当前位置:文档之家› Network Topology influences Synchronization and Intrinsic Read-out

Network Topology influences Synchronization and Intrinsic Read-out

Network Topology influences Synchronization and Intrinsic Read-out
Network Topology influences Synchronization and Intrinsic Read-out

a r

X i v

:

q

-

b

i o

/

5

7

3

7

v

1

[

q

-

b i

o

.

N C

]

2

5

J u

l

2

5

Network Topology in?uences Synchronization and Intrinsic Read-out ?Gabriele Scheler Department of Physics and Center for Interdisciplinary Research on Complex Systems Northeastern University Boston,MA 02115July 25th,2005Abstract In this note,we want to show (a)how the statistics of synaptic input in?uences the read-out of stored intrinsic properties for two-dimensional model neurons and (b)the e?ects of network topology on synchronization,i.e.the correlations of synaptic input generated in the network.This the-oretical work relates to the biological properties of neuromodulation by presynaptic and postsynaptic e?ects on connectivity and intrinsic prop-erties ([6]).We have previously found that highly synchronous inputs drives neurons,such that small di?erences in intrinsic properties disap-pear,while distributed inputs lets intrinsic properties determine output behavior ([5]).We choose a parametrizable two-dimensional neural oscil-lator model (similar to a Morris-Lecar model),to investigate the e?ects of changed network topology for larger collections of neurons.We focus on intrinsic properties that encode frequency-speci?city.We suggest that presynaptic modulation can be an e?ective way of rapidly altering network topology.We investigate changes in network topology along the dimensions of small-world connectivity vs.random graph connectivity.We hypothesize that SW graphs produce more glob-ally synchronized feedforward behavior with lower link density than com-parable random graphs.In accordance with the hypothesis,we ?nd that in

a SW graph,because of highly synchronous inputs,the di?erence between neuronal intrinsic properties is minimized,while a random graph allows read out of neuronal intrinsic properties.Thus,altering network topol-ogy can alter the balance between intrinsically vs.synaptically driven determined network activity.

1Introduction

We have previously shown for a conductance-based neural model of striatal medium spiny neurons that neuronal variability in the contribution of indi-vidual ion channels(such as slowly inactivating potassium channels and GIRK channels)can yield uniform responses,if the neurons are driven with su?ciently strong synaptic input?uctuations(see[5]).If the same neurons are driven by more distributed synaptic input,they show variability in their response pat-tern,such as spike timing and spike rates.These di?erent statistical properties of synaptic input can be modeled by a variability in the correlation properties of input neurons.I.e.driving neurons by correlated vs.uncorrelated input leads to uniform behavior vs.read-out of stored di?erences in ion channel conductances. (see[5]).

We shall explore the e?ect of di?erent network topologies on the statistics of synaptic input received at individual model neurons.The hypothesis is that certain topologies create more synchronized input volleys than others.

2Methods

2.1Ion channel based neuron model and synaptic input The conductance-based neural model of striatal medium spiny neurons is de-scribed in detail in[5].The membrane voltage V m is modeled using the equation

˙V m =?

1

2.2Variability in a two-dimensional model

In order to do large-scale simulation we need to employ a simple,computa-tionally tractable neuron model.We use a two-dimensional model of a neural oscillator(cf.Morris-Lecar model,Fitzhugh-Nagumo model,[2]).We employ an instantiation of the model with parameters?tted to the general properties of cortical pyramidal neurons(see[3]).This model consists of an equation for the membrane model v(Eq.1),?tted to experimental values for cortical pyramidal neurons(Eq.1),and an equation for a gating parameter u(Eq.2).

˙v=0.04v2+5v+140?u?I syn(1)

˙u=a(bv?u)(2)

b=0.2;a=0.02

When the neuron?res a spike(de?ned as v(t)=30mV),v is set back to a low membrane potential v:=c;c=?65.8mV and the gating variable u is in-creased by a?xed amount d(u:=u+d,d=8)(cf.[3]).This formulation allows a very simple neuron model,which avoids the explicit modeling of the downs-lope of the action potential,and rather resets the voltage.Time-dependence is modeled by the gating variable u.

Neuronal variability is achieved by systematic variation of inactivation pa-rameters.By varying d,we can vary the inactivation dynamics of the model after a spike,by varying a we vary the inactivation dynamics throughout the computation.In this way,we can attempt to model neuronal variability in acti-vation/inactivation dynamics,which is su?cient to model frequency-selectivity as an example of a stored intrinsic property(see Table1).

a c

generic0.28

type10.26

type20.29

type30.212

type40.1514

type50.314

type60.39.5

(RG)to small-world graphs(SWG).A randomly connected graph is fully spec-

i?ed by N and K,the number of links.

A SW graph can be created using linear preferential attachment(LPA,[1]):

the graph is generated one vertex at a time,and each newly created node is attached to a selection of d already existing nodes.The probability of selecting

a speci?c node is proportional to its current degree.For our experiments,we

use an e?cient algorithm found in[7].

There is a useful overview of this and other methods in[4].

We use speci?c instantiations of these graphs(RG1and SWG1)for the simulations.

The SW graph was created by LPA which resulted in K=1822connections

(N=210),the random graph had the same number of neurons(N=210)and approximately the same number of connections K=1800.Table2shows global

graph characteristics for random graphs(RG1,RG2)and small-world graphs (SWG1,SWG2).A SW graph is de?ned by(a)high clustering(b)a power-law distribution of degrees and(c)a short average path length.It is noticeable

that the di?erences in mean path length are small,probably because of the

small size of the graph,while the cluster index is three times higher for the SW graph.These are standard measures for”small-world like”.Di?erent networks

can be sorted according to these and possibly other numerically de?ned prop-erties.Fig.16,18show the distribution of outdegrees(for degrees<25).The distribution is that of a power-law vs.a Gaussian distribution,in accordance

with the de?nitions.Fig.13shows a40-neuron subgraph from each structure.

The higher clustering index in the SW graph is apparent.

Property small-world(SWG1)SWG2 210210

18001800

8.57[2...20]8.57[2...19]

8.57[1...19]8.57[2...19]

0.0410.043

2.72 2.71

3Results

3.1Frequency-speci?city as a stored intrinsic property We selected frequency-speci?city as a model case for a stored intrinsic property, de?ned as regular spiking behavior with a?xed frequency,i.e.an average ISI with a low standard deviation.

First,we illustrate this with a full ion channel based model(the MSN model, [5]),and variation in the slow A-type potassium channel(I As).We also use two types of synaptic input,correlated and uncorrelated,in accordance with the de?nitions in[5].

In Fig.3(left),we show the response of MSN model neurons with a scaling ofμIAs=1.0,1.3,1.5to an uncorrelated input signal.

The top panel shows the development of V m over time.The middle panel shows the spike-train for each neuron with the mean ISI and its standard devia-tion;the total number of spikes is shown on the right.The bottom panel shows the input.The dots correspond to the spiking events for neuron3(μIAs=1.5). The resulting mean ISIs are25,37,and45ms.With aσ2of6,11,and8,they are clearly distinguishable.This is also shown by the Gaussian distribution for the frequencies for each neuron type(Fig.3(right)).

This model shows frequency-speci?city as read-out of the density or relative contribution of the slow A-type potassium channel,indicated by the scaling factorμIAs.To emphasize the conditional aspect of this behavior,we compare this result by stimulating the same neurons with highly correlated input(Fig.4). Here we see a time-locked spike pattern which is expressed by similar mean ISIs, and an overlapping frequency distribution(Fig.4,(right)).

