当前位置:文档之家› 粉末注射成形技术在烧结NdFeB永磁体制备中的应用

粉末注射成形技术在烧结NdFeB永磁体制备中的应用

粉末注射成形技术在烧结NdFeB永磁体制备中的应用
粉末注射成形技术在烧结NdFeB永磁体制备中的应用

金属粉末注射成型工艺讲解

新疆农业大学机械交通学院 2015-2016 学年一学期 《金属工艺学》课程论文 2015 年 12 月 班级机制136 学号220150038 姓名侯文娜 开课学院机械交通学院任课教师高泽斌成绩__________

金属粉末注射成型工艺概论 作者:侯文娜指导老师:高泽斌 摘要:金属注射成形时一种从塑料注射成形行业中引申出来的新型粉末冶金近净成型技术,这种新的粉末冶金成型方法称作金属注射成型。 关键词:金属粉末注射成型 一:金属粉末注射成型的概念和原理、 粉末冶金不仅是一种材料制造技术,而且其本身包含着材料的加工和处理,它以少无切削的特点越来越受到重视,并逐步形成了自身的材料制备工艺理论和材料性能理论的完整体系。现代粉末冶金技术不仅保持和大大发展了其原有的传统特点(如少无切削、少无偏析、均匀细晶、低耗、节能、节材、金属非金属及金属高分子复合等),而且已发展成为支取各种高性能结构材料、特种功能材料和极限条件工作材料、各种形状复异型件的有效途径。近年来,粉末冶金技术最引人注目的发展,莫过于粉末注射成型(MIN)迅速实现产业化,并取得突破性进展。 金属注射成型(Metal injection Molding),简称MIM,是传统的粉末冶金工艺与塑料成型工艺相结合的新工艺,是集塑料成型工艺学、高分子化学、粉末冶金工艺学和金属材料学等多学科交叉的产物,是粉末冶金和精密陶瓷成型加工领域中的新技术,利用磨具可注射成型,快速制造高密度、高精度、复杂形状的结构零件,能够快速准确的将设计思想转变为具有一定结构、功能特性的制品,并可直接批量生产出零件,是制造技术行业一次新的变革。 其注射机理为:通过注射将金属粉末与粘结剂的混合物以一定的温度,速度和压力注入充满模腔,经冷却定型出模得到一定形状、尺寸的预制件,再脱出预制件中的粘结剂并进行烧结,可得到具有一定机械性能的制件。其成型工艺工艺流程如下:金属粉末,有机粘接剂—混料—成型—脱脂—烧结—后处理—成品。 二:金属粉末注射成型工艺流程 2.1金属粉末的选择:首先根据产品的技术要求和使用条件选择粉末的种类,然后决定粉末颗粒尺寸。金属粉末注射成型所用的粉末颗粒尺寸一般在 0.5-20μm;从理论上讲,粉末颗粒越细,比表面积也越大,颗粒之间的内聚力也越大,易于成型和烧结。而传统的粉末冶金工艺则采用大于40μm的较粗粉末。粉末的选择要有利于混炼、注射形成、脱脂和烧结,而这往往是互相矛盾的,对于MIM的原料粉末要求很细,MIM原料粉末价格一般较高,有的升值达到传统PM 粉末价格的10倍,这是目前限制MIM技术广泛应用的一个关键因素,目前生产MIM用原料粉末的方法主要有超高压水雾化法、高压气体雾化法等。 2.2粘接剂;粘接剂是MIM技术的核心,在MIM中粘接剂具有增强流动性

MIM金属粉末注射成形工艺介绍与对比

1 一、MIM 概念及工艺流程 金属粉末注射成形是传统粉末冶金技术与塑料注射成形技术相结合的高新技术,是小型复杂零部件成形工艺的一场革命。它将适用的技术粉末与粘合剂均匀混合成具有流变性的喂料,在注射机上注射成形,获得的毛坯经脱脂处理后烧结致密化为成品,必要时还可以进行后处理 生产工艺流程如下 配料→混炼→造粒→注射成形→化学萃取→高温脱粘→烧结→后处理→成品 二、MIM 技术特点 金属粉末注射成形结合了粉末冶金与塑料注射成形两大技术的优点,突破了传统金属粉末模压成形工艺在产品形状上的限制,同时利用塑料注射成形技术能大批量、高效率生产具有复杂形状的零件:如各种外部切槽、外螺纹、锥形外表面、交叉通孔、盲孔、凹台、键销、加强筋板,表面滚花等 ·MIM 技术的优点 a.直接成形几何形状复杂的零件,通常重量0.1~200g b.表面光洁度好、精度高,典型公差为±0.05mm c.合金化灵活性好,材料适用范围广,制品致密度达95%~99%,内部组织均匀,无内应力和偏析 d.生产自动化程度高,无污染,可实现连续大批量清洁生产 ·MIM 与精密铸造成形能力的比较 ·MIM 与其他成形工艺的比较

三、MIM常用材质 四、几种MIM材料的基本性能 五、MIM产品典型应用领域 航空航天业:机翼铰链、火箭喷嘴、导弹尾翼、涡轮叶片芯子等 汽车业:安全气囊组件、点火控制锁部件、涡轮增压器转子、座椅部件、刹车装置部件等 电子业:磁盘驱动器部件、电缆连接器、电子封装件、手机振子、计算机打印头等 军工业:地雷转子、枪扳机、穿甲弹心、准星座、集束箭弹小弹等 日用品:表壳、表带、表扣、高尔夫球头和球座、缝纫机零件、电动玩具零件等 机械行业:异形铣刀、切削工具、电动工具部件、微型齿轮、铰链等 医疗器械:牙矫形架、剪刀、镊子、手术刀等 六、适合材质 不锈钢Fe合金Fe-Ni-Co合金钨钛合金工具钢高速钢硬质合金氧化铝氧化锆 2

