当前位置:文档之家› ADS仿真:微带滤波器的设计

ADS仿真:微带滤波器的设计

ADS仿真:微带滤波器的设计
ADS仿真:微带滤波器的设计

ADS仿真:微带滤波器的设计

微波滤波器是用来分离不同频率微波信号的一种器件。它的主要作用是抑制不需要的信号, 使其不能通过滤波器, 只让需要的信号通过。在微波电路系统中,滤波器的性能对电路的性能指标有很大的影响,因此如何设计出一个具有高性能的滤波器,对设计微波电路系统具有很重要的意义。微带电路具有体积小,重量轻、频带宽等诸多优点,近年来在微波电路系统应用广泛,其中用微带做滤波器是其主要应用之一,因此本节将重点研究如何设计并优化微带滤波器。

1 微带滤波器的原理

微带滤波器当中最基本的滤波器是微带低通滤波器,而其它类型的滤波器可以通过低通滤波器的原型转化过来。最大平坦滤波器和切比雪夫滤波器是两种常用的低通滤波器的原型。微带滤波器中最简单的滤波器就是用开路并联短截线或是短路串联短截线来代替集总元器件的电容或是电感来实现滤波的功能。这类滤波器的带宽较窄,虽然不能满足所有的应用场合,但是由于它设计简单,因此在某些地方还是值得应用的。

2 滤波器的分类

最普通的滤波器的分类方法通常可分为低通、高通、带通及带阻四种类型。图12.1给出了这四种滤波器的特性曲线。

按滤波器的频率响应来划分,常见的有巴特沃斯型、切比雪夫Ⅰ型、切比雪夫Ⅱ型及椭圆型等;按滤波器的构成元件来划分,则可分为有源型及无源型两类;按滤波器的制作方法和材料可分为波导滤波器、同轴线滤波器、带状线滤波器、微带滤波器。

3 微带滤波器的设计指标

微带滤波器的设计指标主要包括:

1绝对衰减(Absolute attenuation):阻带中最大衰减(dB)。

2带宽(Bandwidth):通带的3dB带宽(flow—fhigh)。

3中心频率:fc或f0。

4截止频率。下降沿3dB点频率。

5每倍频程衰减(dB/Octave):离开截止频率一个倍频程衰减(dB)。

6微分时延(differential delay):两特定频率点群时延之差以ns计。

7群时延(Group delay):任何离散信号经过滤波器的时延(ns)。

8插入损耗(insertion loss):当滤波器与设计要求的负载连接,通带中心衰减,dB

9带内波纹(passband ripple):在通带内幅度波动,以dB计。

10相移(phase shift):当信号经过滤波器引起的相移。

11品质因数Q(quality factor):中心频率与3dB带宽之比。

12反射损耗(Return loss)

13形状系数(shape factor):定义为。

14止带(stop band或reject band):对于低通、高通、带通滤波器,指衰减到指定点(如60dB点)的带宽。

工程应用中,一般要求我们重点考虑通带边界频率与通带衰减、阻带边界频率与阻带衰减、通带的输入电压驻波比、通带内相移与群时延、寄生通带。前两项是描述衰减特性的,是滤波器的主要技术指标,决定了滤波器的性能和种类(高通、低通、带通、带阻等);输入电压驻波比描述了滤波器的反射损耗的大小;群时延是指网络的相移随频率的变化率,定义为dU/df ,群时延为常数时,信号通过网络才不会产生相位失真;寄生通带是由于分布参数传输线的周期性频率特性引起的,它是离设计通带一定距离处又出现的通带,设计时要避免阻带内出现寄生通带。

4 微带滤波器的设计

本小节设计一个微带低通滤波器,滤波器的指标如下:

通带截止频率:3GHz。

通带增益:大于-5dB,主要由滤波器的S21参数确定。

阻带增益:在4.5GHz以上小于-48dB,也主要由滤波器的S21参数确定。

通带反射系数:小于-22dB,由滤波器的S11参数确定。

在进行设计时,我们主要是以滤波器的S参数作为优化目标。S21(S12)是传输参数,滤波器通带、阻带的位置以及增益、衰减全都表现在S21(S12)随频率变化

的曲线上。S11(S22)参数是输入、输出端口的反射系数,如果反射系数过大,就会导致反射损耗增大,影响系统的前后级匹配,使系统性能下降。

了解了滤波器的设计原理以及设计指标后,下面开始设计微带低通滤波器。

4.1建立工程

新建工程,选择【File】→【New Project】,系统出现新建工程对话框。在name 栏中输入工程名:microstrip_filter,并在Project Technology Files栏中选择ADS Standard:Length unit——millimet,默认单位为mm,如图12.2所示。单击OK,完成新建工程,此时原理图设计窗口会自动打开。

4.2原理图和电路参数设计

工程文件创立完毕后,下面介绍微带低通滤波器的原理图设计过程。

1)在原理图设计窗口中选择TLines-Microstrip元件面板列表,窗口左侧的工具栏变为如图12.3所示。并选择6个MLIN、5个MLOC、1个MSUB按照图12-4所示的方式连接起来。

2)设置图12-4中的控件MSUB微带线参数

H:基板厚度(0.1 mm)

Er:基板相对介电常数(2.16)

Mur:磁导率(1)

Cond:金属电导率(6.14E+7)

Hu:封装高度(1.0e+33 mm)

T:金属层厚度(0.001 mm)

TanD:损耗角正切(1e-3)

Roungh:表面粗糙度(0 mm)

完成设置的MSUB控件如图12.5所示。

3)滤波器两端的引出线是50 Ohm的微带线,它的宽度W可由微带线计算工具算出。选择【Tools】→【LineCalc】→【Start LineCalc】命令。在打开的窗口中输入如图12-6所示的内容。

在Substrate Parameters栏中填入与MSUB相同的微带线参数。

在Component Parameters栏中填入中心频率(本例为3.0GHz)。

Physical栏中的W和L分别表示微带线的宽和长。

Electrical栏中的Z0和E_Eff分别表示微带线的特性阻抗和相位延迟,点击Synthesize和Analyze栏中的和箭头,可以进行W、L与Z0、E_Eff间的相互换算。本例中Z0为50Ohm,E_Eff为45deg,W为0.31008mm,L为9.18284mm。另外打开的一个窗口显示当前运算状态以及错误信息,如图12.7所示。

4)双击两边的引出线TL1、TL6,分别将其宽与长设为0.31006 mm和1.5 mm。其余的微带线长度设为9.18284,宽度是滤波器设计和优化的主要参数,因此要用变量代替,便于后面修改和优化。微带滤波器的结构是对称的,因此设置了

W1、W2、W3、W4、W5共5个变量。

双击每个微带线设置参数,W分别设为相应的变量,单位mm。在设置宽度的5个变量时,为了让它们显示在原理图上,要把Display parameter on schematic 的选项勾上。设置完变量的原理图如图12.8所示。

5)由于原理图中的MLIN和MLOC的宽度都是变量,因此需要在原理图中添加一个变量控件。单击工具栏上的VAR 图标,把变量控件VAR放置在原理图上,双击该图标弹出变量设置窗口,依次添加各微带线的W参数。

在Name栏中填变量名称,Variable Value栏中填变量的初值,点击Add 添加变量,然后单击Tune/Opt/Stat/DOE Setup…按钮设置变量的取值范围,其中的Enabled/Disabled表示该变量是否能被优化,Minimum Value表示可优化的最小值Maximum Value表示可优化的最大值,如图12.9,12.10所示。

