当前位置:文档之家› 第四章 线性方程组 一、主要内容

第四章 线性方程组 一、主要内容

第四章 线性方程组 一、主要内容
第四章 线性方程组 一、主要内容

线性代数第3章_线性方程组习题解答

习题3 3-1.求下列齐次线性方程组的通解: (1)?? ? ??=--=--=+-087305302z y x z y x z y x . 解 对系数矩阵施行行初等变换,得 ???? ? ??-----?→?????? ??-----=144072021 1873153211A )(000720211阶梯形矩阵B =???? ? ??-?→? ??? ?? ??-?→?0002720211)(000271021101行最简形矩阵C =????? ? ???→? , 与原方程组同解的齐次线性方程组为 ??? ??? ?=+=+02702 11 z y z x , 即 ??? ??? ?-=-=z y z x 272 11(其中z 是自由未知量), 令1=z ,得到方程组的一个基础解系 T )1,2 7,211(-- =ξ, 所以,方程组的通解为

,)1,2 7,211(T k k -- =ξk 为任意常数. (2)??? ??=+++=+++=++++0 86530543207224321 432154321x x x x x x x x x x x x x . 解 对系数矩阵施行行初等变换,得 ???? ? ??--?→?????? ??=21202014101072211086530543272211A )(7000014101072211阶梯形矩阵B =????? ??-?→? ???? ? ??-?→?70000141010211201 )(100000101001201行最简形矩阵C =???? ? ???→?, 与原方程组同解的齐次线性方程组为 ??? ??==+=++00 025 42431x x x x x x , 即 ??? ??=-=--=025 4 2431x x x x x x (其中43,x x 是自由未知量), 令34(,)T x x =(1,0)T ,(0,1)T ,得到方程组的一个基础解系 T )0,0,1,0,2(1-=ξ,T )0,1,0,1,1(2--=ξ, 所以,方程组的通解为

高分子物理第三章习题及解答.docx

第三章 3.1 高分子的溶解 3.1.1 溶解与溶胀 例3-1 简述聚合物的溶解过程,并解释为什么大多聚合物的溶解速度很慢? 解:因为聚合物分子与溶剂分子的大小相差悬殊,两者的分子运动速度差别很大,溶剂分子能比较快地渗透进入高聚物,而高分子向溶剂地扩散却非常慢。这样,高聚物地溶解过程要经过两个阶段,先是溶剂分子渗入高聚物内部,使高聚物体积膨胀,称为“溶胀”,然后才是高分子均匀分散在溶剂中,形成完全溶解地分子分散的均相体系。整个过程往往需要较长的时间。 高聚物的聚集态又有非晶态和晶态之分。非晶态高聚物的分子堆砌比较松散,分子间的相互作用较弱,因而溶剂分子比较容易渗入高聚物内部使之溶胀和溶解。晶态高聚物由于分子排列规整,堆砌紧密,分子间相互作用力很强,以致溶剂分子渗入高聚物内部非常困难,因此晶态高聚物的溶解要困难得多。非极性的晶态高聚物(如PE)在室温很难溶解,往往要升温至其熔点附近,待晶态转变为非晶态后才可溶;而极性的晶态高聚物在室温就能溶解在极性溶剂中。 例3-2.用热力学原理解释溶解和溶胀。 解:(1)溶解:若高聚物自发地溶于溶剂中,则必须符合: 上式表明溶解的可能性取决于两个因素:焓的因素()和熵的因素()。焓的因素取决于溶剂对高聚物溶剂化作用,熵的因素决定于高聚物与溶剂体系的无序度。对于极性高聚物前者说影响较大,对于非极性高聚物后者影响较大。但一般来说,高聚物的溶解过程都是增加的,即>0。显然,要使<0,则要求越小越好,最好为负值或较小的正值。极性高聚物溶于极性溶剂,常因溶剂化作用而放热。因此,总小于零,即<0,溶解过程自发进行。根据晶格理论得 =(3-1) 式中称为Huggins参数,它反映高分子与溶剂混合时相互作用能的变化。的物理意义表示当一个溶剂分子放到高聚物中去时所引起的能量变化(因为)。而非极性高聚物溶于非极性溶剂,假定溶解过程没有体积的变化(即),其的计算可用Hildebrand的溶度公式: =(3-2) 式中是体积分数,是溶度参数,下标1和2分别表示溶剂和溶质,是溶液的总体积。从式中可知总是正的,当 时,。一般要求与的差不超过1.7~2。综上所述,便知选择溶剂时要求越小或和 相差越小越好的道理。 注意: ①Hildebrand公式中仅适用于非晶态、非极性的聚合物,仅考虑结构单元之间的色散力,因此用相近原则选择溶剂时有例外。相近原则只是必要条件,充分条件还应有溶剂与溶质的极性和形成的氢键程度要大致相等,即当考虑结构单元间除有色散力外,还有偶极力和氢键作用时,则有