金属陶瓷粉末注射成型技术MIM

金属(陶瓷)粉末注射成型技术 (Metal Powder Injection Molding,简称MIM) 是一项新的制造技术,美国加州Parmatech公司于1973年发明,八十年代初欧洲许多国家以及日本也都投入极大精力开始研究该技术,并得到迅速推广。特别是八十年代中期,这项技术实现产业化以来更获得突飞猛进的发展,每年都以惊人的速度递增。到目前为止,美国、西欧、日本等十多个国家和地区有一百多家公司从事该工艺技术的产品开发、研制与销售工作。日本在竞争上十分积极,并且表现突出,许多大型株式会社均参与MIM工业的推广,这些公司包括有太平洋金属、三菱制钢、川崎制铁、神户制钢、住友矿山、精工--爱普生、大同特殊钢等。目前日本有四十多家专业从事MIM产业的公司,其MIM工业产品的销售总值早已超过欧洲并直追美国。日本未来3至5年MIM产业的市场预计达20亿美元。据不完全统计,1995年全世界MIM技术制作的销售额已突破4亿美元,预计2010年MIM 潜在市场为30亿美元。到目前为止,全球已有百余家公司从事该项技术的产品开发、研制与销售工作,MIM技术也因此成为新型制造业中最为活跃的前沿技术领域,被世界冶金行业的开拓性技术,代表着粉末冶金技术发展的主方向。 中国MIM技术的研究始于1985年,由中国兵器工业五三研究所承担该课题,当时列入国家[七五]军用新材料重点预研计划,经十余年的探索,技术已基本成熟,并于1996年与上海金珠东方雪域企业有限公司合作成立了山东金珠粉末注射制造有限公司。经过几年的发展,山东金珠公司完成了MIM技术由试验室水平向产业化发展的过程,应用技术更加成熟,能够大批量生产高精尖的军用、民用产品,制品水平已接近世界同期水平,并连续三年实现产值翻番,企业的发展呈现出良好的态势。 近年来,国内努力平衡对日贸易逆差大,掌握关键性零部件的制造技术和提升制造能力,一直是政府协助业者的重要工作之一。本文对MIM技术、生产工艺过程、工艺特点、制品

粉末冶金成形技术教程文件

粉末冶金成形技术

第四章粉末冶金成形技术 一、粉末冶金成形定义: 用金属粉末或金属与非金属粉末的混合物作原料,采用压制、烧结及后处理等工序来制造某些金属材料、复合材料或制品的工艺技术。粉末冶金生产工艺与陶瓷制品的生产工艺相似,因此粉末冶金成型技术又常常叫金属陶瓷法。 方法:将均匀混合的粉末材料压制成形,借助粉末原子间的吸引力和机械啮合作用,使制品结合成为具有一定强度的整体,然后再高温烧结,进一步提高制品的强度,获得与一般合金相似的组织。 二、粉末冶金材料或制品 1. 难熔金属及其合金(如钨、钨——钼合金); 2. 组元彼此不相溶,熔点十分悬殊的特殊性能材料,如钨——铜合金; 3. 难溶的化合物或金属组成的复合材料(如硬质合金、金属陶瓷) 三、粉末冶金成型技术特点: 1. 某些特殊性能材料的唯一成型方法; 2. 可直接制出尺寸准确,表面光洁的零件,是少甚至无切削的生产工艺; 3. 节约材料和加工工时; 4. 制品强度较低; 5. 流动性较差,形状受限; 6. 压制成型的压强较高,制品尺寸较小; 7. 压模成本较高。 四、粉末冶金成形过程 原始粉末+添加剂→混合→压制成型→烧结→零件成品

五、粉末冶金工艺理论基础 一)、金属粉末的性能 金属粉末的性能对其成型和烧结过程及制品质量有重要影响,分为化学成分、物理性能和工艺性能。 固态物质按分散程度不同分为致密体、粉末和胶体。 致密体:通常所说的固体,粒径在1mm以上; 胶体微粒:粒径在0.1μm以下; 粉末体或简称粉末:粒径介于二者之间。 1. 粉末的化学成分 主要金属或组元的含量,杂质或夹杂物的含量,气体的含量。 金属的含量一般不低于98-99%。 2. 粉末的物理性能 1)颗粒形状:球状、粒状、片状和针状。影响粉末的流动性、松装密度等。 2)粒度:粉末颗粒的线性尺寸,用“目”来表示,用筛分法等测量。对压制时的比压、烧结时的收缩及烧结制品的力学性能有影响。 3)粒度分布:按粒度不同分为若干级,每一级粉末(按质量、数量或体积)所占的百分比。对粉末的压制和烧结有影响。 4)颗粒比表面积:单位质量粉末的总表面积,可算出颗粒的平均尺寸。对粉末的压制和烧结有影响。 3. 粉末的工艺性能 1)流动性:粉末的流动能力,用50g粉末在规定条件下从标准漏斗中流出所需的时间来表示,单位为s/50g。

