当前位置:文档之家› 概率论与数理统计答案_北邮版_(第一章)

概率论与数理统计答案_北邮版_(第一章)

概率论与数理统计答案_北邮版_(第一章)
概率论与数理统计答案_北邮版_(第一章)

概率论与数理统计习题及答案

习题 一

1.写出下列随机试验的样本空间及下列事件包含的样本点. (1) 掷一颗骰子,出现奇数点. (2) 掷二颗骰子,

A =“出现点数之和为奇数,且恰好其中有一个1点.”

B =“出现点数之和为偶数,但没有一颗骰子出现1点.” (3)将一枚硬币抛两次, A =“第一次出现正面.”

B =“至少有一次出现正面.”

C =“两次出现同一面.” 【解】{}{}1123456135A Ω==(),,,,,,,,;

{}{}{}{}{}(2)(,)|,1,2,,6,

(12),(14),(16),(2,1),(4,1),(6,1),

(22),(24),(26),(3,3),(3,5),(4,2),(4,4),(4,6),(5,3),(5,5),(6,2),(6,4),(6,6);(3)(,),(,),(,),(,),

(,),(,),(,),(,),(i j i j A B A B ΩΩ======= ,,,,,,正反正正反正反反正正正反正正正反反{}{},),(,),(,),

C =正正正反反

2.设A ,B ,C 为三个事件,试用A ,B ,C 的运算关系式表示下列事件: (1) A 发生,B ,C 都不发生; (2) A 与B 发生,C 不发生; (3) A ,B ,C 都发生;

(4) A ,B ,C 至少有一个发生; (5) A ,B ,C 都不发生; (6) A ,B ,C 不都发生;

(7) A ,B ,C 至多有2个发生; (8) A ,B ,C 至少有2个发生. 【解】(1) A BC (2) AB C (3) ABC

(4) A ∪B ∪C =AB C ∪A B C ∪A BC ∪A BC ∪A B C ∪AB C ∪ABC =ABC

(6) ABC

(5) ABC=A B C

(7) A BC∪A B C∪AB C∪AB C∪A BC∪A B C∪ABC=ABC=A∪B∪C

(8) AB∪BC∪CA=AB C∪A B C∪A BC∪ABC

3.指出下列等式命题是否成立,并说明理由:

(1) A∪B=(AB)∪B;

(2) A B=A∪B;

A ∩C=A

B C;

(3) B

(4) (AB)( AB)= ?;

(5) 若A?B,则A=AB;

(6) 若AB=?,且C?A,则BC=?;

(7) 若A?B,则B?A;

(8) 若B?A,则A∪B=A.

【解】(1)不成立.特例:若Α∩B=φ,则ΑB∪B=B.

所以,事件Α发生,事件B必不发生,即Α∪B发生,ΑB∪B不发生.

故不成立.

(2)不成立.若事件Α发生,则A不发生,Α∪B发生,

所以A B不发生,从而不成立.

A ,AB画文氏图如下:

(3)不成立.B

不发生,

所以,若Α-B发生,则AB发生, A B

故不成立.

(4)成立.因为ΑB与AB为互斥事件.

(5)成立.若事件Α发生,则事件B发生,所以ΑB发生.

若事件ΑB发生,则事件Α发生,事件B发生.

故成立.

(6)成立.若事件C发生,则事件Α发生,所以事件B不发生,

故BC=φ.

?.

(7)不成立.画文氏图,可知B A

(8)成立.若事件Α发生,由()A A B ? ,则事件Α∪B 发生. 若事件Α∪B 发生,则事件Α,事件B 发生. 若事件Α发生,则成立.

若事件B 发生,由B A ?,则事件Α发生.

4.设A ,B 为随机事件,且P (A )=0.7,P (A -B )=0.3,求P (AB ). 【解】 P (AB )=1-P (AB )=1-[P (A )-P (A -B )]

=1-[0.7-0.3]=0.6

5.设A ,B 是两事件,且P (A )=0.6,P (B )=0.7,求: (1) 在什么条件下P (AB )取到最大值? (2) 在什么条件下P (AB )取到最小值? 【解】(1) 当AB =A 时,P (AB )取到最大值为0.

6.

(2) 当A ∪B =Ω时,P (AB )取到最小值为0.3.

6.设A ,B ,C 为三事件,且P (A )=P (B )=1/4,P (C )=1/3且P (AB )=P (BC )=0,

P (AC )=1/12,求A ,B ,C 至少有一事件发生的概率.

【解】 P (A ∪B ∪C )=P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC )

=

14+14+13-112=34

7. 从52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率

是多少?

【解】 p =5332

131313131352C C C C /C

8. 对一个五人学习小组考虑生日问题: (1) 求五个人的生日都在星期日的概率; (2) 求五个人的生日都不在星期日的概率; (3) 求五个人的生日不都在星期日的概率. 【解】(1) 设A 1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故 P (A 1)=

517=(17

)5

(亦可用独立性求解,下同) (2) 设A 2={五个人生日都不在星期日},有利事件数为65,故

P (A 2)=5567

=(67)5

(3) 设A 3={五个人的生日不都在星期日}

P (A 3)=1-P (A 1)=1-(

17

)5

9. 从一批由45件正品,5件次品组成的产品中任取3件,求其中恰有一件次品的概率.

【解】与次序无关,是组合问题.从50个产品中取3个,有3

50C 种取法.因只有一件次品,所以从45个正品中取2个,共245C 种取法;从5个次品中取1个,共15C 种取法,由乘法原理,恰有一件次

品的取法为245C 1

5C

种,所以所求概率为

21

455350

C C P C =.

10.一批产品共N 件,其中M 件正品.从中随机地取出n 件(n

(2) n 件是无放回逐件取出的; (3) n 件是有放回逐件取出的.

【解】(1) P (A )=C C /C m n m n

M N M N --

(2) 由于是无放回逐件取出,可用排列法计算.样本点总数有P n

N 种,n 次抽取中有m

次为正品的组合数为C m n 种.对于固定的一种正品与次品的抽取次序,从M 件正

品中取m 件的排列数有P m M 种,从N -M 件次品中取n -m 件的排列数为P n m

N M --种,

P (A )=C P P P m m n m

n M N M

n

N

-- 由于无放回逐渐抽取也可以看成一次取出,故上述概率也可写成

P (A )=C C C m n m

M N M

n N

--

可以看出,用第二种方法简便得多.

(3) 由于是有放回的抽取,每次都有N 种取法,故所有可能的取法总数为N n 种,n

次抽取中有m 次为正品的组合数为C m n 种,对于固定的一种正、次品的抽取次序,m 次取得正品,都有M 种取法,共有M m 种取法,n -m 次取得次品,每次都有N -M 种取法,共有(N -M )n -m 种取法,故

()C ()/m m n m n

n

P A M N M N -=- 此题也可用贝努里概型,共做了n 重贝努里试验,每次取得正品的概率为M

N

,则取得m 件正品的概率为

()C 1m n m

m n M M P A N N -????

=- ? ?

???

?

11. 在电话号码簿中任取一电话号码,求后面4个数全不相同的概率(设后面4个数中的每一个数都是等可能地取自0,1,…,9). 【解】这是又重复排列问题.个数有10种选择,4个数共有104种选择.4个数全不相同,是排列

问题.用10个数去排4个位置,有410P 种排法,故所求概率为4410/10P P =.

12. 50只铆钉随机地取来用在10个部件上,每个部件用3只铆钉.其中有3个铆钉强度太

弱.若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱.求发生一个部件强度太弱的概率是多少? 【解】设A ={发生一个部件强度太弱}

133

103501

()C C /C 1960

P A ==

13. 一个袋内装有大小相同的7个球,其中4个是白球,3个是黑球,从中一次抽取3个,

计算至少有两个是白球的概率. 【解】 设A i ={恰有i 个白球}(i =2,3),显然A 2与A 3互斥.

21

343

4

233377C C C 184(),

()C 35

C 35

P A P A ====

故 232322()()()35

P A A P A P A =+=

14. 有甲、乙两批种子,发芽率分别为0.8和0.7,在两批种子中各随机取一粒,求:

(1) 两粒都发芽的概率; (2) 至少有一粒发芽的概率; (3) 恰有一粒发芽的概率.

【解】设A i ={第i 批种子中的一粒发芽},(i =1,2)

(1) 1212()()()0.70.80.56P A A P A P A ==?= (2) 12()0.70.80.70.80.94P A A =+-?= (3) 2112()0.80.30.20.70.38P A A A A =?+?=

15. 掷一枚均匀硬币直到出现3次正面才停止.