3.2Di?erentiated responses of neurons to synaptic input

correlations

In the generic two-dimensional model we?nd the same behavior:

1.for correlated input,neurons spike time-locked to peaks in the input

2.for uncorrelated input,a mean ISI length with low standard deviation

(frequency-selectivity)emerge

We searched for additional parameter values to de?ne a number of di?erent neuronal types with di?erent mean ISI length.The best results were achieved with a and d varying in the opposite direction(see Table1).

Clearly,a more extensive parameter search may also yield continuous vari-ability in frequency-selectivity.In particular,we may regard such a search as an exercise in discovering those regions in parameter space that make the most di?erence in input response.Since we are only working with a highly arti?cial neuron model,where parameters have no direct correspondence to reality,this is not further pursued in this paper.It would be interesting to rephrase this problem in the context of ion channel types and their e?ects on neurons.

5

We show the response of type1-3model neurons to more or less correlated input in Fig.5and Fig.6.

We also show the response to driving type4-6neurons with uncorrelated and more irregularly timed correlated input(cf.Fig.7,8).When the driven input has di?erent ISIs the standard deviation goes up,and the Gaussian distributions are broader.

For the behavior of a large number of neurons,we show the di?erence of using uniformly de?ned,”generic”neurons,vs.variable neurons with slight di?erences in their parameters.In Fig.9(left),highly correlated input results in synchronous?ring,while distributed input results in asynchronous,variable ?ring(see Fig.9(right)).When we use only three di?erent types of neurons and order them in large stripes,the frequency-selectivity becomes visually apparent. The respective frequency distributions are shown in Fig.10.

3.3Synchronicity is enhanced in a SW network

In the following experiments,we explore the in?uence of graph structure on correlations within the graph.In Fig.11,we see the activity in a SW graph (SWG1)after1000ms of initial stimulation to10neurons.There is also a small background inhibition to all neurons.Visual inspections suggests high synchronization in the graph.Fig.??shows the full simulation(5000ms).The overall correlation,de?ned by pairwise correlation of neurons,is given in table 3.Thus the Gaussians should look like in Fig.10(left),strongly overlapping. In Fig.11(right)we see that this is indeed the case.

SWG1

0.22

0.36

0.28

0.12

0.17

0.21

0.25

0.20

3.4Driver(Sources)and Transfer(Resonator)Modes The pairwise synchronicity S could be shown to be fairly independent of the properties and frequency-selectivity of the neuron.This is in accordance with the observation that di?erences in intrinsic properties disappear as the syn-chronicity in a network increases.Instead S is dominated by the type of net-work connectivity.If there is a phase transition in synchronicity during a grad-ual transformation of the graph structure,this would indicate a self-organized switch between time-locked behavior and read-out.

Let us explain a certain case in the model:if neuron A receives less organized synaptic input,its intrinsic properties will determine its?ring rate more.It will be more of a”driver”neuron,whose stored properties determine its output.If the same neuron A receives synaptic input that puts it more into a”driven”mode,its behavior will be more like that of a”transfer”(resonator)neuron,or in other words,a more uniform processing device that transmits information according to a simple transfer function

4Discussion

4.1Conditional access of stored properties

Small di?erences in intrinsic properties are interesting for models of memoriza-tion,because they allow conditional read-out of information.This means that neurons may acquire di?erences in their ion channel distribution and density in a use-dependent way,storing aspects of previous activations.This memory, however,is not always present to in?uence all types of processing.Rather,it is conditionally present,i.e.it requires speci?c conditions to be”read-out”. This observation provides a new perspective on the role of neuronal circuits in encapsulating memory(see[5]).

Di?erence in neuronal read-out may not be restricted to synaptic input that is highly correlated vs.more distributed.Another type of synaptic input that has been shown to in?uence variability in neuronal spiking behavior is balance of inhibitory and excitatory input.This is another method of in?uencing the state of the neuron such that it either responds only to strong synaptic input, i.e.exists in a mode where its output is determined by synaptic input(in a low balance,low inhibitory state),or exists in a state where it is close to?ring threshold(or”high-conductance state”).If we assume a model neuron with a certain type of nonlinear dynamics,then the synaptic input in this balanced state becomes a form of turbulence that causes a neuron to emit spikes according to its own stored intrinsic properties.

4.2”Symbolic”encoding by frequency speci?city

When we have frequency-encoding neurons with di?erent rates and a tendency to?re regularly when stimulated by noisy,asynchronous network activity,we

7

can use these neurons for a form of ”symbolic”encoding (i.e.assigning di?erent symbols to the frequencies).

We need to take the existing variability concerning the regularity (the stan-dard deviation)in our model into account,plus the observation that the de-viation is larger for sequences of 1000ms or less,but fairly small for larger sequences such as 5000ms or more.However,it should not be di?cult to build reliable storage devices based on a distribution of deviations/frequencies such as for the given model neurons.

A A A A A

B B B B O

1235

78

69

4Figure 1:Possible subgraph (tree)in a network.Di?erent frequencies are indi-cated by the letters A and B .

As an example,consider the subgraph displayed in Fig.1.When activated at point O ,assuming a traveling wave in three steps,and assuming di?erent frequencies for A and B ,we would get a schema as in Fig.2,which would result in di?erent actual timings,depending on a number of additional variables.We can also combine neurons in speci?c arrays (possibly including delays)and thus generate speci?c regularly repeatable spike-time patterns.As a matter of fact,using frequencies as symbols and then stimulating speci?c neurons such that sequences of neurons are being activated will generate spike-time patterns as mixtures of symbols

It is entirely possible that this model does not capture reality very well.It would predict that certain neurons in a group ?re with a speci?ed frequency,when they receive distributed synaptic input,but join in a time-locked ?ring mode at other times.This would be di?cult to establish empirically.The spike ?ring patterns that we can create with this basic generation model are so various that it should be possible to match them to existing recordings in any case (such as [?]).

8

I II III

1

2

3

4

5

6

7

8

9

Figure2:Schematic view of expected spike timings using the subgraph,fre-quencies and numbering of the nodes from Fig.1.The actual distribution of spike timings could vary considerably.

4.3Further questions

There is no doubt that this basic model raises further interesting questions. When a pattern of activity is activated in a certain brain area,this may drive synchronized activity,time-locked to this pattern in other brain areas.Any actual read-out requires not only a localized activation pattern,but also mech-anisms for recruitment of other neurons and enhancement of the pattern by (synchronized)neural activity.Similarly,the question as to how the informa-tion is encoded from ongoing network activity into individual neurons is also not answered here.

We may also consider the question of whether a neuron cannot simultae-nously respond to an input and read out its stored pattern.This would be the case for phase delay or advance by selective individual inputs.(The im-pact of such phase delays or advances is di?erent if these are single events,in which case they only distort a speci?c processing event,or if they amount to phase resetting;or even to phase resetting with continuation at a di?erent fre-quency.)There may also be other modes of combining input sensitivity with stored properties.

The results we obtained were done with two-dimensional neurons,as models of cortical pyramidal neurons.We used both a generic model,and parametriza-tion according to a few distinct types.In this way,we can demonstrate a”sym-bolic”property of storage in distinct frequencies that a neuron emits,when stimulated in a noisy,distributed way.Nonetheless it could be interesting to perform simulations with more continuous variability over a range of parame-ters.We expect synchronization properties to be largely una?ected by this.The interesting question would be to interpret more continuous frequency ranges,if these exist.