微带滤波器中微带线的变量值及优化范围设置如下。

W1=0.1679 opt{ 0.1 to2 },表示W1的默认值为0.1679,变化范围为0.1到2。

W2=0.4772 opt{ 0.1 to 2 },表示W2的默认值为0.4772,变化范围为0.1到2。

W3=0.5124 opt{ 0.1 to 2 },表示W3的默认值为0.5124,变化范围为0.1到2。

W4=0.1269 opt{ 0.1 to 2 },表示W4的默认值为0.1269,变化范围为0.1到2。

W5=0.1203 opt{ 0.1 to 2 },表示W5的默认值为0.1203,变化范围为0.1到2。

这样一个完整的微带低通滤波器的电路就完成了,如图12.11所示。

4.3 S参数仿真设置和原理图仿真

上面已经详细的阐述了原理图的设计以及电路参数的设置,下面介绍S参数仿真设置和原理图仿真。在执行仿真之前,先进行S参数仿真设置。

1)S参数仿真设置

在原理图设计窗口中选择S参数仿真工具栏,Simulation-S_Param。选择Term放置在滤波器两边,用来定义端口1和2,并放置两个地,按照图12.12连接好电路。

选择S参数扫描控件放置在原理图中,并设置扫描的频率范围和步长。双击S参数仿真控制器,参数设置如下。

Start=0 GHz,表示频率扫描的起始频率为0 GHz。

Stop=5 GHz,表示频率扫描的终止频率为5 GHz。

Step=0.01 GHz,表示频率扫描的频率间隔为0.01 GHz。

完成参数设置的S参数仿真控制器如图12.13所示。

调整电路原理图和各种控件,最终得到的电路原理图如图12.14所示。

这样就完成了微带低通滤波器S参数的仿真设置,下面开始对滤波器进行仿真。2)原理图仿真

单击工具栏上的simulate按钮或是点击simulate→simulate,当仿真结束后,系统会自动弹出一个数据显示窗口,在数据显示窗口中插入一个S21参数的矩形图,再点击maker→New,可在图中加一标记,如图12.15所示。从图中可以看出,S21参数曲线是一个低通滤波器的形状,但是与设计指标的要求还有一定的差距。以同样的方式插入一个S11参数的矩形图,加上一个Marker点,如图12.16所示。从图中可以看出,S11在通带内基本满足工程设计的要求,但是还有待于进一步改善,使端口的反射系数更小。

通过仿真我们可以看出,滤波器的参数指标还不满足要求,这就需要我们通过优化仿真来使滤波器的参数满足设计的要求,下面就来介绍关于电路优化方面的内容。

4.4优化电路参数

由于滤波器的参数并未达到指标要求,因此需要优化电路参数,使之达到设计要求。优化电路参数的具体步骤如下:

1) 在原理图设计窗口中选择优化面板列表optim/stat/Yield/DOE,在列表中选择优化控件optim,双击该控件设置优化方法和优化次数,常用的优化方法有Random(随机)、Gradient(梯度)等。随机法通常用于大范围搜索,梯度法则用于局部收敛。设置完成的控件如图12.17所示。

2)在优化面板列表中选择优化目标控件Goal放置在原理图中,双击该控件设置其参数,如图12.18所示。

Expr是优化目标名称,其中dB(S(2,1))表示以dB为单位的S21参数的值。SimlnstanceName是仿真控件名称,这里选择SP1

Min和Max是优化目标的最小与最大值。

Weight是指优化目标的权重。

RangeVar[1]是优化目标所依赖的变量,这里为频率freq。

RangeMin[1]和RangeMax[1]是上述变量的变化范围。

这里总共设置了三个优化目标,前二个的优化参数都是S21,用来设定滤波器的通带和阻带的频率范围及衰减情况,最后一个的优化参数是S11,用来设定通带内的反射系数(这里要求小于-25dB),具体如图12.19所示。由于原理图仿真和实际情况会有一定的偏差,在设定优化参数时,可以适当增加通带宽度。对于其它的参数,也可以根据优化的结果进行一定的调整。

3)设置完优化目标后把原理图存储一下,然后点击工具栏中的Simulate按钮开始进行优化仿真。在优化过程中会打开一个状态窗口显示优化的结果(如图12.20),其中的CurrentEF表示与优化目标的偏差,数值越小表示越接近优化目标,0表示达到了优化目标,下面还列出了各优化变量的值,当优化结束时还会打开数据显示窗口。在数据显示窗口中我们可以观察S11参数和S21参数,如图12.21所示。从图中可以看出,滤波器的S11参数和S21参数满足设计要求。

需要注意的是在一次优化完成后,要点击原理图窗口菜单中的Simulate -> Update Optimization Values保存优化后的变量值(在VAR控件上可以看到变量的当前值),否则优化后的值将不保存。

如果一次优化不能满足设计指标要求,根据情况需要对优化目标、优化变量的取值范围、优化方法及次数进行适当的调整,经过数次优化后,当CurrentEf的值为0,即为优化结束。

4)优化完成后必须关掉优化控件,才能观察仿真的曲线。点击原理图工具栏中的

按钮,然后点击优化控件OPTIM,则控件上打了红叉表示已经被关掉。要想使控件重新开启,只需点击工具栏中的按钮,然后点击要开启的控件,则控件上的红叉消失,功能也重新恢复了。对于原理图上其他的部件,如果想使其关闭或开启,也可以采取同样的方法。

5)点击工具栏中的Simulate按钮进行仿真,仿真结束后会出现数据显示窗口。在数据显示窗口观察滤波器的S11和S21曲线,其结果与优化结果相同。

4.5其他参数

在进行原理图仿真时,还可以看到滤波器的群时延以及输入的电压驻波比等参数。双击S参数控件,在其设置窗口的Parameters选项卡中勾上Group delay选项,就会在仿真时计算群时延。把左侧工具栏设为Simulation-S_param,并把VSWR控件放置在原理图中,即可计算输入驻波比。

要观察这两个参数的曲线,只需在仿真后出现的图形显示窗口中添加delay(2,1)及VSWR的曲线即可。当优化完成后,还可以把S参数仿真的频率范围加大,看看滤波器的寄生通带出现在什么频率上。

4.6 版图的生成与仿真

原理图的仿真是在完全理想的状态下进行的,而实际电路板的制作往往和理论有较大的差距,这就需要我们考虑一些干扰、耦合等外界因素的影响。因此需要在ADS 中进一步对版图仿真。

1)版图的生成

版图的仿真是采用矩量法直接对电磁场进行计算,其结果比在原理图中仿真要准确,但是它的计算比较复杂,需要较长的时间,可作为对原理图设计的验证。

①首先要由原理图生成版图,生成版图前先要把原理图中用于S参数仿真的两个Term以及接地去掉,不让他们出现在生成的版图中。去掉的方法与前面关掉优化控件的相同,都是使用按钮,把这些元件打上红叉。

②然后点击菜单中的Layout -> Generate/Update Layout,弹出一个设置窗口(如图12.22),直接点OK,又出现一个窗口(如图12.23),再点OK,完成版图的生成,这时会打开一个显示版图的窗口,里面有刚生成的版图(如图12.24) 。

③版图生成后先要设置微带电路的基本参数(即原理图中MSUB里的参数),点击版图窗口菜单中的Momentum -> Substrate -> Update From Schematic从原理图中获得这些参数,点击Momentum -> Substrate -> Create/Modify可以修改这些参数。

④为了进行S参数仿真,需要在滤波器两侧添加两个端口,点击工具栏上的Port按钮,弹出port设置窗口,点击OK关闭该窗口,在滤波器两边要加端口的地方分别点击添加上两个port端口。

2)版图的仿真

①点击Momentum -> Simulation -> S-parameter弹出仿真设置窗口,该窗口右侧的Sweep Type选择Adaptive,起止频率设为与原理图中相同,采样点数限制取10 (因为仿真很慢,所以点数不要取得太多)。然后点击Update按钮,将设置填入左侧列表中,点击Simulate按钮开始进行仿真。仿真过程中会出现一个状态窗口显示仿真进程。

②仿真运算要进行一段时间,仿真结束后将出现数据显示窗口,观察S11和S21曲线,性能有不同程度的恶化(如图12.25),此处S11的值大概为-24dB,S21的值大概为-48dB,基本达到了指标要求。

③如果版图仿真得到的曲线不满足指标要求,那么要重新回到原理图窗口进行优化仿真,产生这种情况的原因是微带线的宽度取值不合适,可以改变优化变量的初值,也可根据曲线与指标的差别情况适当调整优化目标的参数,重新进行优化。

④在返回原理图重新优化时,要先使刚才打红上叉的部件恢复有效,然后才能进行优化,之后重复前面所述的过程,直到版图仿真的结果达到要求为止。

3)版图的制作

版图的仿真完成后要根据结果用Protel软件或是AutoCAD绘制电路版图,绘制版图时要注意以下几点。

①所用电路板是普通的双层板,上层用来绘制电路,下层整个作为接地。

②在绘制版图时受加工工艺的限制,尺寸精度到0.01 mm即可,线宽和缝隙宽度要大于0.2mm

③考虑到加工电路板时的侧向腐蚀问题,微带线的宽度和长度要适当增加。

④版图的大小要符合规定尺寸,以便于安装在测试架上。

ads设计的滤波器.

