当前位置:文档之家› D10_1二重积分概念

D10_1二重积分概念

二重积分的概念

第一节 二重积分的概念与性质 一、内容要点 1、引例 例1曲顶柱体的体积 例2平面薄片的质量 通过两个实际意义不同的例子,引出所求量可归结为同一形式的和式的极限,进而一般地抽象出二重积分的定义。 2、二重积分的概念:注意讲清楚定义中两个“任意性”及和式极限中各符号的意义。 3、二重积分的性质1-6,注意将其与定积分性质加以比较。 例3关于估值定理的应用 例4关于中值定理的应用 4、二重积分的几何意义——曲顶柱体的体积。 二、教学要求和注意点 理解二重积分,了解重积分的性质,了解二重积分的中值定理。 第二节 二重积分的计算法 一、内容要点 利用直角坐标计算二重积分 1、从几何入手,利用计算“平行截面面积为已知的立体的体积”方法,将二重分化为二次积分: ①若D 为X —型区域:{}b x a x y x y x ≤≤≤≤),()(),(21?? 则 ????=D x x b a dy y x f dx d y x f )()(21),(),(??σ ②若D 为Y —型区域:{}d y c y x y y x ≤≤≤≤),()(),(21?? 则 ????=D y y d c dx y x f dy d y x f )()(21),(),(??σ ③若D 既非X —型,又非Y —型区域,则将D 划分为若干子区域,使每一个子区域为X —型或Y —型。 2、介绍“对称性”在二重积分计算中的应用。 例1化二重积分为二次积分并求值,通过例子说明确定积分限的方法。 例2更换积分次序并计算,通过该例说明选择积分次序的重要性。

例3关于利用对称性计算二重积分的例子。 例4被积函数为绝对值函数、符号函数,取最大值或最小值等函数的例子。 利用极坐标计算二重积分 1、介绍极坐标下二重积分的换元公式。 2、何时选用极坐标进行计算,一般说来,当积分域D 的边界曲线用极坐标方程表示比较简单或被积函数用极坐标表示比较简单,可考虑用积坐标计算。 3、确定积分上下限的办法。 例1将直角坐标系下的二次积分化为极坐标系下的二次积分 例2利用二重积分计算概率积分 dx e x 2 0-+∞? 例3将极坐标系下的二次积分化为直角坐标系下的二次积分 例4利用极坐标计算二重积分 二、教学要求和注意点 1、掌握二重积分(直角坐标、极坐标)的计算方法 2、将重积分化为累次积分计算时,积分限的确定要保持每个单积分的下限小于上限,因此在交换二次积分次序时应注意符号问题。 3、在二重积分的计算时应尽量利用区域和被积函数的对称性以简化计算。 第四节 三重积分 一、内容要点 1、三重积分的概念,存在性及性质 2、三重积分在直角坐标系下的计算 ①先单积分后二重积分 ②先二重积分后单积分 3、更换积分次序 例1将三重积分化为三次积分 例2更换积分次序 例3先二重积分后单积分 4、柱面坐标系下三重积分的计算。 5、何时选用柱面坐标——当Ω是柱形,锥形或旋转体且在坐标面上的投影是圆域或其部分,或者被积函数含有式子)(22y x +?等时,常用柱面坐标计算。 6、球面坐标系下三重积分的计算。 7、何时选用球面坐标——当Ω是球体或其部分,或被积函数含有式子)(222z y x ++?

第一节二重积分的概念及性质教案

第九章 重积分 第一节 二重积分的概念及性质 一.二重积分的概念 1.引例 引例1 曲顶柱体的体积 设有一立体的底是xy 面上的有界闭区域D ,侧面是以D 的边界曲线为准线、母线平行于z 轴的柱面,顶是有二元非负连续函数),(y x f z = 所表示的曲面, 如图9—1所示, 这个立体称为D 上的曲顶柱体,试求该曲顶柱体的体积。 图9—1 图9—2 图9—3 解 对于平柱体的体积底面积高?=V ,然而,曲顶柱体不是平顶柱体,那么具体作法如下 (1)分割 把区域D 任意划分成n 个小闭区域n σσσ???,,,2 1 ,其中i σ?表示第i 个小闭区域, 也表示它的面积。在每个小闭区域内,以它的边界曲线为准线、母线平行于z 轴的柱面,如图9—2所示。这些柱面就那原来的曲顶柱体分割成n 个小曲顶柱体。 (2)近似 在每一个小闭区域i σ?上任取一点),(i i ηξ,以),(i i f ηξ为高,i σ?为底的平顶柱体 的体积i i i f σηξ?),(近似代替第i 个小曲顶柱体的体积。