用Excel求解线性规划及线性方程组的方法

第23卷总第44期 西北民族学院学报(自然科学版)Vol.23,No.2 2002年6月 Journal of N orthw est Minorities U niversity(Natural Science)J une,2002 用Excel求解线性规划及线性方程组的方法 王培麟 (番禺职业技术学院,广东番禺511483) [摘 要]对利用美国微软公司开发的Office组件中的电子表格软件Excel求解线性规划的方法给予了介绍,并将该功能给予扩充,给出了用该软件求解线性方程组的方法1 [关键词]Excel;线性规划;求解方法 [中图分类号]TP271+.7 [文献标识码]A [文章编号]1009-2102(2002)02-0037-03 Excel是美国微软公司开发的Office组件中的电子表格软件,它具有强大的电子表格处理功能,使用户能够轻松地制作表格,并具有对数据进行检索、分类、筛选、排序、计算、分析与统计等功能1对大多数用户而言,也许更注重于Excel的表格功能,而对于它的计算功能,特别是数学计算功能可能就不是十分熟悉1本文将介绍用Excel解线性规划及线性方程组的方法与技巧1 1 用Excel解线性规划 用Excel解线性规划,必须在Excel系统中加载“规划求解”项目1如果没有,可以启动Excel软件,进入Excel用户界面,然后使用“工具”菜单下“加载宏”菜单项之“规划求解”子项,则可完成“规划求解”项的加载1 下面通过例1的求解来说明使用Excel解线性规划问题的方法1 例1 线性规划模型为: min s=2x1+7x2+4x3+9x4+5x51 S.t 3x1+2x2+x3+6x4+18x5≥700 x1+0.5x2+0.2x3+2x4+0.5x5≥30 0.5x1+x2+0.2x3+2x4+0.5x5=200 x1≤50;x2≤60;x3≤50;x4≤70;x5≤40; x1,x2,x3,x4,x5≥0 1 求解的具体方法为:首先要建立电子表格模型,输入如图1所示的工作表1 工作表的格式不是固定不变的,可根据具体的需要进行调整1建立工作表的步骤为: 1)确定一些单元格来代表决策变量,本例中x1,x2,…,x5为决策变量,需要将它们放到一些单元格中,称为可变单元格1一般地,可变单元格使用Excel的某行一块连续的区域,如 [收稿日期]2002-04-01 [作者简介]王培麟(1963—),男,副教授,硕士,主要从事数学和计算机方面的教学与研究1 — 7 3 —

第三章 线性方程组

第三章 线性方程组 §3.1 线性方程组的矩阵消元解法 例3.1 求解线性方程组 ??? ??=+-=+-=-+4 5342622321 321321x x x x x x x x x 解方程组通常采用消元法,比如将第2个方程乘2-加到第1个方程,可消去1x 得到09632=-x x ,将此方程两边除以3,约简可得03232=-x x 。 除了消元和约简,有时还要交换两个方程的位置。这些变形运算实际上仅在变量的系数之间进行,所以只需将所有的系数和常数项列成一个矩阵,做初等行变换即可。显然消元、约简和交换方程位置分别相当于矩阵的消去变换、倍缩变换和换行变换。比如上面对本例的两个具体变形相当于以下矩阵初等行变换: ????? ??---411534216122→????? ??---411534210960→???? ? ??---411534210320 其中第一个变换是第2行乘2-加到第1行,第二个变换是以31乘第1行。矩阵的初等变换可以使解方程组的过程显得紧凑、快捷、简洁。 下面我们运用初等变换的标准程序(参看§2.4)来解例3.1的线性方程组: ????? ??---4115342]1[6122 →? ?? ?? ??----111990342 109]6[0 ?→?* ????? ??---11]5.5[0005 .110310 1→? ???? ? ?210030101001 其中,主元都用“[ ]”号作了标记。消元与换行可同步进行(如带“*”号的第二 步),换行的目的是为了使主元呈左上到右下排列。最后一个矩阵对应方程组 ?? ? ??=++=++=++2 003001 00321x x x 实际上已得到方程组的解是11=x ,32=x ,23=x 。写成列向量 ()T x 2,3,1=,叫做解向量。显然解向量可以从最后一个矩阵右侧的常数列 直接读出,无需写出对应的方程组。 第二章曾经把一般的线性方程组(2.2)写成矩阵形式b Ax =,比如例 3.1 的线性方程组,写成矩阵形式是??? ? ? ??=????? ??---436115421122x 。