1 课题背景 随着信息化浪潮的推进,现代社会产生了巨大的信息要求,通信技术正在向高速、多频段、大容量方向发展。目前移动通信中所使用的主要频率为0.8-1.0GHz,全球GSM频段分为4段,即850/900/1800/1900MHz。在宽带移动化方面,IEEE802工作组先后制定了WLAN和WiMAX等技术规范,希望能沿着固定、游牧/便携、移动这样的演进路线逐步实现宽带移动化,常用的WLAN通信频段标准为IEEE802.1b/g(2.4-2.5GHz)和IEEE802.11a(5.2-5.8GHz)。为了在移动环境下实现宽带数据传输,IEEE802.16WiMAX成了宽带移动的主要里程碑,促进了移动宽带的演进和发展,2.3-2.4GHz和3.4-3.6GHz频段均被划分为WiMAX的全球性统一无线电频段。这正是S波段的应用,因此如何研究出高性能,小型化的滤波器是目前电路设计的的关键之一。 当频率达到或接近GHz时,滤波器通常由分布参数元件构成,分布参数不仅可以构成低通滤波器,而且可以构成带通和带阻滤波器。平行耦合微带传输线由两个无屏蔽的平行微带传输线紧靠在一起构成,由于两个传输线之间电磁场的相互作用,在两个传输线之间会有功率耦合,这种传输线也因此称为耦合传输线。平行耦合微带线可以构成带通滤波器,这种滤波器是由四分之一波长耦合线段构成,它是一种常用的分布参数带通滤波器。 当两个无屏蔽的传输线紧靠一起时,由于传输线之间电磁场的相互作用,在传输线之间会有功率耦合,这种传输线称之为耦合传输线。根据传输线理论,每条单独的微带线都等价为小段串联电感和小段并联电容。每条微带线的特性阻抗为Z0,相互耦合的部分长度为L,微带线的宽度为W,微带线之间的距离为S,偶模特性阻抗为Z e,奇模特性阻抗为Z0。单个微带线单元虽然具有滤波特性,但其不能提供陡峭的通带到阻带的过渡。 如果将多个单元级联,级联后的网络可以具有良好的滤波特性。如图1.1所示。

根据ADS的带阻滤波器设计

电磁波与微波技术 课程设计 ----带阻滤波器的设计与仿真 课题:带阻滤波器的设计与仿真 指导老师: 姓名: 学号:

目录 1.设计要求 (3) 2.微带短截线带阻滤波器的理论基础 (3) 2.1理查德变换 (4) 2.2科洛达规则 (6) 3.设计步骤 (7) 3.1ADS 简介 (7) 3.2初步设计过程 (8) 3.3优化设计过程 (14) 3.4对比结果 (17) 4.心得体会 (17) 5.参考文献 (18)

1.课程设计要求: 1.1 设计题目:带阻滤波器的设计与仿真。 1.2设计方式:分组课外利用ads软件进行设计。 1.3设计时间:第一周至第十七周。 1.4 带阻滤波器中心频率:6GHz;相对带宽:9%;带内波纹: <0.2dB。 1.5 滤波器阻带衰减>25dB;在频率5.5GHz和6.5GHz处,衰 减<3dB;输入输出阻抗:50Ω。 2.微带短截线带阻滤波器的理论基础 当频率不高时,滤波器主要是由集总元件电感和电容构成,但当频率高于500Mz时,滤波器通常由分布参数元件构成,这是由于两个原因造成的,其一是频率高时电感和电容应选的元件值小,由于寄生参数的影响,如此小的电感和电容已经不能再使用集总参数元件;其二是此时工作波长与滤波器元件的物理尺寸相近,滤波器元件之间的距离不可忽视,需要考虑分布参数效应。我们这次设计采用短截线方法,将集总元件滤波器变换为分布参数滤波器,其中理查德变换用于将集总元件变换为传输段,科洛达规则可以将各滤波器元件分隔。 2.1 理查德变换

通过理查德变换,可以将集总元件的电感和电容用一段终端短路和终端开路的传输线等效。终端短路和终端开路传输线的输入阻抗具有纯电抗性,利用传输线的这一特性,可以实现集总元件到分布参数元件的变换。 在传输线理论中,终端短路传输线的输入阻抗为: 错误!未找到引用源。= 错误!未找到引用源。(1.0) 式中 错误!未找到引用源。 当传输线的长度错误!未找到引用源。= 错误!未找到引用源。时 错误!未找到引用源。 (1.1) 将式(1.1)代入式(1.1),可以得到 错误!未找到引用源。(1.2)式中 错误!未找到引用源。 (1.3) 称为归一化频率。

ADS设计的带通滤波器

设计报告 学生: 课题:带通滤波器的设计与仿真 目录

摘要 (3) 一平行耦合微带线滤波器的理论基础 (3) 二、平行耦合微带线滤波器的设计的流程图 (4) 三、设计的具体步骤 (5) 1、确定下边频和归一化带宽 (5) 2、在设计向导中生成原理图 (6) 3、平行耦合微带线带通滤波器设计 (7) 4、设计平行耦合微带线带通滤波器原理图 (8) 四、心得体会 (14) 五、参考文献 (14) 带通滤波器的设计与仿真

摘要: 介绍一种借助ADS( Advanced Des ign SySTem )软件进行设计和优化平行耦合微带线带通滤波器的方法,给出了清晰的设计步骤,最后结合设计方法利用ADS给出一个中心频率为2.4 GHz,相对带宽为9%的微带带通滤波器的设计及优化实例和仿真结果,仿真结果表明: 这种方法是可行的,满足设计的要求。 滤波器是用来分离不同频率信号的一种器件。它的主要作用是抑制不需要的信号,使其不能通过滤波器,只让需要的信号通过。在微波电路系统中,滤波器的性能对电路的性能指标有很大的影响,因此如何设计出一个具有高性能的滤波器,对设计微波电路系统具有很重要的意义。微带电路具有体积小,重量轻、频带宽等诸多优点,近年来在微波电路系统应用广泛,其中用微带做滤波器是其主要应用之一。平行耦合微带线带通滤波器在微波集成电路中是被广为应用的带通滤波器。 一、滤波器的介绍 (1)波器可以分为四种:低通滤波器和高通滤波器、带通滤波器和带阻滤波器 按照滤波器的制作方法和材料,射频滤波器又可以分为以下四种: (2)波器、同轴线滤波器、带状线滤波器、微带滤波器 (3)滤波的性能指标: 频率范围:滤波器通过或截断信号的频率界限 通带衰减:滤波器残存的反射以及滤波器元件的损耗引起 阻带衰减:取通带外与截止频率为一定比值的某频率的衰减值 寄生通带:有分布参数的频率周期性引起,在通带的一定外有产生新的通带 二、平行耦合微带线滤波器的理论基础 当频率达到或接近GHz时,滤波器通常由分布参数元件构成,分布参数不仅可以构成低通滤波器,而且可以构成带通和带阻滤波器。 平行耦合微带传输线由两个无屏蔽的平行微带传输线紧靠在一起构成,由于两个传输线之间电磁场的相互作用,在两个传输线之间会有功率耦合,这种传输线也因此称为耦合传输线。 平行耦合微带线可以构成带通滤波器,这种滤波器是由四分之一波长耦合线段构成,她是一种常用的分布参数带通滤波器。 当两个无屏蔽的传输线紧靠一起时,由于传输线之间电磁场的相互作用,在传输线之间会有功率耦合,这种传输线称之为耦合传输线。根据传输线理论,每条单独的微带线都等价为小段串联电感和小段并联电容。每条微带线的特性阻抗为Z 0,相互耦合的部分长度为L,微带线的宽度为W,微带线之间的距离为S,偶模特性阻抗为Z e,奇模特性阻抗为Z0。单个微带线单元虽然具有滤波特性,但其不能提供陡峭的通带到阻带的过渡。 如果将多个单元级联,级联后的网络可以具有良好的滤波特性。

