当前位置:文档之家› 脉冲激光沉积法制备Zn0薄膜中衬底温度对Zn0薄膜结构的影响

脉冲激光沉积法制备Zn0薄膜中衬底温度对Zn0薄膜结构的影响

脉冲激光沉积法制备Zn0薄膜中衬底温度对Zn0薄膜结构的影响
脉冲激光沉积法制备Zn0薄膜中衬底温度对Zn0薄膜结构的影响

脉冲激光器

收稿日期:2004-09-20;收到修改稿日期:2005-10-28 作者简介:姜本学(1980-),男,山东青州人,博士研究生,主要从事高平均功率激光晶体生长、光谱和激光性能的研究。E-mail:jiangbx@https://www.doczj.com/doc/c79771463.html, 摘要介绍了能够实现高平均功率的两种固体激光器:固体薄片激光器和固体热容激光器。给出了它们的工作原理和 理论上的工作参数。综述了固体薄片激光器和固体热容激光器的研究历史和现状,指出了高平均功率固体激光器未来的发展方向。关键词 固体薄片激光器;固体热容激光器;高平均功率固体激光器 中图分类号:TN248 Thin Disk Solid State Lasers and Heat Capacity Solid State Lasers JIANG Benxue 1,2ZHAO Zhiwei 1ZHAO Guangjun 1XU Jun 1 1Shanghai Institute of Optics and Fine Mechanics,The Chinese Academy of Sciences,Shanghai 201800 2Graduate School of the Chinese Academy of Science,Beijing 100200 ()Abstract The working principles and the working parameters calculated theoretically of two types of solid state lasers,thin disk lasers and heat capacity lasers,which can realize high average power,are introduced.Their research history and the present status are described,the adoption of Nb:YAG,Nd:GGG,and Nd:YAG crystals in the solid state lasers are summarized,and the prospect and the development trends of high average power solid state lasers are pre 原sented.Key words thin disk solid state laser;heat capacity laser;high average power solid state laser 固体薄片激光器和固体热容激光器 姜本学1,2赵志伟1赵广军1徐军1 1中国科学院上海光学精密机械研究所,上海2018002中国科学院研究生院,北京100200 ()1引言 高平均功率(HAP)输出的固体 激光器(SSL)在工业、科学和军事等领域都有着非常诱人的应用前景[1~4]。设计高功率固体激光器的主要的困难有两个[5]:对抽运过程中无法避免的废热进行处理以及消除由于将废热去除而导致的后果。在激光工作过程中如果不对增益介质冷却,就会导致其温度升高,使得增益系数降低,最终导致不能工作。对增益介质冷却就会引起热透镜、机械应力及其它许多问题的产生,进而可能使激光光束质量下 降、降低激光输出功率、甚至可能导致固体激光增益介质的破裂。 针对高功率固体激光器上述两个发展瓶颈,解决的方法有两个:一是由于产生废热是不可避免 的, 所以要尽量消除由于消除废热而引起的后果。必须要减少热量和热流密度,减小热流的传导路程和 对激光场的影响[6~19]。几年来, 关于这方面的研究有很多的设计模型,比较理想的模型是盘片激光器。二是在激光工作过程中不对增益介质冷却,即固体热容激光器。这样就要求选择增益介质的热容和密度要尽可能的大, 从而在相同的激光输出的情况下,增益介质的温度升高尽量小[20~32]。 Yb 掺杂离子体系和Nd 掺杂离子体系的发展为高功率固体激光器的研究提供了好的方向[5,6]。由于Yb 离子的量子缺陷比Nd 离子低的多,大约仅为1/3,这在很大的程度上降低了废热的产生。但是由于Yb 离子是准三能级结构,激光下能级低,所以受温度影响大,抽运阈值高。本文重点介绍Yb 掺杂离子体系和Nd 掺杂离子体系的盘片激光器和固体热容激光器的研

化学共沉淀法制备磁性纳米微粒实验方案

化学共沉淀法制备磁性纳米微粒实验方案 化学共沉淀法得到的磁性壳聚糖微球通常粒径较小具有较大的的比表面积和固载量对干细胞具有很强的吸附能力而且分散性很好其磁性胶粒可以稳定地分散于水中但是其磁响应性较弱操作时需施加较强的磁场。 方案一: 化学共沉淀法是指在二价与三价铁离子在碱性条件下沉淀生 成Fe3O4 或利用氧化还原反应生成Fe3O4的同时利用壳聚糖作分散剂从而得到外包有壳聚糖的磁性微球。Honda等将20mL0.5%的壳聚糖溶液和2.4mL 含FeCl3 720 mg FeCl2 4H2O 290mg 的混合物在激烈搅拌下均匀混合然后加氨水恒温静置经过反应处理后制得磁性壳聚糖微球。 方案二: 1.Fe3O4纳米微粒的制备 将20 mL FeCl3(1.0 mol L-1)与5 mL FeCl2(2.0 mol L-1,在2.0 mol L-1的盐酸溶液中配制)溶液混合均匀加入到250 mL 0.7 mol L-1的氨水溶液中,离心分离后所得的黑褐色沉淀用150 mL 2.0 mol L-1的高氯酸分散,用超纯水洗至中性,干燥,得到Fe3O4纳米粒子。 2.磁性壳聚糖微球的制备 将0.5 g壳聚糖溶解于20 mL 2%的乙酸溶液中,加入150 mg磁性纳米粒子,在搅拌下缓慢加至装有80 mL液体石蜡和4 mL span-80混合溶剂的三颈瓶中,常温下充分搅拌30 min,加入10 mL一定浓度的戊二醛,在40℃的水浴中反应60 min后,用1.0 mol L-1的NaOH溶液将pH值调至9.0~10.0,升温至70℃继续反应2 h,得到的产物依次用丙酮、石油醚、N,N-二甲基甲酰胺、超纯水充分洗涤抽滤,磁铁收集,60℃真空干燥,得到磁性壳聚糖微球。 方案三: 将二价铁盐(FeCl2·4H20)和三价铁盐(FeCl3·6H20)按不同的物质的量比(1:1.25)溶于蒸馏水中,配制成一定浓度的溶液.水浴恒温(40℃),剧烈搅拌下滴加1.5mol/L氨水,将体系的pH保持在一定的范围内(pH=9),在恒温过程中搅拌30min,结束反应。生成的颗粒磁分离后用蒸馏水反复洗涤直至中性,真空干燥后,研磨即得纳米Fe304颗粒。 方案四(超声沉淀法): 超声波对化学反应起作用的主要原因在于超声波所产生的“超声波

