当前位置:文档之家› 直流电机调速系统实验2009(打印)

直流电机调速系统实验2009(打印)

直流电机调速系统实验2009(打印)
直流电机调速系统实验2009(打印)

直流电机调速系统实验

实验一晶闸管直流调速系统参数和环节特性的测定实验

一、实验目的

(1)熟悉晶闸管直流调速系统的组成及其基本结构。

(2)掌握晶闸管直流调速系统参数及反馈环节测定方法。

二、实验所需挂件及附件

晶闸管直流调速系统由整流变压器、晶闸管整流调速装置、平波电抗器、电动机-发电机组等组成。

在本实验中,整流装置的主电路为三相桥式电路,控制电路可直接由给定电压U g作为触发器的移相控制电压U ct,改变U g的大小即可改变控制角α,从而获得可调的直流电压,以满足实验要求。实验系统的组成原理图如图1-1所示。

四、实验内容

(1)测定晶闸管直流调速系统主电路总电阻值R。

(2)测定晶闸管直流调速系统主电路电感值L。

(3)测定直流电动机-直流发电机-测速发电机组的飞轮惯量GD2。

(4)测定晶闸管直流调速系统主电路电磁时间常数T d。

(5)测定直流电动机电势常数C e和转矩常数C M。

(6)测定晶闸管直流调速系统机电时间常数T M。

图1-1 实验系统原理图

六、实验方法

为研究晶闸管-电动机系统,须首先了解电枢回路的总电阻R、总电感L以及系统的电磁时间常数T d与机电时间常数T M,这些参数均需通过实验手段来测定,具体方法如下:

(1)电枢回路总电阻R的测定

电枢回路的总电阻R包括电机的电枢电阻R a、平波电抗器的直流电阻R L及整流装置的内阻R n,即R = R a十R L十R n (1-1)

由于阻值较小,不宜用欧姆表或电桥测量,因是小电流检测,接触电阻影响很大,故常用直流伏安法。为测出晶闸管整流装置的电源内阻须测量整流装置的理想空载电压Ud0,而晶闸管整流电源是无法测量的,为此应用伏安比较法,实验线路如图1-2所示。

将变阻器R1、R2接入被测系统的主电路,测试时电动机不加励磁,并使电机堵转。合上S1、S2,调节给定使输出直流电压U d在30%U ed~70%U ed范围内,然后调整R2使电枢电流在80%I ed~90%I ed范围内,读取电流表A和电压表V2的数值为I1、U1,则此时整流装置的理想空载电压为

U do=I1R+U1(1-2)

调节R1使之与R2的电阻值相近,拉开开关S2,在U d的条件下读取电流表、电压表的数值I2、U2,则U do=I2R十U2 (1-3)

求解(1-2)、(1-3)两式,可得电枢回路总电阻:

R=(U2-U1)/(I1-I2) (1-4)

如把电机电枢两端短接,重复上述实验,可得

R L十R n=(U2'-U1')/(I1'-I2') (1-5)

则电机的电枢电阻为

R a=R-(R L十R n)。 (1-6)

同样,短接电抗器两端,也可测得电抗器直流电阻R L。

图1-2伏安比较法实验线路图

(2)电枢回路电感L的测定

电枢回路总电感包括电机的电枢电感L a、平波电抗器电感L d和整流变压器漏感L B,由于L B数值很小,可以忽略,故电枢回路的等效总电感为

L=L a+L d (1-7)

电感的数值可用交流伏安法测定。实验时应给电动机加额定励磁,并使电机堵转,实验线路如图1-3所示。

图1-3 测量电枢回路电感的实验线路图

I

U Z L L /=)2/(22f Ra Za La π-=)

2/(22f R Z Ld L

L

π-=实验时交流电压由DJK01电源输出,接DJK10的高压端,从低压端输出接电机的电枢,用交流电压表和电流表分别测出电枢两端和电抗器上的电压值U a 和U L 及电流I,从而可得到交流阻抗Z a 和Z L ,计算出电感值L a 和L d ,计算公式如下:

(1-8)

(1-9)

(1-10) (1-11) (3)直流电动机-发电机-测速发电机组的飞轮惯量GD 2

的测定

电力拖动系统的运动方程式为

T-T z =(GD 2

/375)dn/dt (1-12)

式中,T 为电动机的电磁转矩,单位为N ·m ;T z 为负载转矩,空载时即为空载转矩T k ,单位为N ·m ,n 为电机转速,单位为rpm 。

电机空载自由停车时,T=0,T z =T k ,则运动方程式为:

(1-13) 从而有

(1-14) 式中GD 2的单位为N ·m 2

T k 可由空载功率P K (单位为W)求出:

(1-15) (1-16) dn/dt 可以从自由停车时所得的曲线n =f(t)求得,其实验线路如图1-4

图1-4 测定GD 2

时的实验线路图

电动机加额定励磁,将电机空载启动至稳定转速后,测量电枢电压U a 和电流I a0,然后断开给定,用数字存储示波器记录n=f(t)曲线,即可求取某一转速时的T k 和dn/dt 。由于空载转矩不是常数,可以以

转速n 为基准选择若干个点,测出相应的T k 和dn/dt ,以求得GD 2

的平均值。由于本实验装置的电机容量比

较小,应用此法测GD 2

时会有一定的误差。

(4)主电路电磁时间常数T d 的测定

采用电流波形法测定电枢回路电磁时间常数T d ,电枢回路突加给定电压时,电流i d 按指数规律上升: 其电流变化曲线如图5-5所示。当t=T d 时,有

实验线路如图1-6所示。电机不加励磁,调节给定使电机电枢电流在50%I ed ~90%I ed 范围内。然后保持U g 不变,将给定的S 2拨到接地位置,然后拨动给定S 2从接地到正电压跃阶信号,用数字存储示波器记录i d =f (t )的波形,在波形图上测量出当电流上升至稳定值的63.2%时的时间,即为电枢回路的电磁时间常数T d 。

(5)电动机电势常数C e 和转矩常数C M 的测定

将电动机加额定励磁,使其空载运行,改变电枢电压U d ,测得相应的n 即可由下式算出C e :

/I

U Z a a =dt dn GD T K /)375/(2-=dt dn T GD K //3752=n

P T K K a /55.9R I UaI P 2

a0a0K =-=)

e (1I i d t/T d d --=d

d d I

e I i 632.0)1(1=-=-

式中,C e 的单位为V/(rpm)。

转矩常数(额定磁通)C M 的单位为N ·m/A 。C M 可由C e 求出: C M = 9.55 C e

图1-5 电流上升曲线 图1-6 测定T d 的实验线路图

(6)系统机电时间常数

T M

的测定

系统的机电时间常数可由下式计算

)

C R)/(375C (G

D T 2

M e 2M Φ= 由于T M >>T d ,也可以近似地把系统看成是一阶惯性环节,即

S )T /(1KU n M d +=

当电枢突加给定电压时,转速n 将按指数规律上升,当n 到达稳态值的63.2%时,所经过的时间即为拖动系统的机电时间常数。

测试时电枢回路中附加电阻应全部切除,突然给电枢加电压,用数字存储示波器记录过渡过程曲线n=f(t),即可由此确定机电时间常数。

七、实验报告

(1)作出实验所得的各种曲线,计算有关参数。

(2)由K s =f(U g )特性,分析晶闸管装置的非线性现象。 八、注意事项

(1)由于实验时装置处于开环状态,电流和电压可能有波动,可取平均读数。 (2)由于DJK04上的过流保护整定值的限制,在完成机电时间常数测定的实验中,其电枢电压不能加得太高。

(3)当电机堵转时,会出现大电流,因此测量的时间要短,以防电机过热。

(4)在测试U d =f(U g )时,DJK02上的偏移电压要先调到α=120°,具体方法见单闭环直流调速。

)/()(1212n n U U K C d d e e --=Φ=

实验二晶闸管直流调速系统主要单元的调试

一、实验目的

(1)熟悉直流调整系统主要单元部件的工作原理及调速系统对其提出的要求。

(2)掌握直流调速系统主要单元部件的调试步骤和方法。

二、实验所需挂件及附件

三、实验内容

(1)调节器I(速度调节器)的调试。

(2)调节器II(电流调节器)的调试。

(3)反号器的调试。

(4)“零电平检测”及“转矩极性鉴别”的调试(选做)。

(5)逻辑控制器的调试(选做)。

四、实验方法

将DJK04挂件上的十芯电源线、DJK04-1和DJK06挂件上的蓝色三芯电源线与控制屏相应电源插座连接,打开挂件上的电源开关,就可以开始实验。

(1)调节器I(一般作为速度调节器使用)的调试

①调节器调零

将DJK04中“调节器I”所有输入端接地,再将DJK08中的可调电阻120K接到“调节器I”的“4”、“5”两端,用导线将“5”、“6”端短接,使“调节器I”成为P (比例)调节器。用万用表的毫伏档测量“调节器I”的“7”端的输出,调节面板上的调零电位器RP3,使之输出电压尽可能接近于零。

②调整输出正、负限幅值

将“5”、“6”短接线去掉,将DJK08中的可调电容0.47uF接入“5”、“6”两端,使调节器成为PI (比例积分)调节器,将“调节器I”的所有输入端上的接地线去掉,将DJK04的给定输出端接到“调节器I”的“3”端,当加+5V的正给定电压时,调整负限幅电位器RP2,观察调节器负电压输出的变化规律;当调节器输入端加-5V的负给定电压时,调整正限幅电位器RP1,观察调节器正电压输出的变化规律。

③测定输入输出特性

再将反馈网络中的电容短接(将“5”、“6”端短接),使“调节器I”为P(比例)调节器,同时将正负限幅电位器RP1和RP2均顺时针旋到底,在调节器的输入端分别逐渐加入正负电压,测出相应的输出电压变化,直至输出限幅值,并画出对应的曲线。

④观察PI特性

拆除“5”、“6”短接线,给调节器输入端突加给定电压,用慢扫描示波器观察输出电压的变化规律。改变调节器的外接电阻和电容值(改变放大倍数和积分时间),观察输出电压的变化。

(2)调节器II(一般作为电流调节器使用)的调试

①调节器的调零

将DJK04中“调节器II”所有输入端接地,再将DJK08中的可调电阻13K接“调节器II”的“8”、“9”两端,用导线将“9”、“10”短接,使“调节器II”成为P(比例)调节器。用万用表的毫伏档测量调节器II的“11”端的输出,调节面板上的调零电位器RP3,使之输出电压尽可能接近于零。

②调整输出正、负限幅值

把“9”、“10”短接线去掉,将DJK08中的可调电容0.47uF接入“9”、“10”两端,使调节器成为PI(比例积分)调节器,将“调节器II”的所有输入端上的接地线去掉,将DJK04的给定输出端接到调节器II的“4”端,当加+5V的正给定电压时,调整负限幅电位器RP2,观察调节器负电压输出的变化规律;当调节器输入端加-5V的负给定电压时,调整正限幅电位器RP1,观察调节器正电压输出的变化规律。