i i i f V σηξ?≈?),( (3)求和 这n 个小平顶柱体的体积之和即为曲顶柱体体积的近似值 ∑=?≈?=n i i i i f V V 1),(σηξ (4)取极限 将区域D 无限细分,且每个小闭区域趋向于或说缩成一点,这个近似值趋近于曲顶柱体的体积。即 ∑=→?=n i i i i f V 10 ),(lim σηξλ 其中λ表示这n 个小闭区域i σ?直径中最大值的直径(有界闭区域的直径是指区 域中任意两点间的距离)。 引例2 平面薄片的质量 设有一平面薄片占有xy 面上的有界闭区域D ,它的密度为D 上的连续函数 ),(y x z ρ=,试求平面薄片的质量。 解 对于均匀平面薄片的质量薄片面积密度?=m ,然而,平面薄片并非均匀,那么具体作法如下 (1)分割 将薄片(即区域D )任意划分成n 个小薄片n σσσ???,,,2 1 ,其中i σ?表示第i 个 小小薄片,也表示它的面积,如图9—3所示。 (2)近似 在每一个小薄片i σ?上任取一点),(i i ηξ,以),(i i ηξρ为其密度,当i σ?很小时,认 为小薄片是均匀的,则i i i σηξρ?),(近似代替第i 个小薄片的质量。即 i i i m σηξρ?≈?),( (3)求和 这n 个小薄片的质量之和即为薄片的质量的近似值

二重积分学习总结

高等数学论文 《二重积分学习总结》 :徐琛豪 班级:安全工程02班 学号:1201050221 完成时间:2013年6月2日

二重积分 【本章学习目标】 ⒈理解二重积分的概念与性质,了解二重积分的几何意义以及二重积分与定积分之间的联系,会用性质比较二重积分的大小,估计二重积分的取值围。 ⒉领会将二重积分化为二次积分时如何确定积分次序和积分限,如何改换二次积分的积分次序,并且如何根据被积函数和积分区域的特征选择坐标系。熟练掌握直角坐标系和极坐标系下重积分的计算方法。 ⒊掌握曲顶柱体体积的求法,会求由曲面围成的空间区域的体积。 1 二重积分的概念与性质 1.二重积分定义 为了更好地理解二重积分的定义,必须首先引入二重积分的两个“原型”,一个是几何的“原型”-曲顶柱体的体积如何计算,另一个是物理的“原型”—平面薄片的质量如何求。从这两个“原型”出发,对所抽象出来的二重积分的定义就易于理解了。 在二重积分的定义中,必须要特别注意其中的两个“任意”,一是将区域D 成n 个小区域12,,,n σσσ???的分法要任意,二是在每个 小区域i σ?上的点(,)i i i ξησ∈?的取法也要任意。有了这两个“任意”, 如果所对应的积分和当各小区域的直径中的最大值0λ→时总有同一个极限,才能称二元函数(,)f x y 在区域D 上的二重积分存在。 2.明确二重积分的几何意义。 (1) 若在D 上(,)f x y ≥0,则(,)d D f x y σ??表示以区域D 为底,以 (,)f x y 为曲顶的曲顶柱体的体积。特别地,当(,)f x y =1时,(,)d D f x y σ ??表示平面区域D 的面积。