化学气相沉积法制备石墨烯材料

化学气相沉积法新材料的制备 1 化学气相沉积法 化学气相沉积(CVD)是半导体工业中应用最为广泛的用来沉积多种材料的技术,包括大范围的绝缘材料,大多数金属材料和金属合金材料。从理论上来说,它是很简单的:两种或两种以上的气态原材料导入到一个反应室内,然后他们相互之间发生化学反应,形成一种新的材料,沉积到晶片表面上。淀积氮化硅膜(Si3N4)就是一个很好的例子,它是由硅烷和氮反应形成的。 1.1 化学气相沉积法的原理 化学气相沉积法是利用气相反应,在高温、等离子或激光辅助灯条件下,控制反应器呀、气流速率、基板材料温度等因素,从而控制纳米微粒薄膜的成核生长过程;或者通过薄膜后处理,控制非晶薄膜的晶化过程,从而或得纳米结构的薄膜材料。 CVD方法可以制备各种物质的薄膜材料。通过反应气体的组合可以制备各种组成的薄膜,也可以制备具有完全新的结构和组成的薄膜材料,同时让高熔点物质可以在较低温度下制备。 1.2 分类 用化学气相沉积法可以制备各种薄膜材料,包括单元素物、化合物、氧化物、氮化物、碳化物等。采用各种反应形式,选择适当的制备条件—基板温度、气体组成、浓度和压强、可以得到具有各种性质的薄膜才来。 通过反应类型或者压力来分类,可以将化学气相沉积法分为:低压CVD(LPCVD),常压CVD(APCVD),亚常压CVD(SACVD),超高真空CVD(UHCVD),等离子体增强CVD(PECVD),高密度等离子体CVD(HDPCVD)以及快热CVD(RTCVD),以及金属有机物CVD(MOCVD) 化学气相沉积的化学反应形式,主要有热分解反应、氢还原反应、金属还原反应、基板还原反应、化学输运反应、氧化反应、加水分解反应、等离子体和激光激发反应等。具体表现如下表: 表1-1 化学气相沉积的各种反应形式

化学共沉淀法-注意事项

1.沉淀溶液的浓度 沉淀溶液的浓度会影响沉淀的粒度、晶形、收率、纯度及表面性质。通常情况下,相对稀的沉淀溶液,由于有较低的成核速度,容易获得粒度较大、晶形较为完整、纯度及表面性质较高的晶形沉淀,但其收率要低一些,这适于单纯追求产品的化学纯度的情况;反之,如果成核速度太低,那么生成的颗粒数就少,单个颗粒的粒度就会变大,这对于微细粉体材料的制备是不利的,因此,实际生产中应根据产品性能的不同要求,控制适宜的沉淀液浓度,在一定程度上控制成核速度和生长速度。 2.合成温度 沉淀的合成温度也会影响到沉淀的粒度、晶形、收率、纯度及表面性质。在热溶液中,沉淀的溶解度一般都比较大,过饱和度相对较低,从而使得沉淀的成核速度减慢,有利于晶核的长大,得到的沉淀比较紧密,便于沉降和洗涤;沉淀在热溶液中的吸附作用要小一些,有利于纯度的提高。在制备不同的沉淀物质时,由于追求的理化性能不同,具体采用的温度应视试验结果而定。例如:在合成时如果温度太高,产品会分解而只得到黑色氧化铜;在采用易地分解、易挥发的沉淀剂时,温度太高会增加原料的损失。 3.沉淀剂的加入方式及速度 沉淀剂的加入方式及速度均摊会影响沉淀的各种理化性能。沉淀剂若分散加入,而且加料的速度较慢,同时进行搅拌,可避免溶液局部过浓而形成大量晶核,有利于制备纯度较高、大颗粒的晶形沉淀。例如:制备白色无定形粉末状沉淀氢氧化铝,使用的原料为NaAlO2及碳酸氢铵,其主要杂质为碱金属,开始时以较慢的线速度将NH4HCO3加入到NaAlO2的热溶液中,待沉淀析出大半时,再加快沉淀剂的加入速度,直至反应结束。这样得到的Al(OH)3颗粒较大,只需要洗涤数次,产品中碱金属杂质即可合格。如将沉淀剂浓度加大,加料速度加快、反应温度又低,这样得到的是Al(OH)3的胶状沉淀,即使洗涤数十次,产品中碱金属含量也不容易合格。当然,这只是从化学纯度的角度来考虑的,或要生产专用性的Al(OH)3产品,沉淀剂的加入方式及速度则应该根据具体要求而定。 4.加料顺序 加料方式分正加、反加、并加三种。生产中的“正加”是指将金属盐类先放于反应器中,再加入沉淀剂;反之为“反加”;而把含沉淀物阴、阳离子的溶液同时按比例加入到反应器的方法,称为“并加”。加料顺序与沉淀物吸附哪种杂质以及沉淀物的均匀性有密切的关系。“正加”方式的沉淀主要吸附原料金属盐的阴离子杂质;且在中和沉淀时,先、后生成的沉淀,其所处的环境PH值不同,得到的沉淀产品均匀性差。“反加”方式主要吸附沉淀的阴离子杂质;若是中和填充沉淀时,在整个沉淀过程占卜PH值变化很小,产品均匀性较好。“并加”方式可避免优秀作品溶液的局部过浓,沉淀过程较为稳定,且吸附杂质较小,从而可得到理化性能较好的产品。在实际生产中应视产品的具体要求而定。 5.沉淀剂 沉淀剂的选择应考虑产品质量、工艺、产率、原料来源及成本、环境污染和安全性等问题。在工艺允许的情况下,应该选项用溶解度较大、选择性较高、副产物影响较小的沉淀剂,也便易于除去多余的沉淀剂、减少吸附和副反应的发生。在生产碳酸盐沉淀产品时,可选择的沉淀剂有Na2CO3、NaHCO3 NH4HCO3和其他多种可溶性碳酸盐,但一般以NH4HCO3为好,因为它的溶解度大、易洗涤、副产物易挥发、污染也较小,而且原料来源广泛、价格也低。沉淀剂的使用一般应过量,以便能获得高的收率,减少金属盐离子的污染;但也不可太过量,否则会因络合效应和盐效应等降低收率。一般过量20%-50%就能满足要求了。 6.沉淀的陈化 陈化可释出沉淀过程带入的大部分杂质。在陈化过程中,因小颗粒沉淀的比表面积大,表面能也大;相同量大颗粒沉淀的比表面积较小,表面能就小,体系的变化有从高能量到低能量的自发趋

