当前位置:文档之家› 【金版教程】2015届高三数学(文)一轮限时规范训练:3-4 正弦型函数y=Asin(ωx+φ)的图象及应用精讲

【金版教程】2015届高三数学(文)一轮限时规范训练:3-4 正弦型函数y=Asin(ωx+φ)的图象及应用精讲

【金版教程】2015届高三数学(文)一轮限时规范训练:3-4 正弦型函数y=Asin(ωx+φ)的图象及应用精讲
【金版教程】2015届高三数学(文)一轮限时规范训练:3-4 正弦型函数y=Asin(ωx+φ)的图象及应用精讲

05限时规范特训

A 级 基础达标

1.[2014·安庆模拟]将函数f (x )=sin(2x +π

3)的图象向左平移φ个单位,得到偶函数g (x )的图象,则φ的最小正值为( )

A.π12

B.5π12

C.π3

D.π6

解析:由题意得g (x )=sin[2(x +φ)+π3]=sin(2x +2φ+π

3),因为g (x )是偶函数,所以2φ+π3=k π+π2,k ∈Z ,可得φ的最小正值为π

12,故选A.

答案:A

2.已知函数y =A sin(ωx +φ)+k 的最大值是4,最小值是0,最小正周期是π2,直线x =π

3是其图象的一条对称轴,则下面各式中符合条件的解析式是( )

A .y =4sin(4x +π

6) B .y =2sin(2x +π

3)+2 C .y =2sin(4x +π

3)+2

D .y =2sin(4x +π

6)+2

解析:函数y =A sin(ωx +φ)+k 的最小值是0,排除A ;最小正周期是π2,排除B ;将x =π3代入y =2sin(4x +π3)+2,得y =2sin(4π3+π3)+2=2sin(-π3)+2=2- 3.而2-3既不是y =2sin(4x +π

3)+2的最大

值,也不是最小值,排除C ;故选D.

答案:D

3.函数y =A sin(ωx +φ)(ω>0,|φ|≤π

2)的部分图象如图所示,则函数的一个表达式为( )

A .y =-4sin(π8x +π

4) B .y =4sin(π8x -π

4) C .y =-4sin(π8x -π

4) D .y =4sin(π8x +π

4)

解析:根据正弦函数y =A sin(ωx +φ)(ω>0,|φ|≤π

2)的图象的性质可得T =2|6-(-2)|=16,故ω=2πT =π

8,又根据图象可知f (6)=0,即A sin(π8×6+φ)=0.由于|φ|≤π2,故只能π8×6+φ=π,解得φ=π4,

即y =A sin(π8x +π

4),又由f (2)=-4, 即A sin(π8×2+π

4)=-4,解得A =-4,

故f (x )=-4sin(π8x +π

4). 答案:A

4.[2014·泰安模拟]函数f (x )=sin(ωx +φ)(ω>0,|φ|<π

2)的最小正周期是π,若其图象向右平移π

3个单位后得到的函数为奇函数,则函数f (x )的图象( )

A .关于点(π

12,0)对称 B .关于直线x =π

12对称 C .关于点(5π

12,0)对称

D .关于直线x =5π

12对称

解析:函数的最小正周期是π,∴T =2π

ω=π,∴ω=2,∴函数f (x )=sin(2x +φ),向右平移π3个单位后得到函数g (x )=sin[2(x -π

3)+φ]=sin(2x +φ-2π3),此时函数为奇函数,∴φ-2π3=k π,k ∈Z ,∴φ=2π

3+k π,∵|φ|<π2,

∴当k =-1时,φ=2π3-π=-π3,∴f (x )=sin(2x -π3).由2x -π3=π

2+k π,得对称轴为x =5π12+k π2,当k =0时,对称轴为x =5π

12.

答案:D

5.[2014·云南检测]要得到函数y =3sin(2x +π

3)的图象,只需要将函数y =3cos2x 的图象( )

A .向右平移π

12个单位

B .向左平移π

12个单位

C .向右平移π

6个单位 D .向左平移π

6个单位

解析:把函数y =3cos2x 的图象向右平移π

12个单位得到的图象相应的函数解析式是y =3cos2(x -π12)=3cos(2x -π6)=3sin(2x +π

3),因此选A.

答案:A

6.

[2014·厦门模拟]已知函数f (x )=A sin(π6x +φ)(A >0,0<φ<π

2)的部分图象如图所示,P ,Q 分别为该图象的最高点和最低点,点P 的坐标为(2,A ),点R 的坐标为(2,0).若∠PRQ =2π

3,则y =f (x )的最大值及φ的值分别是( )

A .23,π

6 B.3,π

3 C.3,π

6

D .23,π

3

解析:由题意,x =2,y =f (x )的最大值为A ,∴sin(π

3+φ)=1,又0<φ<π2,∴φ=π6.

若∠PRQ =2π3,则∠xRQ =π6,而周期为2π

π6

=12,故Q (8,-A ),

∴A 6=tan π6,则A =23,y =f (x )的最大值及φ的值分别是23,π6. 答案:A

7.[2014·皖南八校联考]若将函数y =sin(ωx +5π

6)(ω>0)的图象向右平移π3个单位长度后,与函数y =sin(ωx +π

4)的图象重合,则ω的最小值为________.

解析:依题意知,将函数y =sin(ωx +5π6)(ω>0)的图象向右平移π

3个单位长度后,所得图象对应的函数解析式是y =sin(ωx +5π6-π3ω)(ω>0),它的图象与函数y =sin(ωx +π4)的图象重合,所以5π6-π

3ω=π4+2k π(k ∈Z ),解得ω=74-6k (k ∈Z ).因为ω>0,所以ωmin =74.

答案:74

8.

[2014·南通模拟]函数f (x )=A sin(ωx +φ)(A >0,ω>0,0≤φ<2π)在R 上的部分图象如图所示,则f (2014)的值为________.

解析:由三角函数图象可得A =5,T =12=2πω,ω=π

6,且函数图象经过点(2,5),所以5sin(2×π6+φ)=5,又0≤φ<2π,所以φ=π

6,所

以f (x )=5sin(π6x +π6),f (2014)=5sin(π6×2014+π6)=5sin(336π-π

6)=-52.

答案:-5

2

9.

[2014·辽宁模拟]已知函数f (x )=A tan(ωx +φ)(ω>0,|φ|<π

2),y =f (x )的部分图象如图所示,则f (π

24)=________.