(完整版)线性代数第四章线性方程组试题及答案

第四章 线性方程组 1.线性方程组的基本概念 (1)线性方程组的一般形式为: 其中未知数的个数n 和方程式的个数m 不必相等. 线性方程组的解是一个n 维向量(k 1,k 2, …,k n )(称为解向量),它满足当每个方程中的未知数x 用k i 替代时都成为等式. 线性方程组的解的情况有三种:无解,唯一解,无穷多解. 对线性方程组讨论的主要问题两个:(1)判断解的情况.(2)求解,特别是在有无穷多接时求通解. b 1=b 2=…=b m =0的线性方程组称为齐次线性方程组. n 维零向量总是齐次线性方程组的解,称为零解.因此齐次线性方程组解的情况只有两种:唯一解(即只有零解)和无穷多解(即有非零解). 把一个非齐次线性方程组的每个方程的常数项都换成0,所得到的齐次线性方程组称为原方程组的导出齐次线性方程组,简称导出组. (2) 线性方程组的其他形式 线性方程组除了通常的写法外,还常用两种简化形式: 向量式 x 1α1+x 2α2+…+n x n α= β, (齐次方程组x 1α1+x 2α2+…+n x n α=0). 即[] n a a ,,a 21ΛΛ??? ?? ? ??????n x x x M 21=β 全部按列分块,其中β,,21n a a a ΛΛ 如下 ????????????= 121111m a a a M α ,????????????=222122m a a a M α,………,????????????=mn n n n a a a M 21α, ? ? ??? ???????=m b b b M 21β 显然方程组有解的充要条件是向量β可由向量组n ααα,,21ΛΛ线性表示。 矩阵式 AX =β,(齐次方程组AX =0). ? ? ???? ? ?????=mn m m n n a a a a a a a a a A Λ M O M M Λ Λ 2 122221 11211 ,????????????=n x x x X M 2 1 ???? ? ???????=m b b b M 21β 其中A 为m n ?矩阵,则: ① m 与方程的个数相同,即方程组AX =β有m 个方程; ② n 与方程组的未知数个数相同,方程组AX =β为n 元方程。 矩阵A 称为方程组的系数矩阵,A =(n ααα,,21ΛΛ,β),称矩阵A 为方 程组的增广矩阵。 2. 线性方程组解的性质 (1) 齐次方程组AX =0 如果η1, η2,…,ηs 是齐次方程组AX =0的一组解,则它们的任何线性组合 c 1η1+ c 2η2+? + c s ηs 也都是解. (2) 非齐次方程组AX =β 性质1:非齐次线性方程组的两个解之差是它的导出组的解。 性质2:非齐次线性方程组的一个解和其导出组的一个解的和仍然是非齐次线 性方程组的一个解。 3.线性方程组解的情况的判别 (1)对于齐次方程组AX =0,判别解的情况用两个数: n,r(A ). 若有非零解? r(A )

线性方程组典型习题及解答

线性方程组 1. 用消元法解方程组?????? ?=- +-+=-- + - =-+-+ =- -+-5 2522220 21 22325 4 321 53 2 154321 5 4321x x x x x x x x x x x x x x x x x x x . 解: 方程组的增广矩阵 : ????? ???????---------→????????????---------→????????????---------420200110100112430211321312630202530112430211321512522110112121111211321? ??? ????? ???--------→60000 0110100112430211321,可知,系数矩阵的秩为3,增广矩阵的秩为4,系数矩阵的秩不等于增广矩阵的秩,从而方程组无解. 2. 讨论λ为何值时,方程组??? ??=++ = + +=++2 3 2 1 3 2 1 321 1 λλλλλx x x x x x x x x 有唯一解、无解和有无穷多解。 解:将方程组的增广矩阵进行初等行变换,变为行阶梯矩阵。 ()() ()()B A =??? ? ???? ? ?+------→→???? ????? ?→?? ??? ?????=22 2 2211210 1101 111 1 11111 1 1 1 111λλλλλλλ λλλ λλλλλλλ λλ λΛ于是,当2,1-≠λ时,系数矩阵的秩等于增广矩阵的秩,都等于3,等于未知量的个数,此 时方程组有唯一解;2 )1(,21,213 321++-=+=++- =λλλλλx x x 当2-=λ时,系数矩阵的秩为2,增广矩阵的秩为3,此时方程组无解; 当1=λ时,系数矩阵的秩等于增广矩阵的秩,都等于1,小于未知量的个数,此时方程组有无穷多解,即3211x x x --=,其中32,x x 为自由未知量。

第四章 线性方程组习题及答案

第四章 线性方程组 1.设齐次方程组12312312 30030 x ax x ax x x x x x ++=?? ++=??-+=? 有非零解,求a 及其通解. 解:因为此方程组有非零解,故系数矩阵的行列式为零. 2211 ||1 131******** a a a a a a ==-+--+=-=-A 所以,2 1a =,即1a =± (1)当1a =时,对此方程组的系数矩阵进行行变换 111111120111000011113022000?????? ? ? ?=→→- ? ? ? ? ? ?--?????? A 原方程组等价于1223200x x x x +=??-=?, 即 12322x x x x =-??=?. 取21x =,得1211-?? ? = ? ? ?? ξ为方程组的基 础解系. 则方程组的通解为1(2,1,1),k k k ==-∈X ξT R . (2)当1a =-时, 111111110111001001113000000---?????? ? ? ?=-→→ ? ? ? ? ? ?-??????A 原方程组等价于123 0x x x -=??=? 取21x =,得()T 21,1,0=ξ为方程组的基础解系. 故通解为2(1,1,0), T R k k k ==∈X ξ. 2.解齐次方程组 (1)1234123412 3420222020x x x x x x x x x x x x ++-=??+++=??++-=? (2)12341234 12 3412342350 327043602470 x x x x x x x x x x x x x x x x +-+=??++-=??+-+=??-+-=?

