (C) 只有对转轴O 的角动量守恒. (D) 机械能、动量和角动量均守恒. 图5-10 提示: 视小球与细杆为一系统,碰撞过程中系统所受合外力矩为零,满足角动量守恒条件,不满足动量和机械能守恒的条件,故只能选(C ) [ C ]6、光滑的水平桌面上,有一长为2L 、质量为m 的匀质细杆,可绕过其中点且垂直于杆的竖直光滑固定轴O 自由转动,其转动惯量为 3 1mL 2 ,起初杆静止.桌面上有两个质量均为m 的小球,各自在垂直于杆的方向上,正对着杆的一端,以相同速率v 相向运动,如图5-17所示.当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在一起转动,则这一系统碰撞后的转动角速度应为 (A) L 32v . (B) L 54v . (C) L 76v . (D) L 98v . (E) L 712v . 图5-19 O v 俯视图

第五章 刚体力学参考答案

一.选择题 [ C ]1、一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图5-7所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力 (A) 处处相等. (B) 左边大于右边. (C) 右边大于左边. (D) 哪边大无法判断. 参考答案: 逆时针转动时角速度方向垂直于纸面向外, 由于m 1<m 2,实际上滑轮在作减速转动,角加速度方向垂直纸面向内,所以,由转动定律得:(T 2-T 1)R=J β [ D ]2、如图5-8所示,一质量为m 的匀质细杆AB ,A 端靠在粗糙的竖直墙壁上,B 端置于粗糙水平地面上而静止.杆身与竖直方向成q 角,则A 端对墙壁的压力大小 (A) 为 41 mg cos q . (B)为21 mg tg q . (C) 为 mg sin q . (D) 不能唯一确定. [ B ]3、如图5-9所示,一静止的均匀细棒,长为L 、质量为M ,可绕通过棒的端点且 垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为2 31 ML .一质量为m 、速率为v 的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为 v 21,则此时棒的角速度应为 (A) ML m v . (B) ML m 23v . (C) ML m 35v . (D) ML m 47v . 图5-9 参考答案: 把质点与子弹看作一个系统,该系统所受外力矩为零,系统角动量守恒: Lmv=Lmv/2+1/3ML 2ω 可得出答案。 图5-7 图5-8 v 21 v 俯视图

第3章刚体力学基础

第3章 刚体力学基础 一、基本要求 1.理解质点及刚体转动惯量、角动量的概念,并会计算质点及刚体(规则形状刚体)的转动惯量、角动量; 2.理解刚体绕定轴转动的转动定律,并应用它来求解定轴转动刚体力矩和角加速度等问题; 3.会计算力矩的功、刚体的转动动能、刚体的重力势能,会应用机械能守恒定律解答刚体定轴转动问题; 4.掌握刚体的角动量定理和角动量守恒定律,并会分析解决含有定轴转动刚体系统的力学问题(质点与刚体碰撞类问题等)。 二、基本内容 (一)本章重点和难点: 重点:刚体绕定轴转动定律及角动量守恒定律。 难点:刚体绕定轴转动系统的角动量守恒定律及其应用。 (二) 知识网络结构图: ?????? ???????????????????角动量守恒定律定轴转动定律基本定律转动动能角动量冲量矩转动惯量力矩基本物理量 (三)容易混淆的概念: 1.转动惯量和质量 转动惯量反映刚体转动状态改变的难易程度,即刚体的转动惯性大小的量度;质量反映质点运动状态改变的难易程度,即质点的惯性大小的量度。

2.平动动能和转动动能 平动动能是与质量和平动速度的平方成正比;转动动能是与转动惯量和角速度的平方成正比。 (四)主要内容: 1.描述刚体定轴转动的角位置θ,角位移θ?、角速度ω和角加速度α(β)等物理量 t t d d ,d d ωαθω== 角量与线量的关系: 2n t ωαω θr a r a r v r s ==== 2.转动惯量--转动质点对转轴的转动惯量,等于转动质点的质量m 成以质点到转轴的距离r 的平方。2J m r =? (1)质量连续分布的刚体: ?=m r J d 2 线分布:dl dm ?=λ λ-质量线分布刚体,单位长度的质量。 面分布:dS dm ?=σ σ- 质量面分布刚体,单位面积的质量。 体分布:dV dm ?=ρ ρ 质量体分布刚体,单位体积的质量。 (2)质量离散分布刚体的转动惯量:2 i J m r =?∑ (3)平行轴定理 2 C J J md =+ 3.刚体绕定轴转动的转动定律—刚体的合外力矩等于转动惯量乘以角加速度。 t J J M d d ω α== i i i M M r F ==?∑∑ 力矩:F r M ?= 力对轴的力矩大小:θsin rF M =

作业5刚体力学答案

作业5 刚体力学 ?刚体:在力的作用下不发生形变的物体 ?=-?=210t t dt dt d ωθθθω角速度 ?=-?=21 0t t dt dt d βωωω β角加速度 1、(基础8)绕定轴转动的飞轮均匀地减速,t =0时角速度为05rad s ω=,t =20s 时角速度为00.8ωω=,则飞轮的角加速度β= -0.05 rad/s 2 ,t =0到 t =100 s 时间内飞轮所转过的角度θ= 250rad . 【解答】 飞轮作匀变速转动,据0t ωωβ=+,可得出:20 0.05rad s t ωωβ-==- 据2 012 t t θωβ=+ 可得结果。 ?定轴转动的转动定律: 定轴转动的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比.βJ M = 质点运动与刚体定轴转动对照 [ C ] 1、(基础2)一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图5-7所示.绳与轮之间无 相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力 (A) 处处相等. (B) 左边大于右边. (C) 右边大于左边. (D) 哪边大无法判断. 【解答】 由于m 1<m 2,实际上滑轮在作减速转动,角加速度方向垂直纸面向内,设滑轮半径为R,受右端绳子向下拉力为T 2,左端绳子向下拉力为T 1,对滑轮由转动定律得:(T 2-T 1)R=J β [ D ] 2、(基础3)如图所示,一质量为m 的匀质细杆AB ,A 端靠在粗糙的竖直墙壁上,B 端置于粗糙水平地面上而静止,杆身与竖直方向成θ角,则A 端对墙壁的压力大小为 θ cos 41 (A)mg θtan 21(B)mg θsin (C)mg (D)不能唯一确定 m 2 m 1 O

相关主题
文本预览
相关文档 最新文档