9

4.4Background inhibition

The synchronization measures given in this graph are not further modulated by rhythmically structured,fast inhibitory spiking.We did not discuss feed-forward inhibition by fast-spiking interneurons,which are usually assumed to play an important role in narrow synchronization for high-frequency(>20Hz) oscillations.This is an open question for further research.

We have not systematically varied the amount of excitatory/inhibitory back-ground noise,nor speci?c types of background activity beyond white noise-the interactions with the results presented here could be suggestive.

We have worked with short-term synaptic stimulation and additional back-ground noise to keep activity going.There is thus”re-entrant”self-supporting activity to the driven input.

It is possible to put the network into a mode where the total activity is too low to support ongoing activity and the network needs ongoing outside input.In this case the self-organization properties reported here would undergo quali?ed alterations.For instance,input to hubs could have di?erent results than input to other neurons.Changes of overall activity level in the network could also di?er with changes in topology,and they would invoke homeostatic(control) corrections to keep activity constant.

4.5Synapses and graph structure

We also need to clarify the relationship between synaptic strength of in-and outputs and degree of in-and outputs.The e?ective connectivity of a neuron can be de?ned by a combination of synaptic strength and degree of connectivity.We will thus arrive at capacitated graphs,i.e.the graph structure is”implemented”by synaptic weights onto link connectivity.Based on experimental estimates on the distribution of presynaptic receptors,we may also assume that each topology change incorporates between10-20%of connections.

The concept of SW graphs in this context needs to be further explored. Potentially important features which need to be quanti?ed to be employed as measures are for instance the incidence of recurrent loops and the incidence of laterality under the assumption of a clustering of a SW graph into imperfect trees(hierarchical clusters).Di?erential stimulation to prime neurons(hubs) vs.subsidiary neurons(leaves)in a SWG also needs to be explored.This has implications for information storage(see4.2as well).

5Conclusion

We have made some progress in this paper in clarifying the relationship between intrinsic frequency encoding,synchronization and a generic model of small-world networks.Applications to a real model of cortico-striatal interactions are planned.Also,some of the questions raised may merit further systematic treatment.

10

References

[1]A Barabasi and Albert R.Emergence of scaling in random networks.Science,

286(5439):509–512,1999.

[2]E Izhikevich.Which model to use for cortical spiking neurons?IEEE Trans

Neural Networks,15(5):1063–1070,2004.

[3]E Izhikevich,Gally J A,and Edelman G M.Spike-timing dynamics of

neuronal groups.Cerebral Cortex,14(8):933–944,2004.

[4]Middendorf M,Ziv E,and Wiggins C.Inferring network mechanisms:The

drosophila melanogaster protein interaction network,2004.available in https://www.doczj.com/doc/cb9896912.html,.

[5]G Scheler.Learning intrinsic excitability with medium spiny neurons.sub-

mitted to Neural Networks,2005.pre-print available at https://www.doczj.com/doc/cb9896912.html,.

[6]G Scheler.Pre-and postsynaptic modulation of network topology and neu-

ral excitability type-implications for information storage and read-out in cortico-striatal networks.in preparation,2005.

[7]Batagelj V and Brandes U.E?cient generation of large random networks.

Physical Review E,71:036113,2005.

11

Figure3:(Left)Frequency response of MSN model with variable scaling of I As to uncorrelated input(Right)Gaussian distributions of ISIs.We see a clear separation of frequency responses

Figure4:(Left)Frequency response of the same MSN model to correlated input and(Right)Gaussian distribution of frequencies.We see less clear separation (overlapping)of frequency responses

12

Figure5:Frequency response of two-dimensional model(type1,2,3)to uncorre-lated input(left)and Gaussian distribution of frequencies49(type1),63(type2), 90(type3)(right):clear separation of frequency responses.

Figure6:Frequency response of two-dimensional model(type1,2,3)to corre-lated input(left)and Gaussian distributions47(type1),48(type2),52(type3) (right):overlapping of frequency responses

Figure7:Response of neurons type4,5,6to uncorrelated input(left)and the corresponding frequency distributions(right)

13

Figure8:Response of neurons type4,5,6to irregularly timed correlated input (left)and the corresponding frequency distributions(right)

Figure9:100generic neurons(top),100neurons of type1,2,3(middle)respond to synaptic input(Left)Response to driving input(Right)Response to dis-tributed input(generated in the same way for each neuron but with di?erent random values)

curves for uncorrelated input

14

(left)rasterplot from1000-2000ms(right)frequency distributions.Pairwise cor-relation in graph is S=0.53

neuron types:(left)rasterplot from1000-2000ms(right)frequency distributions. Pairwise correlation S=0.22.

15

Figure13:(Left)50neurons from SWG1and their connections(Right)50 neurons from RG1and their connections.The higher clustering in the SWG is

activity

16

activity

Figure16:Outdegree histogram for RG1(red)and SWG1(blue)(k<25).

17

Figure17:Full outdegree histogram for SWG1,SWG2,RG1and RG2.

Figure18:Outdegree histogram for SWG1,SWG2,RG1and RG2(k<80).

18

对等网络模式

一、对等网简介 “对等网”也称“工作组网”,那是因为它不像企业专业网络中那样是通过域来控制的,在对等网中没有“域”,只有“工作组”,这一点要首先清楚。正因如此,我们在后面的具体网络配置中,就没有域的配置,而需配置工作组。很显然,“工作组”的概念远没有“域”那么广,所以对等网所能随的用户数也是非常有限的。在对等网络中,计算机的数量通常不会超过20台,所以对等网络相对比较简单。在对等网络中,对等网上各台计算机的有相同的功能,无主从之分,网上任意节点计算机既可以作为网络服务器,为其它计算机提供资源;也可以作为工作站,以分享其它服务器的资源;任一台计算机均可同时兼作服务器和工作站,也可只作其中之一。同时,对等网除了共享文件之外,还可以共享打印机,对等网上的打印机可被网络上的任一节点使用,如同使用本地打印机一样方便。因为对等网不需要专门的服务器来做网络支持,也不需要其他组件来提高网络的性能,因而对等网络的价格相对要便宜很多。 对等网主要有如下特点: (1)网络用户较少,一般在20台计算机以内,适合人员少,应用网络较多的中小企业; (2)网络用户都处于同一区域中; (3)对于网络来说,网络安全不是最重要的问题。 它的主要优点有:网络成本低、网络配置和维护简单。 它的缺点也相当明显的,主要有:网络性能较低、数据保密性差、文件管理分散、计算机资源占用大。 二、对等网结构 虽然对等网结构比较简单,但根据具体的应用环境和需求,对等网也因其规模和传输介质类型的不同,其实现的方式也有多种,下面分别介绍: 1、两台机的对等网 这种对等网的组建方式比较多,在传输介质方面既可以采用双绞线,也可以使用同轴电缆,还可采用串、并行电缆。所需网络设备只需相应的网线或电缆和网卡,如果采用串、并行电缆还可省去网卡的投资,直接用串、并行电缆连接两台机即可,显然这是一种最廉价的对等网组建方式。这种方式中的“串/并行电缆”俗称“零调制解调器”,所以这种方式也称为“远程通信”领域。但这种采用串、并行电缆连接的网络的传输速率非常低,并且串、并行电缆制作比较麻烦,在网卡如此便宜的今天这种对等网连接方式比较少用。 2、三台机的对等网