脉冲激光沉积PZT

脉冲激光沉积PZT/LSMO薄膜结构及输运特性的研究 摘要 锆钛酸铅(Pb(Zr x Ti1-x)O3,简称PZT)材料因其具有优良的铁电、压电、热释电、电光和非线性光学等特性而备受关注。同时,PZT作为一类典型的铁电材料,其显著的反常光生伏打效应,为新型太阳能电池材料的研究创造条件。本文利用脉冲准分子激光在STO单晶基片上淀积了LSMO和P ZT的.并通过高频溅射将Pt蒸镀在PZT薄膜上作为上电极;用X射线衍射表征了PZT铁电薄膜和该多层膜的晶相结构,测量了PZT的铁电性能和介电特性。讨论了PZT/薄膜的制备工艺。以及工艺条件对晶相结构和薄膜性能的影响。在密封的液氮杜瓦瓶里用四探针法对薄膜的输运特性进行了测试,. 关键词:PZT薄膜激光脉冲淀积电滞回线,漏电流

Study on structure and Transport Characteristic of PZT/LSMO Thin Film By Pulsed-Laser Deposition Abstract

绪论. PZT具有一系列优异的性能,如压电、铁电、热释电、介电、光电等,利用这些性质可以成 性能优良的器件。与其他铁电材料相比,PZT具有很多优点,例如:较高的居里点(200℃以上)且可以通过改变锆钛含量比实现对居里温度的控制;它的热释电系数较大,同时介电常数和介电 损耗较小,而且可以通过对PZT掺杂入Mn、Bi等其他元素或单纯改变PZT的锆钛含量比的方 式来改善其性能;在准同型相界附近具有优异的压电性能。因此PZT是一种优异的压电、铁电 和热释电材料,已在众多领域被广泛的应用 1.PTZ铁电薄膜 随着铁电薄膜和微电子技术相结合而发展起来的集成铁电学的出现,铁电薄膜的制备、结构、性能及其应用已成为国际上新材料研究十分活跃领域,其中钙钛矿结构的锆钛酸铅(PZT)铁电薄膜由于具有优越铁电、介电、压电、热释电以及能够与半导体技术兼容等特点,使之在微机电系统(MEMS)等领域具有广泛的应用前景。由于基于PZT的器件具有工作带宽广、反应速度快和灵敏性高等优点,因此PZT薄膜可以用于MEMS领域的各个方面,例如压电激励器、焦热红外探测器、随机存储器和超声器件。为了满足不断提高的微纳米机械器件的要求和与硅基器件的兼容,在硅衬底上生长高质量的PZT薄膜就变得越来越重要. 1.1 铁电薄膜材料的研究现状,7]。 目前,铁电薄膜的研究主要集中在以下几个方面:新的合成技术与沉积技术,薄膜的检测与表征技术,结构与性能的关系以及工艺与微结构关系,界面特性(包括金属-铁电薄膜界面和铁电薄膜与半导体兼容),新薄膜材料的研究等方向。应用研究则主要集中在:光电子学(电光应用、光学相位调制、光折变、集成光学等),压电应用(SAW器件、微控制器、微马达、微机械阀等),热释电学(单元探测器和线性阵列探测器)和铁电随机存储器[8]。 1.2 铁电材料的自发极化和电滞回线 自发极化是指在没有外电场时,铁电体内正、负电荷中心不重合,形成有一定规则排列的电偶极矩而产生的极化。电滞回线是指自发极化强度P滞后于外加电场强度E的变化轨迹,如图1.1所示。图中O点是指外加电场为0时的状态,电偶极矩呈杂乱分布,总电矩为0,所以通常情况下铁电体不显电性。当场强较弱时,极化强度随场强近似呈线性变化,如OA段。当场强逐渐变大,P随场强呈非线性变化并迅速达到饱和,如ABC,做BC的反向延长线与纵轴的交点E称为饱和极化强度P s,B点处电偶极矩受外加电场的影响基本趋于同一方向。当场强逐渐减小时,曲线不按照原轨迹返回,呈BD段,当外界场强减小到0时,存在剩余极化强度P r,反方向增加场强,极化强度下降,当场强达到E c时,极化强度变为0,E c称为矫顽场强,此时总的电偶极矩为0。场强继续增大,极化强度反向增加,直至达到饱和,如FG所示。如电场再次减小而后反向增加,曲线呈GHC变化,最后形成一条封闭的曲线。P r和E c是反映铁电性能的重要指标,回线矩形度越好表明铁电性能越强,所以电滞回线是检测铁电性的一个重要标志[9]。