(1) 问正好在第6次停止的概率;

(2) 问正好在第6次停止的情况下,第5次也是出现正面的概率.

【解】(1) 223151115()()22232p C == (2) 1342111C ()()22245/325

p =

= *16. 甲、乙两个篮球运动员,投篮命中率分别为0.7及0.6,每人各投了3次,求二人进球

数相等的概率.

【解】 设A i ={甲进i 球},i =0,1,2,3,B i ={乙进i 球},i =0,1,2,3,则

3

331212

330()(0.3)(0.4)C 0.7(0.3)C 0.6(0.4)i i i P A B ==+??+ 222233

33C (0.7)0.3C (0.6)0.4+(0.7)(0.6)?

=0.32076

*17.从5双不同的鞋子中任取4只,求这4只鞋子中至少有两只鞋子配成一双的概率.

【解】 41111522224

10C C C C C 131C 21

p =-= 18. 某地某天下雪的概率为0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求:

(1)在下雨条件下下雪的概率;(2)这天下雨或下雪的概率. 【解】 设A ={下雨},B ={下雪}.

(1) ()0.1

()0.2()0.5

P AB p B A P A =

== (2) ()()()()0.30.50.10.7p A B P A P B P AB =+-=+-=

?19.已知一个家庭有3个小孩,且其中一个为女孩,求至少有一个男孩的概率(小孩为男

为女是等可能的).

【解】 设A ={其中一个为女孩},B ={至少有一个男孩},样本点总数为23=8,故

()6/86

()()7/87

P AB P B A P A =

==

或在缩减样本空间中求,此时样本点总数为7.

6()7

P B A =

20. 已知5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是

男人的概率(假设男人和女人各占人数的一半).

【解】 设A ={此人是男人},B ={此人是色盲},则由贝叶斯公式

()()()

()()()()()()

P A P B A P AB P A B P B P A P B A P A P B A ==

+ 0.50.0520

0.50.050.50.002521

?=

=?+?

21.两人约定上午9∶00~10∶00在公园会面,求一人要等另一人半小时以上的概率

.

题21图

【解】设两人到达时刻为x,y ,则0≤x ,y ≤60.事件“一人要等另一人半小时以上”等价于|x -y |>30.

如图阴影部分所示.

22301604

P ==

22. 从(0,1)中随机地取两个数,求:

(1) 两个数之和小于6

5的概率; (2) 两个数之积小于1

4

的概率.

【解】 设两数为x ,y ,则0

65

. 1144

17

25510.68125

p =-==

(2) xy =<1

4

.

1

1

1124

411

1d d ln 242

x p x y ?

?=-=+

????? 题22图

23. 设P (A )=0.3,P (B )=0.4,P (A B )=0.5,求P (B |A ∪B ) 【解】 ()()()

()()()()()

P AB P A P AB P B A B P A B P A P B P AB -==

+- 0.70.51

0.70.60.54

-=

=+-

24. 在一个盒中装有15个乒乓球,其中有9个新球,在第一次比赛中任意取出3个球,比

赛后放回原盒中;第二次比赛同样任意取出3个球,求第二次取出的3个球均为新球的概率.

【解】 设A i ={第一次取出的3个球中有i 个新球},i =0,1,2,3.B ={第二次取出的3球均为新

球}

由全概率公式,有

3

()()()i i i P B P B A P A ==∑

3312321333

6996896796333333331515151515151515

C C C C C C C C C C C C C C C C C C =?+?+?+?0.089=

25. 按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学

生有90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问: (1)考试及格的学生有多大可能是不努力学习的人? (2)考试不及格的学生有多大可能是努力学习的人? 【解】设A ={被调查学生是努力学习的},则A ={被调查学生是不努力学习的}.由题意知

P

(A )=0.8,P (A )=0.2,又设B ={被调查学生考试及格}.由题意知P (B |A )=0.9,P (B |A )=0.9,故由贝叶斯公式知

(1)()()()

()()()()()()

P A P B A P AB P A B P B P A P B A P A P B A ==

+ 0.20.11

0.027020.80.90.20.137

?=

==?+?

即考试及格的学生中不努力学习的学生仅占2.702% (2) ()()()

()()()()()()

P A P B A P AB P A B P B P A P B A P A P B A =

=

+ 0.80.14

0.30770.80.10.20.913

?=

==?+?

即考试不及格的学生中努力学习的学生占30.77%.

26. 将两信息分别编码为A 和B 传递出来,接收站收到时,A 被误收作B 的概率为0.02,而

B 被误收作A 的概率为0.01.信息A 与B 传递的频繁程度为2∶1.若接收站收到的信息是A ,试问原发信息是A 的概率是多少?

【解】 设A ={原发信息是A },则={原发信息是B }

C ={收到信息是A },则={收到信息是B } 由贝叶斯公式,得

()()

()()()()()

P A P C A P A C P A P C A P A P C A =

+

2/30.98

0.994922/30.981/30.01

?=

=?+?

27.在已有两个球的箱子中再放一白球,然后任意取出一球,若发现这球为白球,试求箱子

中原有一白球的概率(颜色只有黑、白两种,箱中原有什么颜色的球是等可能的)

【解】设A i ={箱中原有i 个白球}(i =0,1,2),由题设条件知P (A i )=1

3

,i =0,1,2.又设B ={抽出一球为白球}.由贝叶斯公式知

11112

()()()

()()

()()

i i i P B A P A P A B P A B P B P B A P A ===∑ 2/31/31

1/31/32/31/311/33

?=

=?+?+?

28. 某工厂生产的产品中96%是合格品,检查产品时,一个合格品被误认为是次品的概率

为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率.

【解】 设A ={产品确为合格品},B ={产品被认为是合格品}

由贝叶斯公式得

()()()

()()()()()()

P A P B A P AB P A B P B P A P B A P A P B A =

=+

0.960.98

0.9980.960.980.040.05

?=

=?+?

29.某保险公司把被保险人分为三类:“谨慎的”,“一般的”,“冒失的”.统计资料表明,上述

三种人在一年内发生事故的概率依次为0.05,0.15和0.30;如果“谨慎的”被保险人占20%,“一般的”占50%,“冒失的”占30%,现知某被保险人在一年内出了事故,则他是“谨慎的”的概率是多少?

【解】 设A ={该客户是“谨慎的”},B ={该客户是“一般的”},

C ={该客户是“冒失的”},

D ={该客户在一年内出了事故} 则由贝叶斯公式得

()()(|)

(|)()()(|)()(|)()(|)

P AD P A P D A P A D P D P A P D A P B P D B P C P D C =

=++

0.20.05

0.0570.20.050.50.150.30.3

?=

=?+?+?

30. 加工某一零件需要经过四道工序,设第一、二、三、四道工序的次品率分别为

0.02,0.03,0.05,0.03,假定各道工序是相互独立的,求加工出来的零件的次品率. 【解】设A i ={第i 道工序出次品}(i =1,2,3,4).

4

12341

()1()i i P A P A A A A ==- 12341()()()()P A P A P A P A =-

10.98

0.970.950.97=-???= 31.设每次射击的命中率为0.2,问至少必须进行多少次独立射击才能使至少击中一次的概率

不小于0.9?

【解】设必须进行n 次独立射击.则1(0.8)0.9n

-≥

即为 (0.8)0.1n

故n ≥

1

lg8

=11.07,至少必须进行11次独立射击. 32.证明:若P (A |B )=P (A |B ),则A ,B 相互独立.

【证】 (|)(|)

P A B P A B =即()()

()()

P AB P AB P B P B =

亦()()()()P AB P B P AB P B =,即()[1()][()()]()P AB P B P A P AB P B -=- 因此 ()()()P AB P A P B =,故A 与B 相互独立. 33.三人独立地破译一个密码,他们能破译的概率分别为15131

4

,求将此密码破译出的概率. 【解】 设A i ={第i 人能破译}(i =1,2,3),则

3

1231231()1()1()()()i i P A P A A A P A P A P A ==-=- 423

10.6534

=-??=

34.甲、乙、丙三人独立地向同一飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有一人击

中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率.