③测定输入输出特性

再将反馈网络中的电容短接(将“9”、“10”端短接),使“调节器II”为P调节器,同时将正负限幅电位器RP1和RP2均顺时针旋到底,在调节器的输入端分别逐渐加入正负电压,测出相应的输出电压变化,直至输出限幅值,并画出对应的曲线。

④观察PI特性

拆除“9”、“10”短接线,突加给定电压,用慢扫描示波器观察输出电压的变化规律。改变调节器的外接电阻和电容值(改变放大倍数和积分时间),观察输出电压的变化。

(3)反号器的调试

测定输入输出的比例,将反号器输入端“1”接“给定”的输出,调节“给定”输出为5V电压,用万用表测量“2”端输出是否等于-5V电压,如果两者不等,则通过调节RP1使输出等于负的输入。再调节“给定”电压使输出为-5V电压,观测反号器输出是否为5V。

(4)“转矩极性鉴别”及“零电平检测”的调试(选做)

①测定“转矩极性鉴别”的环宽,一般环宽为0.4~0.6伏,记录高电平的电压值,调节单元中的RP1电位器使特性满足其要求,使得“转矩极性鉴别”的特性范围从-0.25V到0.25V。

转矩极性鉴别具体调试方法:

A、调节给定Ug,使“转矩极性鉴别”的“1”脚得到约0.25V电压,调节电位器RP1,恰好使其“2”端输出从“高电平”跃变为“低电平”。

B、调节负给定从0V起调,当转矩极性鉴别器的“2”端从“低电平”跃变为“高电平”时,检测转矩极性鉴别器的“1”端应为-0.25V左右,否则应适当调整电位器RP1,使“2”端输出由“高电平”变“低电平”。

C、重复上述步骤,观测正负给定时跳变点是否基本对称,如有偏差则适当调节,使得正负的跳变电压的绝对值基本相等。

②测定“零电平检测”的环宽,一般环宽也为0.4~0.6伏,调节RP1电位器,使回环沿纵坐标右侧偏离0.2V,即特性范围从0.2V到0.6V。

“零电平检测”具体调试方法:

A、调节给定Ug,使“零电平检测”的“1”端输入约0.6V电压,调节电位器RP1,恰好使“2”端输出从“高电平”跃变为“低电平”。

B、慢慢减小给定,当“零电平检测”的“2”端输出从“低电平”跃变为“高电平”时,检测“零电平检测”的“1”端输入应为0.2V左右,否则应调整电位器。

③根据测得数据,画出两个电平检测器的回环特性。

五、实验报告

(1)画各控制单元的调试连线图。

(2)简述各控制单元的调试要点。

实验三单闭环不可逆直流调速系统实验

一、实验目的

(1)了解单闭环直流调速系统的原理、组成及各主要单元部件的原理。

(2)掌握晶闸管直流调速系统的一般调试过程。

(3)认识闭环反馈控制系统的基本特性。

二、实验所需挂件及附件

三、实验线路及原理

为了提高直流调速系统的动静态性能指标,通常采用闭环控制系统(包括单闭环系统和多闭环系统)。对调速指标要求不高的场合,采用单闭环系统,而对调速指标较高的则采用多闭环系统。按反馈的方式不同可分为转速反馈,电流反馈,电压反馈等。在单闭环系统中,转速单闭环使用较多。

在本装置中,转速单闭环实验是将反映转速变化的电压信号作为反馈信号,经“转速变换”后接到“速度调节器”的输入端,与“给定”的电压相比较经放大后,得到移相控制电压U ct,用作控制整流桥的“触发电路”,触发脉冲经功放后加到晶闸管的门极和阴极之间,以改变“三相全控整流”的输出电压,这就构成了速度负反馈闭环系统。电机的转速随给定电压变化,电机最高转速由速度调节器的输出限幅所决定,速度调节器采用P(比例)调节对阶跃输入有稳态误差,要想消除上述误差,则需将调节器换成PI(比例积分)调节。这时当“给定”恒定时,闭环系统对速度变化起到了抑制作用,当电机负载或电源电压波动时,电机的转速能稳定在一定的范围内变化。

在电流单闭环中,将反映电流变化的电流互感器输出电压信号作为反馈信号加到“电流调节器”的输入端,与“给定”的电压相比较,经放大后,得到移相控制电压U ct,控制整流桥的“触发电路”,改变“三相全控整流”的电压输出,从而构成了电流负反馈闭环系统。电机的最高转速也由电流调节器的输出限幅所决定。同样,电流调节器若采用P(比例)调节,对阶跃输入有稳态误差,要消除该误差将调节器换成PI(比例积分)调节。当“给定”恒定时,闭环系统对电枢电流变化起到了抑制作用,当电机负载或电源电压波动时,电机的电枢电流能稳定在一定的范围内变化。

图3-7 转速单闭环系统原理图

图3-8 电流单闭环系统原理图

在电压单闭环中,将反映电压变化的电压隔离器输出电压信号作为反馈信号加到“电压调节器”的输入端,与“给定”的电压相比较,经放大后,得到移相控制电压U ct,控制整流桥的“触发电路”,改变“三相全控整流”的电压输出,从而构成了电压负反馈闭环系统。电机的最高转速也由电压调节器的输出限幅所决定。同样,调节器若采用P(比例)调节,对阶跃输入有稳态误差,要消除该误差将调节器换成PI(比例积分)调节。当“给定”恒定时,闭环系统对电枢电压变化起到了抑制作用,当电机负载或电源电压波动时,电机的电枢电压能稳定在一定的范围内变化。

图3-9 电压单闭环系统原理图

在本实验中DJK04上的“调节器I”做为“速度调节器”和“电压调节器”使用,“调节器II”做为“电流调节器”使用。

四、实验内容

(1)DJK04上的基本单元的调试。

(2)U ct不变时直流电动机开环特性的测定。

(3)U d不变时直流电动机开环特性的测定。

(4)转速单闭环直流调速系统。

(5)电流单闭环直流调速系统。

(6)电压单闭环直流调速系统。

五、预习要求

(1)复习自动控制系统(直流调速系统)教材中有关晶闸管直流调速系统、闭环反馈控制系统的内容。

(2)掌握调节器的基本工作原理。

(3)根据实验原理图,能画出实验系统的详细接线图,并理解各控制单元在调速系统中的作用。

(4)实验时,如何能使电动机的负载从空载(接近空载)连续地调至额定负载?

六、实验方法

(1)DJK02和DJK02-1上的“触发电路”调试

①打开DJK01总电源开关,操作“电源控制屏”上的“三相电网电压指示”开关,观察输入的三相电网电压是否平衡。

②将DJK01“电源控制屏”上“调速电源选择开关”拨至“直流调速”侧。

③用10芯的扁平电缆,将DJK02的“三相同步信号输出”端和DJK02-1“三相同步信号输入”端相连,打开DJK02-1电源开关,拨动“触发脉冲指示”钮子开关,使“窄”的发光管亮。

④观察A、B、C三相的锯齿波,并调节A、B、C三相锯齿波斜率调节电位器(在各观测孔左侧),使三相锯齿波斜率尽可能一致。

⑤将DJK04上的“给定”输出U g直接与DJK02-1上的移相控制电压U ct相接,将给定开关S2拨到接地位置(即U ct=0),调节DJK02-1上的偏移电压电位器,用双踪示波器观察A相同步电压信号和“双脉冲观察孔” VT1的输出波形,使α=120°(注意此处的α表示三相晶闸管电路中的移相角,它的0°是从自然换流点开始计算,而单相晶闸管电路的0°移相角表示从同步信号过零点开始计算,两者存在相位差,前者比后者滞后30°)。

⑥适当增加给定U g的正电压输出,观测DJK02-1上“脉冲观察孔”的波形,此时应观测到单窄脉冲和双窄脉冲。

⑦用8芯的扁平电缆,将DJK02-1面板上“触发脉冲输出”和“触发脉冲输入”相连,使得触发脉冲加到正反桥功放的输入端。

⑧将DJK02-1面板上的U lf端接地,用20芯的扁平电缆,将DJK02-1的“正桥触发脉冲输出”端和DJK02“正桥触发脉冲输入”端相连,并将DJK02“正桥触发脉冲”的六个开关拨至“通”,观察正桥VT1~VT6晶闸管门极和阴极之间的触发脉冲是否正常。

(2)U ct不变时的直流电机开环外特性的测定

①按图1-1的接线图接线,DJK02-1上的移相控制电压U ct由DJK04上的“给定”输出U g直接接入,直流发电机接负载电阻R,L d用DJK02上200mH,将给定的输出调到零。

②先闭合励磁电源开关,按下DJK01“电源控制屏”启动按钮,使主电路输出三相交流电源,然后从零开始逐渐增加“给定”电压U g,使电动机慢慢启动并使转速 n 达到1200rpm。

③改变负载电阻R的阻值,使电动机的电枢电流从空载直至I ed。即可测出在U ct不变时的直流电动机开环外特性n = f(I d),测量并记录数据于下表:

(3)U d不变时直流电机开环外特性的测定

①控制电压U ct由DJK04的“给定”U g直接接入,直流发电机接负载电阻R,L d用DJK02上200mH,将给定的输出调到零。

②按下DJK01“电源控制屏”启动按钮,然后从零开始逐渐增加给定电压U g,使电动机启动并达到1200rpm。

③改变负载电阻R,使电动机的电枢电流从空载直至I ed。用电压表监视三相全控整流输出的直流电压U d,在实验中始终保持U d不变(通过不断的调节DJK04上“给定”电压U g来实现),测出在U d不变时直流电动机的开环外特性n =f(I d),并记录于下表中:

(4)基本单元部件调试

①移相控制电压U ct调节范围的确定

直接将DJK04“给定”电压U g接入DJK02-1移相控制电压U ct的输入端,“三相全控整流”输出接电阻负载R,用示波器观察U d的波形。当给定电压U g由零调大时,U d将随给定电压的增大而增大,当U g超过某一数值时,此时U d接近为输出最高电压值U d',一般可确定“三相全控整流”输出允许范围的最大值为U dmax=0.9U d',调节U g使得“三相全控整流”输出等于U dmax,此时将对应的U g'的电压值记录下来,U ctmax= U g',即U g的允许调节范围为0~U ctmax。如果我们把输出限幅定为U ctmax的话,则“三相全控整流”输出范围就被限定,不会工作到极限值状态,保证六个晶闸管可靠工作。记录U g'于下表中:

将给定退到零,再按“停止”按钮,结束步骤。

②调节器的调整

A、调节器的调零

将DJK04中“调节器I”所有输入端接地,再将DJK08中的可调电阻40K接到“调节器I”的“4”、“5”两端,用导线将“5”、“6”短接,使“调节器I”成为P (比例)调节器。用万用表的毫伏档测量“调节器I”的“7”端的输出,调节面板上的调零电位器RP3,使之输出电压尽可能接近于零。

将DJK04中“调节器II”所有输入端接地,再将DJK08中的可调电阻13K接到“调节器II”的“8”、“9”两端,用导线将“9”、“10”短接,使“调节器II”成为P(比例)调节器。用万用表的毫伏档测量调节器II的“11”端的输出,调节面板上的调零电位器RP3,使之输出电压尽可能接近于零。