五款最好的免费电脑资料同步备份软件

文件夹同步就是将两个文件夹内的文件内容进行分析,可选择性的让两个文件夹内容保存一直。文件夹同步软件相当有用,虽然大多数人没用过,但它确实能够为你节省很多时间和操作。比如说:同步U盘上的数据和软件设置,查找软件版本区别和更新,同步FTP上的数据。我认为,很多情况下使用同步软件可以极大提高计算机操作效率。 高效文件同步工具GoodSync 在多种驱动设备之间自动同步和备份,(个人电脑、移动设备、网络设备)支持任何文件类型,支持多任务、多语言。人性化的界面,可自由选择部分单向双向同步,有强大的过滤系统,有完整的日志记录及更改内容报表。 注意:GoodSync分析之后会在任务文件夹生成“_gsdata_”的隐藏文件夹,里面存放在任务日志和备份文件。GoodSync有免费版和专业版之分。免费版在30天内没有任何限制,仅仅是不能可用于商业用途和政府机构。过来三十天依然可以免费使用,但是仅支持3个任务(相比很多单任务的还是强大不少)和每次100文件夹的同步工作(一般情况下够)。下载 开源同步软件FreeFileSync 界面简洁,操作简单。虽然是单任务,但是可以保存和加载配置。最重要的是,作为一款开源如软件,它没有任何限制。下载

多文件夹同步器Allway Sync Allway Sync 是一个非常容易使用的 Windows 文件同步软件。同样支持在多种设备进行同步、多向同步(1个文件夹到N个)、自动同步。有极其强大的过滤规则、错误管理,可以压缩备份、加密备份。可导出导入xml格式配置文件和任务。免费版有文件大小和数量限制。当然,有着强大功能的同时,体积和资源占用也偏大。下载

(完整版)博客系统需求分析

校园博客系统需求分析 评审日期:2010 年04 月01 日 目录 1导言 (1)

1.2范围 (1) 1.3缩写说明 (1) 1.4术语定义 (1) 1.5引用标准 (1) 1.6参考资料 (2) 2系统定义 (2) 2.1项目来源及背景 (2) 2.2系统整体结构 (2) 3应用环境 (3) 3.1系统运行网络环境 (3) 3.2系统运行硬件环境 (4) 3.3系统运行软件环境 (4) 4功能规格 (4) 4.1角色( A CTOR )定义 (5) 4.1.1博客访问者 (5) 4.1.2管理用户 (5) 4.1.3 数据库 (6) 4.2系统主U SE C ASE图. (6) 4.3客户端子系统 (6) 4.4管理端子系统 (8) 4.4.1 登录管理 ....................................................... 10 4.4.2 类型管理 ......................................................... 11 4.4.3 评论管理 ....................................................... 12 4.4.4 留言管理 ....................................................... 12 4.4.5 图片管理 ....................................................... 12 4.4.6 用户管理 ....................................................... 13 5性能需求 (13) 5.1 界面需求 (13) 5.2响应时间需求 (13) 5.3可靠性需求 (13) 5.4开放性需求 (14) 5.5可扩展性需求 (14) 5.6系统安全性需求 (14) 6产品提交 (14)

个人博客简介

1.1 博客信息系统概述 “博客”(Blog或Weblog)一词源于“Web Log(网络日志)”的缩写,是一种十分简易的傻瓜化个人信息发布方式。任何人都可以像使用免费电子邮件一样,完成个人网页的创建、发布和更新。博客就是开放的私人空间,可以充分利用超文本链接、网络互动、动态更新等特点,在网络中,精选并链接全球互联网中最有价值的信息、知识与资源;也可以将个人工作过程、生活故事、思想历程、闪现的灵感等及时记录和发布,发挥个人无限的表达力;更可以以文会友,结识和汇聚朋友,进行深度交流沟通[1]。 “博客”当然是个大家都陌生的名词,博客的英文名词就是“Blog或Weblog”(指人时对应于Blogger),是一个典型的网络新事物,查阅最新的英文词典也不可能查到。该词来源于“Web Log(网络日志)”的缩写,特指一种特别的网络个人出版形式,内容按照时间顺序排列,并且不断更新。 博客是一种零编辑、零技术、零成本、零形式的网上个人出版方式。 博客概念一般包含了三个要素(当然,也不需要局限这些定义): (1)网页主体内容由不断更新的、个性化的众多日志组成。 (2)按时间顺序排列,而且是倒序方式,也就是最新的放在最上面,最旧的放在最下面。 (3)内容可以是各种主题、各种外观布局和各种写作风格,但是文章内容以“超链接”作为重要的表达方式。 因此,博客是个人性和公共性的结合体,其精髓不是主要表达个人思想,不是主要记录个人日常经历;而是以个人的视角,以整个互联网为视野,精选和记录自己在互联网上看到的精彩内容,为他人提供帮助,使其具有更高的共享价值。 博客精神的核心并不是自娱自乐,甚至不是个人表达自由,相反,是体现一种利他的共享精神,为他人提供帮助。个人日记和个人网站主要表现的还是“小我”,而博客表现的是“大我”。也许形式上很接近,但内在有着本质的差异。所有优秀博客网站中,真正表达作者个人的内容非常有限,最多只是点缀,而不像个人网站那样是核心。 1.2 博客发展趋势 趋势一:博客现在正在形成个人的信誉机制,有了博客之后就确立了一个个人虚拟身份,简单的来讲就是个人在互联网上是有名有姓的,而不再是一种匿名的行为,网民从流浪汉变成了一个定居者。以前在互联网上的各种行为都是在匿名状态中,相互之间是不认识的,但有了博客之后可以天天关注,而别的人也可

汇博通文档借阅管理组织系统软件使用使用说明

汇博通文档借阅管理系统使用说明书 汇博通知识管理系统的属性管理,实际上已提供了借阅与归还功能,但那是针对每一份文件 或档案而言的。 这里,为客户提供一款专门用于文档的借阅与归还的软件,不但可办理一份文件的借阅或归 还手续,只要有需要,也可批量办理借阅与归还,另外,还提供了与借阅有关的一系列统计 报表。 发放功能与借阅类似,所不同的只是发放不必归还,如将购买的资料、图书发放给职员学习 等。 注:借阅与归还模块的操作,需要获得以下三种权限中的一种: 系统管理员 归档授权(档案管理员) 编号授权(文件管理员) 与借阅与归还模块相关的系统参数的设置说明如下:

首页 汇博通主页的模块工具条上,有一个借阅与归还的按钮,单击它即进入借阅与归还首页。 借阅(发放) 前面已经介绍过,借阅与发放的区别在于,借阅需要归还,发放则不必归还,从某种意义上 来说,发放实际上已将所有权(或有条件的所有权)转移给接收者。 借阅界面包括左右两个子窗体,左侧子窗体用于显示可供借阅(发放)的文档,其上部有搜 索关键词输入框,输入相应关键词即可查找出可供借阅的相应文档,如果要借阅的文档已经 在操作者手上,并且,标注有条形码或电子标签,操作者可直接通过条码阅读器或电子标签

阅读器读取相应编码直接获取到该文档。 根据实际需要,通过点选左侧的复选框,选择具体文档,然后,通过点击两个子窗体中间的箭头,即可将选中的文档添加到右侧子窗体的列表中,即可直接办理借阅或发放手续。 可供借阅(发放)检索列表待选区。借阅(发放)选择勾选列表区。 可供借阅(发放) 输入文件名称、编号、责任者或主题词等属性,点击【检索】按钮进行查找,如下图: 勾选确定后点击该按钮,即可添加到已 选择列表区中。