【解】设A ={飞机被击落},B i ={恰有i 人击中飞机},i =0,1,2,3

由全概率公式,得

3

()(|)()i i i P A P A B P B ==∑=(0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7)×0.2+

(0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7)×0.6+0.4×0.5×0.7×1=0.458。

35.已知某种疾病患者的痊愈率为25%,为试验一种新药是否有效,把它给10个病人服用,

且规定若10个病人中至少有四人治好则认为这种药有效,反之则认为无效,求: (1)虽然新药有效,且把治愈率提高到35%,但通过试验被否定的概率. (2)新药完全无效,但通过试验被认为有效的概率. 解(1)3

10110

C

(0.35)(0.65)

0.5138k k k

k p -==

=∑;(2)10

102104

C (0.25)(0.75)0.2241k

k k k p -===∑

———————————————————————————————————————

36. 一架升降机开始时有6位乘客,并等可能地停于十层楼的每一层.试求下列事件的概率:

(1) A =“某指定的一层有两位乘客离开”;

(2) B =“没有两位及两位以上的乘客在同一层离开”; (3) C =“恰有两位乘客在同一层离开”; (4) D =“至少有两位乘客在同一层离开”.

【解】 由于每位乘客均可在10层楼中的任一层离开,故所有可能结果为106种.

(1)2466

C 9()10P A =,也可由6重贝努里模型:224

619()C ()()1010P A = (2)6个人在十层中任意六层离开,故6

10

6P ()10

P B =

(3)由于没有规定在哪一层离开,故可在十层中的任一层离开,有110C 种可能结果,再从

六人中选二人在该层离开,有2

6C 种离开方式.其余4人中不能再有两人同时离开的情

况,因此可包含以下三种离开方式:①4人中有3个人在同一层离开,另一人在其余

8层中任一层离开,共有131948C C C 种可能结果;②4人同时离开,有19C 种可能结果;

③4个人都不在同一层离开,有49P 种可能结果,

故12131146

10694899()C C (C C C C P )/10P C =++

(4) D=B .故6

10

6P ()1()110

P D P B =-=-

37. n 个朋友随机地围绕圆桌而坐,求下列事件的概率: (1) 甲、乙两人坐在一起,且乙坐在甲的左边的概率; (2) 甲、乙、丙三人坐在一起的概率;

(3) 如果n 个人并排坐在长桌的一边,求上述事件的概率. 【解】 (1) 111p n =

-(2) 23!(3)!,3(1)!

n p n n -=>- (3) 12(1)!13!(2)!

;,3!!

n n p p n n n n --''=

==≥ 38.将线段[0,a ]任意折成三折,试求这三折线段能构成三角形的概率

【解】 设这三段长分别为x ,y ,a -x -y .则基本事件集为由

0

()()x y a x y x a x y y y a x y x

+>--??+-->??+-->? 构成的图形,即

02022a x a y a

x y a ?<

?<

如图阴影部分所示,故所求概率为1

4

p =

. 39.某人有n 把钥匙,其中只有一把能开他的门.他逐个将它们去试开(抽样是无放回的).

证明试开k 次(k =1,2,…,n )才能把门打开的概率与k 无关.

【证】11P 1

,1,2,,P k n k n p k n n

--===

40.把一个表面涂有颜色的立方体等分为一千个小立方体,在这些小立方体中,随机地取出一个,试求它有i 面涂有颜色的概率P (A i )(i =0,1,2,3). 【解】 设A i ={小立方体有i 面涂有颜色},i =0,1,2,3.

在1千个小立方体中,只有位于原立方体的角上的小立方体是三面有色的,这样的

小立方体共有8个.只有位于原立方体的棱上(除去八个角外)的小立方体是两面涂色的,这样的小立方体共有12×8=96个.同理,原立方体的六个面上(除去棱)的小立方体是一面涂色的,共有8×8×6=384个.其余1000-(8+96+384)=512个内部的小立方体是无色的,故所求概率为

01512384

()0.512,()0.38410001000P A P A =

===, 24968

()0.096,()0.00810001000P A P A ====.

41.对任意的随机事件A ,B ,C ,试证

P (AB )+P (AC )-P (BC )≤P (A ).

【证】()[()]()P A P A B C P AB AC ≥= ()()()P AB P AC P ABC =+- ()()()P AB P AC P BC ≥+-

42.将3个球随机地放入4个杯子中去,求杯中球的最大个数分别为1,2,3的概率. 【解】 设i A ={杯中球的最大个数为i },i =1,2,3.

将3个球随机放入4个杯子中,全部可能放法有43种,杯中球的最大个数为1时,

每个杯中最多放一球,故3413C 3!3

()48

P A ==

而杯中球的最大个数为3,即三个球全放入一个杯中,故14

33C 1()416

P A == 因此 213319()1()()181616P A P A P A =--=--=或 121433

23C C C 9()416

P A ==

43. 将一枚均匀硬币掷2n 次,求出现正面次数多于反面次数的概率.

【解】掷2n 次硬币,可能出现:A ={正面次数多于反面次数},B ={正面次数少于反面次数},

C ={正面次数等于反面次数},A ,B ,C 两两互斥.

可用对称性来解决.由于硬币是均匀的,故P (A )=P (B ).所以

1()

()2

P C P A -=

由2n 重贝努里试验中正面出现n 次的概率为

211()()()22n n n n P C C = 故2211()[1C ]22

n

n n P A =-

44. 掷n 次均匀硬币,求出现正面次数多于反面次数的概率.

【解】设A ={出现正面次数多于反面次数},B ={出现反面次数多于正面次数},由对称性知

P (A )=P (B )

(1) 当n 为奇数时,正、反面次数不会相等.由P (A )+P (B )=1得P (A )=P (B )

=0.5

(2) 当n 为偶数时,由上题知2

11()[1C ()]22

n

n n

P A =- 45. 设甲掷均匀硬币n +1次,乙掷n 次,求甲掷出正面次数多于乙掷出正面次数的概率.

【解】 令甲正=甲掷出的正面次数,甲反=甲掷出的反面次数.

乙正=乙掷出的正面次数,乙反=乙掷出的反面次数. 显然有

>正正(甲乙)

=(甲正≤乙正)=(n +1-甲反≤n -乙反)=(甲反≥1+乙反)=(甲反>乙反) 由对称性知P (甲正>乙正)=P (甲反>乙反)因此P (甲正>乙正)=

1

2

46. 证明“确定的原则”(Sure -thing ):若P (A |C )≥P (B |C ),P (A |C )≥P (B |C ),则P (A )

≥P (B ).

【证】由P (A |C )≥P (B |C ),得

()()

,()()

P AC P BC P C P C ≥

即有()()P AC P BC ≥同理由 (|)(|),P A C P B C

≥ 得 ()(),P AC P BC ≥ 故()()()()()()P A P AC P AC P BC P BC P B =+≥+= 47.一列火车共有n 节车厢,有k (k ≥n )个旅客上火车并随意地选择车厢.求每一节车厢内至少

有一个旅客的概率.

【解】 设A i ={第i 节车厢是空的},(i =1,…,n ),则

121(1)1()(1)2

()(1)1()(1)

n k k

i k

k

i j k

i i i n P A n n

P A A n

n P A A A n

--==-=--=-

其中i 1,i 2,…,i n -1是1,2,…,n 中的任n -1个. 显然n 节车厢全空的概率是零,于是

21121111

2

211

1111123111()(1)C (1)2()C (1)1()C (1)0

()(1)n n n

k k

i n

i k

i j n i j n n k

n i i i n i i i n

n n

n i n

i S P A n n n S P A A n n S P A A A n

S P A S S S S --=≤<≤--≤<<≤+===-=-==--==-

==-+-+-∑∑∑

1

21

121C (1)C (1)(1)C (1)k k n n k n n n n n n n

--=---++--

故所求概率为121121()1C (1)C (1)n k i i n n i P A n n =-=--+--+ 11

1(1)C (1)n n k n n n

+----

48.设随机试验中,某一事件A 出现的概率为ε>0.试证明:不论ε>0如何小,只要不断地独

立地重复做此试验,则A 迟早会出现的概率为1. 【证】在前n 次试验中,A 至少出现一次的概率为1(1)1()n

n ε--→→∞

49.袋中装有m 只正品硬币,n 只次品硬币(次品硬币的两面均印有国徽).在袋中任取一只,

将它投掷r 次,已知每次都得到国徽.试问这只硬币是正品的概率是多少?