化学气相沉积法

化学气相沉积法 摘要:本文从化学气相沉积法的概念出发,详细阐述了利用化学气相沉积法制备石墨烯以及薄膜,并展望了未来化学气相沉积法可能的发展方向。 关键词:化学气相沉积法;制备;应用 一、前言 近年来,各国科学工作者对化学气相沉积进行了大量的研究,并取得一定的显著成果。例如,从气态金属卤化物(主要是氯化物)还原化合沉积制取难熔化合物粉末及各种涂层(包括碳化物、硼化物、硅化物、氮化物)的方法。其中化学沉积碳化钛技术已十分成熟。化学气相沉积还广泛应用于薄膜制备,主要为Bchir等使用钨的配合物Cl4 (RCN)W(NC3H5)作为制备氮化钨或者碳氮共渗薄膜的原料—CVD前驱体;Chen使用聚合物化学气相沉积形成的涂层提供了一个有吸引力的替代目前湿法化学为主的表面改善方法。同时,采用CVD方法制备CNTS 的研究也取得很大的进展和突破,以及通过各种实验研究了不同催化剂对单壁纳米碳管的产量和质量的影响,并取得了一定的成果。 二、化学气相沉积法概述 1、化学沉积法的概念 化学气相沉积(Chemical vapor deposition,简称CVD)是反应物质在气态条件下发生化学反应,生成固态物质沉积在加热的固态基体表面,进而制得固体材料的工艺技术。它本质上属于原子范畴的气态传质过程。与之相对的是物理气相沉积(PVD)。 化学气相沉积是一种制备材料的气相生长方法,它是把一种或几种含有构成薄膜元素的化合物、单质气体通入放置有基材的反应室,借助空间气相化学反应在基体表面上沉积固态薄膜的工艺技术。 2、化学气相沉积法特点 (1) 在中温或高温下,通过气态的初始化合物之间的气相化学反应而形成固体物质沉积在基体上。 (2) 可以在常压或者真空条件下负压“进行沉积、通常真空沉积膜层质量较好

激光脉冲的平均功率和功率

激光脉冲的平均功率和功率, 设脉冲激光器输出的单个脉冲持续时间(脉冲宽度)为:t,(实际为FWHM宽度) 单个脉冲的能量:E, 输出激光的脉冲重复周期为:T, 那么,激光脉冲的平均功率Pav = E/T,(即在一个重复周期内的单位时间输出的能量) 脉冲激光讲峰值功率(peak power)Ppk = E/t 能量密度=(单脉冲能量*所用频率)/光斑面积算 通常也用单位时间内的总能量除以光斑面积 峰值功率=脉冲能量除以脉宽 平均功率=脉冲能量*重复频率(每秒钟脉冲的个数) 脉冲激光器的能量换算 脉冲激光器的发射激光是不连续,一般以高重频脉冲间隔发射。发射能量以功的单位焦耳J) 计,即每次脉冲做功多少焦耳。 连续激光器发射的能量以功率单位瓦特(W)计量,即每秒钟做功多少焦耳,表示单位时间内 做功多少。 瓦和焦耳的关系:1W=1J/秒。 一台脉冲激光器,脉冲发射能量是1焦耳/次,脉冲频率是50Hz,则每秒钟发射激光50次,每秒钟内做功的平均功率为:50X 1焦耳=50焦耳,所以,平均功率就换算为50瓦。再举例 说明峰值功率的计算,一台绿光脉冲激光器,脉冲能量是0.14mJ/次,每次脉宽20 ns,脉冲 频率100kHz, 平均功率为:0.14mJ X 100k=14J/s=14W,即平均功率为14瓦;峰值功率是每次脉冲能量与脉宽之比,即 峰值功率:0.14mJ/20ns=7000W=7kW,峰值功率为7千瓦。 要想知道镜片的脉冲激光损伤阈值是否在承受极限内,既要计算脉冲激光的峰值功率,也要计算脉冲激光的平均功率,综合考虑。 如某ZnSe镜片的激光损伤阈值时是500MW/cm2,使用在一台脉冲激光器中,脉冲激光器的 脉冲能量是10J/cm2,脉宽10ns,频率50kHz。首先,计算平均功率:10J/cm2 X 50kHz =0.5MW/cm2 其次,再计算峰值功率:10J/cm2 / 10ns = 1000MW/cm2 从脉冲激光器的平均功率看,该镜片是能承受不被损伤的,但从脉冲激光器的峰值功率看, 是大于该镜片的激光损伤阈值的。所以,综合判断,该ZnSe镜片不宜用于此脉冲激光器。如果有条件,对脉冲激光器镜片,应当分别测试平均功率和峰值功率的激光损伤阈值。 Ave. Power :平均功率Pulse energy :脉冲能量Pulse Width :脉宽Peak Power:峰值功率Rep. Rate :脉冲频率ps:皮秒,10-12 S ns:纳秒,10-9S M: 兆, 106 J:焦耳W:瓦 氙灯作为激光设备一个常用光源,通常被人们也叫做激光氙灯、脉冲氙灯。氙灯是一 种填充氙气的光电管或闪光电灯。氙气化学性质不活泼,不能燃烧,也不助燃。是天然的稀

共沉淀法制备磁性Fe3O4

共沉淀法制备磁性Fe3O4 余春宇08化学85号 摘要考察了普通共沉淀法制备过程中的一些影响因素,采用一种改进,了的共沉淀法,制备磁性Fe3O4 纳米粒子。并对获得的粉体采用进行初步表征用化学共沉淀法制备了纳米Fe3O4颗粒, 研究了影响纳米Fe3O4 颗粒磁性的因素[1]。 关键词磁性Fe3O4;共沉淀法;制备; 引言 磁流体作为一种新型纳米材料,在工业上也有着广阔的应用前景。目前磁流体技术在国内未得到广泛应用的主要原因是纳米铁氧体粉体的制备不够完善,目前应用较广泛的铁氧体是纳米Fe3O4,近年来纳米材料取得了很大的进展[2]Fe3O4更多应用于化学领域[3]近几年来Fe 3 O4便成为了一种新型材料[4]纳米粒子(nano particle)也叫超微颗粒,一般是指尺寸在1~100 am间的粒子[5] Fe 3O 4 纳米粒子是一种新型材料,具有良好的磁性能,即超顺磁性[6]Hao-Yu等人制 备出来的Fe3O4可达5–10 nm[7]使用XRD,TEM,VSM 对材料进行了相关测试,测试结果发现,用水热法制备的磁性纳米复合材料具有典型的层型结构[8]。,近年来有关纳米粒子的制备方法及其物性的研究受到很大的重视,这在纳米粒子基本理论上有重大意义[9]通过共沉淀法制备纳米FeO 性能影响因素的研究,以得到合理优化的制备工[10]采用化学沉淀法制备纳米Fe304颗粒,并以聚乙二醇为改性剂,蒸馏水为载液[11] 本文综述了多种制备磁性Fe3O4纳米粒子的方法且分析了它们的诸多影响因素,在前人的基础上总结了很多经验取长补短得出了在共沉淀发的基础上再对一些反应条件以及其他一些试剂进行了改进 内容 近年来,随着纳米技术的飞速发展,有关纳米Fe304的制备方法及其性能的研究受到很大的重视。纳米材料的制备方法多种多样,目前纳米Fe304的制备方法主要有[12]机械球磨法、溶胶一凝胶法、化学共沉淀法、热分解法、电弧蒸发法、液相微介质电加热分解法、水热法等,但每种方法有其自身的不足。 机械球磨法 机械球磨法机械球磨法是在球磨机中加入粒度为几十微米