如何使用群晖备份、同步文件

如何使用群晖备份、同步文件?通过群晖管家安装好NAS之后,想要实现备份、同步还要随时随地查看所有的文件?只需要一个Drive,就能把你的需求统统搞定。让你轻松的掌握文件同步和备份。 Drive既是备份盘、同步盘、网盘,还可以是协作盘。集中管理所有文件,还能够同步不同电脑上的数据。团队脑风暴时,可以多人在同一个文档上实时协同编辑,还能够备份电脑上的文件并且提供多版本保护。 安装及设置drive套件 1、打开群晖DSM界面,在套件中心安装Drive套件。 2、安装Drive套件会一并安装Drive管理控制台——顾名思义,就是可以设置Drive 相关功能、管理所有备份和同步的设备、查看历史版本等。 3、建议你在Drive管理控制台启用深度搜索,就可以在Drive里面查找内文关键字还有照片各种原始信息,步骤如图。

设置备份盘 1、首先进入群晖官网的下载中心,根据NAS机型,选择下载“Drive Client”PC客户端,Windows、Mac、Ubuntu一应俱全,系统兼容妥妥的。 2、PC客户端安装完成后,根据需求修改Drive服务器(NAS端)和电脑(本地端)的不同文件夹。 3、设置完成后,进入Drive PC客户端的控制面板,将同步模式改成“单向上传”,点击应用,然后就开始备份啦。 同步盘如何实现 1、同步盘很简单,设置步骤跟上面的备份盘一样,在需要同步的电脑上安装Drive PC客户端,并且选择双向同步。 2、如果在办公场景,希望把他人分享给你的共享文件夹同步到电脑本地,在PC客户 端控制面板点击“创建>启用同步与我共享”,这么一来,别人与你分享的文件也会同步到本地。

日志分析系统

Web日志集中管理系统的研究与实现 吴海燕朱靖君程志锐戚丽 (清华大学计算机与信息管理中心,北京100084) E-mail:wuhy@https://www.doczj.com/doc/cb9896912.html, 摘要: Web服务是目前互联网的第一大网络服务,Web日志的分析对站点的安全管理与运行维护非常重要。在实际运行中,由于应用部署的分散性和负载均衡策略的使用,使得Web日志被分散在多台服务器上,给日志的管理和分析带来不便。本文设计并实现了一个Web日志集中管理系统(命名为ThuLog),系统包括日志集中、日志存储和日志分析三个模块。目前,该系统已经在清华大学的多个关键Web应用系统上进行了应用,能够帮助系统管理员清晰地了解系统运行情况,取得了较好的运行效果。 关键词:Web日志日志分析日志集中管理系统 The Research and Implementation of a Centralized Web Log Management System Wu Haiyan Zhu Jingjun Cheng Zhirui Qi Li (Computer&Information Center,Tsinghua University,Beijing100084) Abstract:Web is now the biggest network service on the Internet.The analysis of Web logs plays an important role in the security management and the maintenance of a website.But because of the decentralization of deployment and the use of load balancing,Web logs are often seperated on each Web server,which makes the management and analysis of them not so convenient.This paper designs and implements a Web Log Centralized Management System(named ThuLog),which includes3modules:the centralization of logs,the storage of logs and the analysis of logs.Through log analysis of several critical Web systems in Tsinghua University,it could help system administrators learn clearly what happens in information systems and achieves good operating results. Key words:Web Logs Log Analysis Web Log Centralized Management System 1.引言 近年来,随着计算机网络技术的迅速发展,Web正以其广泛性、交互性、快

博客系统需求分析报告

博 客 系 统 需 求 分 析 报 告 院系:信息电子工程学院 班级:软件08-1 设计小组人员:29号 日期:2010年5月24日

一、系统概述 “博客”一词是从英文单词Blog音译(不是翻译)而来。Blog是Weblog 的简称,而Weblog则是由Web和Log两个英文单词组合而成。 Weblog就是在网络上发布和阅读的流水记录,通常称为“网络日志”,简称为“网志”。博客(BLOGGER)概念解释为网络出版(Web Publishing)、发表和张贴(Post-这个字当名词用时就是指张贴的文章)文章,是个急速成长的网络活动,现在甚至出现了一个用来指称这种网络出版和发表文章的专有名词——Weblog,或Blog。 在网络上发表Blog的构想始于1998年,但到了2000年才开始真正流行。而2000年博客开始进入中国,并迅速发展,但都业绩平平。直到2004年木子美事件,才让中国民众了解到了博客,并运用博客。2005年,国内各门户网站,如新浪、搜狐,原不看好博客业务,也加入博客阵营,开始进入博客春秋战国时代。起初,Bloggers将其每天浏览网站的心得和意见记录下来,并予以公开,来给其他人参考和遵循。但随着Blogging快速扩张,它的目的与最初已相去甚远。目前网络上数以千计的Bloggers发表和张贴Blog的目的有很大的差异。不过,由于沟通方式比电子邮件、讨论群组更简单和容易,Blog已成为家庭、公司、部门和团队之间越来越盛行的沟通工具,因为它也逐渐被应用在企业内部网络(Intranet)。目前,国内优秀的中文博客网有:新浪博客,搜狐博客,中国博客网,腾讯博客,博客中国等。 二、需求分析 博客系统是一个多用户、多界面的系统,主要包括以下几个模块组成。 1.匿名用户模块 本模块主要由注册、登录、浏览博客、评论4个部分组成。匿名用户可以对其他用户的博客内容时行浏览、评论。也可以通过注册后登录博客系统,申请一个属于自己的博客。 2.注册用户模块 本模块主要由个人信息管理、评论管理、好友管理、相册管理、文章管理5

人力资源管理系统软件操作手册

XX集团—人力资源管理系统操作手册 目录 常用操作(新人必读) (2) 1.基础数据管理 ................................................................................................................... - 5 - 1.1组织架构 (5) 1.2职位体系 (8) 1.3职员维护 (11) 1.4结束初始化.................................................................................. 错误!未定义书签。 2.组织管理业务 ................................................................................................................. - 27 - 2.1组织规划 (27) 2.2人力规划 (33) 2.3组织报表 (38) 3.员工管理业务 ................................................................................................................. - 41 - 3.1员工状态管理 (41) 3.2合同管理 (41) 3.3后备人才管理 .............................................................................. 错误!未定义书签。 3.4人事事务 (52) 3.5人事报表 (59) 4.薪酬管理 ......................................................................................................................... - 69 - 4.1基础数据准备 (69) 4.2薪酬管理日常业务 (92) 4.3薪酬管理期末业务 (107) 4.4薪酬报表 (108)

对等网络配置及网络资源共享

物联网技术与应用 对等网络配置及网络资源共享 实验报告 组员:

1.实验目的 (1)了解对等网络基本配置中包含的协议,服务和基本参数 (2)了解所在系统网络组件的安装和卸载方法 (3)学习所在系统共享目录的设置和使用方法 (4)学习安装远程打印机的方法 2.实验环境 Window8,局域网 3.实验内容 (1)查看所在机器的主机名称和网络参数,了解网络基本配置中包含的协议,服务和基本参数 (2)网络组件的安装和卸载方法 (3)设置和停止共享目录 (4)安装网络打印机 4.实验步骤 首先建立局域网络,使网络内有两台电脑 (1)“我的电脑”→“属性”,查看主机名,得知两台计算机主机名为“idea-pc”和“迦尴专属”。 打开运行输入cmd,进入窗口输入ipconfig得到相关网络参数。局域网使用的是无线局域网。 (2)网络组件的安装和卸载方法:“网络和共享中心”→“本地连接”→“属