二重积分的概念及性质

二重积分的概念及性质 前面我们已经知道了,定积分与曲边梯形的面积有关。下面我们通过曲顶柱体的体积来引出二重积分的概念,在此我们不作详述,请大家参考有关书籍。 二重积分的定义 设z=f(x,y)为有界闭区域(σ)上的有界函数: (1)把区域(σ)任意划分成n个子域(△σk)(k=1,2,3,…,n),其面积记作△σk(k=1,2,3,…,n); (2)在每一个子域(△σk)上任取一点,作乘积; (3)把所有这些乘积相加,即作出和数 (4)记子域的最大直径d.如果不论子域怎样划分以及怎样选取,上述和数当n→+∞且d→0时的极限存在,那末称此极限为函数f(x,y)在区域(σ)上的二重积分.记作: 即:= 其中x与y称为积分变量,函数f(x,y)称为被积函数,f(x,y)dσ称为被积表达式,(σ)称为积分区域. 关于二重积分的问题 对于二重积分的定义,我们并没有f(x,y)≥0的限.容易看出,当f(x,y)≥0时,二重积分在几何上就是以z=f(x,y)为曲顶,以(σ)为底且母线平行于z轴的曲顶柱体的体积。 上述就是二重积分的几何意义。

如果被积函数f(x,y)在积分区域(σ)上连续,那末二重积分必定存在。 二重积分的性质 (1).被积函数中的常数因子可以提到二重积分符号外面去. (2).有限个函数代数和的二重积分等于各函数二重积分的代数和. (3).如果把积分区域(σ)分成两个子域(σ1)与(σ2),即(σ)=(σ1)+(σ2),那末: (4).如果在(σ)上有f(x,y)≤g(x,y),那末: ≤ (5).设f(x,y)在闭域(σ)上连续,则在(σ)上至少存在一点(ξ,η),使 其中σ是区域(σ)的面积. 二重积分的计算法 直角坐标系中的计算方法 这里我们采取的方法是累次积分法。也就是先把x看成常量,对y进行积分,然后在对x进行积分,或者是先把y看成常量,对x进行积分,然后在对y进行积分。为此我们有积分公式,如下:

[2020理数]第三章 第一节 导数的概念及运算定积分

第三章 导数及其应用 第一节 导数的概念及运算、定积分 [考纲要求] 1.了解导数概念的实际背景. 2.通过函数图象直观理解导数的几何意义. 3.能根据导数定义求函数y =c (c 为常数),y =x ,y =1 x ,y =x 2,y =x 3,y =x 的导数. 4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数. 5.了解复合函数求导法则,能求简单复合函数(仅限于形如y =f (ax +b )的复合函数)的导数. 6.了解定积分的概念,了解微积分基本定理的含义. 突破点一 导数的运算 [基本知识] 1.导数的概念 称函数y =f (x )在x =x 0处的瞬时变化率li m Δx →0 Δy Δx =li m Δx →0 f (x 0+Δx )-f (x 0)Δx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=li m Δx →0 Δy Δx =li m Δx →0 f (x 0+Δx )-f (x 0)Δx .称函数f ′(x )=li m Δx →0 f (x +Δx )-f (x ) Δx 为f (x )的导函数. 2.基本初等函数的导数公式

f (x )=e x f ′(x )=e x f (x )=ln x f ′(x )=1 x 基本初等函数 导函数 f (x )=x α(α∈Q *) f ′(x )=αx α- 1 f (x )=cos x f ′(x )=-sin_x f (x )=a x (a >0,a ≠1) f ′(x )=a x ln_a f (x )=log a x (a >0,a ≠1) f ′(x )= 1x ln a 3.导数运算法则 (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)???? f x g x ′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 4.复合函数的导数 复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. [基本能力] 一、判断题(对的打“√”,错的打“×”) (1)f ′(x 0)与(f (x 0))′的计算结果相同.( ) (2)求f ′(x 0)时,可先求f (x 0)再求f ′(x 0).( ) (3)f ′(x 0)是导函数f ′(x )在x =x 0处的函数值.( ) 答案:(1)× (2)× (3)√ 二、填空题 1.函数y =x cos x -sin x 的导数为________. 答案:-x sin x 2.已知f (x )=13-8x +2x 2,f ′(x 0)=4,则x 0=________. 解析:∵f ′(x )=-8+4x , ∴f ′(x 0)=-8+4x 0=4,解得x 0=3. 答案:3 3.已知函数f (x )=f ′????π4cos x +sin x ,则f ????π4的值为________. 解析:∵f ′(x )=-f ′????π4sin x +cos x , ∴f ′????π4=-f ′????π4×22+22 ,