基于ADS的微带滤波器设计

基于ADS的微带滤波器设计 微波滤波器是用来分离不同频率微波信号的一种器件。它的主要作用是抑制不需要的信号, 使其不能通过滤波器, 只让需要的信号通过。在微波电路系统中,滤波器的性能对电路的性能指标有很大的影响,因此如何设计出一个具有高性能的滤波器,对设计微波电路系统具有很重要的意义。微带电路具有体积小,重量轻、频带宽等诸多优点,近年来在微波电路系统应用广泛,其中用微带做滤波器是其主要应用之一,因此本节将重点研究如何设计并优化微带滤波器。1 微带滤波器的原理微带滤波器当中最基本的滤波器是微带低通滤波器,而其它类型的滤波器可以通过低通滤波器的原型转化过来。最大平坦滤波器和切比雪夫滤波器是两种常用的低通滤波器的原型。微带滤波器中最简单的滤波器就是用开路并联短截线或是短路串联短截线来代替集总元器件的电容或是电感来实现滤波的功能。这类滤波器的带宽较窄,虽然不能满足所有的应用场合,但是由于它设计简单,因此在某些地方还是值得应用的。2 滤波器的分类最普通的滤波器的分类方法通常可分为低通、高通、带通及带阻四种类型。图12.1给出了这四种滤波器的特性曲线。按滤波器的频率响应来划分,常见的有巴特沃斯型、切比雪夫Ⅰ型、切比雪夫Ⅱ型及椭圆型等;按滤波器的构成元件来划分,则可分为有源型及无源型两类;按滤波器的制作方法和材料可分为波导滤波器、同轴线滤波器、带状线滤波器、微带滤波器。3 微带滤波器的设计指标微带滤波器的设计指标主要包括:1绝对衰减(Absolute attenuation):阻带中最大衰减(dB)。 2带宽(Bandwidth):通带的3dB带宽(flow—fhigh)。3中心频率:fc或f0。4截止频率。下降沿3dB点频率。5每倍频程衰减(dB/Octave):离开截止频率一个倍频程衰减(dB)。 6微分时延(differential delay):两特定频率点群时延之差以ns计。 7群时延(Group delay):任何离散信号经过滤波器的时延(ns)。8插入损耗(insertion loss):当滤波器与设计要求的负载连接,通带中心衰减,dB 9带内波纹(passband ripple):在通带内幅度波动,以dB计。10相移(phase shift):当信号经过滤波器引起的相移。 11品质因数Q(quality factor):中心频率与3dB带宽之比。 12反射损耗(Return loss) 13形状系数(shape factor):定义为。 14止带(stop band或reject band):对于低通、高通、带通滤波器,指衰减到指定点(如60dB点)的带宽。工程应用中,一般要求我们重点考虑通带边界频率与通带衰减、阻带边界频率与阻带衰减、通带的输入电压驻波比、通带内相移与群时延、寄生通带。前两项是描述衰减特性的,是滤波器的主要技术指标,决定了滤波器的性能和种类(高通、低通、带通、带阻等);输入电压驻波比描述了滤波器的反射损耗的大小;群时延是指网络的相移随频率的变化率,定义为 dU/df ,群时延为常数时,信号通过网络才不会产生相位失真;寄生通带是由于分布参数传输线的周期性频率特性引起的,它是离设计通带一定距离处又出现的通带,设计时要避免阻带内出现寄生通带。4 微带滤波器的设计本小节设计一个微带低通滤波器,滤波器的指标如下:通带截止频率:3GHz。通带增益:大于-5dB,主要由滤波器的S21参数确定。阻带增益:在4.5GHz以上小于-48dB,也主要由滤波器的S21参数确定。通带反射系数:小于-22dB,由滤波器的S11参数确定。在进行设计时,我们主要是以滤波器的S参数作为优化目标。S21(S12)是传输参数,滤波器通带、阻带的位置以及增益、衰减全都表现在S21(S12)随频率变化的曲线上。S11(S22)参数是输入、输出端口的反射系数,如果反射系数过大,就会导致反射损耗增大,影响系统的前后级匹配,使系统性能下降。了解了滤波器的设计原理以及设计指标后,下面开始设计微带低通滤波器。4.1建立工程新建工程,选择【File】→【New Project】,系统出现新建工程对话框。在name栏中输入工程名:microstrip_filter,并在Project Technology Files栏中选择ADS Standard:Length unit——millimet,默认单位为mm,。单击OK,完成新建工程,此时原理图设计窗口会自动打开。4.2原理图和电路参数设计工程文件创立完毕后,下面介绍微带低通滤波

ADS低通滤波器的设计与仿真

电磁场与微波技术 课程设计报告 课程题目:低通滤波器的设计与仿真姓名: 指导老师: 系别:电子信息与电气工程系专业:通信工程 班级: 学号: 完成时间:

低通滤波器的设计与仿真 摘要:微波滤波器是用来分离不同频率微波信号的一种器件。它的主要作用是抑制不需要的信号, 使其不能通过滤波器, 只让需要的信号通过。在微波电路系统中,滤波器的性能对电路的性能指标有很大的影响,因此如何设计出一个具有高性能的滤波器,对设计微波电路系统具有很重要的意义。微带电路具有体积小,重量轻、频带宽等诸多优点,近年来在微波电路系统应用广泛,其中用微带做滤波器是其主要应用之一。 关键词:ads;微带线;低通滤波器

一、设计思路 1、设计要求:截止频率:1.1GHz,通带内波纹小于0.2dB,在 1.21GHz 处具有不小于 25dB 的带外衰减。 2、方案选择 利用椭圆函数滤波器设计并仿真,经过优化后,结果调出来的波形能达到指标,但波形会形成带阻波形,只能实现在一定范围内低通。所以不选。 利用切比雪夫滤波器设计并仿真,经过优化调试后可用。 3、设计法案 首先用 LC 设计低通滤波器集总参数模型当频率工作在高频时,要用微带线代替 LC 元件。高阻抗微带线代替串联电感,低阻抗微带线代替并联电容。一般取 Zhigh=120Ω,Zlow=20Ω。在输入和输出加上 50Ω微带线。然后根据设计要求通过 ADS 自带的Linecalc 计算转换过来的微带线长和宽。在进行设计时,主要以滤波器的 S 参数作为优化目标进行优化仿真。 S21(S12) S(表示传输参数,滤波器的通带,阻带的位置以及衰减,起伏全部表现在 S21(S12)随频率变化的曲线上。S11(S22)参数是输入、输出端口的反射系数,由它可以换算输入输出的电压驻波比。如果反射系数过大,就会导致反射损耗过大,影响系统的后级匹配,使系统性能下降。 板材设置:H(基板厚度)=0.8mm,Er(基板相对介电常数)=2.2,Mur (磁导率)=1,Cond(金属电导率)=1E+50,Hu(封装高度)=1E+033mm,T (金属层厚度)=0.01mm,TanD (损耗角正切)=0。 二、仿真过程及电路原理图、版图、S 参数等 经过ADS软件的仿真和折中,以下就以相对比较好的方案为例介绍详细过程以及电路和版图仿真的情况。