解析:由题中图象可知,此正切函数的半周期等于3π8-π8=π

4,即最小正周期为π2,所以ω=2.由题意可知,图象过定点(3π

8,0),所以0=A tan(2×3π8+φ),即3π4+φ=k π(k ∈Z ),所以φ=k π-3π4(k ∈Z ),又|φ|<π

2,所以φ=π4.又图象过定点(0,1),所以A =1.综上可知,f (x )=tan(2x +π4),故有f (π24)=tan(2×π24+π4)=tan π

3= 3.

答案: 3

10.已知函数f (x )=23cos 2x +sin2x -3+1(x ∈R ).

(1)求f (x )的最小正周期; (2)求f (x )的单调递增区间; (3)若x ∈[-π4,π

4],求f (x )的值域.

解:f (x )=sin2x +3(2cos 2x -1)+1=sin2x +3cos2x +1=2sin(2x +π

3)+1.

(1)函数f (x )的最小正周期为T =2π

2=π. (2)由2k π-π2≤2x +π3≤2k π+π

2(k ∈Z ), 得2k π-5π6≤2x ≤2k π+π

6(k ∈Z ). ∴k π-5π12≤x ≤k π+π

12(k ∈Z ).

∴函数f (x )的单调递增区间为[k π-5π12,k π+π

12](k ∈Z ). (3)∵x ∈[-π4,π

4], ∴2x +π3∈[-π6,5π6]. ∴sin(2x +π3)∈[-1

2,1]. ∴f (x )∈[0,3].

11.

已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,-π

2<φ<0)的图象与y 轴的交点为(0,1),它在y 轴右侧的第一个最高点和第一个最低点的坐标分别为(x 0,2)和(x 0+2π,-2).

(1)求函数f (x )的解析式;

(2)若锐角θ满足cos θ=1

3,求f (2θ)的值. 解:(1)由题意可得A =2,T

2=2π, 即T =4π,ω=1

2, f (x )=2cos(1

2x +φ),

又由f (0)=1,即cos φ=12,-π2<φ<0,得φ=-π

3, 所以函数f (x )=2cos(12x -π

3).

(2)由于cos θ=13且θ为锐角,所以sin θ=22

3,

f (2θ)=2cos(θ-π3)=2(cos θcos π3+sin θsin π3)=2(13×12+223×3

2)=1+263.

12.[2014·温州模拟]已知函数f (x )=1+sin x cos x ,g (x )=cos 2(x +π12).

(1)设x =x 0是函数y =f (x )图象的一条对称轴,求g (x 0)的值; (2)求使得函数h (x )=f (ωx 2)+g (ωx 2)(ω>0)在区间[-2π3,π

3]上是增函数的ω的最大值.

解:(1)f (x )=1+sin x cos x =1+sin2x 2, g (x )=cos 2(x +π

12)=1+cos (2x +π

6)2

. 因为x =x 0是函数y =f (x )图象的一条对称轴, 所以2x 0=k π+π2(k ∈Z ),2x 0+π6=k π+2π

3(k ∈Z ), 所以g (x 0)=1+cos 2π32=14或g (x 0

)=1+cos 5π3

2=3

4, 即g (x 0)=14或3

4. (2)h (x )=1+sin ωx

2+

1+cos (ωx +π

6)

2

=32+12sin(ωx +π3),-π2+

2k π≤ωx +π3≤π2+2k π(k ∈Z )?-5π6+2k π≤ωx ≤π6+2k π(k ∈Z )?-5π

6ω+2k πω≤x ≤π6ω+2k πω(k ∈Z ),取k =0得-5π6ω≤x ≤π6ω.

由于h (x )在区间[-2π3,π

3]上是增函数且ω>0,

于是????? -5π6ω≤-2π3

π3≤π

??????

ω≤54

ω≤12

?ω≤1

2,

即ω的最大值为1

2.

B 级 知能提升

1.[2014·湖州检测]函数f (x )=A sin(ωx +φ)(A ,ω,φ是常数,A >0,ω>0)的部分图象如图所示,下列结论:

①最小正周期为π;

②将f (x )的图象向左平移π

6个单位,所得到的函数是偶函数; ③f (0)=1; ④f (12π11)

3-x ). 其中正确的是( ) A .①②③ B .②③④ C .①④⑤

D .②③⑤

解析:由图可知,A =2,T 4=712π-π3=π4?T =π?ω=2,2×7

12π+φ=2k π+3π2,φ=2k π+π3,k ∈Z .f (x )=2sin(2x +π3)?f (0)=3,f (x +π

6)=2sin(2x +π3+π3)=2sin(2x +2π3),对称轴为直线x =k π2+π

12,k ∈Z ,一个对称中心为(5π

6,0),所以②、③不正确;因为f (x )的图象关于直线x =13π12对称,且f (x )的最大值为f (13π12),12π11-13π12=π11×12>13π12-

14π13=π13×12

,所以f (12π11)

3-x ,-f (x ))还在函数f (x )=2sin(2x +π3)的图象上,即f (5π

3-x )=-f (x )?f (x )=-f (5π

3-x ),故⑤正确.综上所述,①④⑤正确.选C.

答案:C

2.[2014·南平质检]已知函数f (x )=3sin(ωx -π

6)(0<ω<3)图象的一条对称轴方程为x =π3,若x ∈[0,π

2],则f (x )的取值范围是________.

解析:依题意得:π3ω-π6=k π+π

2,k ∈Z ,解得ω=3k +2,k ∈Z ,又∵0<ω<3,∴ω=2,∴f (x )=3sin(2x -π6),∵x ∈[0,π2],∴-π6≤2x -π6≤5π

6,∴-12≤sin(2x -π6)≤1,∴-3

2≤f (x )≤3.

答案:[-3

2,3]

3.已知函数f (x )=A sin(2x +θ),其中A ≠0,θ∈(0,π

2).

(1)若函数f (x )的图象过点E (-π12,1),F (π

6,3),求函数f (x )的解析式;

(2)如图,点M ,N 是函数y =f (x )的图象在y 轴两侧与x 轴的两个相邻交点,函数图象上一点P (t ,3π

8)满足PN →·MN →=π2

16,求函数f (x )的最大值.

解:(1)∵函数f (x )的图象过点E (-π12,1),F (π

6,3), ∴?????