【解】设A ={投掷硬币r 次都得到国徽} B ={这只硬币为正品} 由题知 (),()m n

P B P B m n m n

=

=++ 1

(|),(|)12

r P A B P A B ==

则由贝叶斯公式知

()()(|)

(|)()()(|)()(|)

P AB P B P A B P B A P A P B P A B P B P A B =

=

+ 1

21212r

r m m m n m n

m n m n m n

+==++++ 50.巴拿赫(Banach )火柴盒问题:某数学家有甲、乙两盒火柴,每盒有N 根火柴,每次用

火柴时他在两盒中任取一盒并从中任取一根.试求他首次发现一盒空时另一盒恰有r 根的概率是多少?第一次用完一盒火柴时(不是发现空)而另一盒恰有r 根的概率又有多少? 【解】以B 1、B 2记火柴取自不同两盒的事件,则有121()()2

P B P B ==

. (1) 发现一盒已空,另一盒恰剩r 根,说明已取了2n -r 次,设n 次取自B 1盒(已空),

n -r 次取自B 2盒,第2n -r +1次拿起B 1,发现已空。把取2n -r 次火柴视作2n -r 重贝努里试验,则所求概率为

1221111

2C ()()C 2222

n n n r n n r n r r r

p ----== 式中2反映B 1与B 2盒的对称性(即也可以是B 2盒先取空).

(2) 前2n -r -1次取火柴,有n -1次取自B 1盒,n -r 次取自B 2盒,第2n -r 次取自B 1盒,故概率为

111

2122121

11112C ()()C ()2222

n n n r n n r n r n r p ----------== 51.求n 重伯努利试验中A 出现奇数次的概率.

【解】 设在一次试验中A 出现的概率为p .则由

00112220

()C C C C 1n n n n n n n n n n q p p q pq p q p q --+=++++= 0011222n 0()C C C (1)C n n n n n n n n n n q p p q pq p q p q ---=++-+-

以上两式相减得所求概率为

11333

1C C n n n n p pq p q

--=++ 1[1()]2n q p =--1

[1(12)]2

n p =-- 若要求在n 重贝努里试验中A 出现偶数次的概率,则只要将两式相加,即得

21

[1(12)]2

n p p =+-.

52.设A ,B 是任意两个随机事件,求P {(A +B )(A +B )(A +B )(A +B )}的值.

【解】因为(A ∪B )∩(A ∪B )=A B ∪A B (A ∪B )∩(A ∪B )=AB ∪AB 所求()()()()A B A B A B A B ++++[()()]AB AB AB AB =+ =? 故所求值为0.

53.设两两相互独立的三事件,A ,B 和C 满足条件:

ABC =Φ,P (A )=P (B )=P (C )< 1/2,且P (A ∪B ∪C )=9/16,求P (A ).

【解】由()()()()()()()()P A B C P A P B P C P AB P AC P BC P ABC =++---+ 2

93()3[()]16

P A P A =-=

故1()4P A =

或34,按题设P (A )<12,故P (A )=14

. 54.设两个相互独立的事件A 和B 都不发生的概率为1/9,A 发生B 不发生的概率与B 发生A

不发生的概率相等,求P (A ). 【解】1

()()1()9

P AB P A B P A B ==-=

①()()P AB P AB = ② 故 ()()()()P A P A B P B P A B -=-故 ()()P A P B = ③

由A ,B 的独立性,及①、③式有

1

1()()()()9

P A P B P A P B =--+212()[()]P A P A =-+2[1()]P A =- 故11()3P A -=±故 2()3P A =或4()3P A =(舍去)即P (A )=2

3

.

55.随机地向半圆0

22x ax - (a 为正常数)内掷一点,点落在半圆内任何区域的概率与

区域的面积成正比,则原点和该点的连线与x 轴的夹角小于π/4的概率为多少? 【解】利用几何概率来求,图中半圆面积为

12πa 2.阴影部分面积为22

π142

a a + 故所求概率为22

2π1114212ππ2

a a p a +=

=+ 56.设10件产品中有4件不合格品,从中任取两件,已知所取两件产品中有一件是不合格品,求另一件也是不合格品的概率.

【解】 设A ={两件中至少有一件是不合格品},B ={另一件也是不合格品}

242102

62

10

C C ()1

(|)C ()51C P AB P B A P A ===- 57.设有来自三个地区的各10名、15名和25名考生的报名表,其中女生的报名表分别为3

份、7份和5份.随机地取一个地区的报名表,从中先后抽出两份. (1) 求先抽到的一份是女生表的概率p ;

(2) 已知后抽到的一份是男生表,求先抽到的一份是女生表的概率q . 【解】设A i ={报名表是取自第i 区的考生},i =1,2,3.

B j ={第j 次取出的是女生表},j =1,2.

则1(),1,2,33i P A i =

=111213375(|),(|),(|)101525

P B A P B A P B A === (1) 3

111

137529

()()(|)()310152590i i

i p P B P A P B A ===

=++=∑ (2) 21212()(|)()

P B B q P B B P B ==

而3

221

()()(|)i i

i P B P A P B A ==

∑1782061()310152590=++= 3

21211

()()(|)i i i P B B P A P B B A ==∑137785202

()3109151425249=?+?+?=

故 2122

()20

96161()

90

P B B q P B ===

58. 设A ,B 为随机事件,且P (B )>0,P (A |B )=1,试比较P (A ∪B )与P (A )的大小. (2006研考)

【解】因为 ()()()(P A B P A P B P A B

=+- ()()()()P AB P B P A B P B =?=

所以 ()()()()()P A B P A P B P B P A =+-= .

59. 某人向同一目标独立重复射击,每次射击命中目标的概率为p(0

恰好第2次命中目标的概率.

【解】这是伯努利概型.第4次射击恰好第2次命中,即前三次命中一次,所以所求概率为

1

2223(1)3(1)P C P P P P P =-?=-.

60. 在区间(0,1)中随机地取两个数,求这两个数之差的绝对值小于1

2

的概率. 【解】设两个数分别为x 、y ,则0

1

2,画出图形,由几何概型可得,所求概率为11112322214

P -???

=

=.

全国历自学考试概率论与数理统计(二)试题与答案

全国2011年4月自学考试概率论与数理统计(二) 课程代码:02197 选择题和填空题详解 试题来自百度文库 答案由王馨磊导师提供 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设A , B , C , 为随机事件, 则事件“A , B , C 都不发生”可表示为( A ) A .C B A B .C B A C .C B A D .C B A 2.设随机事件A 与B 相互独立, 且P (A )=5 1, P (B )=5 3, 则P (A ∪B )= ( B ) A .253 B .2517 C .5 4 D .2523 3.设随机变量X ~B (3, 0.4), 则P {X ≥1}= ( C ) A .0.352 B .0.432 C .0.784 D .0.936 解:P{X ≥1}=1- P{X=0}=1-(1-0.4)3=0.784,故选C. 4.已知随机变量X 的分布律为 , 则P {-2<X ≤4}= ( C ) A .0.2 B .0.35 C .0.55 D .0.8 解:P {-2<X ≤4}= P {X =-1}+ P {X =2}=0.2+0.35=0.55,故选C. 5.设随机变量X 的概率密度为4 )3(2 e 2 π21)(+-= x x f , 则E (X ), D (X )分别为 ( ) A .2,3- B .-3, 2 C .2,3 D .3, 2 与已知比较可知:E(X)=-3,D(X)=2,故选B. 6.设二维随机变量 (X , Y )的概率密度为? ??≤≤≤≤=,,0, 20,20,),(其他y x c y x f 则常数 c = ( A ) A .4 1 B .2 1 C .2 D .4 解:设D 为平面上的有界区域,其面积为S 且S>0,如果二维随机变量 (X ,Y )的概率密度为 则称 (X ,Y )服从区域D 上的均匀分布,

【免费下载】概率论与数理统计案例

实例1 发行彩票的创收利润某一彩票中心发行彩票 10万张, 每张2元. 设头等奖1个, 奖金 1万元, 二等奖2个,奖金各 5 千元;三等奖 10个, 奖金各1千元; 四等奖100个, 奖金各100元; 五等奖1000个, 奖金各10 元.每张彩票的成本费为 0.3 元, 请计算彩票发行单位的创收利润.解:设每张彩票中奖的数额为随机变量X , 则X 10000 5000 1000 100 10 0p 51/1052/10510/105100/1051000/100p 每张彩票平均能得到奖金 05512()10000500001010E X p =? +?++? 0.5(),=元每张彩票平均可赚20.50.3 1.2(), --=元因此彩票发行单位发行 10 万张彩票的创收利润为:100000 1.2120000().?=元实例2 如何确定投资决策方向?某人有10万元现金,想投资于某项目,预估成功的机会为 30%,可得利润8万元 , 失败的机会为70%,将损失 2 万元.若存入银行,同期间的利率为5% ,问是否作此项投资?解:设 X 为投资利润,则 X 8 -2p 0.3 0.7()80.320.71(),E X =?-?=万元存入银行的利息:故应选择投资.1050.5(),%?=万元实例3 商店的销售策略某商店对某种家用电器的销售采用先使用后付款的方式,记使用寿命为X (以年计),规定1,1500;12,2000;23,2500; 3,3000.X X X X ≤<≤<≤>一台付款元一台付款元一台付款元一台付款元10,1e ,0,()100, 0.x X x f x x Y -?>?=??≤? 设寿命服从指数分布概率密度为试求该商店一台家用电器收费的数学期望定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术、电气课校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料、电气设备调试高中中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并