B、正负限幅值的调整

把“调节器I”的“5”、“6”短接线去掉,将DJK08中的可调电容0.47uF接入“5”、“6”两端,使调节器I成为PI (比例积分)调节器,将“调节器I”的所有输入端的接地线去掉,将DJK04的给定输出端接到调节器I的“3”端。当加+5V的正给定电压时,调整负限幅电位器RP2,使之输出电压尽可能接近于零;当调节器输入端加-5V的负给定电压时,调整正限幅电位器RP1,使调节器I的输出正限幅为U ctmax。

把“调节器II”的“9”、“10”短接线去掉,将DJK08中的可调电容0.47uF接入“9”、“10”两端,使调节器成为PI(比例积分)调节器,将“调节器II”所有输入端的接地线去掉,将DJK04的给定输出端接到调节器II的“4”端,当加+5V的正给定电压时,调整负限幅电位器RP2,使之输出电压尽可能接近于零。当调节器输入端加-5V的负给定电压时,调整正限幅电位器RP1,使调节器II的输出正限幅为U ctmax。

C、电流反馈系数的整定

直接将“给定”电压U g接入DJK02-1移相控制电压U ct的输入端,整流桥输出接电阻负载R,负载电阻放在最大值,输出给定调到零。

按下启动按钮,从零增加给定,使输出电压升高,当U d=220V时,减小负载的阻值,调节“电流反馈与过流保护”上的电流反馈电位器RP1,使得负载电流I d=l.3A时,“2”端I f的的电流反馈电压U fi=6V,这时的电流反馈系数β= U fi/I d= 4.615V/A。

D、转速反馈系数的整定

直接将“给定”电压U g接DJK02-1上的移相控制电压U ct的输入端,“三相全控整流”电路接直流电动机负载,L d用DJK02上的200mH,输出给定调到零。

按下启动按钮,接通励磁电源,从零逐渐增加给定,使电机提速到n =150Orpm时,调节“转速变换”上转速反馈电位器RP1,使得该转速时反馈电压U fn=-6V,这时的转速反馈系数α=U fn/n =0.004V/(rpm)。

E、电压反馈系数的整定

直接将控制屏上的励磁电压接到电压隔离器的“1、2”端,用直流电压表测量电压隔离器的输入电压U d,根据电压反馈系数γ=6V/220V=0.0273,调节电位器RP1使电压隔离器的输出电压恰好为U fn= U d γ。

(5)转速单闭环直流调速系统

①按图5-7接线,在本实验中,DJK04的“给定”电压U g为负给定,转速反馈为正电压,将“调节器I”接成P(比例)调节器或PI(比例积分)调节器。直流发电机接负载电阻R,L d用DJK02上200mH,给定输出调到零。

②直流发电机先轻载,从零开始逐渐调大“给定”电压U g,使电动机的转速接近n=l200rpm。

③由小到大调节直流发电机负载R,测出电动机的电枢电流I d,和电机的转速n,直至I d=I ed,即可测出系统静态特性曲线n =f(I d)。

(6)电流单闭环直流调速系统

①按图5-8接线,在本实验中,给定U g为负给定,电流反馈为正电压,将“调节器II”接成比例(P)调节器或PI(比例积分)调节器。直流发电机接负载电阻R,L d用DJK02上200mH,将给定输出调到零。

②直流发电机先轻载,从零开始逐渐调大“给定”电压U g,使电动机转速接近n=l200rpm。

③由小到大调节直流发电机负载R,测定相应的I d和n,直至最大允许电流(该电流值由给定电压决定),即可测出系统静态特性曲线n =f(I d)。

(7)电压单闭环直流调速系统

①按图5-9接线,在本实验中,给定U g为负给定,电压反馈为正电压,将“调节器I”接成比例(P)调节器或PI(比例积分)调节器。直流发电机接负载电阻R,L d用DJK02上200mH,将给定输出调到零,在“电压隔离器”输出端“3”与地之间并联6uF电容(从DJK08获得)。

②直流发电机先轻载,从零开始逐渐调大“给定”电压U g,使电动机转速接近n=l200rpm。

③由小到大调节直流发电机负载R,测定相应的I d和n,直至电动机I d=I ed,即可测出系统静态特性曲线n =f(I d)。

七、实验报告

(1)根据实验数据,画出U ct不变时直流电动机开环机械特性。

(2)根据实验数据,画出U d不变时直流电动机开环机械特性。

(3)根据实验数据,画出转速单闭环直流调速系统的机械特性。

(4)根据实验数据,画出电流单闭环直流调速系统的机械特性。

(5)根据实验数据,画出电压单闭环直流调速系统的机械特性。

(6)比较以上各种机械特性,并做出解释。

八、思考题

(l)P调节器和PI调节器在直流调速系统中的作用有什么不同?

(2)实验中,如何确定转速反馈的极性并把转速反馈正确地接入系统中?调节什么元件能改变转速反馈的强度?

(3)改变“调节器I”和“调节器II”上可变电阻、电容的参数,对系统有什么影响?

九、注意事项

(1)双踪示波器有两个探头,可同时观测两路信号,但这两探头的地线都与示波器的外壳相连,所以两个探头的地线不能同时接在同一电路的不同电位的两个点上,否则这两点会通过示波器外壳发生电气短路。为此,为了保证测量的顺利进行,可将其中一根探头的地线取下或外包绝缘,只使用其中一路的地线,这样从根本上解决了这个问题。当需要同时观察两个信号时,必须在被测电路上找到这两个信号的公共点,将探头的地线接于此处,探头各接至被测信号,只有这样才能在示波器上同时观察到两个信号,而不发生意外。

(2)电机启动前,应先加上电动机的励磁,才能使电机启动。在启动前必须将移相控制电压调到零,使整流输出电压为零,这时才可以逐渐加大给定电压,不能在开环或速度闭环时突加给定,否则会引起过大的启动电流,使过流保护动作,告警,跳闸。

(3)通电实验时,可先用电阻作为整流桥的负载,待确定电路能正常工作后,再换成电动机作为负载。

(4)在连接反馈信号时,给定信号的极性必须与反馈信号的极性相反,确保为负反馈,否则会造成失控。

(5)在完成电压单闭环直流调速系统实验时,由于晶闸管整流输出的波形不仅有直流成分,同时还包含有大量的交流信号,所以在电压隔离器输出端必须要接电容进行滤波,否则系统必定会发生震荡。

(6)直流电动机的电枢电流不要超过额定值使用,转速也不要超过1.2倍的额定值。以免影响电机的使用寿命,或发生意外。

(7)DJK04与DJK02-1不共地,所以实验时须短接DJK04与DJK02-1的地。

实验四双闭环不可逆直流调速系统实验

一、实验目的

(1)了解闭环不可逆直流调速系统的原理、组成及各主要单元部件的原理。

(2)掌握双闭环不可逆直流调速系统的调试步骤、方法及参数的整定。

(3)研究调节器参数对系统动态性能的影响。

二、实验所需挂件及附件

三、实验线路及原理

许多生产机械,由于加工和运行的要求,使电动机经常处于起动、制动、反转的过渡过程中,因此起动和制动过程的时间在很大程度上决定了生产机械的生产效率。为缩短这一部分时间,仅采用PI 调节器的转速负反馈单闭环调速系统,其性能还不很令人满意。双闭环直流调速系统是由速度调节器和电流调节器进行综合调节,可获得良好的静、动态性能(两个调节器均采用PI调节器),由于调整系统的主要参量为转速,故将转速环作为主环放在外面,电流环作为副环放在里面,这样可以抑制电网电压扰动对转速的影响。实验系统的原理框图组成如下:

启动时,加入给定电压U g,“速度调节器”和“电流调节器”即以饱和限幅值输出,使电动机以限定的最大启动电流加速启动,直到电机转速达到给定转速(即U g=U fn),并在出现超调后,“速度调节器”和“电流调节器”退出饱和,最后稳定在略低于给定转速值下运行。

系统工作时,要先给电动机加励磁,改变给定电压U g的大小即可方便地改变电动机的转速。“速度调节器”、“电流调节器”均设有限幅环节,“速度调节器”的输出作为“电流调节器”的给定,利用“速度调节器”的输出限幅可达到限制启动电流的目的。“电流调节器”的输出作为“触发电路”的控制电压U ct,利用“电流调节器”的输出限幅可达到限制αmax的目的。

在本实验中DJK04上的“调节器I”做为“速度调节器”使用,“调节器II”做为“电流调节器”使用。

四、实验内容

(1)各控制单元调试。

(2)测定电流反馈系数β、转速反馈系数α。

(3)测定开环机械特性及高、低转速时系统闭环静态特性n=f(I d)。

(4)闭环控制特性n=f(U g)的测定。

(5)观察、记录系统动态波形。

图4-1 双闭环直流调速系统原理框图

五、预习要求

(1)阅读电力拖动自动控制系统教材中有关双闭环直流调速系统的内容,掌握双闭环直流调速系统的工作原理。

(2)理解PI(比例积分)调节器在双闭环直流调速系统中的作用,掌握调节器参数的选择方法。

(3)了解调节器参数、反馈系数、滤波环节参数的变化对系统动、静态特性的影响。

六、思考题

(1)为什么双闭环直流调速系统中使用的调节器均为PI调节器?

(2)转速负反馈的极性如果接反会产生什么现象?

(3)双闭环直流调速系统中哪些参数的变化会引起电动机转速的改变?哪些参数的变化会引起电动机最大电流的变化?

七、实验方法

(1)双闭环调速系统调试原则

①先单元、后系统,即先将单元的参数调好,然后才能组成系统。

②先开环、后闭环,即先使系统运行在开环状态,然后在确定电流和转速均为负反馈后,才可组成闭环系统。

③先内环,后外环,即先调试电流内环,然后调试转速外环。

④先调整稳态精度,后调整动态指标。

(2)DJK02和DJK02-1上的“触发电路”调试

①打开DJK01总电源开关,操作“电源控制屏”上的“三相电网电压指示”开关,观察输入的三相电网电压是否平衡。

②将DJK01“电源控制屏”上“调速电源选择开关”拨至“直流调速”侧。

③用10芯的扁平电缆,将DJK02的“三相同步信号输出”端和DJK02-1“三相同步信号输入”端相连,打开DJK02-1电源开关,拨动“触发脉冲指示”钮子开关,使“窄”的发光管亮。

④观察A、B、C三相的锯齿波,并调节A、B、C三相锯齿波斜率调节电位器(在各观测孔左侧),使三相锯齿波斜率尽可能一致。

⑤将DJK04上的“给定”输出U g直接与DJK02-1上的移相控制电压U ct相接,将给定开关S2拨到接地位置(即U ct=0),调节DJK02-1上的偏移电压电位器,用双踪示波器观察A相同步电压信号和“双脉冲观察孔” VT1的输出波形,使α=150°(注意此处的α表示三相晶闸管电路中的移相角,它的0°是从自然换流点开始计算,而单相晶闸管电路的0°移相角表示从同步信号过零点开始计算,两者存在相位差,前者比后者滞后30°)。