A sin (-π6+θ)=1,

A sin (π3+θ)=3,

∴sin(π3+θ)=3sin(-π

6+θ),

展开得32cos θ+12sin θ=3(-12cos θ+3

2sin θ). ∴3cos θ=sin θ,tan θ=3,∵θ∈(0,π2),∴θ=π

3, ∴f (x )=A sin(2x +π3),∵f (π

6)=3,∴A =2. ∴f (x )=2sin(2x +π

3).

(2)令f (x )=A sin(2x +θ)=0, 则2x +θ=k π,k ∈Z ,

∵点M ,N 分别位于y 轴的两侧, 可得M (-θ2,0),N (π2-θ

2,0),

∴MN →=(π2,0),PN →=(π2-θ2-t ,-3π8), ∴PN →·MN →=π2(π2-θ2-t )=π216, ∴θ2+t =3π8, ∴θ+2t =3π

4.

∵点P (t ,3π

8)在函数图象上, ∴A sin(θ+2t )=A sin 3π4=3π

8, ∴A =6π8.

∴函数f (x )的最大值为6π

8.

【强烈推荐】2019届高三精准培优专练 数学(理)(学生版) - 最新

数学(理) 培优点一函数的图象与性质01 培优点二函数零点06 培优点三含导函数的抽象函数的构造10 培优点四恒成立问题14 培优点五导数的应用18 培优点六三角函数23 培优点七解三角形29 培优点八平面向量33 培优点九线性规划36 培优点十等差、等比数列40

培优点十一数列求通项公式43 培优点十二数列求和47 培优点十三三视图与体积、表面积51 培优点十四外接球56 培优点十五平行垂直关系的证明59 培优点十六利用空间向量求夹角67 培优点十七圆锥曲线的几何性质76 培优点十八离心率81 培优点十九圆锥曲线综合86 培优点二十几何概型93

2019届高三好教育精准培优专练 1.单调性的判断 例1:(1)函数()2 12 log (4)f x x -=的单调递增区间是( ) A .(0,)+∞ B .(0),-∞ C .(2,)+∞ D .(),2-∞- (2)2 23y x x +-+=的单调递增区间为________. 2.利用单调性求最值 例2:函数y x =+________. 3.利用单调性比较大小、解抽象函数不等式 例3:(1)已知函数()f x 的图象向左平移1个单位后关于y 轴对称,当211x x >>时, ()()2121()0f x f x x x -?-????<恒成立,设12 a f ??=- ?? ? ,()2b f =,()3c f =,则a ,b ,c 的大小关系为 ( ) A .c a b >> B .c b a >> C .a c b >> D .b a c >> (2)定义在R 上的奇函数()y f x =在(0,)+∞上递增,且102f ??= ? ??,则满足19log 0f x ??> ?? ?的x 的集合为________________. 4.奇偶性 例4:已知偶函数()f x 在区间[0,)+∞上单调递增,则满足1(21)3f x f ?? -< ??? 的x 的取值范围是( ) A .12,33?? ??? B .12,33?? ???? C .12,23?? ??? D .12,23?? ???? 5.轴对称 例5:已知定义域为R 的函数()y f x =在[]0,7上只有1和3两个零点,且()2y f x =+与()7y f x =+ 都是偶函数,则函数()y f x =在[]0,2013上的零点个数为( ) A .404 B .804 C .806 D .402 培优点一 函数的图象与性质

(完整版)正弦定理练习题经典

正弦定理练习题 1.在△ABC 中,A =45°,B =60°,a =2,则b 等于( ) A.6 B. 2 C. 3 D .2 6 2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( ) A .4 2 B .4 3 C .4 6 D.323 3.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( ) A .1 B.12 C .2 D.14 4.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( ) A .45°或135° B .135° C .45° D .以上答案都不对 5.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( ) A. 6 B .2 C. 3 D. 2 6.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( ) A .1∶5∶6 B .6∶5∶1 C .6∶1∶5 D .不确定 7.在△ABC 中,若cos A cos B =b a ,则△ABC 是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰三角形或直角三角形 8.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π3 ,则A =________. 9.在△ABC 中,已知a =433 ,b =4,A =30°,则sin B =________. 10.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________. 11.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解. 12 . 判断满足下列条件的三角形个数 (1)b=39,c=54,? =120C 有________组解 (2)a=20,b=11,?=30B 有________组解 (3)b=26,c=15,?=30C 有________组解 (4)a=2,b=6,?=30A 有________组解 正弦定理 1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( ) A.6 B. 2 C. 3 D .2 6 解析:选A.应用正弦定理得:a sin A =b sin B ,求得b =a sin B sin A = 6. 2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( ) A .4 2 B .4 3 C .4 6 D.323 解析:选C.A =45°,由正弦定理得b =a sin B sin A =4 6. 3.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( )

高三数学培优专练

高三培优专练 1.单调性的判断 例1:(1)函数()2 12 log (4)f x x -=的单调递增区间是( ) A .(0,)+∞ B .(0),-∞ C .(2,)+∞ D .(),2-∞- (2)2 23y x x +-+=的单调递增区间为________. 2.利用单调性求最值 例2:函数1y x x =+-的最小值为________. 3.利用单调性比较大小、解抽象函数不等式 例3:(1)已知函数()f x 的图象向左平移1个单位后关于y 轴对称,当211x x >>时, ()()2121()0f x f x x x -?-????<恒成立,设12 a f ??=- ?? ? ,()2b f =,()3c f =,则a ,b ,c 的大小关系为 ( ) A .c a b >> B .c b a >> C .a c b >> D .b a c >> (2)定义在R 上的奇函数()y f x =在(0,)+∞上递增,且10 2f ??= ???,则满足19log 0f x ??> ?? ?的x 的集合为________________. 4.奇偶性 例4:已知偶函数()f x 在区间[0,)+∞上单调递增,则满足1(21)3f x f ?? -< ??? 的x 的取值范围是( ) A .12,33?? ??? B .12,33?? ? ??? C .12,23?? ??? D .12,23?? ? ??? 5.轴对称 例5:已知定义域为R 的函数()y f x =在[]0,7上只有1和3两个零点,且()2y f x =+与()7y f x =+ 都是偶函数,则函数()y f x =在[]0,2013上的零点个数为( ) A .404 B .804 C .806 D .402 6.中心对称 例6:函数()f x 的定义域为R ,若()1f x +与()1f x -都是奇函数,则( ) A .()f x 是偶函数 B .()f x 是奇函数 C .()()2f x f x =+ D .()3f x +是奇函数 7.周期性的应用 例7:已知()f x 是定义在R 上的偶函数,()g x 是定义在R 上的奇函数,且()()1g x f x =-, 则()()20172019f f +的值为( ) A .1- B .1 C .0 D .无法计算 一、选择题 培优点一 函数的图象与性质 对点增分集训