性”即可看到网络组件,可看其描述或卸载。 “控制面板”→“卸载程序”→“启用和关闭windows功能”,找到internet 信息服务,即可启用或关闭网络功能。 (3)设置和停止共享目录(由于windows版本升高,加强了安全措施和各种权

限,所以操作增加很多) 使用电脑“idea-pc”。“打开网络和共享中心”→“更改高级选项设置”。将专用网络,来宾或公用,所有网络中均选择启用文件夹共享选项,最下面的密码保护项选择关闭,以方便实验。 分享文件夹“第一小组实验八”,“右键文件夹属性”→“共享”→“共享”,选择四个中的一个并添加,此处选择everyone,即所有局域网内人均可以共享。

销售管理软件操作手册

前言 本《操作手册》内容是按该软件主界面上第一横排从左至右的顺序对各个功能加以介绍的,建议初学者先对第一章系统设置作初步了解,从第二章基础资料读起,回头再读第一章。该管理软件的重点与难点是第二章,望读者详读。 第一章系统设置 打开此管理软件,在主界面上的左上方第一栏就是【系统设置】,如下图所示: 点击【系统设置】,在系统设置下方会显示【系统设置】的内容,包括操作员管理、数据初始化、修改我的登录密码、切换用户、选项设置、单据报表设置、导入数据、数据库备份、数据库恢复、压缩和修复数据库、退出程序。下面分别将这些功能作简要介绍: 1.1操作员管理 新建、删除使用本软件的操作员,授权他们可以使用哪些功能。此功能只有系统管理员可以使用。 1.1.1 进入界面 单击【系统设置】,选择其中的【操作员管理】,画面如下:

1.1.2、增加操作员 单击【新建】按钮,画面如下: 输入用户名称、初始密码、选择用户权限,可对用户进行适当描述,按【保存】后就点【退出】,就完成了新操作员的添加,效果如下图。

1.1.3 删除操作员 选择要删除的操作员,单击【删除】按钮。 1.1.4 修改操作员 选择要修改的操作员,单击【修改】按钮,可对操作员作相应修改,修改后需保存。 1.1.5 用户操作权限 选择要修改的操作员,单击【修改】按钮,出现以下画面,点击【用户权限】栏下的编辑框,出现对号后点【保存】,该操作员就有了此权限。 1.2数据初始化 1.2.1进入界面 单击【系统设置】,选择其中的【数据初始化】,画面如下:

1.2.2数据清除 选择要清除的数据,即数据前出现对号,按【确定】后点【退出】,就可清除相应数据。 1.3 修改我的登录密码 1.3.1进入界面 单击【系统设置】,选择其中的【修改我的登录密码】,画面如下: 1.3.2密码修改 输入原密码、现密码,然后对新密码进行验证,按【确定】后关闭此窗口,就可完成密码修改。 1.4 切换用户 1.4.1进入界面 单击【系统设置】,选择其中的【切换用户】,画面如下:

对等网络(P2P)总结整理解析

对等网络(P2P 一、概述 (一定义 对等网络(P2P网络是分布式系统和计算机网络相结合的产物,在应用领域和学术界获得了广泛的重视和成功,被称为“改变Internet的新一代网络技术”。 对等网络(P2P:Peer to Peer。peer指网络结点在: 1行为上是自由的—任意加入、退出,不受其它结点限制,匿名; 2功能上是平等的—不管实际能力的差异; 3连接上是互联的—直接/间接,任两结点可建立逻辑链接,对应物理网上的一条IP路径。 (二P2P网络的优势 1、充分利用网络带宽 P2P不通过服务器进行信息交换,无服务器瓶颈,无单点失效,充分利用网络带宽,如BT下载多个文件,可接近实际最大带宽,HTTP及FTP很少有这样的效果 2、提高网络工作效率 结构化P2P有严格拓扑结构,基于DHT,将网络结点、数据对象高效均匀地映射到覆盖网中,路由效率高 3、开发了每个网络结点的潜力 结点资源是指计算能力及存储容量,个人计算机并非永久联网,是临时性的动态结点,称为“网络边缘结点”。P2P使内容“位于中心”转变为“位于边缘”,计算模式由“服务器集中计算”转变为“分布式协同计算”。

4、具有高可扩展性(scalability 当网络结点总数增加时,可进行可扩展性衡量。P2P网络中,结点间分摊通信开销,无需增加设备,路由跳数增量小。 5、良好的容错性 主要体现在:冗余方法、周期性检测、结点自适应状态维护。 二、第一代混合式P2P网络 (一主要代表 混合式P2P网络,它是C/S和P2P两种模式的混合;有两个主要代表: 1、Napster——P2P网络的先驱 2、BitTorrent——分片优化的新一代混合式P2P网络 (二第一代P2P网络的特点 1、拓扑结构 1混合式(C/S+P2P 2星型拓扑结构,以服务器为核心 2、查询与路由 1用户向服务器发出查询请求,服务器返回文件索引 2用户根据索引与其它用户进行数据传输 3路由跳数为O(1,即常数跳 3、容错性:取决于服务器的故障概率(实际网络中,由于成本原因,可用性较低。

多文件夹的自动同步和各向同步工具

多文件夹的自动同步和各向同步工具 出处:小建の软件园作者:佚名日期:2008-06-25 关键字:同步 对于经常需要备份文件,同步文件的网友,Allway Sync 可谓不可多得,虽然不能激活其专业版,对文件数量多和经常性的同步操作可能会超过免费版的限制,不过对于一般文件数量不多同步操作可以完全满足,Allway Sync 使用相当简单,多种同步方式能满足你不同需求。对重要文件进行备份是文件恢复最好的方法,而 Allway Sync 可以简化你许多备份的过程,能实现自动备份,如果你“胃口”不大,免费版应当已经可以满足。 下载地址:https://www.doczj.com/doc/cb9896912.html,/soft/23495.html Allway Sync 可以进行自动同步,可以对的文件/文件夹进行筛选,只备份需要的东东。

Allway Sync 备份方式介绍 - 同步方式有源文件夹同步和各向同步两种方式: 1、源文件夹同步方式将以一个文件夹为基准,删除或覆盖其余文件夹与源文件相比较不相同的文件。 2、各向同步方式则自动将更新的文件覆盖几个同步文件夹中的旧文件。软件带有一个小型数据库,监视每次更新后的文件状态。如果在一次同步之后,你删除了同步文件夹中某些文件,它在同步的时候将其它的几个文件夹的副本也删除,而不会将不需要的未删除文件重复拷贝到已更新的文件夹。由于软件自己会对文件进行删除和覆盖,它提供了使用回收站进行文件备份的措施,使用者可以在不慎执行错误的同步动作之后,从回收站将错误删除或覆盖的文件找回来(默认禁用该功能,请到软件选项处激活相应设置)。 主程序在 AllwaySync\Bin\里面,此为多国语言版,在语音选项那里选择中文即可。不过退出的时候会有错误提示(貌似没影响?)

