当前位置:文档之家› [8]嵌入式Linux设备驱动程序开发

[8]嵌入式Linux设备驱动程序开发

嵌入式Linux应用软件开发流程

从软件工程的角度来说,嵌入式应用软件也有一定的生命周期,如要进行需求分析、系统设计、代码编写、调试和维护等工作,软件工程的许多理论对它也是适用的。 但和其他通用软件相比,它的开发有许多独特之处: ·在需求分析时,必须考虑硬件性能的影响,具体功能必须考虑由何种硬件实现。 ·在系统设计阶段,重点考虑的是任务的划分及其接口,而不是模块的划分。模块划分则放在了任务的设计阶段。 ·在调试时采用交叉调试方式。 ·软件调试完毕固化到嵌入式系统中后,它的后期维护工作较少。 下面主要介绍分析和设计阶段的步骤与原则: 1、需求分析 对需求加以分析产生需求说明,需求说明过程给出系统功能需求,它包括:·系统所有实现的功能 ·系统的输入、输出 ·系统的外部接口需求(如用户界面) ·它的性能以及诸如文件/数据库安全等其他要求 在实时系统中,常用状态变迁图来描述系统。在设计状态图时,应对系统运行过程进行详细考虑,尽量在状态图中列出所有系统状态,包括许多用户无需知道的内部状态,对许多异常也应有相应处理。 此外,应清楚地说明人机接口,即操作员与系统间地相互作用。对于比较复杂地系统,形成一本操作手册是必要的,为用户提供使用该系统的操作步骤。为使系统说明更清楚,可以将状态变迁图与操作手册脚本结合起来。

在对需求进行分析,了解系统所要实现的功能的基础上,系统开发选用何种硬件、软件平台就可以确定了。 对于硬件平台,要考虑的是微处理器的处理速度、内存空间的大小、外部扩展设备是否满足功能要求等。如微处理器对外部事件的响应速度是否满足系统的实时性要求,它的稳定性如何,内存空间是否满足操作系统及应用软件的运行要求,对于要求网络功能的系统,是否扩展有以太网接口等。 对于软件平台而言,操作系统是否支持实时性及支持的程度、对多任务的管理能力是否支持前面选中的微处理器、网络功能是否满足系统要求以及开发环境是否完善等都是必须考虑的。 当然,不管选用何种软硬件平台,成本因素都是要考虑的,嵌入式Linux 正是在这方面具有突出的优势。 2、任务和模块划分 在进行需求分析和明确系统功能后,就可以对系统进行任务划分。任务是代码运行的一个映象,是无限循环的一段代码。从系统的角度来看,任务是嵌入式系统中竞争系统资源的最小运行单元,任务可以使用或等待CPU、I/O设备和内存空间等系统资源。 在设计一个较为复杂的多任务应用系统时,进行合理的任务划分对系统的运行效率、实时性和吞吐量影响都极大。任务分解过细会不断地在各任务之间切换,而任务之间的通信量也会很大,这样将会大大地增加系统的开销,影响系统的效率。而任务分解过粗、不够彻底又会造成原本可以并行的操作只能按顺序串行执行,从而影响系统的吞吐量。为了达到系统效率和吞吐量之间的平衡折中,在划分任务时应在数据流图的基础上,遵循下列步骤和原则:

Linux设备驱动程序举例

Linux设备驱动程序设计实例2007-03-03 23:09 Linux系统中,设备驱动程序是操作系统内核的重要组成部分,在与硬件设备之间 建立了标准的抽象接口。通过这个接口,用户可以像处理普通文件一样,对硬件设 备进行打开(open)、关闭(close)、读写(read/write)等操作。通过分析和设计设 备驱动程序,可以深入理解Linux系统和进行系统开发。本文通过一个简单的例子 来说明设备驱动程序的设计。 1、程序清单 //MyDev.c 2000年2月7日编写 #ifndef __KERNEL__ #define __KERNEL__//按内核模块编译 #endif #ifndef MODULE #define MODULE//设备驱动程序模块编译 #endif #define DEVICE_NAME "MyDev" #define OPENSPK 1 #define CLOSESPK 2 //必要的头文件 #include //同kernel.h,最基本的内核模块头文件 #include //同module.h,最基本的内核模块头文件 #include //这里包含了进行正确性检查的宏 #include //文件系统所必需的头文件 #include //这里包含了内核空间与用户空间进行数据交换时的函数宏 #include //I/O访问 int my_major=0; //主设备号 static int Device_Open=0; static char Message[]="This is from device driver"; char *Message_Ptr; int my_open(struct inode *inode, struct file *file) {//每当应用程序用open打开设备时,此函数被调用 printk ("\ndevice_open(%p,%p)\n", inode, file); if (Device_Open) return -EBUSY;//同时只能由一个应用程序打开 Device_Open++; MOD_INC_USE_COUNT;//设备打开期间禁止卸载 return 0; } static void my_release(struct inode *inode, struct file *file)