解三角形高考典型例题汇编

《解三角形》 一、 正弦定理:sin sin sin a b c A B C ===2R 推论:(1) ::sin :sin :sin a b c A B C = (2) a=2RsinA b=2RsinB c=2RsinC (3) sin =,sin =,sin = 222a b c A B C R R R 1. 在△中,若,则= 2. 在△中,a =b=6, A=300 ,则B= 3. 【2013山东文】在中,若满足,,,则 4.【2010山东高考填空15题】在△ABC 中a ,b=2,sinB+cosB ,则A=? 5.【2017全国文11】△ABC 中,sin sin (sin cos )0B A C C +-=,a =2,c ,则C =? 6. 在△ABC 中, C =90o , 角A ,B ,C 的对边分别是a ,b ,c.则 a b c +的取值范围是? 二、余弦定理:222222 2222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ?=+-?=+-??=+-? 推论 222 222222 cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ?+-=?? +-?=???+-= ?? 1. 在△ABC 中,如果sin :sin :sin 2:3:4A B C =,求cos C 的值 2. 在△ABC 中,若则A= 3. 【2012上海高考】在中,若,则的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不能确定 4.【2016山东文科】ABC △中角A ,B ,C 的对边分别是a ,b ,c ,,b c = 22 2(1sin )a b A =-, 则A =? (A )3π4 (B )π3 (C )π4 (D )π6

高三数学培优资料用泰勒公式和拉格朗日中值定理来处理高中函数不等式问题(教师版)

2012级高三数学培优资料(教师版) 泰勒公式与拉格朗日中值定理在证明不等式中的简单应用 泰勒公式是高等数学中的重点,也是一个难点,它贯穿于高等数学的始终。泰勒公式的重点就在于使用一个n 次多项式()n p x ,去逼近一个已知的函数()f x ,而且这种逼近有很好的性质:()n p x 与()f x 在x 点具有相同的直到阶n 的导数 ] 31[-.所以泰勒 公式能很好的集中体现高等数学中的“逼近”这一思想精髓。泰勒公式的难点就在于它的理论性比较强,一般很难接受,更不用说应用了。但泰勒公式无论在科研领域还是在证明、计算应用等方面,它都起着很重要的作用.运用泰勒公式,对不等式问题进行分析、构造、转化、放缩是解决不等式证明问题的常用方法与基本思想.本文拟在前面文献研究的基础上通过举例归纳,总结泰勒公式在证明不等式中的应用方法. 泰勒公式知识:设函数()f x 在点0x 处的某邻域内具有1n +阶导数,则对该邻域内异于0x 的任意点x ,在0x 与x 之间至少存在一点ξ,使得: ()f x =()0f x +()0' f x 0(x -x )+()0f''x 2!02(x -x )+???+ ()()0 n f x n! 0n (x -x )+()n R x , 其中()n R x = ()(1)(1)! n f n ξ++10)(+-n x x 称为余项,上式称为n 阶泰勒公式; 若0x =0,则上述的泰勒公式称为麦克劳林公式, 即()f x = ()0f +()0' f x +()02!f''2x +???+()()0! n f n n x +0()n x . 利用泰勒公式证明不等式:若函数)(x f 在含有0x 的某区间有定义,并且有 直到)1(-n 阶的各阶导数,又在点0x 处有n 阶的导数)(0) (x f n ,则有公式 )()(! )()(!2)()(!1)()()()(00)(2 00000x R x x n x f x x x f x x x f x f x f n n n +-++-''+-'+= 在上述公式中若0)(≤x R n (或0)(≥x R n ),则可得

《正弦定理和余弦定理》典型例题

《正弦定理和余弦定理》典型例题透析 类型一:正弦定理的应用: 例1.已知在ABC ?中,10c =,45A =,30C =,解三角形. 思路点拨:先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出边a ,然后用三角形内角和求出角B ,最后用正弦定理求出边b . 解析:sin sin a c A C =, ∴sin 10sin 45102sin sin 30c A a C ?= == ∴ 180()105B A C =-+=, 又sin sin b c B C =, ∴sin 10sin1056220sin 75205652sin sin 304c B b C ?= ===?= 总结升华: 1. 正弦定理可以用于解决已知两角和一边求另两边和一角的问题; 2. 数形结合将已知条件表示在示意图形上,可以清楚地看出已知与求之间的关系,从而恰当地选择解答方式. 举一反三: 【变式1】在?ABC 中,已知032.0=A ,081.8=B ,42.9a cm =,解三角形。 【答案】根据三角形内角和定理,0180()=-+C A B 000180(32.081.8)=-+066.2=; 根据正弦定理,0 sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ; 根据正弦定理,0 sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A 【变式2】在?ABC 中,已知075B =,0 60C =,5c =,求a 、A . 【答案】00000180()180(7560)45A B C =-+=-+=, 根据正弦定理5sin 45sin 60 o o a =,∴56a =【变式3】在?ABC 中,已知sin :sin :sin 1:2:3A B C =,求::a b c 【答案】根据正弦定理sin sin sin a b c A B C ==,得::sin :sin :sin 1:2:3a b c A B C ==. 例2.在3,60,1ABC b B c ?= ==中,,求:a 和A ,C . 思路点拨: 先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出角C ,然后用三角形内角和求出角A ,最后用正弦定理求出边a .

王总结数学:高一逆袭培优班数学“不掉队”!快人一步,高二高三成优势!