⑥适当增加给定U g的正电压输出,观测DJK02-1上“脉冲观察孔”的波形,此时应观测到单窄脉冲和双窄脉冲。

⑦用8芯的扁平电缆,将DJK02-1面板上“触发脉冲输出”和“触发脉冲输入”相连,使得触发脉冲加到正反桥功放的输入端。

⑧将DJK02-1面板上的U lf端接地,用20芯的扁平电缆,将DJK02-1的“正桥触发脉冲输出”端和DJK02“正桥触发脉冲输入”端相连,并将DJK02“正桥触发脉冲”的六个开关拨至“通”,观察正桥VT1~VT6晶闸管门极和阴极之间的触发脉冲是否正常。

(3)控制单元调试

①移相控制电压Uct调节范围的确定

直接将DJK04“给定”电压U g接入DJK02-1移相控制电压U ct的输入端,“三相全控整流”输出接电阻负载R,用示波器观察U d的波形。当给定电压U g由零调大时,U d将随给定电压的增大而增大,当U g超过某一数值时,此时U d接近为输出最高电压值U d',一般可确定“三相全控整流”输出允许范围的最大值为U dmax=0.9U d',调节U g使得“三相全控整流”输出等于U dmax,此时将对应的U g'的电压值记录下来,U ctmax= U g',即U g的允许调节范围为0~U ctmax。如果我们把输出限幅定为U ctmax的话,则“三相全控整流”输出范围就被限定,不会工作到极限值状态,保证六个晶闸管可靠工作。记录U g'于下表中:

将给定退到零,再按“停止”按钮,结束步骤。

②调节器的调零

将DJK04中“调节器I”所有输入端接地,再将DJK08中的可调电阻120K接到“调节器I”的“4”、“5”两端,用导线将“5”、“6”短接,使“调节器I”成为P (比例)调节器。用万用表的毫伏档测量调节器I的“7”端的输出,调节面板上的调零电位器RP3,使之电压尽可能接近于零。

将DJK04中“调节器II”所有输入端接地,再将DJK08中的可调电阻13K接到“调节器II”的“8”、“9”两端,用导线将“9”、“10”短接,使“调节器II”成为P(比例)调节器。用万用表的毫伏档测量调节器II的“11”端,调节面板上的调零电位器RP3,使之输出电压尽可能接近于零。

③调节器正、负限幅值的调整

把“调节器I”的“5”、“6”短接线去掉,将DJK08中的可调电容0.47uF接入“5”、“6”两端,使调节器成为PI (比例积分)调节器,将“调节器I”所有输入端的接地线去掉,将DJK04的给定输出端接到调节器I的“3”端,当加+5V的正给定电压时,调整负限幅电位器RP2,使之输出电压为-6V,当调节器输入端加-5V的负给定电压时,调整正限幅电位器RP1,使之输出电压尽可能接近于零。

把“调节器II”的“9”、“10”短接线去掉,将DJK08中的可调电容0.47uF接入“9”、“10”两端,使调节器成为PI(比例积分)调节器,将“调节器II”的所有输入端的接地线去掉,将DJK04的给定输出端接到调节器II的“4”端。当加+5V的正给定电压时,调整负限幅电位器RP2,使之输出电压尽可能接近于零;当调节器输入端加-5V的负给定电压时,调整正限幅电位器RP1,使调节器I的输出正限幅为U ctmax。

④电流反馈系数的整定

直接将“给定”电压U g接入DJK02-1移相控制电压U ct的输入端,整流桥输出接电阻负载R,负载电阻放在最大值,输出给定调到零。

按下启动按钮,从零增加给定,使输出电压升高,当U d=220V时,减小负载的阻值,调节“电流反馈与过流保护”上的电流反馈电位器RP1,使得负载电流I d=l.3A时,“2”端I f的的电流反馈电压U fi=6V,这时的电流反馈系数β= U fi/I d= 4.615V/A。

⑤转速反馈系数的整定

直接将“给定”电压U g接DJK02-1上的移相控制电压U ct的输入端,“三相全控整流”电路接直流电动机负载,L d用DJK02上的200mH,输出给定调到零。

按下启动按钮,接通励磁电源,从零逐渐增加给定,使电机提速到n =150Orpm时,调节“转速变换”上转速反馈电位器RP1,使得该转速时反馈电压U fn=-6V,这时的转速反馈系数α=U fn/n =0.004V/(rpm)。

(4)开环外特性的测定

①DJK02-1控制电压U ct由DJK04上的给定输出U g直接接入,“三相全控整流”电路接电动机,L d用DJK02上的200mH,直流发电机接负载电阻R,负载电阻放在最大值,输出给定调到零。

②按下启动按钮,先接通励磁电源,然后从零开始逐渐增加“给定”电压U g,使电机启动升速,转速到达1200rpm。

③增大负载(即减小负载电阻R阻值),使得电动机电流I d=I ed,可测出该系统的开环外特性n =f(I d),记录于下表中:

将给定退到零,断开励磁电源,按下停止按钮,结束实验。

(5)系统静特性测试

①按图4-1接线, DJK04的给定电压U g输出为正给定,转速反馈电压为负电压,直流发电机接负载电阻R,L d用DJK02上的200mH,负载电阻放在最大值,给定的输出调到零。将“调节器I”、“调节器II”都接成P(比例)调节器后,接入系统,形成双闭环不可逆系统,按下启动按钮,接通励磁电源,增加给定,观察系统能否正常运行,确认整个系统的接线正确无误后,将“调节器I”,“调节器II”均恢复成PI(比例积分)调节器,构成实验系统。

②机械特性n =f(I d)的测定

A、发电机先空载,从零开始逐渐调大给定电压U g,使电动机转速接近n=l200rpm,然后接入发电机负载电阻R,逐渐改变负载电阻,直至I d=I ed,即可测出系统静态特性曲线n =f(I d),并记录于下表中:

B、降低U g,再测试n=800rpm时的静态特性曲线,并记录于下表中:

C、闭环控制系统n=f(U g)的测定

调节U g及R,使I d=I ed、n= l200rpm,逐渐降低U g,记录U g和n,即可测出闭环控制特性n = f(U g)。

(6)系统动态特性的观察

用慢扫描示波器观察动态波形。在不同的系统参数下(“调节器I”的增益和积分电容、“调节器II”的增益和积分电容、“转速变换”的滤波电容),用示波器观察、记录下列动态波形:

①突加给定U g,电动机启动时的电枢电流I d(“电流反馈与过流保护”的“2”端)波形和转速n(“转速变换”的“3”端)波形。

②突加额定负载(20%I ed?100%I ed)时电动机电枢电流波形和转速波形。

③突降负载(100%I ed?20%I ed)时电动机的电枢电流波形和转速波形。

八、实验报告

(1)根据实验数据,画出闭环控制特性曲线n =f(U g)。

(2)根据实验数据,画出两种转速时的闭环机械特性n =f(I d)。

(3)根据实验数据,画出系统开环机械特性n =f(I d),计算静差率,并与闭环机械特性进行比较。

(4)分析系统动态波形,讨论系统参数的变化对系统动、静态性能的影响。

九、注意事项

参见实验三的注意事项。

实验五 双闭环控制可逆直流脉宽调速系统(H 桥)

一、实验目的

(1)了解转速、电流双闭环可逆直流PWM 调速系统的组成、工作原理及各单元的工作原理。 (2)掌握双闭环可逆直流PWM 调速系统的调试步骤、方法及参数的整定。 (3)测定双闭环直流调速系统的静态和动态性能指标。 二、实验所需要挂件及附件

图5-1 双闭环H 桥DC/DC 变换直流调速系统原理框图

速度给定信号G ,速度调节器ASR ,电流调节器ACR ,控制PWM 信号产生装置UPM ,DLD 单元把一组PWM 波形分成两组相差180°的PWM 波,并产生一定的死区,用于控制两组臂;GD 的作用是形成四组隔离的PWM 驱动脉冲;PWM 为功率放大电路,直接给电动机M 供电;DZS 是零速封锁单元;FA 限制主电路瞬时电流,过流时封锁DLD 单元输出;电流反馈调节单元CFR ;速度反馈调节SFR 。

四、实验内容

(1)各单元电路的调试。

(2)测定开环机械特性)400,800,1200)((rpm n rpm n rpm n I f n d ====。 (3)测定闭环的静特性)400,800,1200)((rpm n rpm n rpm n I f n d ====。 五、思考题:

(1)正反转有什么不同?

(2)脉宽调速系统和晶闸管移相控制的调速系统相比,调试过程有什么异同? (3)脉宽调速系统和晶闸管移相控制的调速系统相比有什么优点?

六、实验方法

(1)系统单元调试

①速度调节器(ASR)和电流调节器(ACR)的调零

把调节器的输入端1、2、3全部接地,4、5之间接50K电阻,调节电位器RP3,使“7”端输出绝对值小于1mv。

②速度调节器(ASR)和电流调节器(ACR)的输出限幅值的整定

在调节器的3个输入中的其中任一个输入接给定,在4.、5之间接50K电阻、1uF电容,调节给定电位器,使调节器的输入为-1V,调节电位器RP1,使调节器的输出7为+4V(输出正限幅值);同样把给定调节为+1V,调节RP2,把负限幅值调节为-4V。

③零速度封锁器(DZS)观测

首先把零速封锁器的输入悬空,开关S1拨至“封锁”状态,输出接速度或者电流调节器的零速封锁端6,无论调节器的输入如何调节,输出7始终为零。把面板上的给定输出接至零速封锁单元其中一路,另一路悬空,增大给定,测量零速封锁单元输出端3:给定的绝对值大于0.26V左右时,封锁端3输出-15V;减小给定,给定的绝对值小于0.17V左右时,封锁端3输出+15V。把给定加到另一路进行同样的操作。

(2)脉宽发生单元的整定和观测

把电机、直流电源等接入系统,系统接成开环,脉宽发生单元的输入悬空或者接地,调节偏移电压电位器,使电机处于停止状态(若要达到更好的闭环效果,调节偏移电压电位器,使通过电枢的直流电流低于0.02mA)用双踪示波器观测脉宽发生单元的测试点1、2和3、4的波形,此时的1、2(3、4)的占空比接近相同(占空比为50%左右)。观测同一组桥臂(1、2或者3、4)之间的死区。

(3)转速反馈调节器(SFR)、电流反馈调节器(CFR)的整定:

把电机、220V直流电源接入系统,系统接成开环。把正给定接入脉宽发生单元,调节给定,使转速稳定在1600rpm,调节转速反馈调节器中的RP1,使3端输出的电压为-4V。加大负载,使电机的电枢电流稳定在1.3A,调节电流反馈调节器,使电流反馈调节器3端输出的电压为+4V。

(4)开环机械特性测试:

把电机、直流电源,接入系统,电动机、发电机加额定励磁。缓慢增加给定电压Ug,使电机升速,调节给定电压Ug和负载Rg使电动机(DJ15)的电枢电流Id=1.1A,转速达到1200rpm。

在测试过程中逐步增大负载电阻Rg的阻值(即减小负载)就可测出该系统的开环外特性n=f(I2),将其记入下面的表格:

然后将电机反转,增加给定Ug(负给定)使电机反向升速,调节给定电压Ug和负载Rg使电动机(DJ15)的电枢电流Id=1.1A,转速分别达到-1200rpm。

在测试过程中逐步增大负载电阻Rg的阻值(即减小负载)就可测出该系统的开环外特性n=f(I2),将其记入下面的表格:

(5)闭环系统调试及闭环静特性测定

①机械特性n=f(Id)的测定

直流电压输入为300V的情况下,发电机输出首先空载,从零开始逐渐调大给定电压Ug,使电动机转速接近1200rpm,然后在发电机的电枢绕组接入负载电阻Rg,逐渐增大电动机负载(即减小负载的电阻值),直至电动机的电枢电流Id=1.1A,即可测出系统静态特性,测定n=f(Id)并记录于下表中:

改变电机的转向,重复上述的步骤:

再降低给定电压Ug ,再测试800rpm 的静态特性曲线,记录于下表中:

改变电机的转向,重复上述的步骤:

②闭环控制系统n=f (Ug )的测定

调节Ug 及R ,使I=Ied ,n=1200rpm ,逐渐降低Ug ,直至Ug=0V ,在变换的过程中记录Ug 和n ,即可测出控制特性n=f (Ug )

将电机反转,I=Ied ,n=1200rpm

调节Ug 及R ,使Id=0.5Ied ,n=1200rpm ,逐渐降低Ug ,直至Ug=0V ,在变换过程中记录Ug 和n ,即可测出闭环控制特性n=f(Ug)

将电机反转,Id=0.5Ied ,n=1200rpm

④动态波形观察:

给定值阶跃变化:正向启动→正向停车,反向启动→反向停车,正转直接切换到反转,反转直接切换到正转。用示波器观测)(t f n =,)(t f I d =的波形。

电动机分别稳定运行于正、负n=1200rpm ,突加、突减负载(20%N I 和100%N I )时的)(t f n =,

)(t f I d 的波形。

七、实验报告

(1)按照实验方法记录的波形描述导通臂与关断臂切断状态时的控制逻辑原则。 (2)画出上述实验中记录的各工作特性曲线n=f (zd ),并比较它们的静差率。 (3)画出闭环控制特性曲线n=f (Ug )。 八、注意事项:

(1)要注意先后顺序,通电时的先打开实验箱的电源,再加高压直流电源;断电的时候先切断高压直流电源,再关断实验箱电源。

(2)在送高压电源之前,先把给定调至最低。

(3)实验时候需要注意电机的额定电压,额定电流,额定转速,不能超过以免出现电机损坏。

实验四 直流调速系统仿真与设计

实验四 直流调速系统仿真与设计 一、 实验目的 1、掌握连续部分的程序实现方法; 2、熟悉仿真程序的编写方法。 二、 实验容 一转速、电流双闭环控制的H 型双极式PWM 直流调速系统,已知电动机参数为:N P =200W ,N U =48V ,N I =4A ,额定转速 500r/min ,电枢电阻Ra=6.5欧,电枢回路总电阻R=8欧,允许电流过载倍数2λ=,电势系数C 0.12min/e V r =?,电磁时间常数s T l 015.0=,机电时间常数s T m 2.0=,电流反馈滤波时间常数 s T oi 001.0=,转速反馈滤波时间常数s T on 005.0=。设调节器输入输出电压** nm im cm U U U 10V ===,调节器输入电阻Ω=k R 400。已计算出电力晶体管D202 的开关频率f 1kHz =,PWM 环节的放大倍数s K 4.8 =。 试对该系统进行动态参数设计,设计指标:稳态无静差,电流超调量i 5%σ≤;空载 起动到额定转速时的转速超调量n 20%σ≤;过渡过程时间s t 0.1s ≤。 建立系统的仿真模型,并进行仿真验证。 一、 设计计算 1. 稳态参数计算 根据两调节器都选用PI 调节器的结构,稳态时电流和转速偏差均应为零;两调 节器的输出限幅值均选择为12V 电流反馈系数;A V A V I U im /25.14210nom * =?==λβ 转速反馈系数:r V r V n U nm min/02.0min /50010max *?===α 2. 电流环设计 (1)确定时间常数 电流滤波时间常数T oi =0.2ms ,按电流环小时间常数环节的近似处理方法,则

实验一 直流电机调速系统的数学模型

实验一直流电机调速系统的数学模型 一、实验目的 1.通过实验掌握直流电机PWM开环调速控制方法。 2.掌握PWM功率放大H桥芯片LMD18200T的应用方法。 3.掌握开关电源PWM控制芯片SG3525A在直流调速系统中的应用。 4.掌握直流调速系统的数字模型的建立方法。 二、实验线路 实验线路如图1所示,所发的元件按图1所示焊接好,检查核对无误后,接上30V电源,在U4的2脚处断开与运放U3的连接,U4的2脚接一10K的电位器,称为PR1(图1中没画),电位器电源电压为5V,电位器的滑动端接U4的2脚,即Uc接电位器PR1的中点,调节该电位器PR1即可改变Uc的大小,实现直流电机的开环速度控制。 图1 实验电路 三、实验内容 1 PWM环节数学模型测定调节PR使SG3525A的13脚输出的PWM波形占空比为50%,测量SG3525A 2脚的输入电压及PWM环节的输出电压,填入表1。改变PR,按不同的占空比测量2脚的电压和PWM环节输出电压,填入表1。

表1 PWM 环节数学模型测试表 空比比 10% 20% 30% 40% 50% 60% 70% 80% 90% Vc(2pin) V 2电机参数的测量 1) 电势常数C E Φ的测定 用另一台电动机牵引被测电机运在额定转速, 测出电机的电势Ea ,则 电势常数:C E Φ=N a n E 。 (1) 2)电机转矩常数C m Φ 转矩常数可由C E Φ求出:Φ= ΦE m C C π30。 (2) 3)飞轮矩GD 2的测定 已知电机的运动方程为: dt dn GD T T l e 3752=- (3) 电机接可调稳压电源,测速发电机接数字示波器的Y 轴输入,调节稳压电源电压使电机运行在额定转速附近,测量此时的空载电流I O 。断开电源使电机自由行使,测出电机的下降时间t ?(若为指数下降曲线,则按其初始斜率求下降时间t ?),则电机的飞轮矩可由下式求出: GD 2 =t n I C o m ??Φ375 (4) 4)电枢电阻的测定 电机电枢接可调稳压电源,卡住电机轴不让转动,调节稳压电源使电机电流为额定电流,测出一组V 1,I 1 。电机轴转动一定位置,重复测量得另一组数据,V 2,I 2 。 测出4、5组数据。则电枢电阻a R 为: a R =n Rn R R ++21 (5) 5)电源内阻的测定 在H 桥输出端接电压表,电流表和可调负载电阻, 调节控制电压U C 使PWM 电路输出为额定电压的2 1,调节负载电阻使电流为额定电流I N ,保持控制电压不变,调节负载电阻,使负载约为额定电流的0.8倍,测 出电流I 1,测出电压为V 2,则按下式可算出电源的等效内阻: R pwm =2 112I I V V -- (6) 6)电枢电感的测定 自耦变压器输出与电机联接在如图所示。交流电流应大于额定值,测得电压,电流分别为U 和I ,则电枢电感a L 为:

双闭环直流电机调速系统的SIMULINK仿真实验

双闭环直流电机调速系统的SIMULINK仿真实验 魏小景张晓娇刘姣 (自动化0602班) 摘要:采用工程设计方法对双闭环直流调速系统进行设计,选择调节器结构,进行参数的计算和校验;给出系统动态结构图,建立起动、抗负载扰动的Matlab Simulink 仿真模型.分析系统起动的转速和电流的仿真波形 ,并进行调试 ,使双闭环直流调速系统趋于合理与完善。 关键词:双闭环调速系统;调节器;Matlab Simulink建模仿真 1.引言 双闭环直流调速系统是目前直流调速系统中的主流设备,具有调速范围宽、平稳性好、稳速精度高等优点,在理论和实践方面都是比较成熟的系统,在拖动领域中发挥着极其重要的作用。由于直流电机双闭环调速是各种电机调速系统的基础,直流电机双闭环调速系统的工程设计主要是设计两个调节器。调节器的设计一般包括两个方面:第一选择调节器的结构,以确保系统稳定,同时满足所需的稳态精度. 第二选择调节器的参数,以满足动态性能指标。本文就直流电机调速进行了较系统的研究,从直流电机的基本特性到单闭环调速系统,然后进行双闭环直流电机设计方法研究,最后用实际系统进行工程设计,并采用Matlab/Sim-ulink进行仿真。 2.基本原理和系统建模 为了实现转速和电流两种负反馈分别起作用,在系统中设置了两个调节器,分别调节转速和电流,二者之间实行串联连接. 把转速调节器ASR 的输出当作电流调节器ACR 的输入,再用电流调节器的输出去控制晶闸管整流器的触发装置GT ,TA为电流传感器,TG 为测速发电机. 从闭环结构上看,电流调节环在里面,叫做内环,转速调节环在外边叫做外环,这样就形了转速、 图1 直流电机双闭环调速系统的动态结构图

双闭环直流调速系统的设计与仿真实验报告

TG n ASR ACR U *n + - U n U i U * i + - U c TA V M + - U d I d UP L - M T 双闭环直流调速系统的设计与仿真 1、实验目的 1.熟悉晶闸管直流调速系统的组成及其基本原理。 2.掌握晶闸管直流调速系统参数及反馈环节测定方法。 3.掌握调节器的工程设计及仿真方法。 2、实验内容 1.调节器的工程设计 2.仿真模型建立 3.系统仿真分析 3、实验要求 用电机参数建立相应仿真模型进行仿真 4、双闭环直流调速系统组成及工作原理 晶闸管直流调速系统由三相调压器,晶闸管整流调速装置,平波电抗器,电动机—发电机组等组成。 本实验中,整流装置的主电路为三相桥式电路,控制回路可直接由给定电压U ct 作为触发器的移相控制电压,改变U ct 的大小即可改变控制角,从而获得可调的直流电压和转速,以满足实验要求。 为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈,二者之间实行嵌套联接,如图 4.1。把转速调节器的输出当作电流调节器的输入,再用电流的输出去控制电力电子变换器UPE 。在结构上,电流环作为内环,转速环作为外环,形成了转速、电流双闭环调速系统。为了获得良好的静、动态特性,转速和电流两个调节器采用PI 调节器。 图4.1 转速、电流双闭环调速系统 5、电机参数及设计要求 5.1电机参数 直流电动机:220V ,136A ,1460r/min ,C e =0.192V ? min/r ,允许过载倍数=1.5,晶闸管装置放大系数:K s =40 电枢回路总电阻:R=0.5 时间常数:T l =0.00167s, T m =0.075s 电流反馈系数:β=0.05V/A