(完整word版)微带线带通滤波器的ADS设计

应用ADS 设计微带线带通滤波器 1、微带带通微带线的基本知识 微波带通滤波器是应用广泛、结构类型繁多的微波滤波器,但适合微带结构的带通滤波器结构就不是那么多了,这是由于微带线本身的局限性,因为微带结构是个平面电路,中心导带必须制作在一个平面基片上,这样所有的具有串联短截线的滤波器都不能用微带结构来实现;其次在微带结构中短路端不易实现和精确控制,因而所有具有短路短截线和谐振器的滤波器也不太适合于微带结构。 微带线带通滤波器的电路结构的主要形式有5种: 1、电容间隙耦合滤波器带宽较窄,在微波低端上显得太长,不够紧凑,在2GHz以 上有辐射损耗。 2、平行耦合微带线带通滤波器 窄带滤波器,有5%到25%的相对带宽,能够精确设计,常为人们所乐用。但其在微波低端显得过长,结构不够紧凑;在频带较宽时耦合间隙较小,实现比较困难。 3、发夹线带通滤波器把耦合微带线谐振器折迭成发夹形式而成。这种滤波器由于容易激起表面波,性能不够理想,故常把它与耦合谐振器混合来用,以防止表面波的直接耦合。这种滤波器的精确设计较难。

4、1/4 波长短路短截线滤波器 5、半波长开路短截线滤波器 下面主要介绍平行耦合微带线带通滤波器的设计,这里只对其整个设计过程和方法进行简单的介绍。 2、平行耦合线微带带通滤波器平行耦合线微带带通滤波器是由几节半波长谐振器组合而成的,它不要求对地连接,结构简单,易于实现,是一种应用广泛的滤波器。整个电路可以印制在很薄的介质基片上(可以簿到1mm以下),故其横截面尺寸比波导、同轴线结构的小得多;其纵向尺寸虽和工作波长可以比拟,但采用高介电常数的介质基片,使线上的波长比自由空间小了几倍,同样可以减小;此外,整个微带电路元件共用接地板,只需由导体带条构成电路图形,结构大为紧凑,从而大大减小了体积和重量。 关于平行耦合线微带带通滤波器的设计方法,已有不少资料予以介绍。但是,在设计过程中发现,到目前为止所查阅到的各种文献,还没有一种能够做到准确设计。在经典的工程设计中,为避免繁杂的运算,一般只采用简化公式并查阅图表,这就造成较大的误差。而使用电子计算机进行辅助设计时,则可以力求数学模型精确,而不追求过分的简化。基于实际设计的需要,我对于平行耦合线微带

ADS滤波器设计

微带滤波器的设计(ADS ) https://www.doczj.com/doc/ce9525704.html, 原理 这次设计的滤波器主要是针对前面设计的天线而来的,即要实现最后的级联。所以有必 要阐述一下上次设计的天线的具体规格: 上次设计的天线是在 2.5GHz 附近工作,而我在这里设计的滤波器目的是针对移动通信设计,所要求带宽较窄,令带宽在50MHz 左右,符合天线能提供的范围。滤波器使用的基板参数还是εr= 9.8, h=1.27mm ,此时基板上的50ohm 阻抗传输线的宽大概为1.22mm 。 滤波器主要设计要求如下: 中心频率G0=2.5GHz 带宽=50MHz~70MHz (计算按50MHz ) 在2.55GHz 上衰减达到25dB 这里设计的滤波器为边缘耦合平行耦合线带通滤波器设计图如下: 计算主要参数 1、由低通到带通频率的变换 这里W 为相对带宽, 0 12 12122f f f f f f f W ?=+?==0.02 得到'1 ωω′=2,如果采用切比雪夫原型,查表得到此滤波器为n=4级。 纹波系数为0.01dB 的切比雪夫原型的元件数值分别为: g0=1;g1=0.7168;g2=1.2003;g3=1.3212;g4=0.6476;g5=1.1007;'1ω=1 并且为了简单起见,采用对称耦合的末段。 2、 ???????= 2121W πθ=1.5551=ο1.89; 1tan 2 1θτ==31.828; 计算各个G 参数如下: 7168 .011 1×=G =1.1811;1007.16476.015×=G =1.1844; 2003.17168.012×=G =1.0781;3212.12003.113×=G =0.7941;

ADS低通滤波器的设计与仿真

- - 电磁场与微波技术 课程设计报告 课程题目:低通滤波器的设计与仿真 姓名: 指导老师: 系别:电子信息与电气工程系 专业:通信工程 班级: 学号: 完成时间:

低通滤波器的设计与仿真 摘要:微波滤波器是用来分离不同频率微波信号的一种器件。它的主要作用是抑制不需要的信号, 使其不能通过滤波器, 只让需要的信号通过。在微波电路系统中,滤波器的性能对电路的性能指标有很大的影响,因此如何设计出一个具有高性能的滤波器,对设计微波电路系统具有很重要的意义。微带电路具有体积小,重量轻、频带宽等诸多优点,近年来在微波电路系统应用广泛,其中用微带做滤波器是其主要应用之一。 关键词:ads;微带线;低通滤波器

一、设计思路 1、设计要求:截止频率:1.1GHz,通带波纹小于0.2dB,在1.21GHz 处具有不小于25dB 的带外衰减。 2、方案选择 利用椭圆函数滤波器设计并仿真,经过优化后,结果调出来的波形能达到指标,但波形会形成带阻波形,只能实现在一定围低通。所以不选。 利用切比雪夫滤波器设计并仿真,经过优化调试后可用。 3、设计法案 首先用LC 设计低通滤波器集总参数模型当频率工作在高频时,要用微带线代替LC 元件。高阻抗微带线代替串联电感,低阻抗微带线代替并联电容。一般取Zhigh=120Ω,Zlow=20Ω。在输入和输出加上50Ω微带线。然后根据设计要求通过ADS 自带的Linecalc 计算转换过来的微带线长和宽。在进行设计时,主要以滤波器的S 参数作为优化目标进行优化仿真。S21(S12)S(表示传输参数,滤波器的通带,阻带的位置以及衰减,起伏全部表现在S21(S12)随频率变化的曲线上。S11(S22)参数是输入、输出端口的反射系数,由它可以换算输入输出的电压驻波比。如果反射系数过大,就会导致反射损耗过大,影响系统的后级匹配,使系统性能下降。 板材设置:H(基板厚度)=0.8mm,Er(基板相对介电常数)=2.2,Mur (磁导率)=1,Cond(金属电导率)=1E+50,Hu(封装高度)=1E+033mm,T (金属层厚度)=0.01mm,TanD(损耗角正切)=0。 二、仿真过程及电路原理图、版图、S 参数等 经过ADS软件的仿真和折中,以下就以相对比较好的方案为例介绍详细过程以及电路和版图仿真的情况。

教程:ADS微波滤波器设计

微带滤波器的设计(ADS ) 原理 这次设计的滤波器主要是针对前面设计的天线而来的,即要实现最后的级联。所以有必 要阐述一下上次设计的天线的具体规格: 上次设计的天线是在 2.5GHz 附近工作,而我在这里设计的滤波器目的是针对移动通信设计,所要求带宽较窄,令带宽在50MHz 左右,符合天线能提供的范围。滤波器使用的基板参数还是εr= 9.8, h=1.27mm ,此时基板上的50ohm 阻抗传输线的宽大概为1.22mm 。 滤波器主要设计要求如下: 中心频率G0=2.5GHz 带宽=50MHz~70MHz (计算按50MHz ) 在2.55GHz 上衰减达到25dB 这里设计的滤波器为边缘耦合平行耦合线带通滤波器设计图如下: 计算主要参数 1、由低通到带通频率的变换 这里W 为相对带宽, 0 12 12122f f f f f f f W ?=+?==0.02 得到'1 ωω′=2,如果采用切比雪夫原型,查表得到此滤波器为n=4级。 纹波系数为0.01dB 的切比雪夫原型的元件数值分别为: g0=1;g1=0.7168;g2=1.2003;g3=1.3212;g4=0.6476;g5=1.1007;'1ω=1 并且为了简单起见,采用对称耦合的末段。 2、 ???????= 2121W πθ=1.5551=ο1.89; 1tan 2 1θτ==31.828; 计算各个G 参数如下: 7168 .011 1×=G =1.1811;1007.16476.015×=G =1.1844; 2003.17168.012×=G =1.0781;3212.12003.113×=G =0.7941;

基于ADS的带阻滤波器设计

基于ADS的带阻滤波器设计

————————————————————————————————作者:————————————————————————————————日期: ?