王总结数学:高一逆袭培优班数学“不掉队”!快人 一步,高二高三成优势! 每一年我们都会收到很多高一学生的求助,他们刚入高中就被数学吓到了,抱怨数学难,不知道数学怎么学? 为什么会这样呢? 因为,高中数学和初中数学存在本质的差别,很多同学初中时,只要在数学考试前刷题补习就能取得很好的成绩,但是到了高中,这一招就根本没用了! 初中时名列前茅,到了高中成绩大幅下滑,这种落差打击了很多同学的自信。刚入高一,千万不能输在起点,否则高二高三会非常吃力辛苦。 王总结数学《高一逆袭培优课程》就是你不被落下,超越同伴的秘密武器。 《高一逆袭培优课程》针对高一学生精选课程内容:高一同步课程+应试秒杀技巧,高考之前无限次观看。 在王总结数学《高一逆袭培优》课程中,包括了高一必修课程的所有重难点,还有总结好了的考试常考知识点和题型。这些都能帮助学生打牢基础知识,让学生树立数学信心,在高一时拿下高分,在高二高三时学习游刃有余。 里面还包括了应试模型秒杀技巧,让学生能在考试中达到用时最短,准确率高,得分高的效果。 王总结数学《高一逆袭培优班》由高考数学应试专家王总结

老师亲自授课,985高校毕业的答疑老师全程跟踪督促保证授课质量! 课下还有多重保障障,为孩子的成绩保驾护航! 王总结数学就是采取的这样的革命课程体系,很多同学的成绩都在这样的保障之下得到提升,如此也在万千学生和家长之中收获了良好的口碑! 我们为什么一定要在高一时学好数学拿下高分? 因为无论是整个高中最重要的学习版块——基本初等函数,还是最让人头疼的高考必考分——数列,它们都集中在高一的课程中,如果等到高三再补,无疑增加了负担。正所谓“磨刀不误砍柴工”。 王总结数学《高一逆袭培优》课程,一直以来备受家长学生的欢迎肯定,提分效果非常明显,每一年的报名也是非常火爆的。

高一数学培优专题(已修正)

厦大附中高一数学培优专题(一) (2010-3-6/13) 知识要点梳理 本节公式中,,2a b c s ++=,r 为切圆半径,R 为外接圆 半径,Δ为三角形面积. (一). 三角形中的各种关系 设△ABC 的三边为a 、b 、c ,对应的三个角A 、B 、C . 1.角与角关系:A +B +C = π, 2.边与边关系:a + b > c ,b + c > a ,c + a > b , a - b < c ,b -c < a ,c -a < b . 3.边与角关系: 正弦定理; R C c B b A a 2sin sin sin === 余弦定理; c 2 = a 2+b 2-2ba cos C , b 2 = a 2+ c 2-2ac cos B ,a 2 = b 2+c 2-2bc cos A . 它们的变形形式有:a = 2R sin A ,b a B A =sin sin , bc a c b A 2cos 2 22-+=. 3)射影定理:a =b ·cos C +c ·cos B , b =a ·cos C + c ·cos A , c =a ·cos B +b ·cos A . 4 )面积公式:11sin 224a abc S ah ab C rs R ?=====

(二)、关于三角形角的常用三角恒等式: 1.三角形角定理的变形 由A +B +C =π,知A =π-(B +C )可得出: sin A =sin (B +C ),cos A =-cos (B +C ). 而 2 22C B A +-=π.有:2cos 2sin C B A +=,2 sin 2cos C B A +=. 2.常用的恒等式: (1)sin A +sin B +sin C =4cos 2 A cos 2 B cos 2 C ; (2)cos A +cos B +cos C =1+4sin 2 A sin 2 B sin 2 C ; (3)sin A +sin B -sin C =4sin 2 A sin 2 B cos 2 C ; (4)cos A +cos B -cos C =-1+4cos 2 A cos 2 B sin 2 C . 3.余弦定理判定法:如果c 是三角形的最大边,则有: a 2+ b 2> c 2 ? 三角形ABC 是锐角三角形 a 2+b 2<c 2 ? 三角形ABC 是钝角三角形 a 2+b 2=c 2 ? 三角形ABC 是直角三角形 (三) 三角形度量问题:求边、角、面积、周长及有关圆半径等。

正弦定理典型例题与知识点

正弦定理 教学重点:正弦定理 教学难点:正弦定理的正确理解和熟练运用,边角转化。多解问题 1.正弦定理:在任一个三角形中,各边和它所对角的正弦比相等, 即 A a s i n = B b sin =C c sin 2. 三角形面积公式 在任意斜△ABC 当中S △ABC =A bc B ac C ab sin 2 1sin 2 1sin 2 1== 3.正弦定理的推论: A a sin = B b sin =C c sin =2R (R 为△ABC 外接圆半径) 4.正弦定理解三角形 1)已知两角和任意一边,求其它两边和一角; 2)已知两边和其中一边对角,求另一边的对角,进而可求其它的边和角。 3)已知a, b 和A, 用正弦定理求B 时的各种情况:(多解情况) ○ 1若A 为锐角时: ??? ?? ? ?≥<<=<)( b a ) ,( b a bsinA )( bsinA a sin 锐角一解一钝一锐二解直角一解无解A b a 已知边a,b 和∠A 有两个解 仅有一个解无解 CH=bsinA≤) ( b a 锐角一解无解 b a 1、已知中,,,则角等于 ( D) A . B . C . D .

2、ΔABC的内角A、B、C所对的边分别为a、b、c,若sin A=,b=sin B,则a等于 ( D ) A.3B.C. D.

1. 在ABC ?中,若sin 2sin 2A B =,则ABC ?一定是( ) 3.在Rt △ABC 中,C= 2 π ,则B A sin sin 的最大值是_______________. [解析] ∵在Rt △ABC 中,C= 2 π ,∴sin sin sin sin( )2 A B A A π =-sin cos A A = 1sin 22A = ,∵0,2A π<<∴02,A π<<∴4A π=时,B A sin sin 取得最大值12 。 4. 若ABC ?中,10 10 3B cos ,21A tan == ,则角C 的大小是__________ 解析 11 tan ,cos ,sin tan 23A B O B B B π==<<∴=∴= tan tan 3tan tan()tan()1,tan tan 14 A B C A B A B O C C A B π ππ+∴=--=-+= =-<<∴=- 7.在△ABC 中,已知2a b c =+,2 sin sin sin A B C =,试判断△ABC 的形状。 解:由正弦定理 2sin sin sin a b c R A B C ===得:sin 2a A R =,sin 2b B R =, sin 2c C R = 。 所以由2sin sin sin A B C =可得:2()222a b c R R R =?,即:2 a bc =。 又已知2a b c =+,所以224()a b c =+,所以24()bc b c =+,即2()0b c -=, 因而b c =。故由2a b c =+得:22a b b b =+=,a b =。所以a b c ==,△ABC 为等边三角形。 6.在ABC ?中, b A a B sin sin <是B A >成立的 ( C ) A.必要不充分条件 B.充分不必要条件 C.充要条件 D.既不充分也不必要条件 1.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若c =2,b =6,B =120°,则 a 等于 ( ) A.6 B.2 C.3 D.2 答案 D 3.下列判断中正确的是 ( )