钛酸钡制备方法指化学共沉淀法

化学共沉淀法制备钛酸钡 来源:世界化工网(https://www.doczj.com/doc/c79771463.html,) 化学共沉淀法是将等物质的量的可镕性钡、钛化合物混合,在一定的酸碱度条件下加入沉淀刑,使钡、铁化合物产生共沉淀,分离出沉淀物,干燥、锻烧后即得产品。化学共沉淀法与固相法相比,前者两组分分散的比较好,反应更容易进行,特别是在两组分结构相似,溶解度、沉淀时的pH值近似时,更能够很好地混合。另外,共沉淀法的反应温度明显的比固相法低。当物质的量比为1:1时,共沉淀法不会生成如BoTiO4等其他产物。作为化学共沉淀法的沉淀剂可以是碳酸盐,如(NH4)2CO3:,NH4HCO3也可以是草酸盐或含过氧化氢的碱溶液。下面用草酸作沉淀剂为例说明之。 用草酸作沉淀别是60年代以来研究得比较多的一种方法。该法一般是将可溶性钡盐、钛盐与草酸一起反应生成草酸氧钛钡沉淀,煅烧沉淀物得到钛醋钡。目前,我国已有用此法生产钛酸钡的工厂。首先将BaCO3与HCl反应生成BaCl 水溶液。将TiCl4用精制水配成水溶液,然后将TiCl4的水溶液和氯化钡的水溶液按等物质的量混合,再与2倍物质的量的草酸溶液反应。工艺流程示意如图6—5。

(1)草酸氧钛钡的合成制取草酸氧钮钡的过程中,四氯化铁水溶液制备的成功与否是能否得到高纯度钻酸钡的关键。最重要的是在四氯化铁水 溶液制备过程中如何避免钛的遇水分解。四氯化钛遇水会发生下列反应: 制备丁Ti-Ba溶液时,温度高低也会影响四氯化欲继续水解,因此要对温度加以控制。Ti-Ba溶液混合后加入草酸水溶液使四 氮化试和草酸溶液生成铁的络合物,然后与氯化钡反应生成草酸 织钞钡沉淀,化学反应方程式如下: 反应中还会发生下列反应:

四氧化三铁制备化学实验

实验一:共沉淀法制备具有超顺磁性的纳米四氧化三铁粒子 一、实验背景 有关纳米粒子的制备方法及其性能研究备受多学者的重视,这不仅因为纳米粒子在基础研究方面意义重大,而且在实际应用中前景广阔。在磁记录材料方面,磁性纳米粒子可望取代传统的微米级磁粉,Fe s O4超细粉体由于化学稳定性好, 原料易得,价格低廉,已成为无机颜料中较重要的一种,被广泛应用于涂料,油墨等领域;而在电子工业中超细F63O4是磁记录材料,用于高密度磁记录材料的制备;它也是气、湿敏材料的重要组成部分。超细Fe3O4粉体还可作为微波吸收材料及催化剂。另外使用超细Fe3O4粉体可制成磁流体。 Fe s O4纳米粒子的制备方法有很多,大体分为两类:一是物理方法,如高能机械球磨法,二是化学方法,如化学共沉淀法、溶胶-凝胶法、水热合成法、热分解法及微乳液法等。但各种方法各有利弊;物理方法无法进一步获得超细而且粒径分布窄的磁粉,并且还会带来研磨介质的污染问题;溶胶-凝胶法、热分解法多采用有机物为原料,成本较高,且有毒害作用;水热合成法虽容易获得纯相的纳米粉体,但是反应过程中温度的高低,升温速度,搅拌速度以及反应时间的长短等因素均会对粒径大小和粉末的磁性能产生影响。 本实验是采用共沉淀法(将沉淀剂加入Fe2^^ Fe3+混合溶液中)制备纳米Fe3O4颗粒。该制备方法不仅原料易得且价格低廉,设备要求简单,反应条件温和(在常温常压下以水为溶剂)等优点。 二、实验目的 1、了解用共沉淀法制备纳米四氧化三铁粒子的原理和方法。 2、了解纳米四氧化三铁粒子的超顺磁性性质。 3、掌握无机制备中的部分操作。 三、实验原理 采用化学共沉淀法制备纳米磁性四氧化三铁是将二价铁盐和三价铁盐溶液按一定比例混合,将碱性沉淀剂加入至上述铁盐混合溶液中,搅拌、反应一段时间即可得纳米磁性F?O4粒子,其反应式如下: Fe +2Fe +8OH------------ e3O4+4H2O 四、仪器与试剂 烧杯、FeC2 4H2O、FeCb、氢氧化钠、柠檬酸三钠。 五、实验步骤 1、配置50 ml 1 moL 的NaOH 溶液。(2g NaOH+5Og H2O) 2、称取0.9925g FeC3和1.194g FeC2 4H2O (反应当量比为1:1)溶于30 mL 的蒸馏水中。 3、将反应溶液加热至60C,恒温下磁力搅拌(转速约为1000rpm)。 4、30 min后缓慢滴加配置的NaOH溶液,待溶液完全变黑后,仍继续滴加