第一节二重积分的概念及性质教案

第九章重积分 第一节二重积分的概念及性质 重积分的概念 1 ?引例 引例1曲顶柱体的体积 设有一立体的底是xy面上的有界闭区域D,侧面是以D的边界曲线为准线、母线 平行于z轴的柱面,顶是有二元非负连续函数z f(x,y)所表示的曲面,如图9—1所示, 这个立体称为D上的曲顶柱体,试求该曲顶柱体的体积。 图9—1 图9—2 图9 —3 解对于平柱体的体积V高底面积,然而,曲顶柱体不是平顶柱体,那么具体作法如下 (1)分割 把区域D任意划分成n个小闭区域,,,,其中表示第i个小闭区域, 1 2 n i 也表示它的面积。在每个小闭区域内,以它的边界曲线为准线、母线平行于z轴的柱面,如图9—2所示。这些柱面就那原来的曲顶柱体分割成n个小曲顶柱体。 ⑵近似 在每一个小闭区域上任取一点(,),以f ( i , i)为高,为底的平顶柱体 i I / i 的体积f( i, i) i近似代替第i个小曲顶柱体的体积

V f ( i, i) (3) 求和这n 个小平顶柱体的体积之和即为曲顶柱体体积的近似值n V V f ( i, i) i i1 (4) 取极限 将区域D无限细分,且每个小闭区域趋向于或说缩成一点,这个近似值趋近于曲 顶柱体的体积。即 n V lim0 f ( i, i ) i i1 其中表示这n 个小闭区域直径中最大值的直径(有界闭区域的直径是指区 i 域中任意两点间的距离) 。 引例2 平面薄片的质量 设有一平面薄片占有 xy面上的有界闭区域D,它的密度为D上的连续函数 z (x, y) ,试求平面薄片的质量。 解对于均匀平面薄片的质量m 密度薄片面积,然而,平面薄片并非均匀,那么具体作法如下 (1)分割 将薄片(即区域D )任意划分成n个小薄片,其中表示第i个 1 2 n i 小小薄片,也表示它的面积,如图9—3 所示。 (2)近似 在每一个小薄片」上任取一点(「丿,以(i, J为其密度,当i很小时,认 为小薄片是均匀的,则(i, i) i近似代替第i个小薄片的质量。即 m ( i , i) i (3)求和 这n个小薄片的质量之和即为薄片的质量的近似值

二重积分的概念与性质教案

7.1二重积分的基本概念(教案) 主讲人:孙杰华 教学目的:理解二重积分的概念、性质 教学重难点:二重积分的概念、二重积分的几何意义. 教学方法:讲授为主 教学内容: 一、二重积分的概念 1.曲顶柱体的体积 设有一空间立体Ω,它的底是xoy 面上的有界区域D ,它的侧面是以D 的边界曲线为准线,而母线平行于z 轴的柱面,它的顶是曲面(.)z f x y =,称这种立体为曲顶柱体. 与求曲边梯形的面积的方法类似,我们可以这样来求曲顶柱体的体积V : (1)用任意一组曲线网将区域D 分成n 个小区域1σ?,2σ?, ,n σ?,以这些小区 域的边界曲线为准线,作母线平行于z 轴的柱面,这些柱面将原来的曲顶柱体Ω分划成n 个小曲顶柱体1?Ω,2?Ω, ,n ?Ω. (假设i σ?所对应的小曲顶柱体为i ?Ω,这里i σ?既代表第i 个小区域,又表示它的面积值, i ?Ω既代表第i 个小曲顶柱体,又代表它的体积值.),从而1 n i i V ==?Ω∑. 图7.1 (2)由于(,)f x y 连续,对于同一个小区域来说,函数值的变化不大.因此,可以将小曲顶柱体近似地看作小平顶柱体,于是