转速、电流反馈控制直流调速系统仿真

《运动控制系统》课程设计说明书 课程设计任务书 学生姓名: 专业班级: 指导教师: 工作单位: 题 目: 转速、电流反馈控制直流调速系统仿真 初始条件: 某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路,基本数据如下:直流电机参数为:额定电压220V U =,额定电流 136I A =; 额定转速n 1460rpm =,0.132min/e V r C =?,允许过载倍数 1.5λ=;晶闸管装置放大系数40s K =;电枢回路总电阻0.5R =Ω;时间常数0.03,0.18l m s s T T ==;电流反馈系数0.05/V A β=;转速反馈系数0.007min/V r α=? 要求完成的主要任务: (1)用MATLAB 建立电流环仿真模型; (2)分析电流环无超调、临界超调、超调较大仿真曲线; (3)用MATLAB 建立转速环仿真模型; (4)分析转速环空载起动、满载起动、抗扰波形图仿真曲线; (5)电流超调量5%i σ≤,转速超调量10%n σ≤。 转速、电流反馈控制的直流调速系统是静、动态性能优良、应用最广泛的直流调速系统,对于需要快速正、反转运行的调速系统,缩短起动、制动过程的时间成为提高生产效率的关键。为了使转速和电流两种负反馈分别起作用,可在系统里设置两个调节器,组成串级控制。本文介绍了双闭环调速系统的基本原理,而且用Simulink 对系统进行仿真。

转速、电流反馈控制直流调速系统仿真 1 设计的初始条件及任务 1.1概述 本次仿真设计需要用到的是Simulink 仿真方法,Simulink 是Matlab 最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。在该环境中,无需大量书写程序,而只需要通过简单直观的鼠标操作,就可构造出复杂的系统。Simulink 具有适应面广、结构和流程清晰及仿真精细、贴近实际、效率高、灵活等优点,并基于以上优点Simulink 已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。 1.2初始条件 某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路,基本数据如下:直流电机参数为:额定电压220V U =,额定电流136I A =;额定转速n 1460rpm =,0.132min/e V r C =?,允许过载倍数 1.5λ=;晶闸管装置放大系数40s K =;电枢回路总电阻0.5R =Ω;时间常数0.03,0.18l m s s T T ==;电流反馈系数0.05/V A β=;转速反馈系数0.007min/V r α=?。 1.3要完成的任务 1)用MATLAB 建立电流环仿真模型; 2)分析电流环无超调、临界超调、超调较大仿真曲线; 3)用MATLAB 建立转速环仿真模型; 4)分析转速环空载起动、满载起动、抗扰波形图仿真曲线; 5)电流超调量5%i σ≤,转速超调量10%n σ≤。

#直流电机调速系统分析与设计

第一部分并励直流电动机的工作原理 并励直流电机的励磁绕组和电枢绕组相并联,作为并励发电机来说,是电机本身发出来的端电压为励磁绕组供电;作为并励电动机来说,励磁绕组和电枢共用同一电源,从性能上讲和他励直流电动机相同。 导体受力的方向用左手定则确定。这一对电磁力形成了作用于电枢一个力矩,这个力矩在旋转电机里称为电磁转矩,转矩的方向是逆时针方向,企图使电枢逆时针方向转动。如果此电磁转矩能够克服电枢上的阻转矩(例如由摩擦引起的阻转矩以及其它负载转矩),电枢就能按逆时针方向旋转起来。 当电枢转了180°后,导体 cd转到 N极下,导体ab转到S极下时,由于直流电源供给的电流方向不变,仍从电刷 A流入,经导体cd 、ab 后,从电刷B流出。这时导体cd 受力方向变为从右向左,导体ab 受力方向是从左向右,产生的电磁转矩的方向仍为逆时针方向。 因此,电枢一经转动,由于换向器配合电刷对电流的换向作用,直流电流交替地由导体 ab和cd 流入,使线圈边只要处于N 极下,其中通过电流的方向总是由电刷A 流入的方向,而在S 极下时,总是从电刷 B流出的方向。这就保证了每个极下线圈边中的电流始终是一个方向,从而形成一种方向不变的转矩,使电动机能连续地旋转。这就是直流电动机的工作原理。 转速电流双闭环原理 转速、电流双闭环直流调速系统的组成,把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE。 从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。 这就形成了转速、电流双闭环调速系统。 限幅的作用: 转速调节器ASR的输出限幅电压U*im --电流给定电压的最大值,即限制了最大电流; τ电流调节器ACR的输出限幅电压Ucm --Uc的最大值,即限制了电力电子变换器的最大输出电压Udm。 第二部分 PID算法的基本原理 PID调节器各校正环节的作用 1、比例环节:即时成比例地反应控制系统的偏差信号e(t),偏差一旦产生,调节 器立即产生控制作用以减小偏差。 2、积分环节:主要用于消除静差,提高系统的无差度。积分作用的强弱取决于积分 时间常数TI,TI越大,积分作用越弱,反之则越强。 3、微分环节:能反应偏差信号的变化趋势(变化速率),并能在偏差信号的值变得太 大之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减 小调节时间。 下面对控制点所采用的PID控制算法进行说明。

直流电机PWM调速与控制设计报告

综合设计报告 单位:自动化学院 学生姓名: 专业:测控技术与仪器 班级:0820801 学号: 指导老师: 成绩: 设计时间:2011 年12 月 重庆邮电大学自动化学院制

一、题目 直流电机调速与控制系统设计。 二、技术要求 设计直流电机调速与控制系统,要求如下: 1、学习直流电机调速与控制的基本原理; 2、了解直流电机速度脉冲检测原理; 3、利用51单片机和合适的电机驱动芯片设计控制器及速度检测电路; 4、使用C语言编写控制程序,通过实时串口能够完成和上位机的通信; 5、选择合适控制平台,绘制系统的组建结构图,给出完整的设计流程图。 6、要求电机能实现正反转控制; 7、系统具有实时显示电机速度功能; 8、电机的设定速度由电位器输入; 9、电机的速度调节误差应在允许的误差范围内。 三、给定条件 1、《直流电机驱动原理》,《单片机原理及接口技术》等参考资料; 2、电阻、电容等各种分离元件、IC、直流电机、电源等; 3、STC12C5A60S2单片机、LM298以及PC机; 四、设计 1. 确定总体方案; 2. 画出系统结构图; 3. 选择以电机控制芯片和单片机及速度检测电路,设计硬件电路; 4. 设计串口及通信程序,完成和上位机的通信; 5. 画出程序流程图并编写调试代码,完成报告;

直流电机调速与控制 摘要:当今社会,电动机作为最主要的机电能量转换装置,其应用范围已遍及国民经济的各个领域和人们的日常生活。无论是在工农业生产,交通运输,国防,航空航天,医疗卫生,商务和办公设备中,还是在日常生活的家用电器和消费电子产品(如电冰箱,空调,DVD等)中,都大量使用着各种各样的电动机。据资料显示,在所有动力资源中,百分之九十以上来自电动机。同样,我国生产的电能中有百分之六十是用于电动机的。电动机与人的生活息息相关,密不可分。电气时代,电动机的调速控制一般采用模拟法、PID控制等,对电动机的简单控制应用比较多。简单控制是指对电动机进行启动,制动,正反转控制和顺序控制。这类控制可通过继电器,光耦、可编程控制器和开关元件来实现。还有一类控制叫复杂控制,是指对电动机的转速,转角,转矩,电压,电流,功率等物理量进行控制。 本电机控制系统基于51内核的单片机设计,采用LM298直流电机驱动器,利用PWM 脉宽调制控制电机,并通过光耦管测速,经单片机I/O口定时采样,最后通过闭环反馈控制系统实现电机转速的精确控制,其中电机的设定速度由电位器经A/D通过输入,系统的状显示与控制由上位机实现。经过设计和调试,本控制系统能实现电机转速较小误差的控制,系统具有上位机显示转速和控制电机开启、停止和正反转等功能。具有一定的实际应用意义。关键字:直流电机、反馈控制、51内核、PWM脉宽调制、LM298 一、系统原理及功能概述 1、系统设计原理 本电机控制系统采用基于51内核的单片机设计,主要用于电机的测速与转速控制,硬件方面设计有可调电源模块,串口电路模块、电机测速模块、速度脉冲信号调理电路模块、直流电机驱动模块等电路;软件方面采用基于C语言的编程语言,能实现系统与上位机的通信,并实时显示电机的转速和控制电机的运行状态,如开启、停止、正反转等。 单片机选用了51升级系列的STC12c5a60s2作为主控制器,该芯片完全兼容之前较低版本的所有51指令,同时它还自带2路PWM控制器、2个定时器、2个串行口支持独立的波特率发生器、3路可编程时钟输出、8路10位AD转换器、一个SPI接口等,

实验十 直流电机调速实验

实验十直流电机调速实验 一、实验目的: 了解直流电机调速的原理与方法。 二、实验原理: (一)直流电机调速的方法有: 1.调节电枢供电电压U 改变电枢电压主要是从额定电压往下降低电枢电压,从电动机额定转速向下变速,属恒转矩调速方法。对于要求在一定范围内无级平滑调速的系统来说,这种方法最好。变化遇到的时间常数较小,能快速响应,但是需要大容量可调直流电源。 2.改变电动机主磁通 改变磁通可以实现无级平滑调速,但只能减弱磁通进行调速(简称弱磁调速),从电机额定转速向上调速,属恒功率调速方法。变化时间遇到的时间常数同变化遇到的相比要大得多,响应速度较慢,但所需电源容量小。 3.电枢回路串电阻调速 电动机电枢回路外串电阻进行调速的方法,设备简单,操作方便。但是只能进行有级调速,调速平滑性差,机械特性较软;空载时几乎没什么调速作用;还会在调速电阻上消耗大量电能。 (二)ETD 790 791系列装置是三相全数字式直流调速器,其工作电压最高可达500 Vac,工作电流可达4000A,频率范围为45-62赫兹,可用来控制电机的转速和转矩。 通过采用不同的外形尺寸,装置的电流最大可达到9000A。 调速器可分为两种类型:不可逆(791)和可逆(790)。 不可逆调速器仅用来控制一个方向的转速和转矩,而可逆调速器则可用来控制两个方向的速度和转矩。 当使用可逆调速器时,通过使用全控的反并联的可控硅模块,使电机电枢实现了真正四象限控制。在制动期间,电机的能量可迅速反馈回电网。 调速器内部标配一个可调的励磁模块,用来调整电机励磁电流或者弱磁控制。 通过ETD 10.07.0 调控板上的一个32位的微处理器实现对调速器进行控制。调控板同时可用于不可逆和可逆调速器。 微处理器的功能包括:主调节功能、与外部设备的接口功能、诊断功能。这些功能可概

开环直流调速系统的动态建模与仿真

电控学院 运动控制系统仿真课程设计 院(系):电气与控制工程学院 专业班级: 姓名: 学号:

开环直流调速系统的动态建模与仿真 摘要: MATLAB仿真在科学研究中的地位越来越高,如何利用MATLAB仿真出理想的结果,关键在于如何准确的选择MATLAB的仿真。本文就简单的开环直流调速系统的MATLAB仿真这个例子,通过对MATLAB的仿真,得到不同的仿真结果。通过仿真结果的对比,对MATLAB的仿真进行研究。从而总结出如何在仿真过程中对MATLAB的仿真做到最优选择。 详细介绍了用MATLAB语言对《电机与拖动》中直流电动机调速仿真实验的仿真方法和模型建立。其仿真结果与理论分析一致,表明仿真是可信的,可以替代部分实物实验。首先在分析直流调速系统原理的基础上, 介绍了基于数学模型的仿真, 在仿真中可灵活调节相关参数, 优化参数设计。其次完成了基于系统框图, 并分析了调速系统的抗干扰能力。采用工程设计方法对开环直流调速系统进行设计,选择调节器结构,进行参数的计算和校验;给出系统动态结构图,建立起动、抗负载扰动的MATLAB 仿真模型。分析系统起动的转速和电流的仿真波形,并进行调试,使开环直流调速系统趋于合理与完善。