里查森迭代法线性方程组求解

MATLAB程序设计实践 1、编程实现以下科学计算算法,并举一例应用之。(参考书籍《精 通MALAB科学计算》,王正林等著,电子工业出版社,2009 年) “里查森迭代法线性方程组求解” 解: 算法说明: 里查森迭代法是最简单的迭代法,它的迭代公式为:x k+1=(I-A)*x k+b;在MATLAB 中编程实现的里查森迭代法函数为:richason。 功能:用里查森迭代法求线性方程组 调用格式:[x,n]=richason(A,b,x0,eps,M) 其中,A为线性方程组的系数矩阵; b为线性方程组的常数向量; x0为迭代初始向量; eps为解的精度控制(此参数可选); M为迭代步数控制(此参数可选); x为线性方程组的解; n为求出所需精度的解实际的迭代步数。 里查森迭代法的MA TLAB程序代码如下: function [x,n] = richason(A,b,x0,eps,M) %采用里查森迭代法求线性方程组Ax=b的解 %线性方程组的系数矩阵:A %线性方程组的常数向量:b %迭代初始向量:x0 %解的精度控制:eps %迭代步数控制:M %线性方程组的解:x %求出所需精度的解实际的迭代步数:n if(nargin==3) eps=1.0e-6; %eps表示迭代精度 M=200; %M表示迭代步数的限制值 elseif(nargin==4) M=200; end I=eye(size(A)); x1=x0; x=(I-A)*x0+b; n=1; %迭代过程 while(norm(x-x1)>eps) x1=x; x=(I-A)*x1+b; n=n+1; %n为最终求出解时的迭代步数 if(n>=M)

齐次和非齐次线性方程组的解法(整理定稿)

线性方程组解的结构(解法) 一、齐次线性方程组的解法 【定义】 r (A )= r 时,若()r A n ≤,则存在齐次线性方程组的同解方程组; $ 若()r A n >,则齐次线性方程组无解。 1、求AX = 0(A 为m n ?矩阵)通解的三步骤 (1)?? →A C 行 (行最简形); 写出同解方程组CX =0. (2) 求出CX =0的基础解系,,,n r -12ξξξ; (3) 写出通解n r n r k k k --=++ +1122X ξξξ其中k 1,k 2,…, k n-r 为任意常数.

高分子物理第三章习题及解答

高分子的溶解 溶解与溶胀 例3-1 简述聚合物的溶解过程,并解释为什么大多聚合物的溶解速度很慢 解:因为聚合物分子与溶剂分子的大小相差悬殊,两者的分子运动速度差别很大,溶剂分子能比较快地渗透进入高聚物,而高分子向溶剂地扩散却非常慢。这样,高聚物地溶解过程要经过两个阶段,先是溶剂分子渗入高聚物内部,使高聚物体积膨胀,称为“溶胀”,然后才是高分子均匀分散在溶剂中,形成完全溶解地分子分散的均相体系。整个过程往往需要较长的时间。 高聚物的聚集态又有非晶态和晶态之分。非晶态高聚物的分子堆砌比较松散,分子间的相互作用较弱,因而溶剂分子比较容易渗入高聚物内部使之溶胀和溶解。晶态高聚物由于分子排列规整,堆砌紧密,分子间相互作用力很强,以致溶剂分子渗入高聚物内部非常困难,因此晶态高聚物的溶解要困难得多。非极性的晶态高聚物(如PE)在室温很难溶解,往往要升温至其熔点附近,待晶态转变为非晶态后才可溶;而极性的晶态高聚物在室温就能溶解在极性溶剂中。

例3-2.用热力学原理解释溶解和溶胀。 解:(1)溶解:若高聚物自发地溶于溶剂中,则必须符合: 上式表明溶解的可能性取决于两个因素:焓的因素()和熵的因素()。焓的因素取决于溶剂对高聚物溶剂化作用,熵的因素决定于高聚物与溶剂体系的无序度。对于极性高聚物前者说影响较大,对于非极性高聚物后者影响较大。但一般来说,高聚物的溶解过程都是增加的,即>0。显然,要使<0,则要求越小越好,最好为负值或较小的正值。极性高聚物溶于极性溶剂,常因溶剂化作用而放热。因此,总小于零,即<0,溶解过程自发进行。根据晶格理论得 =(3-1) 式中称为Huggins参数,它反映高分子与溶剂混合时相互作用能的变化。的物理意义表示当一个溶剂分子放到高聚物中去时所引起的能量变化(因为)。而非极性高聚物溶于非极性溶剂,假定溶解过程没有体积的变化(即),其的计算可用Hildebrand的溶度公式:=(3-2) 式中是体积分数,是溶度参数,下标1和2分别表示溶剂和