新高考文科数学二轮培优教程文档:第二编 专题三 数列 第1讲

专题三 数列 第1讲 等差数列与等比数列 「考情研析」 1.从具体内容上,主要考查等差数列、等比数列的基本计算和基本性质及等差、等比数列中项的性质、判定与证明. 2.从高考特点上,难度以中、低档题为主,近几年高考题一般设置一道选择题和一道解答题,分值分别为5分和12分. 核心知识回顾 1.等差数列 (1)通项公式:□ 01a n =a 1+(n -1)d =a m +(n -m )d . (2)等差中项公式:□022a n =a n -1+a n +1(n ∈N *,n ≥2). (3)前n 项和公式:□ 03S n =n (a 1+a n )2=na 1+n (n -1)d 2 . 2.等比数列 (1)等比数列的通项公式:□ 01a n =a 1q -=a m q -. (2)等比中项公式:□ 02a 2n =a n -1·a n +1(n ∈N *,n ≥2). (3)等比数列的前n 项和公式: □ 03S n =??? na 1(q =1), a 1-a n q 1-q =a 1(1-q n )1-q (q ≠1) . 3.等差数列的性质(n ,m ,l ,k ,p 均为正整数) (1)若m +n =l +k □ 01a m +a n =a l +a k (反之不一定成立);特别地,当m +n =2p 时,有□ 02a m +a n =2a p . (2)若{a n },{b n }是等差数列,则{ka n +tb n }(k ,t 是非零常数)是□ 03等差数列. (3)等差数列的“依次每m 项的和”即S m □04S 2m -S m ,□ 05S 3m -S 2m ,…仍是等差数列.

正弦定理知识点与典型例题

正弦定理 【基础知识点】 1. 三角形常用公式:A +B +C =π;S =21ab sin C =21bc sin A ==2 1ca sin B ; sin(A+B)=sinC, cos(A+B)=-cosC, sin(A+B)/2=cosC/2, cos(A+B)/2=sinC/2 2.三角形中的边角不等关系: A>B ?a>b,a+b>c,a-bb 时有一解. 也可利用正弦定理a A b B sin sin =进行讨论. 如果sinB>1,则问题无解;如果sinB =1,则问题有一解; 如果求出sinB<1,则可得B 的两个值,但要通过“三角形内角和定理”或“大边对大角”

高一数学 培优教材三角函数

高一年段数学培优教材第四讲 三角函数 一、基础知识: 1. 函数sin ()y x x R =∈的对称轴方程为,2 x k k Z π π=+ ∈,对称中心坐标是(,0),k k Z π∈; cos ()y x x R =∈的对称轴方程为,x k k Z π=∈,对称中心坐标是(,0),2 k k Z π π+ ∈ tan (,)2 y x x k k Z π π=≠+ ∈的对称中心坐标是(,0),k k Z π∈,它不是轴对称图形. 2. 求三角函数最值的常用方法: ① 通过适当的三角变换,把所求的三角式化为sin()y A x b ω?=++的形式,再利用正弦函数的有界性求其最值. ② 把所求的问题转化为给定区间上的二次函数的最值问题. ③ 对于某些分式型的含三角函数的式子的最值问题(如sin cos a x b y c x d +=+)可利用正弦函数的有界性来求. ④ 利用函数的单调性求. 二、综合应用: 1. 已知函数()y f x =是以5为最小正周期的奇函数,且(3)1f -=,则对锐角α,当1sin 3 α= 时,)f α=_________________ 2. 已知222,a b +=则sin cos a b θθ+的最大值是___________ 3. 函数22sin 2sin cos 3cos y x x x x =++取最小值的x 的集合为______________ 4. 函数5cos 23sin ,[,]63 y x x x ππ =+∈--的最大值和最小值的和为______________. 5. 函数sin cos sin ,y x x x cosx x R =+-∈的最大值为_____________ 6. 函数sin (0)2cos x y x x π= <<+的最大值是_________________ 7. 函数()(cos sin )cos f x a x b x x =+有最大值2,最小值1-,求sin()4 y a bx π =+ 的最小正周期. 8. 已知函数2 ()2sin sin cos f x a x x x a b =-++的定义域是[0, ]2 π ,值域是[5,1]-,求,a b 的值. 9. 已知函数()sin 2cos2f x x a x =+的图象关于直线8 x π =- 对称,求a 的值. 10.已知()sin cos (,,f x A x B x A B ωωω=+是常数,且0)ω>的最小正周期为2,并且当1 3 x = 时,()f x 取最大值为2. (1)求()f x 表达式; (2)在区间2123 [,]44 上是否存在()f x 的图象的对称轴?若存在,求出其方程;若不存在,说明理由. 11.已知函数()sin()(0,0)f x x ω?ω?π=+>≤≤是R 上的偶函数,其图象关于点3( ,0)4M π对称,且在区间[0,]2 π 上是单调函数,求,?ω的值. 12.已知定义在区间2[, ]3 ππ-上的函数)(x f y =的图象关于直线6 π - =x 对称,当2[, ]6 3 x π π∈- 时,函数 ()s i n ()(0, 0,) 22 f x A x A ππ ω?ω?=+>>-<< , 其图象如图所示. (1)求函数()y f x =在2[, ]3 ππ-的表达式; x

高三数学课外培优练习

省始兴县风度数学 课外培优练习 2.如图,在正四棱柱ABCD —A 1B 1C 1D 1中,AA 1=2 1A B ,点E 、M 分别为A 1B 、C 1C 的中点,过点A 1,B ,M 三点的平面A 1BMN 交C 1D 1于点N. (Ⅰ)求证:EM ∥平面A 1B 1C 1D 1; (Ⅱ)求二面角B —A 1N —B 1的正切值.