粉末冶金技术

粉未治金技术 金属注射成形技术(MIM)由陶瓷零件的粉末注射成形技术发展而来,是一种新型的粉末冶金近净成形技术。MIM 技术的主要生产步骤如下: 金属粉末与粘结剂混合——制粒——注射成形——脱脂——烧结——后续处理——最终产品 该技术适用于大批量生产性能高、形状复杂的小尺寸的粉末冶金零部件。近几十年来,MIM技术发展势头迅猛,能应用的材料体系包括:Fe-Ni合金、不锈钢、工具钢、高比重合金、硬质合金、钛合金、镍基超合金、金属间化合物、氧化铝、氧化锆等。目前注射成形技术在国外已经有不少大规模的产业化应用,如瑞士的手表业。而国内近年来也已经涌现出不少具有一定实力MIM产品的生产企业,如中南工大的湖南英捷,北京安泰,山东乳山金珠以及上海富驰等。 金属和陶瓷粉末材料注射成型(粉末注射成型-PIM)作为一种有竞争力的技术,已经在精密零件领域确立了其地位。PIM的成功来自于塑料注射成型技术和粉末技术的组合,前者具有获得形状的高自由度;后者提供很宽的选择材料的可能性。这导致了形成一个年增长率高于20%的强有力的增长中的市场。粉末注射成型是一种接近纯塑造的加工方法,它组合了粉末技术和塑料注射成型技术的各种优势。聚合物注射成型的主要优点是高速和自动化地生产大批量、几何形状复杂而又无需进行重要的后修饰零件的可能性。PIM加工过程现在可以加工几乎所有可得到的、以适当的粉末形式存在的材料,包括金属、陶瓷、硬质合金、金属间化合物和复合材料。在粉末注射成型中,金属或陶瓷粉通过与足量的聚合物和蜡(粘接剂)混合和均化形成注射成型混合物,这种原料有聚合物的流动性质,能作为粒料用通常的注射成型方法进行加工。注射成型零件(绿色坯块)用如同塑料注射成型那样的方法成型,并采用或多或少有点复杂的注射成型模具。为了得到成品,粘接剂通常在一个两级加工过程中,借助热效应和/或一种化学过程,被从绿色坯块中除去(称谓脱粘接剂)。所形成的"褐色坯块"与注射成型零件有大致相同的形状和尺寸。但由于已经除去粘接剂,所以是一个多孔结构的零件。此零件然后在大约85%的熔点温度,在一个适当地调节好的环境中烧结。孔通过液相的扩散、成型,和颗料增大等而封闭。在烧结过程中零件形状完全保持,结果是用塑料成型加工法可得到的复杂的形状也能在金属和陶瓷零件上再现。精细的原料粉和光洁的模具表面可保证PIM加工方法具有突出的表面质量。按照用途的不同,烧结好的零件可在随后的产品后处理工序中,用搭接、研磨、机械、化学抛光、涂布等方法达到最终的、准备好供使用的状况。注射成型是确定几何形状和尺寸的关键工序。就像热塑性塑料情况那样,来自注料道和流道的混合料冷料可以再行造粒和回收使用,或者可采用热流道喷嘴,直接注射入零件。 零件尺寸从2 mm到5 cm PIM加工方法的典型应用是生产相对较小、密实而又形状复杂的零件,对它们的需求数量,每年在几千到几百万之间。它的高成型自由度使早先用几个工序生产或用几个零件装备起来形成的零件可用一个单独的PIM零件代替。有内部螺纹的、有难于加工的侧陷槽的、要求高表面质量的零件也能可靠地和自动化地进行生产。对于PIM零件,存在有一系列设计判据。PIM零件的典型的和经济上有吸引力的尺寸范围大约从2 mm到5 cm。紧固元件,如眼孔、螺纹或拉钩被集成到零件上也是很典型的,零件也包括,如齿轮、滑动螺栓、滑动表面、传动夹头或结构轴等结构元件。PIM特别适于制造有多功能特点的零件,成型自由度高,这大大扩展了传统生产工艺的适用范围,并且不需要复杂的机械修整和连接加工。 在许多生活领域中的应用PIM零件现在用于很多日常生活领域,如汽车和空间工业、化学工业、办公室设备和计算机工业,但也用于医药技术、运动设备和军事装备。例如厨房搅拌器的驱动托架,用不锈钢制成,重量为135g,这是一个相对较重的PIM零件。汽车点火开关盖以Fe2Ni为材料,由Radevormwald 的GKN Sinter Metals公司大批量生产。这种零件重8.8g,烧结后牢固地镀上铬。Dornstetten 的Klaeger公司批量生产的陶瓷杯,可省去固定把手的复杂工作程序。其他在消费品和宝石行业的著名的应用例子是不锈钢、钛和贵金属手表零件,例如由瑞士Grenchen的ETA公司生产的这类零件。注射成型机制造商Arburg公司采用了气体辅助技术,使中空的、重量轻的零件进入PIM加工过程。 世界范围的销售额为7亿美元简单概括一下PIM技术的历史发展情况,与PIM有关的第一个商业活动发生在1960年。但只是在过去的15年里,接受程度和市场潜力才取得稳定的增长。这一技术成熟到这种程度,它成为

金属粉末注射成型技术

编订:__________________ 单位:__________________ 时间:__________________ 金属粉末注射成型技术 Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-3132-56 金属粉末注射成型技术 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 金属粉末注射成型技术(Metal Powder Injection Molding,简称MIM)是将现代塑料喷射成形技术引入粉末冶金领域而形成的一门新型粉末冶金近净形成形技术。其基本工艺过程是:首先将固体粉末与有机粘结剂均匀混练,经制粒后在加热塑化状态下(~150℃)用喷射成形机注入模腔内固化成形,然后用化学或热分解的方法将成形坯中的粘结剂脱除,最后经烧结致密化得到最终产品。与传统工艺相比,具有精度高、组织均匀、性能优异,生产成本低等特点,其产品广泛应用于电子信息工程、生物医疗器械、办公设备、汽车、机械、五金、体育器械、钟表业、兵器及航空航天等工业领域。因此,国际上普遍认为该技术的发展将会导致零部件成形与加工技术的一场革命,被誉为“当今最热门的零部件成形技术”和“21

金属注射成型综述要点

河南工程学院 《机械工程材料与成形工艺》考查课 专业论文 金属注射成型 学生姓名: 学院: 专业班级: 专业课程: 任课教师: 201 年月日

摘要 金属注射成形(Metal Injection Molding,简称MIM)是一种从塑料注射成形行业中引伸出来的新型粉末冶金近净成形技术,众所周知,塑料注射成形技术低廉的价格生产各种复杂形状的制高、耐磨性好的 制品,近年来,这一想法已发展演变为最大限度地提高固体粒子的含量并且在随后的烧结过程中完全除去粘结剂并使成形坯致密化。这种新的粉末冶金成形方法称为金属注射成形。金属注射成形的基本工艺步骤是:首先是选取符合MIM要求的金属粉末和粘结剂,然后在一定温度下采用适当的方法将粉末和粘结剂混合成均匀的喂料,经制粒后在注射成形,获得的成形坯经过脱脂处理后烧结致密化成为最终成品。 关键词:金属注射成形粘结剂脱脂烧制