(,),((,))i i i i i i i f ξησξησ?Ω≈??∈?. (3)整个曲顶柱体的体积近似值为 1 (,)n i i i i V f ξησ=≈?∑. (4)为得到的精确值,只需让这个小区域越来越小,即让每个小区域向某点收缩.为此,我们引入区域直径的概念: 一个闭区域的直径是指区域上任意两点距离的最大者. 所谓让区域向一点收缩性地变小,意指让区域的直径趋向于零. 设n 个小区域直径中的最大者为λ,则 1 lim (,),(,)n i i i i i i i V f λξησξησ→==??∈?∑. 2.二重积分的定义 设(),f x y 是闭区域D 上的有界函数, 将区域D 分成个小区域 12,,,,n σσσ??? 其中,i σ?既表示第i 个小区域,也表示它的面积, i λ表示它的直径. 1max{}(,)i i i i i n λλξησ≤≤=?∈?, 作乘积(,)(1,2 ,)i i i f i n ξησ?=, 作和式 1 (,)n i i i i f ξησ =?∑, 若极限()0 1 lim ,n i i i i f λξησ →=?∑存在,则称此极限值为函数(),f x y 在区域D 上的二重积分,记 作 (),D f x y d σ??.即 (),D f x y d σ=??()0 1 lim ,n i i i i f λξησ →=?∑. 其中:(),f x y 称之为被积函数,(),f x y d σ称之为被积表达式,d σ称之为面积元素, ,x y 称之为积分变量,D 称之为积分区域. V n

2020版高考理科数学(人教版)一轮复习讲义:第三章+第一节+导数的概念和运算、定积分和答案

第三章导数及其应用 全国卷5年考情图解高考命题规律把握 1.本章内容在高考中一般是“一大一小”. 2.在选择题或填空题中考查导数的几何意义,有时与 函数的性质相结合出现在压轴小题中. 3.解答题一般都是两问的题目,第一问考查求曲线的 切线方程,求函数的单调区间,由函数的极值点或 已知曲线的切线方程求参数,属于基础问题.第二 问利用导数证明不等式,已知单调区间或极值求参 数的取值范围,函数的零点等问题.2018年全国卷Ⅱ 和全国卷Ⅲ均以不等式的证明为载体,考查了导数 在函数单调性中的应用,总体难度偏大. 第一节导数的概念及运算、定积分

1.导数的概念 (1)函数y =f (x )在x =x 0处的导数:函数y =f (x )在x =x 0处的瞬时变化率li m Δx →0 Δy Δx =li m Δx →0 f (x 0+Δx )-f (x 0)Δx ? 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′x =x 0,即f ′(x 0) =li m Δx →0 Δy Δx =li m Δx →0 f (x 0+Δx )-f (x 0)Δx . 函数y =f (x )的导数f ′(x )反映了函数f (x ) 的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”. (2)导数的几何意义:函数f (x )在x =x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)?处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).

二重积分的概念及计算法(一)

习题9-1,9-2 二重积分的概念及计算法(一) 1.填空题: (1)由二重积分的几何意义得 ∫∫≤+=??122221y x d y x σ . (2)根据二重积分的性质,比较下列积分的大小: ① ,其中是三角形区域,三顶点为(1,0),(1,1),(2,0),则 ∫∫+=D d y x I σ)ln(1∫∫ +=D d y x I σ22)][ln(D 1I 2I . ②,,其中是由∫∫++=D d y x I σ21)1(∫∫ ++=D d y x I σ32)1(D x 轴与直线围成的区域,则 1,0?==+x y x 1I 2I . (3)化二重积分为两种不同次序下的二次积分,其中是直线D 2,==x x y 及双曲线)0(1f x x y =所围成的闭区域,= ∫∫d y x f σ),(D = (4)①交换积分次序: ∫∫??=22221),(x x x dy y x f dx ②交换积分次序: ∫∫∫∫?=+y y dx y x f dy dx y x f dy 20313010),(),( 2.利用二重积分的性质,估计积分的值: ∫∫++=D d y x I σ)94(22,其中是圆形闭区域:. D 422≤+y x 3.计算下列二重积分: (1)∫∫+= D d x x y I σ2)1(cos ,其中是顶点分别为(0,0),(1,0),(1,2)和(0,1)的梯形闭区域. D (2),其中是由∫∫+=D y x d e I σD 1≤+y x 所确定的闭区域. 4.计算二次积分∫∫101dx e dy y x y . 5.交换积分次序,证明: ∫∫∫???=a y a x a m x a m dx x f e x a dx x f e dy 000)()()()()(. 6.设平面薄片所占的闭区域是由直线D x y y x ==+,2和x 轴所围成,它的面密度