(完整版)概率论与数理统计课后习题答案

·1· 习 题 一 1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’; (2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’; (3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’; (4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’; (5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’,B =‘通过的汽车不少于3台’。 解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’ 1,2,,6i =L , 135{,,}A e e e =。 (2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。 ( 3 ) {(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5) S = (2,3,5),(2,4,5),(1,3,5)} {(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A = ( 4 ) {(,,),(,,),(,,),(,,),(,,),(,,), S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒; {(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。 (5){0,1,2,},{0,1,2,3,4},{3,4,}S A B ===L L 。 2.设,,A B C 是随机试验E 的三个事件,试用,,A B C 表示下列事件:

《概率论与数理统计》讲义#(精选.)

第一章 随机事件和概率 第一节 基本概念 1、排列组合初步 (1)排列组合公式 )! (! n m m P n m -= 从m 个人中挑出n 个人进行排列的可能数。 )! (!! n m n m C n m -= 从m 个人中挑出n 个人进行组合的可能数。 例1.1:方程 x x x C C C 765107 11=-的解是 A . 4 B . 3 C . 2 D . 1 例1.2:有5个队伍参加了甲A 联赛,两两之间进行循环赛两场,试问总共的场次是多少? (2)加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。 (3)乘法原理(两个步骤分别不能完成这件事):m ×n 某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m ×n 种方法来完成。 例1.3:从5位男同学和4位女同学中选出4位参加一个座谈会,要求与会成员中既有男同学又有女同学,有几种不同的选法? 例1.4:6张同排连号的电影票,分给3名男生和3名女生,如欲男女相间而坐,则不同的分法数为多少? 例1.5:用五种不同的颜色涂在右图中四个区域里,每一区域涂上一种颜

色,且相邻区域的颜色必须不同,则共有不同的涂法 A.120种B.140种 C.160种D.180种 (4)一些常见排列 ①特殊排列 ②相邻 ③彼此隔开 ④顺序一定和不可分辨 例1.6:晚会上有5个不同的唱歌节目和3个不同的舞蹈节目,问:分别按以下要求各可排出几种不同的节目单? ①3个舞蹈节目排在一起; ②3个舞蹈节目彼此隔开; ③3个舞蹈节目先后顺序一定。 例1.7:4幅大小不同的画,要求两幅最大的排在一起,问有多少种排法? 例1.8:5辆车排成1排,1辆黄色,1辆蓝色,3辆红色,且3辆红车不可分辨,问有多少种排法? ①重复排列和非重复排列(有序) 例1.9:5封不同的信,有6个信箱可供投递,共有多少种投信的方法? ②对立事件 例1.10:七人并坐,甲不坐首位,乙不坐末位,有几种不同的坐法? 例1.11:15人中取5人,有3个不能都取,有多少种取法? 例1.12:有4对人,组成一个3人小组,不能从任意一对中取2个,问有多少种可能性?

关于“概率论与数理统计”课程中案例教学的研究

关于“概率论与数理统计”课程中案例教学的研究“概率论与数理统计”是理工院校绝大部分理工科专业重要的基础课程,它是 从数量化的角度来研究现实世界中的一类不确定现象及其规律性的一门应用数学学科。在当前现代化的教学改革之中,加强案例的应用,对提高学生在应用数学方面的兴趣和创新能力具有重要意义。本文将结合相关案例探讨案例法在“概率论与数理统计”课程教学中的应用与研究。 标签:概率论与数理统计;课程案例;教学改革 以往的教学内容、教学方法、教学手段已不能满足新形势下的教学要求,应改变“重理论,轻应用”的思想。案例教学是以培养学生的能力为目标,以相关案例为媒介,以分析案例为切入点,以与学生共同探究为主的一种教学手段和方法。案例教学法是一种创新的教学理念,有利于调动教师与学生教和学的积极性,实现师生之间、学生与学生之间的多方面的互动,能够促进理论与实践有效地结合,实现理论向实践的转化,能够培养学生的创造性思维和分析处理实际问题的能力。 1.案例教学引入到“概率论与数理统计”课程的实践 下面我们通过两个案例来说明案例教学在“概率论与数理统计”课程中的作用。 全概率公式和贝叶斯公式是概率论的重点和难点,它们都反映了“因果”的概率规律,然而区别在于:全概率公式做出的是“由因溯果”的推断,而贝叶斯公式则是“由果溯因”。 案例1:某市统计局三名统计员登录一批工业经济调查表,王宁登录了38%,李红登录了40%,张建登录了22%。根据以往的经验,王宁的出错率为1%,李红的出错率为2%,张建的出错率为0.8%。局长从三人登录的调查表中随机抽取一张,试问该表有误的概率是多少?另外,若发现这张表有误,试问是王宁登录的可能性是多少? 让学生从问题出发,体会“由因溯果”和“由果溯因”,思考如何正确地使用全概率公式和贝叶斯公式来解决上述两个概率问题。另外,注意贝叶斯公式归根结底是个条件概率问题。 另外,一个随机变量如果受到许多随机因素的影响,而其中每个因素都起不到主导作用(作用微小),则它近似服从正态分布。这就是中心极限定理所要表明的结论。这个定理也是结合案例讲解更加清楚明了。 案例2:一盒同型号的螺丝钉共100个,已知该型号的螺丝钉的重量是一随机变量,期望值是100克,标准差是10克,求一盒螺丝钉的重量超过10.2千克

概率论与数理统计公式整理超全免费版

第1章随机事件及其概率 (1)排列组合公式 )! ( ! n m m P n m- =从m个人中挑出n个人进行排列的可能数。 )! (! ! n m n m C n m- =从m个人中挑出n个人进行组合的可能数。 (2)加法和乘法原理加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事):m×n 某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。 (3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个) 顺序问题 (4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。 试验的可能结果称为随机事件。 (5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质: ①每进行一次试验,必须发生且只能发生这一组中的一个事件; ②任何事件,都是由这一组中的部分事件组成的。 这样一组事件中的每一个事件称为基本事件,用ω来表示。 基本事件的全体,称为试验的样本空间,用Ω表示。 一个事件就是由Ω中的部分点(基本事件ω)组成的集合。通常用大写字母A,B,C,…表示事件,它们是Ω的子集。 Ω为必然事件,?为不可能事件。 不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。 (6)事件的关系与运算①关系: 如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):B A? 如果同时有B A?,A B?,则称事件A与事件B等价,或称A等于B:A=B。 A、B中至少有一个发生的事件:A B,或者A+B。 属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者B A,它表示A发生而B不发生的事件。 A、B同时发生:A B,或者AB。A B=?,则表示A与B不可能同时发生,称 事件A与事件B互不相容或者互斥。基本事件是互不相容的。 Ω-A称为事件A的逆事件,或称A的对立事件,记为A。它表示A不发生的

概率论与数理统计课后习题答案

第一章 事件与概率 1.写出下列随机试验的样本空间。 (1)记录一个班级一次概率统计考试的平均分数 (设以百分制记分)。 (2)同时掷三颗骰子,记录三颗骰子点数之和。 (3)生产产品直到有10件正品为止,记录生产产 品的总件数。 (4)对某工厂出厂的产品进行检查,合格的记上 “正品”,不合格的记上“次品”,如连续查出2个次品 就停止检查,或检查4个产品就停止检查,记录检查的 结果。 (5)在单位正方形内任意取一点,记录它的坐标。 (6)实测某种型号灯泡的寿命。 解(1)},100,,1,0{n i n i ==Ω其中n 为班级人数。 (2)}18,,4,3{ =Ω。 (3)},11,10{ =Ω。 (4)=Ω{00,100,0100,0101,0110,1100, 1010,1011,0111,1101,0111,1111},其中 0表示次品,1表示正品。 (5)=Ω{(x,y)| 0