一、金属粉末注射成型的发展现状及现状 1. 国外概况 金属粉末注射成型工艺技术的开拓者是美国的Parmatech公司。该公司的航天燃料专家Wiech博士于1973年发明了MIM技术。以Riverst和Wiech于70年代发明的专利为起点,开始了金属粉末注射成形技术。Parmatech于70年代末注射成型铌火箭喷嘴获得MPIF 奖。但由于该技术的独特优点和先进性,被美国列为不对外扩散技术加以保密,直到1985年才向全世界公布这一技术,而在这期间美国国内的MIM技术得以成熟并迅速发展形成产业化。该项技术向世界披露后得到世界各国政府、学术界、企业界的广泛重视,并投入了大量人力物力和财力予以开发研究。其中日本在研究上十分积极而且表现突出,许多大型株式会社参与了MIM技术的工业化推展。目前日本有四十余家企业从事MIM制品的生产,每家公司的利润都十分可观。2000年世界粉末冶金会议在日本召开,并专门设立了MIM技术论坛。继日本快速发展之后,台湾、韩国、新加坡、欧洲和南美的MIM产业也雨后春笋般的发展起来,其中德国的BASF公司以其独特的黏结剂配方成立了专门的MIM产品喂料生产线,在全世界范围内进行技术辅导和喂料的销售,获得了较大的商业利润。 德国BASF公司的Bloemacher于90年代初开发的MIM工艺成为MIM实现产业化的一个重大突破。它采用聚醛树脂作为粘结剂,并在酸性气氛中快速催化脱脂,不仅大大缩短了脱脂时间,而且这种催化脱脂能在低于粘结剂的软化温度下进行,避免了液相的生成,有利于

粉末冶金成形技术

第四章粉末冶金成形技术 一、粉末冶金成形定义: 用金属粉末或金属与非金属粉末的混合物作原料,采用压制、烧结及后处理等工序来制造某些金属材料、复合材料或制品的工艺技术。粉末冶金生产工艺与陶瓷制品的生产工艺相似,因此粉末冶金成型技术又常常叫金属陶瓷法。 方法:将均匀混合的粉末材料压制成形,借助粉末原子间的吸引力和机械啮合作用,使制品结合成为具有一定强度的整体,然后再高温烧结,进一步提高制品的强度,获得与一般合金相似的组织。 二、粉末冶金材料或制品 1. 难熔金属及其合金(如钨、钨——钼合金); 2. 组元彼此不相溶,熔点十分悬殊的特殊性能材料,如钨——铜合金; 3. 难溶的化合物或金属组成的复合材料(如硬质合金、金属陶瓷) 三、粉末冶金成型技术特点: 1. 某些特殊性能材料的唯一成型方法; 2. 可直接制出尺寸准确,表面光洁的零件,是少甚至无切削的生产工艺; 3. 节约材料和加工工时; 4. 制品强度较低; 5. 流动性较差,形状受限; 6. 压制成型的压强较高,制品尺寸较小; 7. 压模成本较高。 四、粉末冶金成形过程 原始粉末+添加剂→混合→压制成型→烧结→零件成品 五、粉末冶金工艺理论基础 一)、金属粉末的性能 金属粉末的性能对其成型和烧结过程及制品质量有重要影响,分为化学成分、物理性能和工艺性能。 固态物质按分散程度不同分为致密体、粉末和胶体。 致密体:通常所说的固体,粒径在1mm以上; 胶体微粒:粒径在0.1μm以下; 粉末体或简称粉末:粒径介于二者之间。 1. 粉末的化学成分 主要金属或组元的含量,杂质或夹杂物的含量,气体的含量。 金属的含量一般不低于98-99%。 2. 粉末的物理性能 1)颗粒形状:球状、粒状、片状和针状。影响粉末的流动性、松装密度等。 2)粒度:粉末颗粒的线性尺寸,用“目”来表示,用筛分法等测量。对压制时的比压、烧结时的收缩及烧结制品的力学性能有影响。 3)粒度分布:按粒度不同分为若干级,每一级粉末(按质量、数量或体积)所占的百分比。对粉末的压制和烧结有影响。 4)颗粒比表面积:单位质量粉末的总表面积,可算出颗粒的平均尺寸。对粉末的压制和烧结有影响。 3. 粉末的工艺性能 1)流动性:粉末的流动能力,用50g粉末在规定条件下从标准漏斗中流出所需的时间来表示,单位为s/50g。

金属粉末注射成型技术.

金属粉末注射成型(Metal Powder Injection Molding,简称MIM技术是将现代塑料注射成型技术引入粉末冶金领域而形成的一门新型粉末冶金近净成形技术。其基本工艺过程是:首先将固体粉末与有机粘结剂均匀混练,经制粒后在加热塑化状态下(~150℃用注射成型机注入模腔内固化成型,然后用化学或热分解的方法将成型坯中的粘结剂脱除,最后经烧结致密化得到最终产品。与传统工艺相比,MIM具有精度高、组织均匀、性能优异、生产成本低等特点,其产品广泛应用于电子信息工程、生物医疗器械、办公设备、汽车、机械、五金、体育器械、钟表业、兵器及航空航天等工业领域。国际上普遍认为该技术的发展将会导致零部件成形与加工技术的一场革命,被誉为“当今最热门的零部件成形技术”和“21世纪的成形技术”。 MIM技术由美国加州Parmatech公司于1973年发明,八十年代初欧洲许多国家以及日本也都投入极大精力开始研究该技术,并使其得到迅速推广,特别是在八十年代中期该技术实现产业化以来,更获得了突飞猛进的发展,产量每年都以惊人速度递增。到目前为止,美国、西欧、日本等十多个国家和地区有一百多家公司从事该工艺技术的产品开发、研制与销售工作。日本在竞争上十分积极,并且表现突出,许多大型株式会社均参与MIM工艺的推广应用,这些公司包括太平洋金属、三菱制钢、川崎制铁、神户制钢、住友矿山、精工-爱普生、大同特殊钢等。目前日本有四十多家专业从事MIM产业的公司,其MIM产品的销售总值早已超过欧洲并直追美国。MIM技术已成为新型制造业中最为活跃的前沿技术领域,是世界冶金行业的开拓性技术,代表着粉末冶金技术发展的主方向。 金属粉末注射成型技术是塑料成型工艺学、高分子化学、粉末冶金工艺学和金属材料学等多学科渗透与交叉的产物,利用模具可注射成型坯件并通过烧结快速制造高密度、高精度、三维复杂形状的结构零件,能够快速、准确地将设计思想物化为具有一定结构、功能特性的制品,并可直接批量生产出零件,是制造技术行业一次新的变革。该工艺技术不仅具有常规粉末冶金工艺工序少、无切削或少切削、经济效益高等优点,而且克服了传统粉末冶金工艺制品材质不均匀、机械性能低、薄壁成型困难、结构复杂等缺点,特别适合于大批量生产小型、复杂以及具有特殊要求的金属零件。