化学气相沉积法制备碳纳米管

化学气相沉积法制备碳纳米管 材料化学专业 制备原料 碳源多为乙烯或者乙炔;催化剂颗粒多为亲碳的、过渡金属的纳米粒子如铁、镍、镁、钼等。 制备工艺 在高温条件下碳源气体在过渡金属纳米颗粒的催化作用下分解,碳原子在催化剂例粒子中熔解、饱和。在催化剂粒子中饱和并析出碳形成了小管状的碳固体即碳纳米管。 碳纳米管的性能 力学性能: 碳纳米管中碳原子采取SP2杂化S轨道成分比较大,使其具有高模量、高强度,具有优异的力学性能。理想的碳纳米管的抗拉强度可高达100GPa。一般碳纳米管的抗拉强度可达50-200GPa,是钢的100倍,密度却只有钢的1/6,弹性模量高达1TPa,与金刚石的弹性模量相当,约为钢的5倍。不同的SP2和SP3杂化几率使碳纳米管其表现出优良的弹性,柔韧性,易拉伸,十分柔软,同时它还具有与金刚石相当的硬度和极大的长径比,可以作为理想的高强度纤维材料,被称为未来的“超级纤维”。 导电性能: 碳原子最外层有4个电子,碳纳米管具有类石墨结构,石墨的每个碳原子最外层的三个电子与三个最邻近的碳原子以SP2杂化,呈现层状结构。碳原子的另一个未成对电子位于垂直于层片的π轨道上,碳纳米管具有石墨的良好导电性能。碳纳米管由石墨片卷曲而来,其导电性能由石墨片的卷曲方式决定,即导电性能取决于它的管径和手性。不同手性的碳纳米管可分别呈现金属性、半导体性。给定的碳纳米管的手性矢量Ch=na1+ma2,若n.m=3k(k为整数),那么该方向碳纳米管呈现金属性,可视为良好的导体。其中,若n=m,碳纳米管电导率可高达铜的l万倍,导电性极好。当n.m不等于3k(k为整数)时,该方向碳纳米管视

为半导体。另外,在碳纳米管的管壁上往往有成对的五元环和七元环出现,这些缺陷会导致新的导电行为,为碳纳米管的导电性做贡献。 传热性能: 碳纳米管的类石墨结构使得其具有良好的传热性能,另外,准一维结构使得沿着碳纳米管轴向方向的热交换极易进行,由此,可以通过制备定向的碳纳米管阵列从而获得某个方向热传导性能极好的产品。要想获得某些特定方向上热传导性能优异的产品,需要在制备碳纳米管时通过适当地改变实验条件或调整各项参数等来控制产物的取向。 吸附性能:碳纳米管是一种强吸附剂,吸附容鞋极大,比活性炭的吸附性高十倍之多。碳纳米管对多种会属(如Au,Cd,Co,Cu,Cr,Fe,Mn,Ni,Pb,Zn)、稀土元素(如Sm,Gd,Yb)等有很强的吸附fl:J1j。作为吸附剂,碳纳米管的制备成本低、吸附分离效果好受到广泛关注。 化学性能: 碳纳米管的化学性能非常稳定,同时它具有较好的催化作用。碳纳米管尺寸为纳米级别,具有极大的比表面积,并且表面的键念和电子态与颗粒内部不同,表面的原子配位不全,从而导致表面的活性位置增加,这些条件为碳纳米管的催化性奠定了基础。它的主要催化作用为:提高反应速率,决定反应路径,有优良的选择性(如只进行氢化脱氢反应,不发生氢化分解和脱水反应),降低反应温度。对碳纳米管进行处理可改善其催化活性,引入新的官能团,例如用硝酸、浓硫酸处理碳纳米管,不仅能够对样品进行提纯、切断,还可以在其表面引入羟基。碳纳米管在催化领域的潜力引起了广大科研者的关注,相关催化性能的研究与应用也日趋成熟。 场发射性能: 碳纳米管是良好的电导体,载流能力特别大,能够承受较大的场发射电流。相关测试表明,碳纳米管作为阴极能够产生4A/cm2的电流密度。碳纳米管机械强度高、韧性好,在场发射过程中不易发生折断或者变形,化学性质稳定,不易与其他物质反应,在2000℃的真空环境中也不会烧损。呈现金属性的碳纳米管表面功函数要比一般的金属低0.2.0.4ev,呈现半导体性的碳纳米管表面功函数要比一般金属高0.6ev。因而通过选择金属性的碳纳米管作为场发射阴极材料,可进而获取低能耗、轻便、性能更加优异的平板显示。 碳纳米管的应用前景 碳纳米管在微电子、生物、医学、仪器等领域显示了广阔的应用前景。显示技术方面为人们展示着丰富多彩的世界,在教育、工业、交通、通讯、军事、医疗、航空航天、卫星遥感等各个领域被广泛应用。FED集合了高亮度、真彩色、体积小、重量轻等众多优点,成为21世纪最具潜力的显示器。对于高附加值的显示器件方面的应用如平板显示器和纳米集成电路,碳纳米管在汽车用燃料电池储氢材料方面。在材料科学领域碳纳米管可以制成高强度碳纤维材料利用碳纳米管制成的复合材料在土木、建筑等方面具有广阔前景。 参考文献 李世胜,侯鹏翔,刘畅.超疏水叠杯状碳纳米管薄膜的制备[J]新型炭材料,2013,28(4)韩立静,多壁碳纳米管薄膜的制备及其场发射性能研究[C]浙江大学硕士学位论文2011,5 张秉檐,漆昕,生长温度对TCVD法制备定向碳纳米管薄膜影响[J]制造业自动化,2010,32(12)

石墨烯的化学气相沉积法制备_图文(精)