(2)A 与B 都发生,而C 不发生。 (3)A ,B ,C 中至少有一个发生。 (4)A ,B ,C 都发生。 (5)A ,B ,C 都不发生。 (6)A ,B ,C 中不多于一个发生。 (7)A ,B ,C 至少有一个不发生。 (8)A ,B ,C 中至少有两个发生。 解 (1)C B A ,(2)C AB ,(3)C B A ++,(4)ABC , (5)C B A , (6)C B C A B A ++或 C B A C B A C B A C B A +++, (7)C B A ++, (8)BC AC AB ++或 ABC BC A C B A C AB ??? 3.指出下列命题中哪些成立,哪些不成立,并作 图说明。 (1)B B A B A =(2)AB B A = (3)AB B A B =?则若,(4)若 A B B A ??则, (5)C B A C B A = (6)若Φ=AB 且A C ?,

(精选)概率论与数理统计第一章

第一章测试题 一、选择题 1.设A, B, C 为任意三个事件,则与A 一定互不相容的事件为 (A )C B A ?? (B )C A B A ? (C ) ABC (D ))(C B A ? 2.对于任意二事件A 和B ,与B B A =?不等价的是 (A )B A ? (B )A ?B (C )φ=B A (D )φ=B A 3.设A 、B 是任意两个事件,A B ?,()0P B >,则下列不等式中成立的是( ) .A ()()P A P A B < .B ()()P A P A B ≤ .C ()()P A P A B > .D ()()P A P A B ≥ 4.设()01P A <<,()01P B <<,()()1P A B P A B +=,则( ) .A 事件A 与B 互不相容 .B 事件A 与B 相互独立 .C 事件A 与B 相互对立 .D 事件A 与B 互不独立 5.对于任意两事件A 与B ,()P A B -=( ) .A ()()P A P B - .B ()()()P A P B P AB -+ .C ()()P A P AB - .D ()()() P A P A P AB +- 6.若A 、B 互斥,且()()0,0P A P B >>,则下列式子成立的是( ) .A ()()P A B P A = .B ()0P B A > .C ()()()P AB P A P B = .D ()0P B A = 7.设A 、B 、C 为三个事件,已知()()0.6,0.4P B A P C AB ==,则()P BC A =( ) .A 0.3 .B 0.24 .C 0.5 .D 0.21 8.设A ,B 是两个随机事件,且00,)|()|(A B P A B P =,则必有 ( )

概率论与数理统计知识点总结(详细)

《概率论与数理统计》 第一章概率论的基本概念 (2) §2.样本空间、随机事件..................................... 2.. §4 等可能概型(古典概型)................................... 3.. §5.条件概率.............................................................. 4.. . §6.独立性.............................................................. 4.. . 第二章随机变量及其分布 (5) §1随机变量.............................................................. 5.. . §2 离散性随机变量及其分布律................................. 5..§3 随机变量的分布函数....................................... 6..§4 连续性随机变量及其概率密度............................... 6..§5 随机变量的函数的分布..................................... 7..第三章多维随机变量. (7) §1 二维随机变量............................................ 7...§2边缘分布................................................ 8...§3条件分布................................................ 8...§4 相互独立的随机变量....................................... 9..§5 两个随机变量的函数的分布................................. 9..第四章随机变量的数字特征.. (10)

概率论与数理统计答案,祝东进

习题 1. 写出下列随机试验的样本空间: (1) 掷两颗骰子,观察两颗骰子出现的点数. (2) 从正整数中任取一个数,观察取出数的个位数. (3) 连续抛一枚硬币,直到出现正面时为止. (4) 对某工厂出厂的产品进行检查,如连续检查出两个次品,则停止检查,或 检查四个产品就停止检查,记录检查的结果. (5) 在单位圆内任意取一点,记录它的坐标. 解:(1){(,)|1,2,,6,1,2, ,6}i j i j Ω===; (2){|0,1, ,9}i i Ω==; (3)Ω={(正), (反, 正), (反, 反, 正), (反, 反, 反, 正), … }; (4)Ω={(次, 次), (次, 正, 正, 正), (次, 正, 正, 次), (次, 正, 次, 次), (次, 正, 次,正), (正, 次, 次), (正, 次, 正, 正), (正, 次, 正, 次)}; (5)22{(,)|,,1}x y x R y R x y Ω=∈∈+≤. 2. 在掷两颗骰子的试验中写出下列事件的集合表示: (1) A =”出现的点数之和为偶数”. (2) B =”出现的点数之和为奇数, 但没有骰子出现1点”. (3) C =”至少掷出一个2点”. (4) D =”两颗骰子出现的点数相同”. 解: (1) {(1,1),(1,3),(1,5),(2,2),(2,4),(2,6),(3,1),(3,3),(3,5),A = {(4,2),(4,4),(4,6),(5,1),(5,3),(5,5),(6,2),(6,4),(6,6)}=; (2){(2,3),(2,5),(3,2),(3,4),(3,6),(4,3),(4,5),(5,2),(5,4),(5,6),(6,3),(6,5)}B =; (3){(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(1,2),(3,2),(4,2),(5,2),(6,2)}C =; (4){(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)}D =. 3. 设,,A B C 是三个事件,试用,,A B C 来表示下列事件:

概率论与数理统计考研复习资料

概率论与数理统计复习 第一章 概率论的基本概念 一.基本概念 随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现. 样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集. 必然事件(S):每次试验中一定发生的事件. 不可能事件(Φ):每次试验中一定不会发生的事件. 二. 事件间的关系和运算 1.A ?B(事件B 包含事件A )事件A 发生必然导致事件B 发生. 2.A ∪B(和事件)事件A 与B 至少有一个发生. 3. A ∩B=AB(积事件)事件A 与B 同时发生. 4. A -B(差事件)事件A 发生而B 不发生. 5. AB=Φ (A 与B 互不相容或互斥)事件A 与B 不能同时发生. 6. AB=Φ且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B . 运算规则 交换律 结合律 分配律 德?摩根律 B A B A = B A B A = 三. 概率的定义与性质 1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率. (1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ; (3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…), P(A 1∪A 2∪…)=P( A 1)+P(A 2)+… 2.性质 (1) P(Φ) = 0 , 注意: A 为不可能事件 P(A)=0 . (2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n , P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理) (3)若A ?B, 则P(A)≤P(B), P(B -A)=P(B)-P(A) . (4)对于任一事件A, P(A)≤1, P(A)=1-P(A) . (5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) . 对于任意n 个事件A 1,A 2,…,A n ()()() () +∑ + ∑ - ∑=≤<<≤≤<≤=n k j i k j i n j i j i n i i n A A A P A A P A P A A A P 111 21 …+(-1)n-1P(A 1A 2…A n ) 四.等可能(古典)概型 1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型. 2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数. 五.条件概率 1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0). 2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0). P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0) 3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则 当P(B i )>0时,有全概率公式 P(A)= ()()i n i i B A P B P ∑=1

(完整版)概率论与数理统计课程标准

《概率论与数理统计》课程标准 一、课程概述 (一)课程定位 《概率论与数理统计》(Probability Theory and Mathematical Statistics),由概率论和数理统计两部分组成。它是研究随机现象并找出其统计规律的一门学科,是广泛应用于社会、经济、科学等各个领域的定量和定性分析的科学体系。从学科性质讲,它是一门基础性学科,它为建筑专业学生后继专业课程的学习提供方法论的指导。 (二)先修后续课程 《概率论与数理统计》的先修课程为《高等数学》、《线性代数》等,这些课程为本课程的学习奠定了理论基础。 《概率论与数理统计》的后续课程为《混凝土结构设计》、《地基与基础》等课程。通过该课程的学习可为这些课程中的模型建立等内容的知识学习奠定良好的基础,在教学中起到了承上启下的作用。 二.课程设计思路 本课程的基本设计思路是极力用较为通俗的语言阐释概率论的基本理论和数理统计思想方法;理论和方法相结合,以强调数理统计理论的应用价值。总之,强调理论与实际应用相结合的特点,力求在实际应用方面做些有益的探索,也为其它学科的