Hinge部件工艺_金属粉末注射成形

金属粉末注射成形(MIM) 作者: yowelu 时间: 2009-9-8 11:58 一套完美的转轴和铰链总成部件,是由多个关键零组件互相密切配合而成,其中涉及到诸如扭力、寿命试验、耐震测试、落地测试、材料性能、零组件制造工艺的选择等各项性能要求,我认为在以上各项中,尤其以零组件的材质与制造工艺的选择尤为重要,材质可以保证一定的机械性能,而合适的制造工艺即可以经济的进行大批量生产,又可以保证零件的高精度。在这里,我要着重介绍转轴核心零件的制造工艺--金属粉末注射成形(Metal Injection Molding,简称MIM),MIM近年已发展为粉末冶金中重要的一环并稳定地成长,是一种结合了塑料注射及粉末冶金优点的成型技术,此制程将微细的金属粉末与高分子黏结剂混合加热后,得到具流动性的射料,再经由注射机的注射成型,获得的成形坯经过脱脂处理后烧结致密化成为最终成品,即可以自动化、大量地生产尺寸精密、且具三维形状复杂的小型工件;此制程大大的减少了传统金属加工的繁复程序与成本费用,因此在某些工业应用上具有一定的竞争优势,目前已广泛应用于机械、电子、通讯、汽车、钟表、光电、武器、医疗器械…

MIM工艺设计指南: 与其他加工工艺比较: 与其他制程相对成本分析

MIM制程: 金属粉末射出成形 (Metal Injection Molding,简称MIM)近年已发展为粉末冶金产业中重要之一环并稳定地成长,是一种结合了塑胶射出及粉末冶金优点之近淨成形技术,被誉为“国际最热门的金属零部件制备技术”之一。此制程将极微细之金属粉末与有机黏结剂混炼加热后,得到具有流动性之射料,经由射出机射入模具中成形,成形后的生胚,需经过脱脂的过程把先前混入的黏结剂脱除,再经由真空烧结后即可得到密度95%以上之高致密度、高强度的产品。MIM的产品极为适用于精密复杂机械零件或高附加价值的外观产品上。此外MIM制程大大的减少传统金属加工的繁复程序与成本费用,因批次生产之方式大大提高了生产效率并有效地降低了量产时的成本。 MIM制品: MIM制程在金属材料体系中广泛适用,原则上可以制成粉末的金属材料都可以用于MIM 制程,但低熔点金属(如:铝、镁、锌等)常用于压铸。目前上海三展新材料科技有限公司不但拥有专业研发设计能力,还具备了量产的纯熟制造技术,尤其在不锈钢系列、铁系合金等两大材料的量产能力与品质,皆能获得客户满意与信赖,更可以随时接单、量产,提供客户客制化的服务。 1、MIM技术具有塑胶注射工艺容易制备三维结构复杂的金属零部件的优点,可以实现多个简单零件一体化。如图示: 2、MIM技术可方便的采用一模多穴模具,成形效率高,模具使用寿命长,更换调整模具方便快捷,特别适合于大批量生产,产品性能一致性好,注射料可反复利用,材料利用率达98%以上,从而大大提高了生产效率降低了生产成本。 3、MIM技术使用极微细的金属粉末(粒径:0.5~20μm),注射毛坯经由液相烧结收缩致密化得到的最终零件理论密度可达95%以上,尺寸精度高,可以与锻造、铸造、机加工等材料相媲美,特别是动力学性能优良;最终零件各部位的密度一致,即各向同性,具有极佳的表面光洁度。 选择何种金属成形加工工艺,零件的复杂性和生产产量是两个主要决定因素。MIM技术在高精确度、三维结构复杂度和量产性上独占优势。对于零件设计者,应尽可能考虑减

粉末冶金制粉技术 全

粉末冶金制粉技术(一) 粉末冶金新技术、新工艺的应用,不但使传统的粉末冶金材料性能得到根本的改善,而且使得一批高性能和具有特殊性能的新一代材料相继产生。例如:高性能摩擦材料、固体自润滑材料、粉末高温合金、高性能粉末冶金铁基复合和组合零件、粉末高速钢、快速冷凝铝合金、氧化物弥散强化合金、颗粒增强复合材料,高性能难熔金属及合金、超细晶粒及涂层硬质合金、新型金属陶瓷、特种陶瓷、超硬材料、高性能永磁材料、电池材料、复合核燃料、中子可燃毒物、粉末微晶材料和纳米材料、快速冷凝非晶和准晶材料、隐身材料等。这些新材料都需要以粉末冶金作为其主要的或惟一的制造手段。 本章将简要介绍粉末冶金的基本工艺原理和方法,重点介绍近年米粉末冶金新技术和新工艺的发展和应用状况。 1.雾化制粉技术 粉末冶金材料和制品不断增多,其质量不断提高,要求提供的粉末的种类也愈来愈多。例如,从材质范围来看,不仅使用金属粉末,也要使用合金粉末、金属化合物粉末等;从粉末形貌来看,要求使用各种形状的粉末,如生产过滤器时,就要求球形粉末;从粉末粒度来看,从粒度为500~1000m的粗粉末到粒度小于0.1m的超细粉末。 近几十年来,粉末制造技术得到了很大发展。作为粉末制备新技术,第一个引人注目的就是快速凝固雾化制粉技术。快速凝固雾化制粉技术是直接击碎液体金属或合金并快速冷凝而制得粉末的片法。快速凝固雾化制粉技术最大的优点是可以有效地减少合金成分的偏析,获得成分均匀的合金粉末。此外,通过控制冷凝速率可以获得具有非晶、准晶、微晶或过饱和固溶体等非平衡组织的粉末。它的出现无论对粉末合金成分的设计还是对粉末合金的微观结构以及宏观特性都产生了深刻影响,它给高性能粉末冶金材料制备开辟了一条崭新道路,有力地推动了粉末冶金的发展。 雾化法最初生产的是像锡、铅、锌、铝等低熔点金属粉末,进一步发展能生产熔点在1600~1700℃以下的铁粉及其他粉末,如纯铜、黄铜、青铜、合金钢、不锈钢等金属和合金粉末。近些年,随着人们对雾化制粉技术快速冷凝特性的认识,其应用领域不断地拓宽,如高温合金、Al-Li合金、耐热铝合金、非晶软磁合金、稀土永磁合金、Cu-Pb和Cu-Cr假合金等。 借助高压液流(通常是水或油)或高压气流(空气、惰性气体)的冲击破碎金属液流来制备粉末的方法,称为气雾化或水(油)雾化法,统称二流雾化法;用离心力破碎金属液 流称为离心雾化;利用超声波能量来实现液流的破碎称为超声雾化。雾化制粉的冷凝速率一般为103~106℃/s。 2二流雾化 根据雾化介质(气体、水或油)对金属液流作用的方式不同,二流雾化法具有多种形式: (1)垂直喷嘴。雾化介质与金属液流互呈垂直方向。这样喷制的粉末一般较粗,常用来喷制铝、锌等粉末。 (2)V形喷嘴。两股板状雾化介质射流呈V形,金属液流在交叉处被击碎。这种喷嘴是在垂直喷嘴的基础上改进而成的,其特点是不易发生堵嘴。瑞典霍格纳斯公司最早用此法以水喷制不锈钢粉。