1.1课题背景 直流调速是现代电力拖动自动控制系统中发展较早的技术。在20世纪60年代,随着晶闸管的出现,现代电力电子和控制理论、计算机的结合促进了电力传动控制技术研究和应用的繁荣。晶闸管-直流电动机调速系统为现代工业提供了高效、高性能的动力。尽管目前交流调速的迅速发展,交流调速技术越趋成熟,以及交流电动机的经济性和易维护性,使交流调速广泛受到用户的欢迎。但是直流电动机调速系统以其优良的调速性能仍有广阔的市场,并且建立在反馈控制理论基础上的直流调速原理也是交流调速控制的基础。现在的直流和交流调速装置都是数字化的,使用的芯片和软件各有特点,但基本控制原理有其共性。 长期以来,仿真领域的研究重点是仿真模型的建立这一环节上,即在系统模型建立以后要设计一种算法。以使系统模型等为计算机所接受,然后再编制成计算机程序,并在计算机上运行。因此产生了各种仿真算法和仿真软件。 由于对模型建立和仿真实验研究较少,因此建模通常需要很长时间,同时仿真结果的分析也必须依赖有关专家,而对决策者缺乏直接的指导,这样就大大阻碍了仿真技术的推广应用。 MATLAB提供动态系统仿真工具Simulink,则是众多仿真软件中最强大、最优秀、最容易使用的一种。它有效的解决了以上仿真技术中的问题。在Simulink 中,对系统进行建模将变的非常简单,而且仿真过程是交互的,因此可以很随意的改变仿真参数,并且立即可以得到修改后的结果。另外,使用MATLAB中的各种分析工具,还可以对仿真结果进行分析和可视化。 Simulink可以超越理想的线性模型去探索更为现实的非线性问题的模型,如现实世界中的摩擦、空气阻力、齿轮啮合等自然现象;它可以仿真到宏观的星体,至微观的分子原子,它可以建模和仿真的对象的类型广泛,可以是机械的、电子的等现实存在的实体,也可以是理想的系统,可仿真动态系统的复杂性可大可小,可以是连续的、离散的或混合型的。Simulink会使你的计算机成为一个实验室,用它可对各种现实中存在的、不存在的、甚至是相反的系统进行建模与仿真。传统的研究方法主要有解析法,实验法与仿真实验,其中前两种方法在具有各自优点的同时也存在着不同的局限性。随着生产技术的发展,对电气传动在启制动、正反转以及调速精度、调速范围、静态特性、动态响应等方面提出了更高要求,

直流电动机调速系统设计综述

概述 (2) 1 设计任务与分析 (3) 1.1 任务要求 (3) 1.2 任务分析 (3) 2方案选择及论证 (4) 2.1 三相可控整流电路的选择 (4) 2.2 触发电路的选择 (4) 2.3 电力电子器件的缓冲电路 (5) 2.4 电力电子器件的保护电路 (5) 3主电路设计 (7) 3.1 整流变压器计算 (7) 3.1.1 U2的计算 (7) 3.1.2一次侧和二次侧相电流I1和I2的计算 (8) 3.1.3变压器的容量计算 (8) 3.2 晶闸管元件的参数计算 (9) 3.2.1晶闸管的额定电压 (9) 3.2.2晶闸管的额定电流 (9) 3.3 电力电子电路保护环节 (10) 3.3.1交流侧过电压保护 (10) 3.3.2直流侧过电压保护 (11) 3.3.3晶闸管两端的过电压保护 (11) 3.3.4过电流保护 (11) 4触发电路设计 (11) 4.1 触发电路主电路设计 (11) 4.2 触发电路的直流电源 (13) 5电气原理图 (14) 小结与体会 (15) 参考文献 (16) 附录 (16)

直流电动机具有良好的起动和制动性能,广泛应用于机械、纺织、冶金、化工、轻工等工业系统。随着电力电子技术的发展,晶闸管在直流电动机的调速系统中得到广泛应用。晶闸管直流电动机调速系统,可实现电动机的无级调速,具有调节范围宽,控制精度高,使用寿命长、成本低等优点。正确掌握晶闸管直流电动机调速系统的设计方法,对系统的可靠运行及应用有重大意义。 本设计以晶闸管直流电动机调速装置为主,介绍了系统的各个部件的组成及主要器件的参数计算。调速装置以可控整流电路作为直流电源,把交流电变换成大小可调的单一方向直流电。通过改变触发电路所提供的触发脉冲送出的早晚来改变直流电压的平均值。 关键词:可控整流晶闸管触发电路保护电路

微机原理课程设计—直流电机闭环调速控制系统

实验课题:直流电机调速控制 实验内容: 本实验完成的是一个实现对直流电机转速调节的应用。 编写实验程序,用ADC0809完成模拟信号到数字信号的转换。输入模拟信号有A/D转换单元可调电位器提供的0~5V,将其转换后的数字信号读入累加器,做为控制电机的给定转速。用8255的B口作为直流电机的控制信号输出口,通过对电机转速反馈量的运算,调节控制信号,达到控制电机匀速转动的的作用。并将累加器中给定的转速和当前测量转速显示在屏幕上。再通过LED灯显示出转速的大小变化。 实验目的: (1)学习掌握模/数信号转换的基本原理。 (2)掌握的ADC0809、8255芯片的使用方法。 (3)学习PC系统中扩展简单I/O接口的方法。 (4)了解实现直流电机转速调节的基本方法。 实验要求: 利用微机接口实验系统的硬件资源,运用汇编语言设计实现直流电机的调速控制功能。 基本功能要求:1、利用A/D转换方式实现模拟量给定信号的采样;2、实现PWM方式直流电机速度调节;3、LED灯显示当前直流电机速度状态。 实验设备: (1)硬件要求: PC微机一台、TD-PIT实验系统一套 (2)软件要求:唐都编程软件,tdpit编程软件,“轻松编程”软件 实验原理: 各芯片的功能简介: (1)8255的基本输出接口电路: 并行接口是以数据的字节为单位与I/O设备或被控制对象之间传递信息,CPU 和接口之间的数据传递总是并行的,即可以同时进行传递8位,16位,32位等。8255可编程外围接口芯片是具有A、B、C三个并行接口,+5V单电源供电,能在以下三种方式下工作:方式0—基本输入/出方式、方式1—选通输入/出方式、方式2—双向选通工作方式。

直流调速系统的MATLAB仿真(参考程序)汇总.

直流调速系统的MATLAB 仿真 一、开环直流速系统的仿真 开环直流调速系统的电气原理如图1所示。直流电动机的电枢由三相晶闸管整流电路经平波电抗器L 供电,通过改变触发器移相控制信号c U 调节晶闸管的控制角α,从而改变整流器的输出电压,实现直流电动机的调速。该系统的仿真模型如图2所示。 图1 开环直流调速系统电气原理图 图2 直流开环调速系统的仿真模型 为了减小整流器谐波对同步信号的影响,宜设三相交流电源电感s 0L =,直流电动机励磁由直流电源直接供电。触发器(6-Pulse )的控制角(alpha_deg )由移相控制信号c U 决定,移相特性的数学表达式为 min c cmax 9090U U αα?-=?-

在本模型中取min 30α=?,cmax 10V U =,所以c 906U α=-。在直流电动机的负载转矩输入端L T 用Step 模块设定加载时刻和加载转矩。 仿真算例1 已知一台四极直流电动机额定参数为N 220V U =,N 136A I =, N 1460r /min n =,a 0.2R =Ω,2222.5N m GD =?。励磁电压f 220V U =,励磁电流f 1.5A I =。采用三相桥式整流电路,设整流器内阻rec 0.3R =Ω。平波电抗器 d 20mH L =。仿真该晶闸管-直流电动机开环调速系统,观察电动机在全压起动和起动后加额定负载时的电机转速n 、电磁转矩 e T 、电枢电流d i 及电枢电压d u 的变化情况。N 220V U = 仿真步骤: 1)绘制系统的仿真模型(图2)。 2)设置模块参数(表1) ① 供电电源电压 N rec N 2min 2200.3136 130(V)2.34cos 2.34cos30U R I U α++?= =≈?? ② 电动机参数 励磁电阻: f f f 220146.7()1.5 U R I = ==Ω 励磁电感在恒定磁场控制时可取“0”。 电枢电阻: a 0.2R =Ω 电枢电感由下式估算: N a N N 0.422019.1 19.10.0021(H)2221460136 CU L pn I ?==?≈??? 电枢绕组和励磁绕组间的互感af L : N a N e N 2200.2136 0.132(V min/r)1460 U R I K n --?= =≈?

基于STC52单片机的直流电机PWM调速系统

实训报告 实训名称直流电机调速试验系别电子与电气工程学院专业、班级09测控C1 学生姓名、学号刘凡094821257 学生姓名、学号沈阳094821345 学生姓名、学号覃新造094820364 指导教师陈进 实训地点16号楼212室 实训日期2012 年5月20日

基于STC52单片机的直流电机PWM调速系统 摘要 本文介绍一种基于STC52单片机控制的PWM直流电机脉宽调速系统。系统以廉价的STC52单片机为控制核心,以直流电机为控制对象。从系统的角度出发,对电路进行总体方案论证设计,确定电路各个的功能模块之间的功能衔接和接口设置,详细分析了各个模块的方案论证和参数设置。整个系统利用52单片机的定时器产生1K左右的PWM脉冲,通过快速光耦6N137实现控制单元与驱动单元的强弱电隔离,采用4个9013和2个9012构成的H桥电路实现对直流电机的调速,用光电编码盘完成测速功能。 关键字STC52,PWM,光耦隔离,光电编码盘