线性方程组-练习

1.设向量组123,,ααα线性无关,向量1β可由123,,ααα线性表示,而向量2β不能由123,,ααα线性表示,则对于任意常数k ,必有( )A (A) 12312,,,k αααββ+线性无关; (B )12312,,,k αααββ+线性相关; ( C) 12312,,,k αααββ+线性无关; (D) 12312,,,k αααββ+线性相关 2.n 维向量组)1(,,,21n s s ≤≤ααα 线性无关的充要条件是 ( D ) (A) 存在一组不全为零的s k k k ,,21 ,使得02211=+++s s k k k ααα (B) s ααα ,,21 中的任何两个向量都线性无关 (C) s ααα ,,21 中存在一个向量,它不能被其余向量线性表示 (D) s ααα ,,21 中的任何一个向量都不能被其余向量线性表示 3. (1)若两个向量组等价,则它们所含向量的个数相同; (2)若向量组}{21r ααα,,, 线性无关,1+r α可由r ααα ,21,线性表出,则向量组}{121+r ααα,,, 也线性无关; (3)设}{21r ααα,,, 线性无关,则}{121-r ααα,,, 也线性无关; (4)}{21r ααα,,, 线性相关,则r α一定可由121,-r ααα ,线性表出;以上说法正确的有( A )个。 A .1 个 B .2 个 C .3 个 D .4个 4.向量组A :12,,,n ααα 与B :12,,,m βββ 等价的充要条件为( C ). A .()()R A R B =; B .()R A n =且()R B m =; C .()()(,)R A R B R A B ==; D .m n = 5.讨论a ,b 取什么值时,下面方程组有解,对有解的情形,求出一般解。 1234123423412341322235433x x x x x x x x a x x x x x x x b +++=??+++=??++=??+++=?。 答案:a =0,b =2有解;其他无解。 (-2,3,0,0)’+k1(1,-2,1,0)’+k2(1,-2,0,1)’ 6.试就k 的取值情况讨论以下线性方程组的解,并在有无穷的解时求出通解:

数值计算_第4章 解线性方程组的迭代法

第4章解线性方程组的迭代法 用迭代法求解线性方程组与第4章非线性方程求根的方法相似,对方程组进行等价变换,构造同解方程组(对可构造各种等价方程组, 如分解,可逆,则由得到),以此构造迭代关系式 (4.1) 任取初始向量,代入迭代式中,经计算得到迭代序列。 若迭代序列收敛,设的极限为,对迭代式两边取极限 即是方程组的解,此时称迭代法收敛,否则称迭代法发散。我们将看到,不同于非线性方程的迭代方法,解线性方程组的迭代收敛与否完全决定于迭代矩阵的性质,与迭代初始值的选取无关。迭代法的优点是占有存储空间少,程序实现简单,尤其适用于大型稀疏矩阵;不尽人意之处是要面对判断迭代是否收敛和收敛速度的问题。 可以证明迭代矩阵的与谱半径是迭代收敛的充分必要条件,其中是矩阵的特征根。事实上,若为方程组的解,则有 再由迭代式可得到

由线性代数定理,的充分必要条件。 因此对迭代法(4.1)的收敛性有以下两个定理成立。 定理4.1迭代法收敛的充要条件是。 定理4.2迭代法收敛的充要条件是迭代矩阵的谱半径 因此,称谱半径小于1的矩阵为收敛矩阵。计算矩阵的谱半径,需要求解矩阵的特征值才能得到,通常这是较为繁重的工作。但是可以通过计算矩阵的范数等方法简化判断收敛的 工作。前面已经提到过,若||A||p矩阵的范数,则总有。因此,若,则必为收敛矩阵。计算矩阵的1范数和范数的方法比较简单,其中 于是,只要迭代矩阵满足或,就可以判断迭代序列 是收敛的。 要注意的是,当或时,可以有,因此不能判断迭代序列发散。

在计算中当相邻两次的向量误差的某种范数小于给定精度时,则停止迭代计算,视为方程组的近似解(有关范数的详细定义请看3.3节。) 4.1雅可比(Jacobi)迭代法 4.1.1 雅可比迭代格式 雅可比迭代计算 元线性方程组 (4.2) 写成矩阵形式为。若将式(4.2)中每个方程的留在方程左边,其余各项移到方程右边;方程两边除以则得到下列同解方程组: 记,构造迭代形式