第一节 二重积分的概念与性质

第一节二重积分的概念与性质 学习指导 1.教学目的:使读者理解二重积分的概念与性质。 2.基本练习:熟悉二重积分的几何、物理背景。熟悉二重积分的性质。 3.应注意的事项: 二重积分是二元函数乘积和式的极限,是定积分的推广,因此从引例到研究方法,从定义到性质都是类似的,读者要善于比较,触类旁通,温故而知新。 第一节二重积分的概念与性质 一、二重积分的概念 1. 曲顶柱体的体积 (1)曲顶柱体 (2)曲顶柱体的体积 现在我们来讨论如何定义并计算上述曲顶柱体的体积V。 平顶柱体的体积 2. 平面薄片的质量 (1) 问题的提出 (2) 均匀薄片的质量

(3) 非均匀薄片质量的计算方法 (4) 二重积分的定义 上面两个问题的实际意义虽然不同,但所求量都归结为同一形式的和的极限。在物理、力学、几何和工程技术中,有许多物理量或几何量都可以归结为这一形式的和的极限。因此我们要一般的研究这种和的极限,并抽象出下述二重积分的定义。 定义设是有界闭区域上的有界函数.将闭区域任意分成个小闭区域 。 其中 表示第个小闭区域,也表示它的面积。再每个上任取一点,作乘积 ,并作和。如果当个小闭区域的直径中最大值 趋于零时,这和的极限总存在。则称此极限为函数在闭区域上的二重积分,记 作,即 。(1) 叫做被积函数,叫做被积表达式,叫做面积元素,与叫 其中 积分变量,叫做积分区域,叫做积分和。 (5) 直角坐标系中的面积元素 在二重积分的定义中对闭区域的划分是任意的,如果在直角坐标系中用平行于坐标轴的 直线网来划分,那么除了包含边界点的一些小闭区域外,其余的小闭区域都是矩形闭区域。 设矩形闭区域的边长为和,则。因此在直角坐标系中,有 时也把面积元素记作。而把二重积分记作 。 其中叫做直角坐标系中的面积元素。

定积分的概念教学反思

渭南市吝店中学曹茹军 本节课是高二新授课,是选修2-2第四章第一节的内容:《定积分的概念》课程内容安排为一课时。 此内容要求学生在充分认识导数的基础上,通过运用积分手段解决曲边梯形的面积问题,从而借助于几何直观体会定积分的基本思想,了解定积分的概念,能用定积分法求简单的定积分.理解掌握定积分的几何意义和性质;认识到数学知识的实用价值。 新课标要求我们在教学过程中要着重培养学生的探究、发现、创新等方面的能力。学习的全过程需要学生的参与,学生是学习的主体和中心。围绕这个宗旨,我在课堂内容的编排上作了一定的思考。在内容编排上,我基本遵循由易到难的过程,从最基本的,学生所熟知的前课知识开始引入,由浅入深的引导学生加以足够地探究,使学生的发现变得自然而水到渠成。同时对于学生可能的探究结果留有足够的空间,充分肯定学生的创新发现,对于学生考虑不到的地方加以补充、引导、完善,并留出一定课后思考得余地。在问题设置上,尽量让学生能通过自己的努力探索独立完成,通过独立思考展示与合作探究展示相结合,让其承担起引导思考与解释的重任。 我想,一堂好的示范课,不应该只是一次简单的表演与展示,如果在上课之前反复编排到一词一句,会让学生疲惫,听课老师觉得虚假而没有了讨论与交流的兴致,这其实也是对听课老师的一种不尊重的表现。因此我按照正常的教学进度,以便学生在课堂上有充分的暴露与发现的机会,当然这样一来对于老师的临场应变要求会更高,我想这也应该是一个合格教师的基本素养吧。 当然这节课还有一些不足之处,由于没有在课前提前向学生透漏问题,想要在课堂上反应学生的真实水平,因此学生回答问题时不够全面,导致学生回答的次数较多且有些同学比较拖沓,出现了上课前松后紧的遗憾。我觉得这样的课堂模式导学案的设置是很重要的,在今后的教学中我会不断的完善自己的教学技能,提高自己的业务水平。 最后为了上好这堂课,背后凝聚了我们全组老师集体的智慧与力量,大家在一起共同研究与探讨,出了许多好的主意,在此一并表示感谢。