进一步学习打下一个良好的基础。 三、课程目标 《概率论与数理统计》是一门几乎遍及所有的科学技术领域以及工农业生产和国民经济各部门之中。通过学习该课程使学生掌握概率、统计的基本概念,熟悉数据处理、数据分析、数据推断的各种基本方法,并能用所掌握的方法具体解决工程实践中所遇到的各种问题。 (一)能力目标 力求在简洁的基础上使学生能从整体上了解和掌握该课程的内容体系,使学生能够在实际工作中、其它学科的学习中能灵活、自如地应用这些理论。 (二)知识目标 1.理解掌握概率论中的相关概念和公式定理; 2.学会应用概率论的知识解决一些基本的概率计算; 3.理解数理统计的基本思想和解决实际问题的方法。 (三)素质目标 1.培养学生乐于观察、分析、不断创新的精神; 2.培养具有较好的逻辑思维、较强的计划、组织和协调能力; 3.培养具有认真、细致严谨的职业能力。 四、课程内容 根据能力培养目标的要求,本课程的主要内容是随机事件、随机变量、随机向量、数字特征、极限定理。具体内容和学时分配见表4-1。 表4-1 课程内容和学时分配

《概率论与数理统计》基本名词中英文对照表

《概率论与数理统计》基本名词中英文对照表英文中文 Probability theory 概率论 mathematical statistics 数理统计 deterministic phenomenon 确定性现象 random phenomenon 随机现象 sample space 样本空间 random occurrence 随机事件 fundamental event 基本事件 certain event 必然事件 impossible event 不可能事件 random test 随机试验 incompatible events 互不相容事件 frequency 频率 classical probabilistic model 古典概型 geometric probability 几何概率 conditional probability 条件概率 multiplication theorem 乘法定理 Bayes's formula 贝叶斯公式 Prior probability 先验概率 Posterior probability 后验概率 Independent events 相互独立事件 Bernoulli trials 贝努利试验 random variable 随机变量

probability distribution 概率分布 distribution function 分布函数 discrete random variable 离散随机变量distribution law 分布律hypergeometric distribution 超几何分布 random sampling model 随机抽样模型binomial distribution 二项分布 Poisson distribution 泊松分布 geometric distribution 几何分布 probability density 概率密度 continuous random variable 连续随机变量uniformly distribution 均匀分布exponential distribution 指数分布 numerical character 数字特征mathematical expectation 数学期望 variance 方差 moment 矩 central moment 中心矩 n-dimensional random variable n-维随机变量 two-dimensional random variable 二维离散随机变量joint probability distribution 联合概率分布 joint distribution law 联合分布律 joint distribution function 联合分布函数boundary distribution law 边缘分布律

概率论与数理统计MOOC课程中的案例设计

概率论与数理统计MOOC课程中的案例设计 发表时间:2018-07-06T10:44:29.247Z 来源:《防护工程》2018年第5期作者:郭珂琪 [导读] 概率论与数理统计是工程数学非常重要的组成部分,甚至有西方学者提出:在大数据时代,统计比微积分更基础。 北京计算机技术及应用研究所北京 100854 摘要:概率论与数理统计是工程数学非常重要的组成部分,甚至有西方学者提出:在大数据时代,统计比微积分更基础。在西方,这门课是几乎所有大学生都要学习的必修课程,在我国,概率论与数理统计也是理工,农林,经管,医药卫生等各领域学生的必修课程,如何让学生学好这门课程一直是很多教师关注的热点。这门课程成为MOOC 课程,可以面向更多的学生,整合并充分利用优质教育资源,方便不同专业的交流;但同时也面临了学生专业跨度大,数学基础差别大的困难。针对这样的学生群体,该课程的MOOC 课程制作面临更大的挑战,必须深入浅出,形象生动,难度层次递进,且有连贯性,才能达到更好的教学效果,并有效降低学生辍学率。 关键词:MOOC 课程;概率论与数理统计;案例教学;概率统计 随着各种MOOC资源平台的涌现和推广,新的在线教学模式—MOOC已经成为大学教育中不可忽视的一种教育模式。MOOC对学校而言,能更好地整合教育资源;对学生而言,能更好地锻炼自学、思考和反思的能力。但MOOC也存在一些较难克服的障碍,对于内容抽象、学习难度大的课程,基础有欠缺、自制力缺乏的学生的辍学率始终居高不下,故可以预见,在较长时期内,部分学生还是会选择以传统课堂教学课程为主的学习方式。对于这门内容抽象、学习难度大的课程,如何保证学生课下自学的效果,不影响课程内容的进度,成为翻转课堂实施的一个关键问题,MOOC相关课程的资源便成为学生课下自学中最好的辅助;同时在课上讨论中,为了更好地提高学生的兴趣,锻炼学生的思考能力,也可以适当结合和借鉴MOOC灵活开放的教学方式。 一、案例教学对概率论与数理统计课堂教学的意义 在概率论与数理统计课堂教学中积极提倡案例教学是十分必要的,并具有其独特的意义。 1、概率论与数理统计的教学目标,既有学习理论方面的目标,又有实践层面的目标,既培养学生具有扎实的概率统计基础理论,又能将该理论和实践结合起来。而案例教学能将理论和实践很好地结合起来,可以使两个目标得以同时实现,且在两者结合方面拉近了距离,使得理论不再是空中楼阁,而是活生生的理论,实践也不是盲目的实践,而是有指导、有方向、有目的的实践。概率论与数理统计是一门应用性很强的学科,很适合用案例教学方法来组织课堂教学。 2、概率论与数理统计是一门研究随机现象的学科,在学习中有许多难点,需辅以案例教学才能理解概率论与数理统计的思想方法、基本原理和统计工具。概率论与数理统计这门课程不同于以往学习的确定性数学,其中随机变量、分布函数、大数定理、中心极限定理、极大似然估计方法以及假设检验的思想方法等都是该课程中难以理解的内容,如果教师在课堂教学上照本宣科,只强调教学过程的理论性、严谨性和逻辑性而脱离实际应用,学生要真正掌握和理解概率统计思想方法和概率统计模型是很困难的,必须从案例出发,才能清晰地阐明其概念和统计思想,必须通过案例的描述、假设、建模与求解,演示理论与方法的应用过程。 3、在概率论与数理统计课堂教学中实施案例教学也是教学改革的必然要求。案例教学法是把案例作为一种教学工具,把学生引导到实际问题中去,通过分析与相互讨论,调动学生的主动性和积极性,并提出解决问题的基本方法和途径的一种教学方法,它是连接理论和实践的桥梁。将理论教学与实际案例有机地结合起来,使得课堂讲解生动而清晰,可收到良好的教学效果。同时案例教学可以促进学生全面地看问题,从数量的角度分析事物的变化规律,使概率与数理统计的思想和方法在现实生活中得到更好的应用,从而提高学生分析问题和解决问题的能力。 二、案例教学在概率论与数理统计课堂教学中的运用 案例教学一般适合于既要注重理论教学,又注重实际操作的课程,而概率论与数理统计作为一门应用性很强的随机学科,在课堂上很适合采用案例教学方法,根据该学科的特点,在案例教学时应按照以下步骤组织实施: 1、案例的选择。选择合适的案例是整个案例教学的核心,同时也是一项十分复杂的工作,这主要是由于大学各理工科的专业性质不同,对案例的选择也不同,一般来说,所选择的案例要与相应专业比较接近,这样才能调动学生学习的积极性,以达到好的教学效果。因而在选择案例时需把握以下几点:一要考虑案例的实用性;二要考虑案例的典型性;三要考虑案例的针对性。根据案例的选择原则,这就要求我们在选择案例时要深入各个相关专业进行调研,与专业教师交流探讨,对专业教材阅读分析,收集专业课程中使用概率论与数理统计知识的案例和学生感兴趣的案例,安排教研活动组织专题讨论,进行分类汇总,编写《概率论与数理统计案例选编》,对于来自各个学科专业的数学应用案例,要有问题的提出和分析,有模型的建立与求解,有应用的讨论和评注。 2、明确案例教学思路,做好案例教学设计。根据教学内容,结合学生的专业特点,从概率论与数理统计案例选编中选取合适案例,选取好案例后,要合理分配好课堂上案例讨论与分析的时间,选择好教学方法和教学手段,并以多媒体的形式在课堂上呈现。概率论与数理统计从内容到方法与以往的数学课程有本质的不同,因此其基本概念的引入就显得更为重要。在教学中,应首先从案例出发引入概率统计的相关概念、概率统计的基本原理、统计方法,然后再选择合适案例来说明概率统计原理与方法的应用。当然,在课堂上不是要一味地讲解案例,也不是案例越多越好,而是要把握好案例与课堂知识点的结合,不能公式化,在教学过程中要充分体现“实践—理论—实践”的认识过程,做到理论与实际的有机结合。 3、有效组织案例教学,做好案例的讨论、分析。案例的讨论与分析是案例教学的中心环节,对案例进行讨论的目的是提出解决问题的途径与方法,可以从自身角度出发来剖析案例,说明自己的观点和看法,教师要掌握讨论的进程,让学生成为案例讨论的主体,同时把握好案例讨论的重点和方向,进行必要的引导。同时在组织案例教学时要辅以各种有效的教学方法,如启发式教学、讨论式教学,让学生积极参与,大胆发表意见,提出观点,深入思考,激发学生的学习热情及科研兴趣,使案例教学效果达到最佳,培养学生运用概率统计原理解决实际问题的能力。 4、案例的总结。案例总结是保证和提高案例教学质量的必备环节。对案例的总结一般要包括以下内容:一是对讨论过程进行总结,对于一个案例,让学生提出各种观点及其案例所包含的概率统计原理,让学生通过分析和评价案例,掌握正确处理和解决复杂多变的现实