收稿日期:2010 12 31; 修回日期:2011 02 14 基金项目:国家自然科学基金(50872136,50972147,50921004、中国科学院知识创新项目(K J CX 2 YW 231. 通讯作者:任文才,研究员.E m ai:l w cren@i m r .ac .cn;成会明,研究员.E m ai:l chen g @i m r .ac .cn ;高力波.E m ai:l l bgao @i m r .ac .cn 作者简介:任文才(1973-,男,山东东营人,博士,研究员,主要研究方向为石墨烯和碳纳米管的制备、物性和应用. E m ai:l w cren @i m r .ac .cn 文章编号: 1007 8827(201101 0071 10 石墨烯的化学气相沉积法制备 任文才, 高力波, 马来鹏, 成会明 (中国科学院金属研究所沈阳材料科学国家(联合实验室,辽宁沈阳110016 摘要: 化学气相沉积(CVD 法是近年来发展起来的制备石墨烯的新方法,具有产物质量高、生长面积大等优点,逐渐成为制备高质量石墨烯的主要方法。通过简要分析石墨烯的几种主要制备方法(胶带剥离法、化学剥离法、S i C 外延生长法和CV D 方法的原理和特点,重点从结构控制、质量提高以及大面积生长等方面评述了CV D 法制备石墨烯及其转移技术的研究进展,并展望了未来CVD 法制备石墨烯的可能发展方向,如大面积单晶石墨烯、石墨烯带和石墨烯宏观体的制备与无损转移等。关键词: 石墨烯;制备;化学气相沉积法;转移中图分类号: TQ 127.1+1 文献标识码: A 1 前言 自从1985年富勒烯[1] 和1991年碳纳米管[2]

石墨烯的化学气相沉积法制备 2

石墨烯的化学气相沉积法制备

摘要:化学气相沉积(CVD)法是近年来发展起来的制备石墨烯的新方法,具有产物质量高、生长面积大等优点,逐渐成为制备高质量石墨 烯的主要方法。通过简要分析石墨烯的几种主要制备方法(胶带剥离法、化学剥离法、SiC外延生长法和CVD方法)的原理和特点,重点 从结构控制、质量提高以及大面积生长等发面评述了CVD法制备石墨 烯及其转移技术的研究进展,并展望了未来CVD法制备石墨烯的可能 发展方向,如大面积单晶石墨烯、石墨烯带和石墨烯宏观体的制备与 无损转移等。 关键词:石墨烯制备化学气相沉积法转移 Abstract chemical vapor deposition(CVD) is an effective way for the preparation of preparation of graphene with large area and high quality.In this review,the echanism and characteristics of the four main preparation methods of graphene are briefly introduced ,including microm echanical Cleavage,chemical exfoliation,SiC epitaxial growth and CVD. The recent advances in the CVD growth of graphene and the related transfer techniques in term of structure contral, quality improvement and large area graphene synthesis were discussed .Other possible methods single crystalline graphene ,graohene nanoribbons and graphene avrostructures. Keywords : Graphene,Preparation, Chemical vapor deposition; transfe

脉冲激光沉积(激光分子束外延)系统特点

脉冲激光沉积技术 所谓“脉冲激光沉积技术”是将脉冲准分子激光所产生的高功率脉冲激光束 聚焦作用于真空室内的靶材表面,使靶在极短的时间内加热熔化、气化直至使靶材表面产生高温高压等离子体,形成一个看起来像羽毛状的发光团—羽辉;等离子体羽辉垂直于靶材表面定向局域膨胀发射从而在衬底上沉积形成薄膜。 脉冲激光沉积(PLD)是一种新型的制膜技术,PLD制备薄膜大体可分为三个过程:激光与靶材相互作用产生等离子体;等离子体在空间的输运;等离子体在基片上沉积形成薄膜。与其它制膜技术相比,PLD具有以下特点和优势: 一、所沉积形成的薄膜可以和靶材成分保持一致。由于等离子体的瞬间爆炸性发射,不存在成分择优蒸发效应以及等离子体发射的沿靶轴向的空间约束效应,因此膜与靶材的成分保持一致。由于同样的原理,PLD可以制备出含有易挥发元素的多元化合物薄膜。 二、可在较低温度下原位生长织构膜或外延单晶膜。由于等离子体中原子的能量比通常蒸发法产生的离子能量要大得多,原子沿表面的迁移扩散更剧烈,故在较低温度下也能实现外延生长,而低的脉冲重复频率也使原子在两次脉冲发射之间有足够的时间扩散到平衡的位置,有利于薄膜的外延生长。PLD的这一特点使之适用于制备高质量的高温超导、铁电、压电、电光等多种功能薄膜。 三、能够获得连续的极细薄膜,制备出高质量纳米薄膜。由于高的离子动能具有显著增强二维生长和抑制三维生长的作用,故PLD促进薄膜的生长沿二维展开,并且可以避免分离核岛的出现。 四、生长速率较快,效率高。比如,在典型的制备氧化物薄膜的条件下,1小时即可获得1微米左右的膜厚。 五、生长过程中可原位引入多种气体,包括活性和惰性气体,甚至它们的化合物。气氛气体的压强可变范围较大,其上限可达1torr.甚至更高,这点是其它技术难以比拟的。气氛气体的引入,可在反应气氛中制膜,使环境气体电离并参与薄膜沉积反应,对于提高薄膜质量具有重要意义。 六、由于换靶位置灵活,便于实现多层膜及超晶格薄膜的生长,这种原位沉积所形成的多层膜具有原子级清洁的界面。 七、成膜污染小。由于激光是一种十分干净的能源,加热靶时不会带进杂质,这就避免了使用柑祸等加热镀膜原材料时对所沉积的薄膜造成污染的问题。 正因为脉冲激光沉积技术具有上述突出优点,再加上该技术设备较简单,操作易控制,可采用操作简便的多靶台,灵活性大,故适用范围广,并为多元化合物薄膜、多层膜及超晶格膜的制备提供了方便。目前,该技术已被广泛运用于各种功能性薄膜的制备和研究,包括高温超导、铁电、压电、半导体及超晶格等薄膜,甚至可用于制备生物活性薄膜,显示出广泛的应用前景。