(整理)嵌入式系统的以太网接口设计及linux内核网络设备驱动.

嵌入式系统的以太网接口设计及linux驱动 1 以太网概述 以太网(Ethernet)是当今局域网采用的最通用的通信协议标准。在以太网中,所有计算机被连接在一条电缆上,采用带冲突检测的载波侦听多路访问(CSMA/CD)方法,采用竞争机制和总线拓扑结构。基本上,以太网由共享传输媒体,如双绞线电缆或同轴电缆、多端口集线器、网桥或交换机构成。 按照OSI(Open System Interconnection Reference Model,开放式系统互联参考模型)7层参考模型,以太网定义的是物理层(PHY)和数据链路层(对应以太网的MAC层)的标准。 2 嵌入式处理器上扩展以太网接口 以太网接口控制器主要包括MAC乘PHY两部分,如图1所示为嵌入式处理器集成MAC层控制器。 MAC层控制器和PHY的连接是通过MII、RMII等接口实现的。在IEEE802的标准系列中,数据链路层包括LLC和MAC两个子层。其中MAC负责完成数据帧的封装、解封、发送和接受功能。PHY层的结构随着传输速率的不同而有一定的差异。对于1OBaseT等网络,从以太网PHY芯片输出的就是传输所需的差分信号。但是还需要一个网络隔离变压器组成图2的结构。网络隔离变压器可起到抑制共模干扰、隔离线路以及阻抗匹配等作用。 本文介绍一种新款网络接口芯片DM9000A,它可以很方便的实现与嵌入式CPU的接口,实现扩展以太网口的功能。DM9000A是中国台湾DAVICOM公司推出的一款高速以太网接口芯片,其基本特征是:集成10/100M物理层接口;内部带有16K字节SRAM用作接收发送的FIFO缓存;支持8/16bit两种主机工作模式:

CAN总线在嵌入式Linux下驱动程序的实现

CAN总线在嵌入式Linux下驱动程序的实现 时间:2009-11-05 09:41:22 来源:微计算机信息作者:黄捷峰蔡启仲郭毅锋田小刚 1 引言 基于嵌入式系统设计的工业控制装置,在工业控制现场受到各种干扰,如电磁、粉尘、天气等对系统的正常运行造成很大的影响。在工业控制现场各个设备之间要经常交换、传输数据,需要一种抗干扰性强、稳定、传输速率快的现场总线进行通信。文章采用CAN总线,基于嵌入式系统32位的S3C44B0X微处理器,通过其SPI接口,MCP2510 CAN控制器扩展CAN总线;将嵌入式操作系统嵌入到S3C44B0X微处理器中,能实现多任务、友好图形用户界面;针对S3C44B0X微处理器没有内存管理单元MMU,采用uClinux嵌入式操作系统。这样在嵌入式系统中扩展CAN设备关键技术就是CAN设备在嵌入式操作系统下驱动程序的实现。文章重点解决了CAN总线在嵌入式操作系统下驱动程序实现的问题。对于用户来说,CAN设备在嵌入式操作系统驱动的实现为用户屏蔽了硬件的细节,用户不用关心硬件就可以编出自己的用户程序。实验结果表明驱动程序的正确性,能提高整个系统的抗干扰能力,稳定性好,最大传输速率达到1Mb/s;硬件的错误检定特性也增强了CAN的抗电磁干扰能力。 2 系统硬件设计 系统采用S3C44B0X微处理器,需要扩展CAN控制器。常用的CAN控制器有SJA1000和MCP2510,这两种芯片都支持CAN2.0B标准。SJA1000采用的总线是地址线和数据线复用的方式,但是嵌入式处理器外部总线大多是地址线和数据线分开的结构,这样每次对SJA1000操作时需要先后写入地址和数据2次数据,而且SJA1000使用5V逻辑电平。所以应用MCP2510控制器进行扩展,收发器采用82C250。MCP2510控制器特点:1.支持标准格式和扩展格式的CAN数据帧结构(CAN2.0B);2.0~8字节的有效数据长度,支持远程帧;3.最大1Mb/s的可编程波特率;4.2个支持过滤器的接受缓冲区,3个发送缓冲区; 5.SPI高速串行总线,最大5MHz; 6.3~5.5V宽电压范围供电。MCP2510工作电压为3.3V,能够直接与S3C44B0X微处理器I/O口相连。为了进一步提高系统抗干扰性,可在CAN控制器和收发器之间加一个光隔6N137。其结构原理框图如图1: 图1.S3C44B0X扩展CAN结构框图图2.字符设备注册表 3 CAN设备驱动程序的设计 Linux把设备看成特殊的文件进行管理,添加一种设备,首先要注册该设备,增加它的驱动。设备驱动程序是操作系统内核与设备硬件之间的接口,并为应用程序屏蔽了硬件细节。在linux中用户进程不能直接对物理设备进行操作,必须通过系统调用向内核提出请求,