1.解法一:PO ⊥平面ABCD , PO BD ∴⊥ 又,2,2PB PD BO PO ⊥==, 由平面几何知识得:1,3,6OD PD PB == = (Ⅰ)过D 做//DE BC 交于AB 于E ,连结PE ,则PDE ∠或其补角为异面直线PD 与BC 所成的角, 四边形ABCD 是等腰梯形,1,2,OC OD OB OA OA OB ∴====⊥ 5,22,2BC AB CD ∴=== 又//AB DC ∴四边形EBCD 是平行四边形。 5,2ED BC BE CD ∴==== E ∴是AB 的中点,且2AE = 又6PA PB ==,PEA ∴?为直角三角形,22622PE PA AE ∴= -=-= 在PED ?中,由余弦定理得 222215cos 215235 PD DE PE PDE PD DE +-∠===??? 故异面直线PD 与BC 所成的角的余弦值为215 (Ⅱ)连结OE ,由(Ⅰ)及三垂线定理知,PEO ∠为二面角 P AB C --的平面角 2sin 2 PO PEO PE ∴∠==,045PEO ∴∠= ∴二面角P AB C --的大小为045 (Ⅲ)连结,,MD MB MO , PC ⊥平面,BMD OM ?平面BMD ,PC OM ⊥ 又在Rt POC ?中, 3,1,2PC PD OC PO ====, 233,33PM MC ∴==,2PM MC ∴= 故2λ=时,PC ⊥平面BMD 解法二: PO ⊥平面ABCD PO BD ∴⊥

正弦定理余弦定理综合应用典型例题

正弦定理、余弦定理综合应用 例1.设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围. 解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1 sin 2 B = , 由ABC △为锐角三角形得π6B = . (Ⅱ)cos sin cos sin A C A A π?? +=+π-- ?6?? cos sin 6A A π??=++ ???1cos cos 2A A A =++ 3A π? ?=+ ???. 由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=. 2336 A πππ <+<, 所以1sin 23A π??+< ???. 3A π??<+< ?? ? 所以,cos sin A C +的取值范围为322?? ? ?? ?,. 例2.已知ABC △1,且sin sin A B C +=. (I )求边AB 的长; (II )若ABC △的面积为1 sin 6 C ,求角C 的度数. 解:(I )由题意及正弦定理,得1AB BC AC ++=, BC AC +=, 两式相减,得1AB =. (II )由ABC △的面积11sin sin 26BC AC C C =g g ,得1 3 BC AC =g , 由余弦定理,得222cos 2AC BC AB C AC BC +-=g 22()21 22 AC BC AC BC AB AC BC +--= =g g , 所以60C =o . 例3.已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(1,3-),n =(cos A ,sin A ).若m ⊥n , 且a cos B +b cos A =c sin C ,则角B = 6 π . 例4.设ABC ?的内角A ,B ,C 的对边分别为a ,b ,c ,且A =60o ,c =3b.求a c 的值; 解:由余弦定理得2222cos a b c b A =+-=2221117 ()2,3329 c c c c c +-=g g g 故3a c = 例5.在△ABC 中,三个角,,A B C 的对边边长分别为3,4,6a b c ===, 则cos cos cos bc A ca B ab C ++的值为 . 61 2 例6.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若() C a A c b cos cos 3=-, 则=A cos _________________. 3 例7.(2009年广东卷文)已知ABC ?中, C B A ∠∠∠,,的对边分别为,,a b c 若a c ==75A ∠=o ,则b =

高中数学竞赛怎么学

数学竞赛怎么学 搞竞赛要找好苗子,首先他是热情的,勤奋的,其次是有抱负的,不畏艰难的;当然不能是临时抱佛脚的。冰冻三尺,非一日之寒。应该从高一前的暑假就开始不停的学习、训练。细细地说来,注意事项还有很多。 学习进度方面 要在高一开学之前的那个暑假里把整个高中的数学内容全部学完,并在高一上学期应该完成像高三一样的两轮复习,基础太重要了,第一试占了150分,不可小视。然后,就是竞赛内容了,不要以为看几本竞赛书就可以了,因为那些书上讲得太粗略;这时候,对老师的要求就更高。老师不但要对竞赛内容非常熟悉,还要不断地总结重要的思想方法,使学生能够灵活运用。 入门书单 首先如果要涉猎竞赛,最基本的高中课程是一切的基础。接下来的书就是建立在此基础上的。我们最先做的当然是补全差距:课标大纲和竞赛大纲之间的差距。 1)《新编中学数学解题方法全书》,即基础衔接书。 2)《奥数教程》 经典奥数蓝皮书。优点是与课本知识联系紧密,适合你在第一遍学习高中数学知识的同时同步提高,帮助你打下坚实的基础,以讲解为主,以测试为辅。(与《培优教程》二选一即可,小编认为《培优》稍难,但很散,推荐《奥数教程》。) 提高书单 1)《奥赛小丛书》 专而精,很多专题非常精彩,难度涵盖联赛和冬令营,读起来也容易让同学们感兴趣。如果仅以省级国一为目标,其中概率、几何不等式可以不看,图论、组合几何、数论编的不错,集合变换、三角与几何虽然写的很好但不实用;其它的如函数、集合还好,可以看看。这套书中代数只有两本不等式,而且很不实用,不推荐。至于数学归纳法里面题很经典,不过很综合,可以放在该套书后面看。对于这套书要尽快看完,里面题要自己做,可能比较辛苦。总的来说这套书值得一看,要尽早开始看。

2018届高三文科数学培优资料(一)解析版

2018届高三文科数学培优资料(一) 圆锥曲线的方程与性质 一、知识整合 二、真题感悟: 1. (全国Ⅱ)设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,|MF |=5,若以MF 为直 径的圆过点(0,2),则C 的方程为( ) A .y 2=4x 或y 2=8x B .y 2=2x 或y 2=8x C .y 2=4x 或y 2=16x D .y 2=2x 或y 2=16x 答案 C 解析 由题意知:F ????p 2,0,抛物线的准线方程为x =-p 2 ,则由抛物线的定义知,x M