1前言 1.1数字直流调速的意义 现在电气传动的主要方向之一是电机调速系统采用微处理器实现数字化控制。从上世纪80年代中后期起,世界各大电气公司如ABB、通用、西屋、西门子等都在竞相开发数字式调速传动装置,经过二十几年的发展,当前直流调速已发展到一个很高的技术水平:功率元件采用可控硅;控制板采用表面安装技术;控制方式采用电源换相、相位控制[1]。特别是采用了微处理器及其他先进电力电子技术,使数字式直流调速装置在精度的准确性、控制性能的优良性和抗干扰的性能有很大的提高和发展,在国内外得到广泛的应用。数字化直流调速装置作为目前最新控制水平的传动方式显示了强大优势。全数字化直流调速系统不断升级换代,为工程应用和工业生产提供了优越的条件。 采用微处理器控制,使整个调速系统的数字化程度,智能化程度有很大改观;采用微处理器控制,使调速系统在结构上简单化,可靠性提高,操作维护变得简捷,电机稳态运行时转速精度等方面达到较高水平。由于微处理器具有较佳的性价比,所以微处理器在工业过程及设备控制中得到日益广泛的应用。近年来,尽管交流调速系统发展很快,但是直流电机凭借其良好的启动、制动性能,在金属切削机床、轧钢机、海洋钻机、挖掘机、造纸机、矿井卷扬机、电镀、高层电梯等需要广泛范围内平滑调速的高性能可控电力拖动领域中仍得到了广泛的应用。 现阶段,我国还没有自主的全数字化直流调速控制装置生产商,而国外先进的控制器价格昂贵,且技术转让受限,为此研究及更好的使用国外先进的控制器,吸收国外先进的数字化直流电机调速装置的优点,具有重要的实际意义和重大的经济价值。 1.2研究现状综述 1.2.1电气传动的发展现状 20世纪70年代以来,直流电机传动经历了重大的技术、装备变革。整流器的更新换代,以晶闸管整流装置取代了习用已久的直流发电机电动机组及水银整流装置使直流电气传动完成了一次大的跃进[1]。同时,高集成化、小型化、高可靠性及低成本成为控制的电路的发展方向。使直流调速系统的性能指标大幅提高,应用范围不断扩大。直流调速技术不断发展,走向成熟化、完善化、系列化、标准化,在可逆脉宽调速、高精度的电气传动领域中仍然难以替代[1]。 早期直流传动的控制系统采用模拟分离器件构成,由于模拟器件有其固有的缺点,

直流电动机调速控制系统论文

安徽三联学院 年度论文 直流电动机调速系统的研究 Dc motor speed control system research 专业:电气工程及其自动化 姓名:薄朋_____________ 学号: 1002164___________ 指导老师:张金翰________ 2013年1月10日 信息与通信技术系

【摘要】直流电动机诞生与19世纪,距今已有100多年的历史,并已成为动力机械的主要驱动装置。直流调速系统具有优良的启动、制动性能,宜于在宽广范围内平滑调速,在需要高性能可控电力拖动的领域中得到了广泛的应用。电动机拖动生产机械运行时,系统的速度需要根据工作状态和工艺要求的不同进行调节,使生产机械以最合理的速度工作,从而提高产品和生产效率,这就要求人为采取一定的方法来改变生产机械的工作速度,以满足生产的需要。 关键字:直流电动机调速 【abstract 】Dc motor was born in the 19th century, more than 100 years of history, and has become the main drive power machinery. Dc speed control system has good start, braking performance, like in the wide range smoothing speed and are in need of high performance controlled electric drive field has been widely used in the field. Motor drive production machine operation, the speed of the system need according to the working status and technological requirements of different carries on the adjustment, production machinery with the most reasonable speed work, so as to improve the products and production efficiency, this requires people to take certain method to change the production machinery working speed, in order to meet production need. Key words: Dc motor speed regulation

实验一 他励直流电动机的起动与调速

上海开放大学 电气传动技术及应用 实验一他励直流电动机的起动与调速 实验报告 分校:_____ _____ 班级:__________________ 学生姓名:__________________ 学号:__________________ 实验成绩:__________________ 批阅教师:__________________ 实验日期年月日

实验一他励直流电动机的起动与调速 一、实验目的 1、学习电机实验的基本要求与安全操作注意事项。 2、认识在直流电机实验中所用的电机、仪表、变阻器等组件及使用方法。 3、熟悉他励电动机(即并励电动机按他励方式)的接线、起动、改变电机转向与调速的方法。 二、实验项目 1、了解DD01电源控制屏中的电枢电源、励磁电源、校正过的直流电机、变阻器、多量程直流电压表、电流表及直流电动机的使用方法。 2、用伏安法测直流电动机和直流发电机的电枢绕组的冷态电阻。 3、直流他励电动机的起动、调速及改变转向。 三、实验设备及控制屏上挂件排列顺序 1 2、控制屏上挂件排列顺序 D31、D42、D41、D51、D31、D44 四、实验说明及操作步骤 1、由实验指导人员介绍DDSZ-1型电机及电气技术实验装置各面板布置及使用方法,讲解电机实验的基本要求,安全操作和注意事项。 2、用伏安法测电枢的直流电阻

图1-1 测电枢绕组直流电阻接线图 (1)按图1-1接线,电阻R 用D44上1800Ω和180Ω串联共1980Ω阻值并调至最大。A 表选用D31直流、毫安、安培表,量程选用5A 档。开关S 选用D51挂箱。 (2)经检查无误后接通电枢电源,并调至220V 。调节R 使电枢电流达到0.2A (如果电流太大,可能由于剩磁的作用使电机旋转,测量无法进行;如果此时电流太小,可能由于接触电阻产生较大的误差),迅速测取电机电枢两端电压U 和电流I 。将电机分别旋转三分之一和三分之二周,同样测取U 、I 三组数据列于表1-1中。 (3)增大R 使电流分别达到0.15A 和0.1A ,用同样方法测取六组数据列于表1-1中。 取三次测量的平均值作为实际冷态电阻值 ) (3 1 321a a a a R R R R ++=

实验一、开环直流调速系统的仿真实验.docx

实验一开环直流调速系统的仿真 一、实验目的 1、熟悉并掌握利用 MATLAB中 Simulink 建立直流调速系统的仿真模型和进行仿真实验的方法。 2、掌握开环直流调速系统的原理及仿真方法。 二、实验内容 开环直流调速系统的仿真框图如图 1 所示,根据系统各环节的参数在 Simulink 中建立开环直流调速系统的仿真模型,按照要求分别进行仿真实验,输出直流电动机的电枢电 流Id 和转速 n 的响应数据,绘制出它们的响应曲线,并对实验数据进行分析,给出相 应的结论。 I dL (s) U n* (s)K s+1/ R I d (s)_R E 1 n( s) T s s 1—T l s 1 +T m s C e 图 1 开环直流调速系统的仿真框图 开环直流调速系统中各环节的参数如下: 直流电动机:额定电压 UN = 220 V,额定电流 IdN = 55 A,额定转速 nN = 1000 r/min ,电动机电势系数 Ce= V ·min/r 。 假定晶闸管整流装置输出电流可逆,装置的放大系数 Ks = 44,滞后时间常数 Ts = s 。电枢回路总电阻 R = Ω,电枢回路电磁时间常数 Tl = s ,电力拖动系统机电时间常数 Tm = s 。 对应额定转速时的给定电压Un*=。 三、实验步骤 1、根据开环直流调速系统的各环节参数建立空载时的Simulink仿真框图,如图2 所示。 图2空载时开环直流调速系统的仿真框图 2、设置合适的仿真时间,利用out器件或示波器将相关数据输出到MATLAB的 Workspace 中,并在 MATLAB中利用 plot (X,Y)函数绘制出空载时直流电动机的电枢电流Id 和转速 n 的响应曲线,记录并分析实验数据,给出相应的结论。 3、根据开环直流调速系统的各环节参数建立带负载时的Simulink仿真框图,如图3所示。 图 3 带负载时开环直流调速系统的仿真框图 4、设置合适的仿真时间,在 1s 时分别加入负载电流为 IdL=10 、20、50A,利用 out 器件或示波器将相关数据输出到 MATLAB的 Workspace 中,并在 MATLAB中利用 plot (X,Y)函数绘制出在 1s 时加入负载电流分别为 IdL=10 、20、50A 时直流电动机的电枢电流 Id 和转速n 的响应曲线,记录并分析实验数据,给出相应的结论。

PWM可逆直流调速系统matlab仿真实习

PWM可逆直流调速系统matlab 仿真实习

《运动控制系统仿真》课程设计 ——PWM直流调速系统的动态建模与仿真 学院:电气与控制工程学院 班级:自动化1104班 姓名:钟传琦 学号:1106050430 日期: 2014年6月27日

一、课程设计的目的及任务 《运动控制系统》是自动化专业的一门主干专业课程,在该课程学习结束后单独安排了1周的控制系统仿真课程设计。其目的是要求学生针对某个电机控制系统功能模块或整个控制系统进行设计与实现,使学生能进一步加深对课堂教学内容的理解,了解典型的电机控制系统基本控制原理和结构,掌握基本的调试方法,提高综合应用知识的能力、分析解决问题的能力和工程实践能力,并初步培养实事求是的工作作风和撰写科研总结报告的能力。 二、课程设计的基本要求 《运动控制系统》被控对象是交、直流电动机,能量转换是由电力电子器件构成的变换器,微机构成控制器。因此控制系统仿真课程设计学生应掌握以下基本内容: (1)交、直流电动机; (2)电力电子变换器; (3)微机控制器; (4)转速、电流等检测电路; (5)输入输出转换电路、调理电路和功放电路等。 三.课程设计的内容及基本要求 1.设计题目 1) 开环直流调速系统的动态建模与仿真 2) 单闭环有静差转速负反馈调速系统的动态建模与仿真 3) 单闭环无静差转速负反馈调速系统的动态建模与仿真 4) 带电流截止转速负反馈的单闭环调速系统的动态建模与仿真 5) 单闭环电压负反馈调速系统的动态建模与仿真 6) 双闭环直流调速系统的动态建模与仿真 α=有环流可逆直流调速系统的动态建模与仿真 7) β 8) 逻辑无环流可逆直流调速系统的动态建模与仿真 9)三相异步电动机数学模型的建立 10) PWM直流调速系统的动态建模与仿真 本文所选题目为:10) PWM直流调速系统的动态建模与仿真。 - 0 -

直流小电动机调速系统

题目直流小电机测速系统 一.题目要求 设计题目:直流小电动机调速系统 描述:采用单片机、uln2003为主要器件,设计直流电机调速系统,实现电机速度开环可调。 具体要求:1、电机速度分30r/m、60r/m、100r/m共3档; 2、通过按选择速度; 3、检测并显示各档速度。 实验器件: 实验板、STC89C52、直流电机、晶振(12MHz)、电容(30pFⅹ2、10uFⅹ2)、)uln2003、小按键、按键(4个)、、数码管、以及 电阻等 二.组分工

摘要 在电气时代的今天,电动机在工农业生产与人们日常生活中都起着十分重要的作用。直流电机作为最常见的一种电机,具有非常优秀的线性机械特性、较宽的调速围、良好的起动性以及简单的控制电路等优点,因此在社会的各个领域中都得到了十分广泛的应用。 本文设计了直流电机测速系统的基本方案,阐述了该系统的基本结构、工作原理、运行特性及其设计方法。本系统采用PWM 测量电动机的转速,用MCS-51单片机对直流电机的转速进行控制。本设计主要研究直流电机的控制和测量方法,从而对电机的控制精度、响应速度以及节约能源等都具有重要意义。 ·关键词:直流电机单片机 PWM 转速控制 硬件部分 1.时钟电路 系统采用12M晶振与两个30pF电容组成震荡电路,接STC89C52的XTAL1与XTAL2引脚

2.按键电路 三个按键分别控制电机的不同转速,采用开环控制方法 3.电机控制与驱动部分 电机的运行通过PWM波控制。PWM波通过STC89C52的P2.4口输出。

显示部分 采用4位共阳极数码管实现转速显示。数码管的位选端1~4分别接STC89C52的P2.0~P2.3管脚。 完整仿真电路图

相关主题
文本预览
相关文档 最新文档