最新物理气相沉淀和化学气相沉积法

液相制备纳米材料的原理、方法和形成机理 液相法实在液体状态下通过化学反应制取纳米材料方法的总称,又称为湿化学法或溶液法。现在,有各种各样的制备方法,文献中无公认一致的分类方法,相反还有些凌乱。为清晰醒目,特点明显,便于理解。这里将液相材料的纳米制备方法分为:沉淀法、溶胶-凝胶(sol-gel)法、水热法、化学还原法、化学热分解法、微乳胶法、声化学法、电化学法和水中放电法等9中。本章就沉淀法、溶胶-凝胶(sol-gel)法加以讨论。 沉淀法 沉淀法是在金属盐溶液中加入沉淀剂,进行化学反应,生成难容性的反应物,在溶液中沉淀下来,或将沉淀物加热干燥和煅烧,使之分解得到所需要的纳米材料的方法。沉淀法又主要分为共沉淀(CP),分布沉淀(SP),均匀沉淀(HP)等几种。下面对这几种沉淀法做一简要分析。 含1种或多种阳离子的溶液中加入沉淀剂后,所有离子完全沉淀的方法称共沉淀法。(包括:单项共沉淀发和混合共沉淀法)下图给出共沉淀法的典型工艺流程。 沉淀物为单一化合物或单相固溶体时,称为单相共沉淀,亦称化合物沉淀法。其原理为溶液中的金属离子是以具有与配比组成相等的化学计量化合物形式沉淀的,因而,当沉淀颗粒的金属元素之比就是产物化合物的金属元素之比时,沉淀物具有在原子尺度上的组成均匀性。但是,对于由二种以上金属元素组成的化

合物,当金属元素之比按倍比法则,是简单的整数比时,保证组成均匀性是可以的。然而当要定量的加入微量成分时,保证组成均匀性常常很困难,靠化合物沉淀法来分散微量成分,达到原子尺度上的均匀性。如果是形成固溶体的系统是有限的,固溶体沉淀物的组成与配比组成一般是不一样的,则能利用形成固溶体的情况是相当有限的。要得到产物微粒,还必须注重溶液的组成控制和沉淀组成的管理。为方便理解其原理以利用草酸盐进行化合物沉淀的合成为例。反应装置如图: 图 利用草酸盐进行化合物沉淀的合成装置 实验原理:在Ba 、Ti 的硝酸盐溶液中加入草酸沉淀剂后,形成了单相化合物BaTiO3(C2H4)2?4H2O 沉淀;BaTiO3(C2H4)?4H2O 沉淀由于煅烧,分解形成BaTiO3微粉。 化学方程式如下所示: (1)BaTiO 3(C 2H 4)2?4H 2O BaTiO 3(C 2H 4)2 + 4H 2O (2)BaTiO 3(C 2H 4)2 + ? O 2 BaCO 3(无定形)+TiO 2(无定形)+ CO +CO 2 (3)BaCO 3(无定形)+TiO 2(无定形) BaCO 3(结晶)+TiO 2(结晶) 如果沉淀产物为混合物时,称为混合物共沉淀。四方氧化锆或全稳定立方氧化锆的共沉淀制备就是一个很普通的例子。举例:用ZrOCl 2?8H 2O 和Y 2O 3(化学纯)为原料来制备ZrO 2- Y 2O 3的纳米粒子。反应过程:Y2O3用盐酸溶解得到YCl3, 然后将ZrOCl 2?8H 2O 和Y 2O 3配置成一定浓度的混合溶液,在其中加NH 4OH 后便有

关于脉冲激光沉积(PLD)薄膜技术的探讨

《表面科学与技术》课程作业 关于脉冲激光沉积(PLD)薄膜技术的探讨 摘要:薄膜材料广泛应用在半导体材料、超导材料、生物材料、微电子元件等方面。为了得到高质量的薄膜材料,科学家一直在寻找和探讨各种新的技术,脉冲激光沉积(Pulsed Laser Diposition PLD)薄膜技术是近年来快速发展起来的使用范围最广,最有前途的制膜技术之一。本文介绍了脉冲激光沉积(PLD)薄膜技术的原理及特点,并与其他薄膜技术进行对比,探讨衬底温度、靶材与基底的距离、退火温度、靶材的致密度、激光能量、激光频率等参数对薄膜质量的影响。分析了脉冲激光沉积技术在功能薄膜材料中的应用和研究现状,并展望了该技术的应用前景。 关键字:脉冲激光沉积(PLD)等离子体薄膜技术 前言 上世纪60年代第一台红宝石激光器的问世,开启了激光与物质相互作用的全新领域。科学家们发现当用激光照射固体材料时,有电子、离子和中性原子从固体表面逃逸出来,这些跑出来的粒子在材料附近形成一个发光的等离子区,其温度估计在几千到一万度之间,随后有人想到,若能使这些粒子在衬底上凝结,就可得到薄膜,这就是最初激光镀膜的概念。最初有人尝试用激光制备光学薄膜,这种方法经分析类似于电子束打靶蒸发镀膜,没有体现出其优势来,因此这项技术一直不被人们重视。直到1987年,美国Bell实验室首次成功地利用短波长脉冲准分子激光制备了高质量的钇钡铜氧超导薄膜,这一创举使得脉冲激光沉积(Pulsed Laser Deposition,简称PLD)技术受到国际上广大科研工作者的高度重视,从此PLD 成为一种重要的制膜技术]1[1。 由于脉冲激光沉积技术具有许多优点,它被广泛用于铁电、半导体、金刚石(类金刚石)等多种功能薄膜以及生物陶瓷薄膜的制备上,可谓前途光明。 1. PLD 技术装置图及工作原理 1.1 PLD系统 脉冲沉积系统样式比较多,但是结构差不多,一般由准分子脉冲激光器、光路系统(光阑扫描器、会聚透镜、激光窗等);沉积系统(真空室、抽真空泵、充气系统、靶材、基片加 热器);辅助设备(测控装置、监控装置、电机冷却系统)等组成]2[2,如图1-1所示。 1[1]邓国联,江建军.脉冲沉积技术在磁性薄膜制备中的应用[J].材料导报2003,17(2):66—68.原文:“1987年,美国Bell实验室首次成功地利用短波长脉冲准分子激光制备了高质量的钇钡铜氧(YBCO)超导薄膜,脉冲激光沉积(Pulsed Laser Deposition,简称PLD)技术才成为一种重要的制膜技术受到国际上广大科研工作者的高度重视。” 2[2] 高国棉陈长乐陈钊李谭王永仓金克新赵省贵(1西北工业大学理学院,西安

相关主题
文本预览
相关文档 最新文档