=5-p 2 ,设以MF 为直径的圆的圆心为????52,y M 2,所以圆的方程为????x -522+????y -y M 22=25 4 ,又因为圆过点(0,2),所以y M =4,又因为点M 在C 上,所以16=2p ????5-p 2,解得p =2或p =8,所以抛物线C 的方程为y 2=4x 或y 2=16x ,故选C. 2. (全国Ⅰ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为5 2 ,则C 的渐近线方程为 ( ) A .y =±14x B .y =±13x C .y =±1 2 x D .y =±x 答案 C 解析 由e =c a =5 2知,a =2k ,c =5k (k ∈R +), 由b 2=c 2-a 2=k 2知b =k . 所以b a =12 . 即渐近线方程为y =±1 2x .故选C. 3. (山东)抛物线C 1:y =12p x 2(p >0)的焦点与双曲线C 2:x 23 -y 2 =1的右焦点的连线交C 1于 第一象限的点M .若C 1在点M 处的切线平行于C 2的一条渐近线,则p 等于( ) A.316 B.38 C.233 D.433 答案 D 解析 抛物线C 1的标准方程为:x 2=2py ,其焦点F 为??? ?0,p 2,双曲线C 2的右焦点F ′为(2,0),渐近线方程为:y =±3 3 x . 由y ′=1p x =33得x =33p ,故M ????33 p ,p 6. 由F 、F ′、M 三点共线得p =43 3 . 4. (福建)椭圆Г:x 2a 2+y 2 b 2=1(a >b >0)的左,右焦点分别为F 1,F 2,焦距为2c .若直线y =3 (x +c )与椭圆Г的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于 ________. 答案 3-1 解析 由直线方程为y =3(x +c ), 知∠MF 1F 2=60°,又∠MF 1F 2=2∠MF 2F 1, 所以∠MF 2F 1=30°,MF 1⊥MF 2, 所以|MF 1|=c ,|MF 2|=3c , 所以|MF 1|+|MF 2|=c +3c =2a .即e =c a =3-1. 5. (浙江)设F 为抛物线C :y 2 =4x 的焦点,过点P (-1,0)的直线l 交抛物线C 于A 、B 两 点,点Q 为线段AB 的中点,若|FQ |=2,则直线l 的斜率等于________. 答案 ±1 解析 设直线l 的方程为y =k (x +1),A (x 1,y 1)、B (x 2,y 2)、Q (x 0,y 0).解方程组 ????? y =k (x +1) y 2 =4x .

正弦定理经典练习题

《正弦定理、余弦定理、解斜三角形》 一、复习要求 : 1. 掌握正弦、余弦定理,能运用知识解斜三角形。 2. 用正弦、余弦定理判断三角形的形状。 二、知识点回顾 (1) 正弦定理:,22sin sin sin ? ====S abc R C c B b A a (2R 为三角形外接圆直径), (?S 为三角形面积),其他形式: a :b :c = sinA :sinB :sinC a=2RsinA, b=2RsinB , c=2RsinC (2) 余弦定理:a 2=b 2+c 2-2bccosA,(可按a,b,c,a 轮换得另二式) 余弦定理变式:bc a c b A 2cos 2 22-+= , (轮换得另二式) 余弦定理向量式:如图 a=b+ c , c= a – b c 2=|c|2=|a-b |2=(a-b)2=a 2+b 2 - 2﹒a ﹒b =a 2+b 2 - 2abcosC (其中|a|=a,|b|=b,|c|=c) 三、典型例题分析: 例1:在三角形ABC 中,若C=3B ,求b c 的范围 分析:角边比转化,可用正弦定理 解:1cos 4cos 22cos sin ) 2sin(sin 3sin sin sin 2-=+=+===B B B B B B B B B C b c A+B+C=1800 ,C=3B , ∴4B<1800,00<B<450, 1cos 22 <C ,且b 2+c 2 =a 2+bc, 求A ,B ,C 。 解:21 22cosA 2 22==-+=bc bc bc a c b , ∴ A=600 又 4sinBsinC=1 ∴4sinBsin(1200-B)=11 sin 22sin 31)sin 21 cos 23 (sin 42=+?=+?B B B B B B con B 22sin 3=? ∴33 2t a n =B ∴2B=300 或2100 B>C , ∴2B=2100 即 B=1050 ∴A=600 B=1050 C=150 练习2:在?ABC 中,2B=A+C 且tanAtanC=2+3 求(1)A 、B 、C 的大小 (2) 若AB 边上的高CD=43,求三边a 、b 、c 例3:如图,已知P为?ABC 内一点,且满足∠PAB =∠PBC= ∠PCA=θ 求证cot θ=cotA+cotB+cotC C A B a c b θ A B C P θ θ

2021学年高一数学人教2019必修二新教材培优6.3.1 平面向量基本定理(原卷版)

第六章 平面向量及其应用 6.3.1平面向量基本定理 一、基础巩固 1.下列各组向量中,可以作为基底的是( ). A .()10,0e =,()21,2e =- B .()11,2e =-,()25,7e = C .()13,5e =,()26,10e = D .()12,3e =-,213,24e ??=- ??? 2.在ABC 中AB a =,CB b =,则CA 等于( ) A .a b + B .a b - C .b a - D .a b -- 3.如图所示,M ,N 分别是ABC 的边AB ,AC 上的点,且2AM MB =,2NC AN =,则向量MN =( ). A .1233 AB AC - B . 1233AB AC + C .1233AC AB - D .1233AC AB + 4.已知平面直角坐标系内的两个向量(3,2),(1,2)a m b m =-=-,且平面内的任一向量c 都可以唯一表示成c a b λμ=+(,λμ为实数),则实数m 的取值范围是( ) A .6,5??+∞ ??? B .66,,55????-∞+∞ ? ????? C .(,2)-∞ D .(,2)(2,)-∞-?-+∞ 5.ABC ?中所在的平面上的点D 满足2BD DC =,则AD =( ) A .3144 AD AB AC =+ B .1344AD AB AC = + C .2133AD AB AC =+ D .1233AD AB AC =+

6.设a ,b 是不共线的两个向量,且0,,a b R λμλμ+=∈,则( ) A .0λμ== B .0a b C .0,0b λ== D .0,0a μ== 7.如图,在平行四边形ABCD 中, E 为BC 的中点, F 为DE 的中点,若34AF xAB AD =+,则x =( ) A .34 B .23 C .12 D .14 8在ABC 中,已知D 是BC 延长线上一点,若2BC CD =,点E 为线段AD 的中点,AE AB AC λμ=+,则2λμ+=( ) A .14- B .14 C .12- D .12 9.(多选)下列各组向量中,不能作为基底的是( ) A .()10,0e =,()21,1=e B .()11,2e =,()22,1e =- C .()13,4e =-,234,55??=- ???e D .()12,6=e ,()21,3=--e 10.(多选)已知M 为△ABC 的重心,D 为BC 的中点,则下列等式成立的是( ) A .MA MB MC == B .0MA MB M C ++= C .1233CM CA C D =+ D .2133 BM BA BD =+ 11.(多选)如果12,e e 是平面α内两个不共线的向量,那么下列说法中不正确的是( ) A .12e e λμ+(λ,μ∈R )可以表示平面α内的所有向量 B .对于平面α内任一向量a ,使12a e e λμ=+的实数对(λ,μ)有无穷多个

相关主题
文本预览
相关文档 最新文档