福州大学概率论与数理统计课后习题答案高等教育出版社

福州大学概率论与数理统计课后习题答案 高等教育出版社 习题1.1解答 1. 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。试写出样本空间及事件C B A ,,中的样本点。 解:{=Ω(正,正),(正,反),(反,正),(反,反)} {=A (正,正),(正,反)};{=B (正,正),(反,反)} {=C (正,正),(正,反),(反,正)} 2. 在掷两颗骰子的试验中,事件D C B A ,,,分别表示“点数之和为偶数”,“点数 之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。试写出样本空间及事件D C B A BC C A B A AB ---+,,,,中的样本点。 解:{})6,6(,),2,6(),1,6(,),6,2(,),2,2(),1,2(),6,1(,),2,1(),1,1( =Ω; {})1,3(),2,2(),3,1(),1,1(=AB ; {})1,2(),2,1(),6,6(),4,6(),2,6(,),5,1(),3,1(),1,1( =+B A ; Φ=C A ;{})2,2(),1,1(=BC ; {})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(=---D C B A 3. 以C B A ,,分别表示某城市居民订阅日报、晚报和体育报。试用C B A ,,表示以下 事件: (1)只订阅日报; (2)只订日报和晚报; (3)只订一种报; (4)正好订两种报; (5)至少订阅一种报; (6)不订阅任何报; (7)至多订阅一种报; (8)三种报纸都订阅; (9)三种报纸不全订阅。 解:(1)C B A ; (2)C AB ; (3)C B A C B A C B A ++; (4)BC A C B A C AB ++; (5)C B A ++; (6)C B A ; (7)C B A C B A C B A C B A +++或C B C A B A ++ (8)ABC ; (9)C B A ++ 4. 甲、乙、丙三人各射击一次,事件321,,A A A 分别表示甲、乙、丙射中。试说明下列事件所表示的结果:2A , 32A A +, 21A A , 21A A +, 321A A A , 313221A A A A A A ++. 解:甲未击中;乙和丙至少一人击中;甲和乙至多有一人击中或甲和乙至少有一人未击中;甲和乙都未击中;甲和乙击中而丙未击中;甲、乙、丙三人至少有两人击中。 5. 设事件C B A ,,满足Φ≠ABC ,试把下列事件表示为一些互不相容的事件的和: C B A ++,C AB +,AC B -.

概率论与数理统计基本知识

概率论与数理统计基本知识点 一、概率的基本概念 1.概率的定义: 在事件上的一个集合函数P ,如果它满足如下三个条件: (1)非负性 A A P ?≥,0)( (2)正规性 1)(=ΩP (3)可列可加性 若事件,...,2,1,=n A n 两两互斥 则称P 为概率。 2.几何概型的定义: 若随机试验的样本空间对应一个度量有限的几何区域S ,每一基本事件与S 内的点一一对应,则任一随机事件A 对应S 中的某一子区域D 。(若事件A 的概率只与A 对应的区域D 的度量成正比,而与D 的形状及D 在S 中的位置无关。)==(每点等可能性)则称为几何概型。 的度量 对应区域的度量 对应区域S D )()()(Ω=Ω= A m A m A P 3.条件概率与乘法公式: 设A,B 是试验E 的两个随机事件,且0)(>B P ,则称) () ()|(B P AB P B A P = 为事件B 发生的条件下,事件A 发生的条件概率。(其中)(AB P 是AB 同时发生的概率) 乘法公式:)|()()|()()(B A P B P A B P A P AB P == 4.全概率公式与贝叶斯公式: (全概率公式)定理:设n A A A ...,21是样本空间Ω的一个划分,n i A P i ,...,2,1,0)(=>,B 是任一事件,则有∑== n i i i A B P A P B P 1 )|()()(。 (贝叶斯公式)定理:设n A A A ...,21是样本空间Ω的一个划分,n i A P i ,...,2,1,0)(=>,B 是任一事件,则∑== =?n k k k i i A B P A P A B P A P B A P n i 1 ) |()() |()()|(,,...,2,1。 5.事件的独立性: 两事件的独立性:(定义)设A 、B 是任意二事件,若P(AB)= P(A)P(B),则称事件A 、B 是相互独立的。(直观解释)A 、B 为试验E 的二事件,若A 、 B 的发生互不影响。 二、随机变量和分布函数:

概率论与数理统计学习地总结

概率论与数理统计 学习报告 学院 学号: 姓名:

概率论与数理统计学习报告 通过短短一学期的学习,虽然学习、研究地并不深入,但该课程的每一处内容都有不同的奇妙吸引着我,让我对它在生活中饰演的角色充满遐想;它将我带入了一个由随机变量为桥梁,通过表面偶然性找出其内在规律性,从而与其它的数学分支建立联系的世界,让我对这种进行大量的随机重复实验,通过分析研究得出统计规律性的过程产生了极大地兴趣。我很喜欢这门课程,但也不得不说课后在它上面花的时间并不多,因此学得还不深入,但它真的深深地吸引了我,我一定会找时间进一步深入地学习它。 先简单地介绍一下概率论与数理统计这门学科。 概率论是基于给出随机现象的数学模型,并用数学语言来描述它们,然后研究其基本规律,透过表面的偶然性,找出其内在的规律性,建立随机现象与数学其他分支的桥梁,使得人们可以利用已成熟的数学工具和方法来研究随机现象,进而也为其他数学分支和其他新兴学科提供了解决问题的新思路和新方法。数理统计是以概率论为基础,基于有效的观测、收集、整理、分析带有随机性的数据来研究随机现象,进而对所观察的问题作出推断和预测,直至为采取一定的决策和行动提供依据和建议。 概率论与数理统计是研究随机现象及其规律性的一门数学学科。研究随机现象的规律性有其独特的思想方法,它不是寻求出现每一现象的一切物理因素,不能用研究确定性现象的方法研究随机现象,而是承认在所研究的问题中存在一些人们不能认识或者根本不知道的

随机因素作用下,发生随机现象。这样,人们既可以通过试验来观察随机现象,揭示其规律性,作出决策,也可根据实际问题的具体情况找出随机现象的规律,作出决策。 至今,概率论与数理统计的理论与方法已经广泛应用于自然科学、社会科学以及人文科学等各个领域中,并随着计算机的普及,概率论与数理统计已成为处理信息、制定决策的重要理论和方法。它们不仅是许多新兴学科,如信息论、控制论、排队论、可靠性论以及人工智能的数学理论基础,而且与其他领域的新兴学科的相互交叉而产生了许多新的分支和边缘学科,如生物统计、统计物理、数理金融、神经网络统计分析、统计计算等。 概率论应用随机变量与随机变量的概率分布、数字特征及特征函数为数学工具对随机现象进行描述、分析与研究,其前提条件是假设随机变量的概率分布是已知的;而数理统计中作为研究对象的随机变量的概率分布是完全未知的,或者分布类型已知,但其中的某些参数或某些数字特征是未知的。概率论研究问题的方法是从假设、命题、已知的随机现象的事实出发,按一定的逻辑推理得到结论,在方法上是演绎式的。而统计学的方法是归纳式的,从所研究地对象的全体中随机抽取一部分进行试验或观测,以获得试验数据,依据试验数据所获取的信息,对整体进行推断,是归纳而得到结论的。因此掌握它特有的学习方法是很重要的。 在学习的过程中,不论是老师提出的一些希望我们课后讨论的问题还是自己在做作业看书过程中遇到的一些问题都引发了我的一些

相关主题
文本预览
相关文档 最新文档