高分子物理学第三章课后答案

第三章;高分子的溶解过程与小分子相比有什么不同?;高分子与溶剂分子的尺寸相差悬殊,两者运动分子运动;第二维里系数A2的物理意义?;第二维利系数的物理意义是高分子链段和链段间的内排;高分子的理想链和真实链有哪些区别?;①理想链是一种理论模型,认为化学键不占体积,自由;②理想链没有考虑远程相互作用和近程相互作用,而真;高分子的稀溶液、亚浓溶液、浓溶液有哪些本质的 第三章 高分子的溶解过程与小分子相比有什么不同? 高分子与溶剂分子的尺寸相差悬殊,两者运动分子运动速度差别很大,现是溶剂分子渗入高聚物内部,是高聚体膨胀,称为“溶胀”,然后高分子均匀分散在溶剂中,形成完全溶解的分子分散的均相体系。对于交联的高分子只停留在溶胀阶段,不会溶解。 第二维里系数A2的物理意义? 第二维利系数的物理意义是高分子链段和链段间的内排斥与高分子链段和溶剂分子间能量上相互作用、两者相互竞争的一个量度。它与溶剂化作用和高分子在溶液里的形态有密切关系。良溶剂中,高分子链由于溶剂化作业而扩张,高分子线团伸展,A2是正值;温度下降或在非良溶剂,高分子线团收缩,A2是负值;当链段与链段、溶剂与高分子链段相互作业想等时,高分子溶液符合理想溶液的性质,A2为零,相当于高分子链处于无扰状态。 高分子的理想链和真实链有哪些区别?

①理想链是一种理论模型,认为化学键不占体积,自由旋转,没有键角和位垒的限制,而真实链有键角限制和位垒的限制。 ②理想链没有考虑远程相互作用和近程相互作用,而真实链要考虑链节与链节之间的体积排除和链与周围环境的相互作用以及链与链之间的相互作用等。 高分子的稀溶液、亚浓溶液、浓溶液有哪些本质的区别? 三种溶液最本质的区别体现在溶液中和高分子无规线团之间的相互作用和无规线团的形态结构不同: ① 稀溶液:高分子线团是相互分离的,溶液中高分子链段的分布也是不均一的;线团 之间的相互作用可以忽略。 ②浓溶液:大分子链之间发生相互穿插和缠结,溶液中链段的空间密度分布趋于均一。② 亚浓溶液:亚浓溶液介于稀溶液和浓溶液之间,高分子线团开始相互穿插交叠,整 个溶液中链段的分布趋于均一;高分子线团与临近线团开始相互作用。 第四章一般共混物的相分离与嵌段共聚物的微相分离在本质上有何差别? 由于嵌段共聚物的嵌段间不相容而发生相分离,平均相结构微区的大小只有几十到几百纳米,即微相分离,两相之间的作用力是化学键。两种聚合物共混时,由于混合熵很小,混合晗决定于聚合物之间的相互作用,通常较小,所以两种聚合物混合自由能通常大于零,是分相的。而一般共混物两相界面之间的作用力是

线性方程组的应用

线性方程组的应用 线性方程组是线性代数的主要研究对象之一,它的理论严谨、发展完善、处理问题方法独特,可应用于解决各个领域的实际问题。在代数理论中,借助于方程组可以判断向量组的线性相关,可以求矩阵的特征向量等;在几何、物理、化学、经济、生物、食品等许多方面,方程组也有着广泛的应用。 应用一.线性方程组在空间解析几何中的应用 1.1.线性方程组表示平面,判断平面的位置关系 在空间解析几何中,任一平面可以用三元一次方程01111=+++D z C y B x A 表示,下面用方程组解的判定来判别两个平面的位置关系。 设两个平面 Ⅱ1:01111=+++D z C y B x A Ⅱ2:02222=+++D z C y B x A 则Ⅱ1,Ⅱ2间的相互关系有下面三种情形: (1)当?? ????≠??????=22221111222111D C B A D C B A R C B A C B A R ,即方程组 11112222 00A x B y C z D A x B y C z D +++=??+++=? 的系数矩阵的秩不等于其增广矩阵的秩,方程组无解,故Ⅱ1,Ⅱ2没有公共点,Ⅱ1,Ⅱ2平行且不重合。 (2)当122221*********=?? ????=??????D C B A D C B A R C B A C B A R 时,方程组 11112222 00A x B y C z D A x B y C z D +++=??+++=?

有无穷解,且Ⅱ1,Ⅱ2重合。 (3)当222221*********=?? ????=??????D C B A D C B A R C B A C B A R 时,方程组 1111222200 A x B y C z D A x B y C z D +++=??+++=? 有无穷多解,但Ⅱ1,Ⅱ2不重合,相交于一条直线。 例.1 判断平面 Ⅱ1:082=+-+z y x Ⅱ2: 072=-++z y x 的位置关系。 解: 271128121112121=?? ????--=??????-=R R 所以,平面Ⅱ1,Ⅱ2相交于一条直线L 。 1.2 三维空间应用举例 线性方程组可以应用于三维空间中,先将所考虑的问题化为一线性方程组,再 利用计算机进行求解,此种方法有进一步的推广。 例:考虑3维空间中由不等式: ?????????≤++≥++≥≥≥12 32463260 00321321 321x x x x x x x x x 决定的区域。若将不等号换成等号,它们就是空间中的5个平面。每三个平面成一 组,求这三个平面的交点的坐标,可找到多少个点?对每一个点判断是否所有不等 式都成立?若都成立,此点就是一个顶点,有多少个顶点? 分析问题

线性代数习题[第三章] 矩阵的初等变换与线性方程组

习题 3-1 矩阵的初等变换及初等矩阵 1.用初等行变换化矩阵 1021 2031 3043 A - ?? ?? =?? ?? ?? 为行最简形. 2.用初等变换求方阵 321 315 323 A ?? ?? =?? ?? ?? 的逆矩阵. 3.设 412 221 311 A - ?? ?? =?? ?? - ?? , 3 22 31 - ?? ?? ?? ?? - ?? 1 B=,求X使AX B =. 4.设A是n阶可逆矩阵,将A的第i行与第j行对换后得矩阵B. (1) 证明B可逆(2)求1 AB-.