粉末注射成型技术的特点

粉末注射成型技术的特点 MIM作为一种制造高质量精密零件的近净成形技术,具有常规和机加工方法比拟的优势。MIM能制造许多具有复杂形状特征的零件:如各种外部切槽,外螺纹,锥形外表面,交叉通孔、盲孔,四台与键销,加强筋板,表面滚花等等,具有以上特征的零件都是无法用常规粉末冶金方法得到的。由于通过MIM制造的零件几乎不需要再进行机加工,所以减少了材料的消耗,因此在所要求生产的复杂形状零件数量高于一定值时,MIM就会比机加工方法更为经济。 MIM和精密铸造成形能力的比较 粉末注射成型的优点: 能像生产塑料制品一样,一次成形生产形状复杂的金属、陶瓷等零件部件产品成本低、光洁度好、精度高(±0.3%~±0.1%),一般无需后续加工产品强度,硬度,延伸率等力学性能高,耐磨性好,耐疲劳,组织均匀原材料利用率高,生产自动化程度高,工序简单,可连续大批量生产无污染,生产过程为清洁工艺生产 粉末注射成型 粉末注射成型材料应用 较新MIM材料体系应用

常用MIM产品应用 几种粉末注射成型材料的基本性能 粉末注射形成技术与其他成形工艺技术比较 粉末注射成型工艺与传统批量工业与自动化零件加工、冲压、锻造、精密铸造、粉末冶金相比,具有极其明显的优势。

零件薄壁能力高中中低高 零件复杂程度高低中高低 零件设计宽容度高中中中低 批量生产能力高高中中-高高 适应材质范围高高中-高高中 供货能力高高中低高 粉末注射成型工艺流程图 适用材料及性能 材料 密度硬度拉伸强度伸长率 g/cm 3 洛氏MPa % 铁基合金 MIM-2200(烧结态) 7.65 45HRB 290 40 MIM-2200(烧结态)50HRC 380 20 MIM-2700(烧结态) 7.65 69HRB 440 26 MIM-2700(碳氮共渗)55HRC 830 9 MIM-4650(烧结态)7.55 90HRB 700 11 MIM-4650(热处理态)7.55 48HRC 1655 2 MIM-8620(烧结态)7.5 85HRB 445 20 MIM-8620(热处理态)7.5 35HRC 800-1300 5-9 不锈钢 MIM - 316L (烧结态)7.8 67HRB 520 50 MIM-304L(烧结态)7.75 60HRB 500 70

金属成型新工艺:MIM(金属粉末注射成型)工艺详细介绍

金属成型新工艺:MIM(金属粉末注射成型)工艺详细介绍 小编备注:结合国内目前MIM现状补充了一些资料。转载请注明文章来源:金属注射成型网https://www.doczj.com/doc/ca11427883.html, 1 MIM是一种近净成形金属加工成型工艺 MIM (Metal injection Molding )是金属注射成形的简称。是将金属粉末与其粘结剂的增塑混合料注射于模型中的成形方法。它是先将所选金属粉末与粘结剂进行混炼,然后将混合料进行制粒再注射成形所需要的形状胚料,然后通过高温烧结,得到具有强度的金属零件。 2 MIM工艺流程步骤 MIM流程结合了注塑成型设计的灵活性和精密金属的高强度和整体性,来实现极度复杂几何部件的低成本解决方案。MIM流程分为四个独特加工步骤(混合、成型、脱脂和烧结)来实现零部件的生产,针对产品特性决定是否需要进一步的机械加工或进行表面处理. 混合

精细金属粉末和热塑性塑料、石蜡粘结剂按照精确比例进行混合。混合过程在一个专门的混合设备中进行,加热到一定的温度使粘结剂熔化。大部分情况使用机械进行混合,直到金属粉末颗粒均匀地涂上粘结剂冷却后,形成颗粒状(称为原料),这些颗粒能够被注入模腔。 CNPIM备注:混炼是MIM工艺中非常重要的一道工序。目前混炼有几种体系,不同的添加剂,后面对应需要不同的脱脂方法将添加剂去除。最常用的蜡基和塑基,分别对应热脱脂和催化脱脂。 成型 注射成型的设备和技术与注塑成型是相似的。颗粒状的原料被送入机器加热并在高压下注入模腔。这个环节形成(green part)冷却后脱模,只有在大约200°c的条件下使粘结剂熔化(与金属粉末充分融合),上述整个过程才能进行,模具可以设计为多腔以提高生产率。模腔尺寸设计要考虑金属部件烧结过程中产生的收缩。每种材料的收缩变化是精确的、已知的。 脱脂