归纳二重积分的计算方法

归纳二重积分的计算方法 摘 要 :本文总结出了求二重积分的几种方法,比如用定义、公式、定理、性质求极限. 关键词 :函数极限;计算方法;洛必达法则; 四则运算 前言 二重积分的概念和计算是多元函数微积分学的重要部分,在几何\物理\力学等方面有着重要的应用.重积分是由一元函数积分推广而来的,但与一元函数相比,计算重积分的难度除了与被积函数有关外,还与积分区域的特点有关,计算重积分的主要思想方法是化重积分为累次积分.求二重积分的方法很多且非常灵活,本文归纳了二重积分计算的一些常见方法和技巧. 1. 预备知识 1.1二重积分的定义]1[ 设(),f x y 是定义在可求面积的有界区域D 上的函数. J 是一个确定的数,若对任给的正数 ε,总存在某个正数δ,使对于D 的任意分割T ,当它的细度T δ<时,属于T 的所有积分和 都有 ()1 ,n i i i i f J ξησ ε=?-<∑, 则称(),f x y 在D 上可积,数J 称为函数(),f x y 在D 上的二重积分,记作 (),D J f x y d σ=??, 其中(),f x y 称为二重积分的被积函数, ,x y 称为积分变量, D 称为积分区域. 1.2二重积分的若干性质 1.21若(),f x y 在区域D 上可积, k 为常数,则(),kf x y 在D 上也可积,且 (),D kf x y d σ??(),D k f x y d σ=??.

1.22 若(),f x y ,(),g x y 在D 上都可积,则()(),,f x y g x y ±在D 上也可积,且 ()()[,,]D f x y g x y d σ±??()(),,D D f x y d g x y d σσ=±????. 1.23 若(),f x y 在1D 和2D 上都可积,且1D 与2D 无公共内点,则(),f x y 在12D D U 上也可积,且 ()12 ,D D f x y d σ??U ()()1 2 ,,D D f x y d f x y d σσ=±???? 1.3在矩形区域上二重积分的计算定理 设(),f x y 在矩形区域D [][],,a b c d =?上可积,且对每个[],x a b ∈,积分(),d c f x y dy ?存 在,则累次积分(),b d a c dx f x y dy ? ?也存在,且 (),D f x y d σ?? (),b d a c dx f x y dy =??. 同理若对每个[],y c d ∈,积分(),b a f x y dx ?存在,在上述条件上可得 (),D f x y d σ?? (),d b c a dy f x y dx =?? 2.求的二重积分的几类理论依据 二重积分类似定积分,可看成一个函数在有界区域内的积分,它计算的主要思路是把重积分化为我们学过的累次积分的计算,在这思想下如何化为更容易求的累次积分成为问题关键,下文介绍了把区域化为简单的X -型\Y -型区域及把复杂的函数通过变量变换化为简单函数的几种计算技巧,另外还列举几类特殊二重积分的简单求法. 2.1在直角坐标系下,对一般区域二重积分的计算 X -型区域: ()()(){}1 2 ,,D x y y x y y x a x b =≤≤≤≤ Y -型区域: ()()(){}1 2 ,,D x y x y x x y c y d = ≤≤≤≤ 定理:若(),f x y 在X -区域D 上连续,其中()1y x ,()2y x 在[],a b 上连续,则 (),D f x y d σ??()() () 21,b y x a y x dx f x y dy =?? 即二重积分可化为先对y ,后对x 的累次积分. 同理在上述条件下,若区域为Y -型,有

相关主题
文本预览
相关文档 最新文档