习题 3-2 矩阵的秩 1.求矩阵的秩: (1)310211211344A ????=--????-?? (2)11121212221 2n n n n n n a b a b a b a b a b a b B a b a b a b ??????=??????01,2,,i i a b i n ≠????=?? 2.设12312323k A k k -????=--????-?? 问k 为何值,可使 (1)()1R A =; (2)()2R A =; (3)()3R A =.

3. 从矩阵A 中划去一行,得矩阵B ,则)(A R 与)(B R 的关系是 . .()()a R A R B = .()()b R A R B <; .()()1c R B R A >-; .()()()1 d R A R B R A ≥≥- 4. 矩阵???? ??????-------815073*********的秩R= . a.1; b . 2; c . 3; d . 4. 5. 设n (n ≥3)阶方阵????? ???????=111 a a a a a a a a a A 的秩R (A )=n -1,则a = . a . 1; b . n -11; c . –1; d . 1 1-n . 6.设A 为n 阶方阵,且2 A A =,试证: ()()R A R A E n +-=

线性方程组习题课

线性方程组求解 习题课

一、给定方程组123211*********x x x -???????????? =? ???????????-?????? 试考察用Jacobi 迭代法和Seidel 迭代法求解的收敛性。 解:对Jacobi 迭代法,迭代矩阵为 -1J 00.50.5B =I-D A=1010.50.50-?? ??--?????? 因为3 5 04 J I B λλλ-=+=,得特征值 1230,,22i i λλλ===- 得( )12J B ρ=> ,由定理知 Jacobi 迭代法发散。 对Seidel 迭代法,迭代矩阵为 ()1 S B D L U -=-=1 20001100.50.511000100.50.5112000000.5---?????? ??????-=--?? ??????????--?? ???? 显然,其特征值为1230,0.5λλλ===-

故()0.51s B ρ=<,由定理知Seidel 迭代法收敛。 二、设线性方程组111211212222a a x b a a x b ?????? = ??? ??????? ,11220a a ≠, 112221120a a a a -≠。证明:解线性方程组的Jacobi 迭代法和Gauss-Seidel 迭代法同时收敛或不收敛。 证明: 121 1111 122221 21 22 0000 00J a a a a B a a a a -??- ?-???? ?== ? ? ?-????- ??? ()2 1221 1122det J a a I B a a λλ-=-,故( )J B λ= ( )J B ρ= 。 1211111 1221 2212211122000000S a a a a B a a a a a a -??- ?-???? ?== ? ? ????? ?? ?

常微分方程学习活动6-第三章一阶线性方程组、第四章n阶线性方程的综合练习WORD版

常微分方程学习活动6-第三章一阶线性方程组、第四章n阶线性方程的综合练习WORD版

常微分方程学习活动6 第三章一阶线性方程组、第四章n 阶线性方程的综合练习 本课程形成性考核综合练习共3次,内容主要分别是第一章初等积分法的综合练习、第二章基本定理的综合练习、第三章和第四章的综合练习,目的是通过综合性练习作业,同学们可以检验自己的学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握. 要求:首先请同学们下载作业附件文档并进行填写,文档填写完成后请在本次作业页面中点击“去完成”按钮进入相应网页界面完成任务,然后请将所做完的作业文档以附件的形式上传到课程上,随后老师会在课程中进行评分。 一、填空题 1.若A (x )在(-∞,+∞)上连续,那么线性齐次 方程组Y A Y )(d d x x =,n R Y ∈的任一非零解在1 +n R 空间 不能 与x 轴相交. 2.方程组n x x x R Y R Y F Y ∈∈=,),,(d d 的任何一个解的

图象是 n+1 维空间中的一条积分曲线. 3.向量函数组Y 1(x ), Y 2(x ),…,Y n (x )线性相关的 必要 条件是它们的朗斯期行列式W (x )=0. 4.线性齐次微分方程组n x x x R Y R Y A Y ∈∈=,,)(d d ,的一个基本解组的个数不能多于 n+1 个. 5.若函数组)()(2 1 x x ??,在区间),(b a 上线性相关, 则它们的朗斯基行列式)(x W 在区间),(b a 上 恒等于 . 6.函数组? ? ?==x y x y cos sin 2 1的朗斯基行列式)(x W 是 x x x x x W sin cos cos sin )(-= 7.二阶方程 2=+'+''y x y x y 的等价方程组是 ?????--='='y x xy y y y 2111 . 8.若)(1 x y ?=和) (2 x y ? =是二阶线性齐次方程的 基本解组,则它们 没有 共同零点. 9.二阶线性齐次微分方程的两个解 ) (1x y ?=, ) (2x y ?=成为其基本解组的充要条件是 线性无关 . 10.n 阶线性齐次微分方程线性无关解的个