博客系统需求分析报告1

系统需求分析和概要设计 1 系统需求分析 1.1 开发背景 过去很多人都喜欢写文章写日记以及交流自己的文章和作品,以求实现相互间的沟通、展现自己的才华和让别人了解自己的想法观点。现在的网络已经成为人们生活中不可或缺的一个元素,所以自然而然诞生了博客这样一个新兴事物,它不仅仅能取代前面所说的功能,还能加入图片,而且使得作者更能无所拘束地生动地写出自己想写的,旁人也能非常便捷地阅读并且加以评论,并且它还能作为展示个人个性的窗户。个人博客现在已经成为很多人生活中必不可少的一个部分,方便了人与人之间的沟通和交流。 1.2 系统实现目标概述 基于个人博客以上的特点,本系统要实现个人博客的主要基本功能有主界面,博客用户登录发表文章(心情、日志),用户登录/退出,游客发表评论,分页浏览文章和评论等。这里其中比较主要的是区分了个人博客用户和游客。博客用户可以在任何时候写下自己的主张,记录下自己的点点滴滴。而游客主要的权限是阅读博客所有注册用户写的文章,阅读后可以发表评论和留言,还可以分页浏览所有注册用户上传的图片。以上是个人博客的系统功能目标,当然由于个人博客的网络流行特点以及个人个性的展示,还适当要求界面比较漂亮轻快,直观便捷,操作方式简单以及人性化。 1.3 系统功能需求 根据对系统的特点和应用的分析,可以得到本系统主要有如下功能: (1)登录 这部分功能又分为用户登录、用户退出两个部分。 登录:主要用于验证博客网站用户信息的真实身份,以便对博客网站进行管

理和维护。通过系统管理员写入的用户名,密码登录到网站。网站检测用户的用户名,密码并给予其相应的权限对博客网站进行操作。 用户退出:已经登陆的用户可以退出,释放自己所占有的各种信息资源。 (2)文章管理 文章管理主要有文章的发表、查询、浏览、评论和删除功能。 博客的系统管理员除了可以查询、浏览和评论文章外,还可以对系统中的所有文章以及评论进行修改、删除操作。这些维护和管理拥有最高权限,并且系统自动更新在服务器端数据库中的数据。 文章的发表:博客用户可以发表自己的文章,文章包括主题、正文、表情、图片等信息,作者通过各种元素来展示自己的想法和思想。系统接受这些信息并且存储在服务器端的数据库中。 文章的删除:博客用户可以删除自己已经发表的文章内容和各项信息,系统自动在服务器端数据库中删除这些记录。 文章的浏览:游客和博客用户根据所获得的用户权限获取服务器端数据存储的各篇文章并且浏览阅读文章的所有信息,包括标题、正文、表情、图片以及其它读者的留言评论。 文章的评论:文章的读者可以评论和回复所阅读的文章,发表自己的看法。系统自动将这些评论存储在服务器端的数据库中,并且可供博客作者以及其它读者浏览。 文章的查询:博客用户可以按文章题目或作者来查询想要查的文章。 文章中还可能包含一些图片视频等多媒体,所以文章管理中还包含了网站中媒体的管理。 媒体管理有添加,浏览、删除和查询功能。博客用户可以添加自己喜欢的图片或视频等,还可以查询和浏览系统中的所有媒体信息。游客只能浏览博客系统中的媒体信息。系统管理员拥有以上的所有权限,除此之外还可以删除媒体信息。 (3)博客管理员管理 博客管理员可以添加、删除新用户,用户的角色又分为订阅者、作者、编辑、投稿者、管理员。 还可以对博客主页的外观、博客使用的插件、工具进行添加、删除、设置。

博客作用

1.过滤信息 在这个网络信息泛滥的时代,网上的信息太多、太杂、太乱,学习者无法判别哪些信息是有价值的,哪些是重要的。教师可以通过博客将经过过滤过的信息传递给学生,而学生也可以通过博客将信息传递给他的伙伴。通过浏览别人的博客日志,知识获取的效率将得到很大的提高。 2.提供学习的丰富情境 通常的教辅网站,只是提供一些参考资料的链接,而博客则提供更多的评价,更广泛的背景资料。有一些学者通过博客日志反映他们对某些问题的认识,开始对于这些问题的看法可能也是粗糙的,但是他们将这些思想表达出来,然后在博客上发表后续的看法。在这一过程中,专家可以将最近看了哪些书,读了哪些人的文章,听取了哪些意见都通过博客方式表达出来。这样,阅读者了解的不仅仅是专家静态的、目前的观点,而重要的是可以把握专家思想的流程。同样,这一方式对于学生来讲也是有效的,学生的博客日志可以反映出他们在学习过程中产生的问题、关于问题的想法与思路、问题的解决过程,使得教师可以更有效地了解学生的学习状况。 3.提高学生的媒体文化水平 博客(blog)的个人化使得博客们(blogger)在信息发布的过程中,要采用最适当的方式对信息进行过滤与说明,使得他的博客日志能够为更多的人接受,使得他的思想和资源为更多的人所了解。与传统BBS相比,博客日志具有更强的规范性,博客们具有更强的自律性。由于博客一般是由个人或小组拥有的,通常具有共同的主题,所谓敝帚自珍,所以在博客的世界中,很少出现在BBS中常见的不负责任的"胡说八道"。 4.鼓励参与者发表自己不同的观点 博客的模式是平等的,博客更看重的是参与的过程而不是结果。对于教师或书本上的观点,学生可以通过博客的方式发表他对于这些问题的理解,博客并不要求意见的统一,但要求意见的针对性和独立性。另外,在课程设置的过程中可以设置多个不同的议题,允许学生自由地选择他们感兴趣的议题。 5.提供对信息的评价 博客的重要特征就是对信息的过滤,使得信息可以转换成有用的知识。但是

对等网络的网络弹性分析

对等网络的网络弹性分析 摘要:网络弹性研究的是网络在节点失效或被有意攻击下所表现出来的特征。分析Gnutella网络的网络弹性,包括对于随机攻击的容错性和对于选择性攻击的抗攻击性,并与ER模型和EBA模型进行了对比。Gnutella网络对于随机攻击具有很好的容错性,但是对于选择性攻击却显得脆弱。最后对网络弹性进行了理论分析,给出了网络在出现最大集团临界点之前的平均集团大小的公式解。 关键词:对等网络;无标度;网络弹性;脆弱性 中图分类号:TP393.02文献标识码:A 文章编号:1001-9081(2007)04-0784-04 0 引言 在过去的40多年里,科学家习惯于将所有复杂网络看作是随机网络。随机网络中绝大部分节点的连结数目会大致相同。1998年开展的一个描绘互联网的项目却揭示了令人惊诧的事实:基本上,互联网是由少数高连结性的页面串联起来的,80%以上页面的连结数不到4个,而只占节点总数不到万分之一的极少数节点,例如门户网Yahoo和搜索引擎Google等类似网站,却高达上百万乃至几十亿个链接。研究者把包含这种重要集散节点的网络称为无标度网络[1]。

具有集散节点和集群结构的无标度网络,对意外故障具有极强的承受能力,但面对蓄意的攻击和破坏却不堪一击[2]。在随机网络中,如果大部分节点发生瘫痪,将不可避免地导致网络的分裂。无标度网络的模拟结果则展现了全然不同的情况,随意选择高达80%的节点使之失效,剩余的网络还可能组成一个完整的集群并保持任意两点间的连接,但是只要5%―10%的集散节点同时失效,就可导致互联网溃散成孤立无援的小群路由器。 许多复杂网络系统显示出惊人的容错特性,例如复杂通信网络也常常显示出很强的健壮性,一些关键单元的局部失效很少会导致全局信息传送的损失。但并不是所有的网络都具有这样的容错特性,只有那些异构连接的网络,即无标度网络才有这种特性,这样的网络包括WWW、因特网、社会网络等。虽然无标度网络具有很强的容错性,但是对于那些有意攻击,无标度网络却非常脆弱。容错性和抗攻击性是通信网络的基本属性,可以用这两种属性来概括网络弹性。 对等网络技术和复杂网络理论的进展促使对现有对等 网络的拓扑结构进行深入分析。对网络弹性的认识可以使从网络拓扑的角度了解网络的脆弱点,以及如何设计有效的策略保护、减小攻击带来的危害。本文研究Gnutella网络的网络弹性,并与ER模型和EBA模型进行了比较,对比不同类 型的复杂网络在攻击中的网络弹性。当网络受到攻击达到某