PIM粉末注射成形概述

PIM粉末注射成形概述:注射成型车间 连续烧结炉设备结构图

真空烧结炉 粉末注射成形(Powder Injection Molding,PIM)由金属粉末注射成形(Metal Injection Molding,MIM)与陶瓷粉末注射成形(Ceramics Injection Molding,CIM)两部分组成,它是一种新的金属、陶瓷零部件制备技术,它是将塑料注射成形技术引入到粉末冶金领域而形成的一种全新的零部件加工技术。MIM的基本工艺步骤是:首先选取符合MIM要求的金属粉末和黏结剂,然后在一定温度下采用适当的方法将粉末和黏结剂混合成均匀的喂料,经制粒后再注射成形,获得成形坯(Green Part),再经过脱脂处理后烧结致密化成为最终成品(White Part)。 粉末注射成形技术的特点: 粉末注射成形能像生产塑料制品一样,一次成形生产形状复杂的金属、陶瓷零部件。该工艺技术利用注射方法,保证物料充满模具型腔,也就保证了零件高复杂结构的实现。以往在传统加工技术中,对于复杂的零件,通常是先分别制作出单个零件,然后再组装;而在使用PIM技术时,可以考虑整合成完整的单一零件,这样大大减少了生产步骤,简化了加工程序。 1、与传统的机械加工、精密铸造相比,制品内部组织结构更均匀;与传统粉末冶金压制∕烧结相比,产品性能更优异,产品尺寸精度高,表面光洁度好,不必进行再加工或只需少量精加工。金属注射成形工艺可直接成形薄壁结构件,制品形状已能接近或达到最终产品要求,零件尺寸公差一般保持在±0.10%~±0.30%水平,特别对于降低难以进行机械加工的硬质合金的加工成本、减少贵重金属的加工损失尤其具有重要意义。 2、零部件几何形状的自由度高,制件各部分密度均匀、尺寸精度高,适于制造几何形状复杂、精度密高及具有特殊要求的小型零件(0.2~200g)。 3、合金化灵活性好,对于过硬、过脆、难以切削的材料或原料铸造时有偏析或污染的零件,可降低制造成本。 4、产品质量稳定、性能可靠,制品的相对密度可达95%~100%,可进行渗碳、淬火、回火等热处理。 5、适用材料范围宽,应用领域广,原材料利用率高,生产自动化程度高,工序简单,可连续大批量规模化生产。生产过程无污染,为清洁工艺生产。MIM技术使用的模具,其寿命与塑料注射成形模具相似。由于使用金属模具,MIM适于零件的大批量生产;由于利用注射机成形产品毛坯,极大地提高了生产效率,降低了成本,而且注射成形产品一致性好、重复性好,从而为大批量和规模化工业生产提供了保证,再者一模多腔可进一步提高效率和降低毛坯的成形成本。 6、制品微观组织均匀,密度高,产品强度、硬度、伸长率等力学性能高,耐磨性好,耐疲劳,组织均匀,性能好。在粉末冶金压制过程中,由于模壁与粉末以及粉末与粉末之间的摩擦力,使得压制压力分布不均匀,也就导致了压制毛坯在微观组织的不均匀、材料致密性差、密度低,严重影响了产品的力学性能;而MIM是一种流体成形工艺,粘结剂的存在保证了粉末均匀排布,从而可消除毛坯微观组织的不均匀,进而使烧结制品密度接近材料的理论密度,从而使强度增加、韧性加强,延展性、导电性、导热性得到改善,综合性能提高。能像生产塑料制品一样,一次成形生产形状复杂的金属、陶瓷等零部件,产品成本低,光洁度好,表面粗糙度可达到Ra 0.80~1.6μm,精度高,一般无需后续加工。

金属粉末注射成型技术

金属粉末注射成型技术 金属粉末注射成型技术(Metal Powder Injection Molding,简称MIM)是将现代塑料喷射成形技术引入粉末冶金领域而形成的一门新型粉末冶金近净形成形技术。其基本工艺过程是:首先将固体粉末与有机粘结剂均匀混练,经制粒后在加热塑化状态下(~150℃)用喷射成形机注入模腔内固化成形,然后用化学或热分解的方法将成形坯中的粘结剂脱除,最后经烧结致密化得到最终产品。与传统工艺相比,具有精度高、组织均匀、性能优异,生产成本低等特点,其产品广泛应用于电子信息工程、生物医疗器械、办公设备、汽车、机械、五金、体育器械、钟表业、兵器及航空航天等工业领域。因此,国际上普遍认为该技术的发展将会导致零部件成形与加工技术的一场革命,被誉为“当今最热门的零部件成形技术”和“21世纪的成形技术”。 美国加州Parmatech公司于1973年发明,八十年代初欧洲许多国家以及日本也都投入极大精力开始研究该技术,并得到迅速推广。特别是八十年代中期,这项技术实现产业化以来更获得突飞猛进的发展,每年都以惊人的速度递增。到目前为止,美国、西欧、日本等十多个国家和地区有一百多家公司从事该工艺技术的产品开发、研制与销售工作。日本在竞争上十分积极,并且表现突出,许多大型株式会社均参与MIM工业的推广,这些公司包括有太平洋金属、三菱制钢、川崎制铁、神户制钢、住友矿山、精工--爱普生、大同特殊钢等。目前日本有四十多家专业从事MIM产业的公司,其MIM工业产品的销售

总值早已超过欧洲并直追美国。到目前为止,全球已有百余家公司从事该项技术的产品开发、研制与销售工作,MIM技术也因此成为新型制造业中最为活跃的前沿技术领域,被世界冶金行业的开拓性技术,代表着粉末冶金技术发展的主方向MIM技术。 金属粉末喷射成型技术是集塑料成型工艺学、高分子化学、粉末冶金工艺学和金属材料学等多学科透与交叉的产物,利用模具可喷射成型坯件并通过烧结快速制造高密度、高精度、三维复杂形状的结构零件,能够快速准确地将设计思想物化为具有一定结构、功能特性的制品,并可直接批量生产出零件,是制造技术行业一次新的变革。该工艺技术不仅具有常规粉末冶金工艺工序少、无切削或少切削、经济效益高等优点,而且克服了传统粉末冶金工艺制品、材质不均匀、机械性能低、不易成型薄壁、复杂结构的缺点,特别适合于大批量生产小型、复杂以及具有特殊要求的金属零件。工艺流程粘结剂→混炼→喷射成形→脱脂→烧结→后处理 粉末金属粉末 MIM工艺所用金属粉末颗粒尺寸一般在0.5~20μm;从理论上讲,颗粒越细,比表面积也越大,易于成型和烧结。而传统的粉末冶金工艺则采用大于40μm的较粗的粉末。有机胶粘剂作用是粘接金属粉末颗粒,使混合料在喷射机料筒中加热具有流变性和润滑性,也就是说带动粉末流动的载体。因此,粘接剂的选择是整个粉末的载体。因此,粘拉选择是整个粉末喷射成型的关键。对有机粘接剂要求: 1.用量少,用较少的粘接剂能使混合料产生较好的流变性;