电磁波与微波技术 课程设计 ----带阻滤波器的设计与仿真 课题:带阻滤波器的设计与仿真 ?指导老师: ???姓名: 学号:

目录 1.设计要求 (3) 2.微带短截线带阻滤波器的理论基础 (3) 2.1理查德变换 (4) 2.2科洛达规则 (6) 3.设计步骤.......................73.1ADS简介 (7) 3.2初步设计过程 (8) 3.3优化设计过程···················14 3.4对比结果·····················17 4.心得体会 (17) 5.参考文献 (18)

1.课程设计要求: 1.1 设计题目:带阻滤波器的设计与仿真。 1.2设计方式:分组课外利用ads软件进行设计。 1.3设计时间:第一周至第十七周。 1.4 带阻滤波器中心频率:6GHz;相对带宽:9%;带内波纹: <0.2dB。 1.5滤波器阻带衰减>25dB;在频率5.5GHz和6.5GH z处,衰减<3dB;输入输出阻抗:50Ω。 2.微带短截线带阻滤波器的理论基础 当频率不高时,滤波器主要是由集总元件电感和电容构成,但 当频率高于500Mz时,滤波器通常由分布参数元件构成,这是由于两个原因造成的,其一是频率高时电感和电容应选的元件值小,由于寄生参数的影响,如此小的电感和电容已经不能再使用集总参数元件;其二是此时工作波长与滤波器元件的物理尺寸相近,滤波器元件之间的距离不可忽视,需要考虑分布参数效应。我们这次设计采用短截线方法,将集总元件滤波器变换为分布参数滤波器,其中理查德变换用于将集总元件变换为传输段,科洛达规则可以将各滤波器元件分隔。 2.1 理查德变换

微带线带通滤波器的ADS设计

应用ADS设计微带线带通滤波器 1、微带带通微带线的基本知识 微波带通滤波器是应用广泛、结构类型繁多的微波滤波器,但适合微带结构的带通滤波器结构就不是那么多了,这是由于微带线本身的局限性,因为微带结构是个平面电路,中心导带必须制作在一个平面基片上,这样所有的具有串联短截线的滤波器都不能用微带结构来实现;其次在微带结构中短路端不易实现和精确控制,因而所有具有短路短截线和谐振器的滤波器也不太适合于微带结构。 微带线带通滤波器的电路结构的主要形式有5种: 1、电容间隙耦合滤波器 带宽较窄,在微波低端上显得太长,不够紧凑,在2GHz以上有辐射损耗。 2、平行耦合微带线带通滤波器 窄带滤波器,有5%到25%的相对带宽,能够精确设计,常为人们所乐用。但其在微波低端显得过长,结构不够紧凑;在频带较宽时耦合间隙较小,实现比较困难。 3、发夹线带通滤波器 把耦合微带线谐振器折迭成发夹形式而成。这种滤波器由于容易激起表面波,性能不够理想,故常把它与耦合谐振器混合来用,以防止表面波的直接耦合。这种滤波器的精确设计较难。

4、1/4波长短路短截线滤波器 5、半波长开路短截线滤波器 下面主要介绍平行耦合微带线带通滤波器的设计,这里只对其整个设计过程和方法进行简单的介绍。 2、平行耦合线微带带通滤波器 平行耦合线微带带通滤波器是由几节半波长谐振器组合而成的,它不要求对地连接,结构简单,易于实现,是一种应用广泛的滤波器。整个电路可以印制在很薄的介质基片上(可以簿到1mm以下),故其横截面尺寸比波导、同轴线结构的小得多;其纵向尺寸虽和工作波长可以比拟,但采用高介电常数的介质基片,使线上的波长比自由空间小了几倍,同样可以减小;此外,整个微带电路元件共用接地板,只需由导体带条构成电路图形,结构大为紧凑,从而大大减小了体积和重量。 关于平行耦合线微带带通滤波器的设计方法,已有不少资料予以介绍。但是,在设计过程中发现,到目前为止所查阅到的各种文献,还没有一种能够做到准确设计。在经典的工程设计中,为避免繁杂的运算,一般只采用简化公式并查阅图表,这就造成较大的误差。而使用电子计算机进行辅助设计时,则可以力求数学模型精确,而不追求过分的简化。基于实际设计的需要,我对于平行耦合线微带

(完整word版)微带线带通滤波器的ADS设计.doc

应用 ADS 设计微带线带通滤波器 1、微带带通微带线的基本知识 微波带通滤波器是应用广泛、结构类型繁多的微波滤波器,但适合微带结构的带通滤波器结构就不是那么多了,这是由于微带线本身的局限性,因为微带结构是个平面电路,中心导带必须制作在一个平面基片上,这样所有的具有串联短截线的滤波器都不能用微带结构来实现;其次在微带结构中短路端不易实现和精 确控制,因而所有具有短路短截线和谐振器的滤波器也不太适合于微带结构。 微带线带通滤波器的电路结构的主要形式有5种: 1、电容间隙耦合滤波器 带宽较窄,在微波低端上显得太长,不够紧凑,在2GHz以上有辐射损耗。 2、平行耦合微带线带通滤波器 窄带滤波器,有 5%到 25%的相对带宽,能够精确设计,常为人们所乐用。但其在微波低端显得过长,结构不够紧凑;在频带较宽时耦合间隙较小,实现比较困难。 3、发夹线带通滤波器 把耦合微带线谐振器折迭成发夹形式而成。这种滤波器由于容易激起表面 波,性能不够理想,故常把它与耦合谐振器混合来用,以防止表面波的直接耦合。这种滤波器的精确设计较难。

4、1/4 波长短路短截线滤波器 5、半波长开路短截线滤波器 下面主要介绍平行耦合微带线带通滤波器的设计,这里只对其整个设计过程 和方法进行简单的介绍。 2、平行耦合线微带带通滤波器 平行耦合线微带带通滤波器是由几节半波长谐振器组合而成的,它不要求对地连接,结构简单,易于实现,是一种应用广泛的滤波器。整个电路可以印制在很薄的介质基片上 ( 可以簿到 1mm以下 ) ,故其横截面尺寸比波导、同轴线结构的小得多;其纵向尺寸虽和工作波长可以比拟,但采用高介电常数的介质基片,使线上的波长比自由空间小了几倍,同样可以减小;此外,整个微带电路元件共用接地板,只需由导体带条构成电路图形,结构大为紧凑,从而大大减小了体积和重量。 关于平行耦合线微带带通滤波器的设计方法,已有不少资料予以介绍。但是,在设计过程中发现,到目前为止所查阅到的各种文献,还没有一种能够做到准确设计。在经典的工程设计中,为避免繁杂的运算,一般只采用简化公式并查阅图表,这就造成较大的误差。而使用电子计算机进行辅助设计时,则可以力求数学模型精确,而不追求过分的简化。基于实际设计的需要,我对于平行耦合线微带