备份软件使用方法v1.0

备份软件使用方法 一Bestsync2012使用说明 1 软件运行 点击BestSync2012运行软件 2 设置任务 在编辑菜单下点击追加任务(如果任务列表下没有任务可以在文件菜单下选择新建任务选项) 软件会弹出任务窗口,用来设置同步任务

以其中一个任务为例

选择好同步的文件夹和同步方向,点击下一步,按照要求设置任务即可。 3 查看任务 在以有任务中点击设置任务(任务必须是未在同步状态,否者不能点击设置任务选项)

点击后软件会弹出设置同步任务窗口,在这里可以在里面进行任务修改和设置

目前我们设置的同步任务只需要修改一般和日程两个窗口下的内容,其他暂时不需要修改。 BestSync2012这款同步软件目前还不是很稳定,需要不定期检查一下软件是否运行正常,如果发现软件出错,就关闭软件后在打开BestSync2012软件,因为打开软件后软件不会自动启动同步功能,所有需要手动启动所有任务 注意: 1 在修改任务在开启后,必须将修改的任务停止一下在开启,不然同步任务不能正常同步。 2 现有BestSync2012同步软件在16.15和151.247这两台机器上。

二Backup Exec 2010 R2 SP1使用说明 1 软件运行 点击Backup Exec 2010运行软件 2 设置任务 在作业设置选项中可以看到作业的作业名称、策略名称和备份选这项列表。 其中作业名称里放有现有作业,双击其中一个作业就可以看到作业属性。作业属性默认显示设备和介质窗口,在设备和介质窗口下可以选择设备和介质集。目前设备选项中因为只有一台磁带机工作,所有只有一个选项,而介质集一般选择永久保留数据-不允许覆盖选项。

博客需求分析

博客系统需求分

一、系统概述 “博客”一词是从英文单词Blog音译(不是翻译)而来。Blog是Weblog 的简称,而Weblog则是由Web和Log两个英文单词组合而成。 Weblog就是在网络上发布和阅读的流水记录,通常称为“网络日志”,简称为“网志”。博客(BLOGGER)概念解释为网络出版(Web Publishing)、发表和张贴(Post-这个字当名词用时就是指张贴的文章)文章,是个急速成长的网络活动,现在甚至出现了一个用来指称这种网络出版和发表文章的专有名词——Weblog,或Blog。 在网络上发表Blog的构想始于1998年,但到了2000年才开始真正流行。而2000年博客开始进入中国,并迅速发展,但都业绩平平。直到2004年木子美事件,才让中国民众了解到了博客,并运用博客。2005年,国内各门户网站,如新浪、搜狐,原不看好博客业务,也加入博客阵营,开始进入博客春秋战国时代。起初,Bloggers将其每天浏览网站的心得和意见记录下来,并予以公开,来给其他人参考和遵循。但随着Blogging快速扩张,它的目的与最初已相去甚远。目前网络上数以千计的Bloggers发表和张贴Blog的目的有很大的差异。不过,由于沟通方式比电子邮件、讨论群组更简单和容易,Blog已成为家庭、公司、部门和团队之间越来越盛行的沟通工具,因为它也逐渐被应用在企业内部网络(Intranet)。目前,国内优秀的中文博客网有:新浪博客,搜狐博客,中国博客网,腾讯博客,博客中国等。 二、需求分析 博客系统是一个多用户、多界面的系统,主要包括以下几个模块组成。 1.匿名用户模块

博客简介

漫漫教学路,博客伴我行能在互联网上拥有一个真正属于自己的空间,是我的梦想,而 今天这个梦想在“博客”中实现了。我怀着一颗好奇心,在博客上流连,申请了一方属于自己的免费空间,置身于梦幻秋天的背景下,设置自己喜欢的几个栏目,于是我便拥有了博客。当我第一次在博客中添加文章的时候,兴奋得无法入眠。我想:平素与网络无缘的我也终于拥有了一个网上家园。一个可以让我任意挥洒激情、记录人生轨迹的网上家园。感谢博客给我一块自由的空间,让我展翅飞翔!在与博客“亲密接触”的日子里,我深深地感觉到博客对教育的促进,对自身专业化成长的帮助。 在开始的时候,我也只是摘录一些自己感兴趣的信息,很少有经过自己思考的原创日志。随着对博客认识的加深,以及浏览其他著名博客所受到的启示,我也试着把自己在教育中的思考及时记录下来。就这样我在博客里“书写着,记录着,思考着,分享着,品味着,学习着”,在不断地积累中感受着学习的乐趣。在博客里写作已经逐渐成为我的一种习惯,在博客中我不断地阅读、书写,在阅读、书写中释放心情,这让我感到在博客中学习竟是如此快乐。我在博客中开设了心灵随笔,教学案例,教学反思,教学相长,教学设计,教学论文,主题中队会等栏目…… 作为一名教师,我深深地认识到:要想鼓励、指导学生写出好的文章,教师必须要有过硬的写作基本功,博客中的心灵随笔这个栏目正好为我提供了这样一个平台,我在这个栏目中及时捕捉教学生活中细微的瞬间,从中悟出深刻的道理,并马上形成文字。例如:《让心灵跟着爱飞翔》、《如何赏识学生》、《感动》、《怎样转变学生的不良习惯》等文章。心灵的感悟,出乎意料的发挥了作用,有了这样的历练,对学生进行写作指导和评改,就驾轻就熟了。学生也会在老师的指导下逐渐明白,写作并不是一件很难的事情,只要真实的记录自己在生活中的所见、所闻,有了自己的感悟,慢慢就会写出具有真情实感的文章。 在博客中记录教学过程是一个不断充实自己,提高自己的过程,教学中我也曾遇到过很多困惑,于是把这些困惑书写到我的博客中,期待与博友们交流和切磋。博友们的热心触发了我很多灵感,常常使我茅塞顿开……我现在博客中的教学案例就是平时点滴的积累。《位置与方向》《那只松鼠》《笔算除法》《商中间、末

管理软件使用说明书

目录 1 软件介绍...................................................... 1 2 软件运行环境 ................................................. 1 3 软件安装步骤 ................................................. 1 4 软件卸载步骤 ................................................. 4 5 软件使用...................................................... 45.1、创建数据库.............................................................................................................................. 4 5.2、创建数据数据表................................................................................................................... 6 5.3、历史数据读取 ........................................................................................................................ 7 5.4、查看历史数据、通道信息.............................................................................................. 8 5.5、打印数据、曲线或图片输出 .................................................................................... 13 5.6、数据实时采集 .................................................................................................................... 15 6 软件使用中可能出现的问题与解决方法.................. 186.1、不出现对话框 .................................................................................................................... 18 6.2、数据库不能建立............................................................................................................... 18 6.3、U盘不能数据转存........................................................................................................... 18 6.4、U盘上没有文件 ................................................................................................................ 18 6.5、U盘数据不能导入计算机;...................................................................................... 18

相关主题
文本预览
相关文档 最新文档