高分子物理第三章 习题参考答案

第三章 习题参考答案 1. 什么是溶度参数δ? 聚合物的δ怎样测定? 根据热力学原理解释非极性聚合物为什么能够溶解在其δ相近的溶剂中? 解:(1)溶度参数是内聚能密度的开方,它反映聚合物分子间作用力的大小。 (2)由于聚合物不能汽化,不能通过测汽化热来计算δ。聚合物的δ常用溶胀度法,浊度法和黏度法测定。 (3)溶解自发进行的条件是混合自由能0?M H (吸热), 所以只有当M M S T H ??,∴M H ?越小越好。 ()2 2121δδφφ-=?V H M ∴ 越小越好 ,即1δ与2δ越接近越好。 2. 用热力学原理解释溶解和溶胀。 解:(1)溶解:若高聚物自发地溶于溶剂中,则必须符合: 0≤?-?=?S T H G 上式表明溶解的可能性取决于两个因素:焓的因素(H ?)和熵的因素(S ?)。焓的因素取决于溶剂对高聚物溶剂化作用,熵的因素决定于高聚物与溶剂体系的无序度。对于极性高聚物前者说影响较大,对于非极性高聚物后者影响较大。但一般来说,高聚物的溶解过程S ?都是增加的,即S ?>0。显然,要使G ?<0,则要求H ?越小越好,最好为负值或较小 的正值。极性高聚物溶于极性溶剂,常因溶剂化作用而放热。因此,H ?总小于零,即G ?<0, 溶解过程自发进行。根据晶格理论得 H ?=211φχKTN (3-1) 式中1χ称为Huggins 参数,它反映高分子与溶剂混合时相互作用能的变化。KT 1χ的物理意义表示当一个溶剂分子放到高聚物中去时所引起的能量变化(因为KT H N 111,1,1χφ≈?≈=) 。而非极性高聚物溶于非极性溶剂,假定溶解过程没有体积的变化(即0=?V ),其H ?的计算可用Hildebrand 的溶度公式: H ?=22121)(δδφφ-V (3-2) 式中φ是体积分数,δ是溶度参数,下标1和2分别表示溶剂和溶质,V 是溶液的总体 积。从式中可知H ?总是正的,当1δ2δ?→?时,H ?0?→? 。一般要求1δ与2δ的差不超过1.7~2。综上所述,便知选择溶剂时要求1χ越小或1δ和2δ相差越小越好的道理。 注意: ①Hildebrand 公式中δ仅适用于非晶态、非极性的聚合物,仅考虑结构单元之间的色散力,因此用δ相近原则选择溶剂时有例外。δ相近原则只是必要条件,充分条件还应有溶

matlab程序求解含有边界条件的线性方程组

编写程序,求解含有边界条件(本质)的线性方程组 一、编写程序思路:拟编写一MATLAB 程序函数,来处理边界条件(a x k =), 将原线性方程组转化为形如: ??????? ?????????----=????????????????????????????????a A b a A b a A b a a A b x x x x x A A A A A A A A A A A A A A A A 5254243231215432155545351454443 41 3534333115141311000000100 (边界条件为a x =2), 然后调用作业(一)中解线性方程组函数x=gauss(A,b),求解该线性方程组。 一、变量说明: 解含边界条件(a x k =)线性方程组Ax=b ,其中: A -线性方程组系数矩阵;b -列向量 n -系数矩阵行数; m -系数矩阵列数; x -未知解向量 i -系数矩阵的行变量; k -解向量x 的下标变量; 三、基于MATLAB 软件平台编写程序,如下: function tr=boundary(A,b,k,a) %定义边界条件处理函数 [n,m]=size(A); %获得系数矩阵A 的行、列数 A(k,:)=0; %系数矩阵第k 行化为0 for i=1:n %使向量b 转化为[b(i)-A(i,k)*a]向量 b(i)=b(i)-A(i,k)*a; end A(:,k)=0; %系数矩阵第k 列化为0 A(k,k)=1;b(k)=a; %使k x 所对应系数矩阵中主对角元 素化为1

disp(A); %显示边界条件经处理后的A 和b disp(b); x=gauss(A,b) %调用作业一中高斯消元函数解方 程组 四、程序应用 例如:解线性方程组: 5 201210943422333372842452532154321 54215432543211?????????=====+-++++++++-++++++-x x x x x x x x x x x x x x x x x x x x x x x 其中,边界条件为32=x >> A=[2,-1,5,1,1;4,2,4,8,-1;1,2,0,7,3;3,1,3,3,2;2,4,-3,0,4]; >> b=[9;10;12;20;5]; >> tr=boundary(A,b,2,3) 输出结果为: 4 03-022 3303370010001 01150 2 7 -17 63 12

相关主题
相关文档 最新文档