粉末冶金成形技术

7粉末冶金及陶瓷材料成形技术 以粉末的获得、成形和烧结为主线制备的粉末冶金及陶瓷材料,其使用历史可以追溯到数千年前。在2500多年前,人们就用块炼锻造法制造铁器。在宋、明朝时期,我国的陶瓷业发展到了顶峰,制作的陶瓷器皿流向世界各地。进入20世纪,粉末冶金电灯钨丝的出现,给人类带来真正的光明;而硬质合金的成功制造被誉为切削加工的一次革命;同样陶瓷材料因其脆性和抗震性获得改善成了最有前途的高温结构材料;陶瓷材料的许多特殊性能被成功地用作重要的功能材料(光导纤维、激光晶体等)。随着此类材料制备方法的不断更新,各类粉末冶金金属制品、金属陶瓷及各种复合材料相继问世。表明了粉末冶金及陶瓷材料这类古老的技术已进入现代科学技术发展的行列。 7.1 定义及特点 粉末冶金及陶瓷是通过制取粉末材料、并以粉末为原料用成形-烧结法制造出的材料与制品。此技术既是制取材料的一种冶炼方法,又是制造机械零件的一种加工方法。 目前用量最广的传统金属制品已被越来越多的粉末冶金及陶瓷制品所取代,从而在机械制造、汽车、电器、航空等工业中获得广泛的应用,这主要是粉末冶金及陶瓷在技术上和经济上具有如下一系列特点。 作为材料制造技术,能制取普通熔铸法无法生产的具有特殊性能的材料: (1)高熔点金属材料如钨、钼、钽以及某些金属化合物的熔点都在2000℃以上,采用通常的熔铸工艺比较困难,而且材料的纯度与冶金质量难以得到保证; (2)复合材料如含有难熔化合物的硬质合金、钢结硬质合金、金属陶瓷材料、弥散强化型材料及金属及非金属复合材料等; (3)假合金材料假合金指各组元在液态时基本上互不相溶,无法通过熔合法制成的合金。如钨—铜和铜—石墨电触头材料等; (4)特殊结构材料如多孔材料、含油轴承等。表7-1几种成形、加工方法经济性比较 作为少无切削材料加工技术,可大批Array量 制造形状复杂、公差窄、表面粗糙度低的 零 件,且节能、节材、成本低。表7-1为几 种 成形及加工方法经济性比较的实例。 粉末冶金一直被称之为金属陶瓷术。实际上,粉末冶金技术和传统的陶瓷技术有所差别。粉末冶金用粉末主要以金属为主成分,而陶瓷粉末则主要以无机化合物为主成分,如氧化物、氮化物、碳化物等。因而在具体的工序,如粉末原料的精制和烧结工艺的控制上有一定的差别,但随着粉末成形技术和热致密化技术的发展,粉末冶金技术和现代陶瓷制造技术已经很 难找出明显的区别。下面内容将主要以粉末冶金为主,兼顾陶瓷材料。

粉末冶金的工艺流程-粉末成形

粉末成形 简介 粉末冶金生产中的基本工序之一,目的是将松散的粉末制成具有预定几何形状、尺寸、密度和强度的半成品或成品。模压(钢模)成形是粉末冶金生产中采用最广的成形方法。18世纪下半叶和19世纪上半叶,西班牙、俄国和英国为制造铂制品,都曾采用了相似的粉末冶金工艺。当时俄国索博列夫斯基(П.Г.Соболевсκий)使用的是钢模和螺旋压机。英国的沃拉斯顿(W.H.Wollaston)使用压力更大的拉杆式压机和纯度更高的铂粉,制得了几乎没有残余孔隙的致密铂材。后来,模压成形方法逐渐完善,并用来制造各种形状的铜基含油轴承等产品。20世纪30年代以来,在粉末冶金零件的工业化生产过程中,压机设备、模具设计等方面不断改进,模压成形方法得到了更大的发展,机械化和自动化已达到较高的程度。为了扩大制品的尺寸和形状范围,特别是为了提高制品密度和改善密度的均匀性相继出现和发展了多种成形方法。早期出现的有粉末轧制、冷等静压制、挤压、热压等;50年代以来又出现了热等静压制、热挤压、热锻等热成形方法。这些方法推动了全致密、高性能粉末金属材料的生产。 主要功能 (1)将粉末成形为所要求的形状; (2)赋予坯体以精确的几何形状与尺寸,这时应考虑烧结时的尺寸变化; (3)赋予坯体要求的孔隙度和孔隙类型; (4)赋予坯体以适当的强度,以便搬运。 根据成形时是否从外部施加压力,可分为压制成形和无压成形两大类。 压制成形主要有:封闭钢模冷压成形、流体等静压制成形、粉末塑性成形、三轴向压制成形、高能率成形、挤压成形、轧制成形、振动压制成形等; 无压成形主要有:粉浆浇注、松装烧结等。 模压成形 模压成形将金属粉末装入钢模型腔,通过模冲对粉末加压使之成形。 模压过程装在模腔中的粉末由于颗粒间的摩擦和机械啮合作用会产生所谓“拱桥”现象,形成许多大小不一的孔隙。加压时,粉末体的体积被压缩,其过程一般用压坯相对密度-压制压力曲线表示(图1)。在开始阶段粉末颗粒相对移动并重新分布,孔隙被填充,从而使压坯密度急剧增加,达到最大装填密度;这时粉末颗粒已被相互压紧,故当压制压力增大时,压坯密度几乎不变,曲线呈现平坦。随后继续增加压制压力,粉末颗粒将发生弹、塑性变形或脆性断裂,使压坯进一步致密化。由于颗粒间的机械啮合和接触面上的金属原子间的引力,压制后的粉末体成为具有一定强度的压坯。 压制压力与压坯密度分布在模压过程中压制压力主要消耗于以下两部分:①克服粉末颗粒之间的摩擦力(称为内摩擦力)和粉末颗粒的变形抗力;②克服粉末颗粒对模壁的摩擦力(称为外摩擦力)。由于外摩擦力的存在,模压成形的压坯密度分布实际上是不均匀的。例如单向压制时,离施压模冲头较近的部分密度较

相关主题
文本预览
相关文档 最新文档