ADS仿真:微带滤波器的设计

ADS仿真:微带滤波器的设计 微波滤波器是用来分离不同频率微波信号的一种器件。它的主要作用是抑制不需要的信号, 使其不能通过滤波器, 只让需要的信号通过。在微波电路系统中,滤波器的性能对电路的性能指标有很大的影响,因此如何设计出一个具有高性能的滤波器,对设计微波电路系统具有很重要的意义。微带电路具有体积小,重量轻、频带宽等诸多优点,近年来在微波电路系统应用广泛,其中用微带做滤波器是其主要应用之一,因此本节将重点研究如何设计并优化微带滤波器。 1 微带滤波器的原理 微带滤波器当中最基本的滤波器是微带低通滤波器,而其它类型的滤波器可以通过低通滤波器的原型转化过来。最大平坦滤波器和切比雪夫滤波器是两种常用的低通滤波器的原型。微带滤波器中最简单的滤波器就是用开路并联短截线或是短路串联短截线来代替集总元器件的电容或是电感来实现滤波的功能。这类滤波器的带宽较窄,虽然不能满足所有的应用场合,但是由于它设计简单,因此在某些地方还是值得应用的。 2 滤波器的分类 最普通的滤波器的分类方法通常可分为低通、高通、带通及带阻四种类型。图12.1给出了这四种滤波器的特性曲线。 按滤波器的频率响应来划分,常见的有巴特沃斯型、切比雪夫Ⅰ型、切比雪夫Ⅱ型及椭圆型等;按滤波器的构成元件来划分,则可分为有源型及无源型两类;按滤波器的制作方法和材料可分为波导滤波器、同轴线滤波器、带状线滤波器、微带滤波器。 3 微带滤波器的设计指标

微带滤波器的设计指标主要包括: 1绝对衰减(Absolute attenuation):阻带中最大衰减(dB)。 2带宽(Bandwidth):通带的3dB带宽(flow—fhigh)。 3中心频率:fc或f0。 4截止频率。下降沿3dB点频率。 5每倍频程衰减(dB/Octave):离开截止频率一个倍频程衰减(dB)。 6微分时延(differential delay):两特定频率点群时延之差以ns计。 7群时延(Group delay):任何离散信号经过滤波器的时延(ns)。 8插入损耗(insertion loss):当滤波器与设计要求的负载连接,通带中心衰减,dB 9带内波纹(passband ripple):在通带内幅度波动,以dB计。 10相移(phase shift):当信号经过滤波器引起的相移。 11品质因数Q(quality factor):中心频率与3dB带宽之比。 12反射损耗(Return loss) 13形状系数(shape factor):定义为。 14止带(stop band或reject band):对于低通、高通、带通滤波器,指衰减到指定点(如60dB点)的带宽。 工程应用中,一般要求我们重点考虑通带边界频率与通带衰减、阻带边界频率与阻带衰减、通带的输入电压驻波比、通带内相移与群时延、寄生通带。前两项是描述衰减特性的,是滤波器的主要技术指标,决定了滤波器的性能和种类(高通、低通、带通、带阻等);输入电压驻波比描述了滤波器的反射损耗的大小;群时延是指网络的相移随频率的变化率,定义为dU/df ,群时延为常数时,信号通过网络才不会产生相位失真;寄生通带是由于分布参数传输线的周期性频率特性引起的,它是离设计通带一定距离处又出现的通带,设计时要避免阻带内出现寄生通带。 4 微带滤波器的设计 本小节设计一个微带低通滤波器,滤波器的指标如下: 通带截止频率:3GHz。 通带增益:大于-5dB,主要由滤波器的S21参数确定。 阻带增益:在4.5GHz以上小于-48dB,也主要由滤波器的S21参数确定。 通带反射系数:小于-22dB,由滤波器的S11参数确定。 在进行设计时,我们主要是以滤波器的S参数作为优化目标。S21(S12)是传输参数,滤波器通带、阻带的位置以及增益、衰减全都表现在S21(S12)随频率变化

ADS低通滤波器的设计与仿真

. . .. 电磁场与微波技术 课程设计报告 课程题目:低通滤波器的设计与仿真 姓名: 指导老师: 系别:电子信息与电气工程系 专业:通信工程 班级: 学号: 完成时间:

低通滤波器的设计与仿真 摘要:微波滤波器是用来分离不同频率微波信号的一种器件。它的主要作用是抑制不需要的信号, 使其不能通过滤波器, 只让需要的信号通过。在微波电路系统中,滤波器的性能对电路的性能指标有很大的影响,因此如何设计出一个具有高性能的滤波器,对设计微波电路系统具有很重要的意义。微带电路具有体积小,重量轻、频带宽等诸多优点,近年来在微波电路系统应用广泛,其中用微带做滤波器是其主要应用之一。 关键词:ads;微带线;低通滤波器

一、设计思路 1、设计要求:截止频率:1.1GHz,通带波纹小于0.2dB,在1.21GHz 处具有不小于25dB 的带外衰减。 2、方案选择 利用椭圆函数滤波器设计并仿真,经过优化后,结果调出来的波形能达到指标,但波形会形成带阻波形,只能实现在一定围低通。所以不选。 利用切比雪夫滤波器设计并仿真,经过优化调试后可用。 3、设计法案 首先用LC 设计低通滤波器集总参数模型当频率工作在高频时,要用微带线代替LC 元件。高阻抗微带线代替串联电感,低阻抗微带线代替并联电容。一般取Zhigh=120Ω,Zlow=20Ω。在输入和输出加上50Ω微带线。然后根据设计要求通过ADS 自带的Linecalc 计算转换过来的微带线长和宽。在进行设计时,主要以滤波器的S 参数作为优化目标进行优化仿真。S21(S12)S(表示传输参数,滤波器的通带,阻带的位置以及衰减,起伏全部表现在S21(S12)随频率变化的曲线上。S11(S22)参数是输入、输出端口的反射系数,由它可以换算输入输出的电压驻波比。如果反射系数过大,就会导致反射损耗过大,影响系统的后级匹配,使系统性能下降。 板材设置:H(基板厚度)=0.8mm,Er(基板相对介电常数)=2.2,Mur (磁导率)=1,Cond(金属电导率)=1E+50,Hu(封装高度)=1E+033mm,T (金属层厚度)=0.01mm,TanD(损耗角正切)=0。

ADS平行耦合滤波器设计

基于ADS的平行耦合微带线带通滤波器的设计及优化 时间:2011-03-11 14:56:08 来源:维库作者: 摘要: 介绍一种借助ADS( Adv anced Des i gn Sy STem )软件进行设计和优化平行耦合微带线带通滤波器的方法,给出了清晰的设计步骤,最后结合设计方法利用ADS给出一个中心频率为2. 6 GHz,带宽为200MH z的微带带通滤波器的设计及优化实例和仿真结果,并进一步给出电路版图Momentum 仿真结果。仿真结果表明: 这种方法是可行的,满足设计的要求。 滤波器是用来分离不同频率信号的一种器件。它的主要作用是抑制不需要的信号,使其不能通过滤波器,只让需要的信号通过。在微波电路系统中,滤波器的性能对电路的性能指标有很大的影响,因此如何设计出一个具有高性能的滤波器,对设计微波电路系统具有很重要的意义。微带电路具有体积小,重量轻、频带宽等诸多优点,近年来在微波电路系统应用广泛,其中用微带做滤波器是其主要应用之一。平行耦合微带线带通滤波器在微波集成电路中是被广为应用的带通滤波器。 1基本原理 当两个无屏蔽的传输线紧靠一起时,由于传输线之间电磁场的相互作用,在传输线之间会有功率耦合,这种传输线称之为耦合传输线。根据传输线理论,每条单独的微带线都等价为小段串联电感和小段并联电容。每条微带线的特性阻抗为Z 0,相互耦合的部分长度为L,微带线的宽度为W,微带线之间的距离为S,偶模特性阻抗为Z e,奇模特性阻抗为Z0。单个微带线单元虽然具有滤波特性,但其不能提供陡峭的通带到阻带的过渡。 如果将多个单元级联,级联后的网络可以具有良好的滤波特性。 图15级耦合微带线带通滤波器 2 设计步骤 2. 1设计低通原型 根据带通滤波器的一系列参数通过频率变换和查表选择低通原型滤波器的归一化原型参量。 用ω1和ω2 表示带通滤波器的下边界和上边界,ω0表示中心频率。将带通滤波器变换为低通原型。 归一化带宽:

ADS2008巴特沃斯低通滤波器的设计

巴特沃斯低通滤波器设计 [摘要]:本论文主要介绍了仿真软件ADS的运用,然后根据滤波器设计的数学理论模型,运用仿真软件ADS进行低通滤波器的设计仿真,主要介绍了巴特沃斯低通滤波器的设计方法,并将集总参数转换为分布参数Richards变换,利用双口网络演变而来的单位元件矩阵,论述了传输线结构之间的相互变换规则,即Kuroda规则。以及微带线滤波器的设计,同时借助ADS软件对所涉及的低通滤波器进行了仿真和优化,最终得到比较理想的滤波器。 [关键字]:低通滤波器,巴特沃斯,微带滤波器,ADS.

目录 1 绪论...................................................................... 错误!未定义书签。 1.1巴特沃斯滤波器的概述 ................................................ 错误!未定义书签。 1.2课程设计的意义 ............................................................ 错误!未定义书签。 1.3课程设计的目的 ............................................................ 错误!未定义书签。 2 设计方案 (2) 2.1设计要求 (2) 2.2方案选择 (2) 2.3 Richards变换原理 (2) 2.4 Kuroda恒等式变换 (3) 3 滤波器的设计与仿真 (4) 3.1设计过程 (4) 3.1.1创建工程 (4) 3.1.2滤波器设计向导工具的使用 (4) 3.1.3集总参数滤波器转换为微带滤波器 (5) 3.1.4 kuroda等效后仿真 (8) 3.2原理图优化与仿真 (9) 3.3版图生成与仿真 .......................................................... 错误!未定义书签。0 4 总结 (123) 参考文献 (144)

基于ADS软件低通滤波器的仿真设计毕设开题报告

青岛理工大学 基于ADS软件低通滤波器的仿真设计报告 课题名称:基于ADS软件低通滤波器的仿真设计 学院(系):通信学院 年级专业:电子专业11级 学生姓名:陈金科 指导教师:聂廷远

一、综述本课题国内外研究动态,说明选题的依据和意义 微带滤波器是用来分离不同频率微波信号的一种器件。它的主要作用是抑制不需要的信号,使其不能通过滤波器,只让需要的信号通过。滤波,本质上是从被噪声畸变和污染了的信号中提取原始信号所携带的信息的过程,研究滤波器可以去除输入信号中不必要的信息,也可以消除噪声对输入信号的干扰,它在微波中级通讯、卫星通讯、雷达技术、电子对抗以及微波测量仪器中,都有广泛应用。 在1937年,由W.P Mason和R.A.Sykes发表的文章中首先研究了微波滤波器,他们是利用了ABCD参数推导出了大量有用滤波器相位和衰减函数。应用映像参数方法当时主要在美国各大实验室中,例如在Mn’实验室里,他们重点研究波导滤波器,而在Harvard实验室重点研究宽带低通、带通同轴及窄带可调谐滤波器。映像参数方法的工作大多在MIT实验室由Fano和Lawson完成,他们的著作对于微波滤波器有比较清晰的介绍,甚至在40年后还有应用价值。在随后的微波滤波器理论的研究和发展过程中,许多专家和学者做出了重大的贡献。Cohn在集总元件低通滤波器原型机的基础上第一个提出了方便实用的直接耦合空腔滤波器理论。上世纪60年代,G.L.Matthaei在其专著中对微波滤波器的经典设计方法做出了较全面、系统的介绍,但主要针对最平坦型和契比雪夫型,未涉及椭圆函数型和广义契比雪夫型。70年代初,A.E.Williams和Kurzrok提出用于分析交叉耦合的低阶滤波器。A.E.Atia,A.E.Williams和R.W.Newcomb对交叉耦合合展开研究,总结出传输零点对称分布时的偶模网络和相应的偶模矩阵的综合方法。Levy建立了集总和分布原型的元件公式间的联系,给出了推导原型元件的简单而准确的公式;Rhode建立起了线性相位滤波器理论。1999年Richard J.Cameron把广义契比雪夫滤波器的传输零点由实数扩展到复数,从而将传输零点和时延结合起来研究,提出用循环递归的方法构成广义契比雪夫的传输和反射函数多项式,根据导纳矩阵和部分分式展开求取留数,再利用施密特正交变换的方法综合耦合矩阵,其矩阵综合和消零计算量较大。如何将不可实现或不是最简的耦合元素消零成为研究热点,但目前国际上主要采用相似变换(矩阵旋转)尽可能多地消去非零元。这一系列贡

ADS仿真:微带滤波器的设计

ADS 仿真仿真::微带滤波器的设计微带滤波器的设计 微波滤波器是用来分离不同频率微波信号的一种器件。它的主要作用是抑制不需要的信号, 使其不能通过滤波器, 只让需要的信号通过。在微波电路系统中,滤波器的性能对电路的性能指标有很大的影响,因此如何设计出一个具有高性能的滤波器,对设计微波电路系统具有很重要的意义。微带电路具有体积小,重量轻、频带宽等诸多优点,近年来在微波电路系统应用广泛,其中用微带做滤波器是其主要应用之一,因此本节将重点研究如何设计并优化微带滤波器。 1 微带滤波器的原理微带滤波器的原理 微带滤波器当中最基本的滤波器是微带低通滤波器,而其它类型的滤波器可以通过低通滤波器的原型转化过来。最大平坦滤波器和切比雪夫滤波器是两种常用的低通滤波器的原型。微带滤波器中最简单的滤波器就是用开路并联短截线或是短路串联短截线来代替集总元器件的电容或是电感来实现滤波的功能。这类滤波器的带宽较窄,虽然不能满足所有的应用场合,但是由于它设计简单,因此在某些地方还是值得应用的。 2 滤波器的分类滤波器的分类 最普通的滤波器的分类方法通常可分为低通、高通、带通及带阻四种类型。图12.1给出了这四种滤波器的特性曲线。 按滤波器的频率响应来划分,常见的有巴特沃斯型、切比雪夫Ⅰ型、切比雪夫Ⅱ型及椭圆型等;按滤波器的构成元件来划分,则可分为有源型及无源型两类;按滤波器的制作方法和材料可分为波导滤波器、同轴线滤波器、带状线滤波器、微带滤波器。 3 3 微带滤波器的设计指标微带滤波器的设计指标 微带滤波器的设计指标主要包括: 绝对衰减(Absolute attenuation):阻带中最大衰减(dB)。 2带宽(Bandwidth):通带的3dB 带宽(flow—fhigh)。 3中心频率:fc 或f0。 4截止频率。下降沿3dB 点频率。 5每倍频程衰减(dB/Octave):离开截止频率一个倍频程衰减(dB)。 6微分时延(differential delay):两特定频率点群时延之差以ns 计。 7群时延(Group delay):任何离散信号经过滤波器的时延(ns)。 8插入损耗(insertion loss):当滤波器与设计要求的负载连接,通带中心衰减,dB 9带内波纹(passband ripple):在通带内幅度波动,以dB 计。 10相移(phase shift):当信号经过滤波器引起的相移。 11品质因数Q (q uality factor):中心频率与3dB 带宽之比。

相关主题
文本预览
相关文档 最新文档