一个简单的演示用的Linux字符设备驱动程序.

实现如下的功能: --字符设备驱动程序的结构及驱动程序需要实现的系统调用 --可以使用cat命令或者自编的readtest命令读出"设备"里的内容 --以8139网卡为例,演示了I/O端口和I/O内存的使用 本文中的大部分内容在Linux Device Driver这本书中都可以找到, 这本书是Linux驱动开发者的唯一圣经。 ================================================== ===== 先来看看整个驱动程序的入口,是char8139_init(这个函数 如果不指定MODULE_LICENSE("GPL", 在模块插入内核的 时候会出错,因为将非"GPL"的模块插入内核就沾污了内核的 "GPL"属性。 module_init(char8139_init; module_exit(char8139_exit; MODULE_LICENSE("GPL"; MODULE_AUTHOR("ypixunil"; MODULE_DESCRIPTION("Wierd char device driver for Realtek 8139 NIC"; 接着往下看char8139_init( static int __init char8139_init(void {

int result; PDBG("hello. init.\n"; /* register our char device */ result=register_chrdev(char8139_major, "char8139", &char8139_fops; if(result<0 { PDBG("Cannot allocate major device number!\n"; return result; } /* register_chrdev( will assign a major device number and return if it called * with "major" parameter set to 0 */ if(char8139_major == 0 char8139_major=result; /* allocate some kernel memory we need */ buffer=(unsigned char*(kmalloc(CHAR8139_BUFFER_SIZE, GFP_KERNEL; if(!buffer { PDBG("Cannot allocate memory!\n"; result= -ENOMEM;

linux驱动开发的经典书籍

linux驱动开发的经典书籍 结构、操作系统、体系结构、编译原理、计算机网络你全修过 我想大概可以分为4个阶段,水平从低到高 从安装使用=>linux常用命令=>linux系统编程=>内核开发阅读内核源码 其中学习linux常用命令时就要学会自己编译内核,优化系统,调整参数 安装和常用命令书太多了,找本稍微详细点的就ok,其间需要学会正则表达式 系统编程推荐《高级unix环境编程》,黑话叫APUE 还有《unix网络编程》 这时候大概还需要看资料理解elf文件格式,连接器和加载器,cmu的一本教材中文名为《深入理解计算机系统》比较好 内核开发阅读内核源码阶段,从写驱动入手逐渐深入linux内核开发 参考书如下《linux device drivers》,黑话叫ldd 《linux kernel development》,黑话叫lkd 《understading the linux kernel》,黑话叫utlk 《linux源码情景分析》 这四本书为搞内核的必读书籍 最后,第三阶段和第四阶段最重动手,空言无益,光看书也不罩,不动手那些东西理解不了 学习linux/unix编程方法的建议 建议学习路径: 首先先学学编辑器,vim, emacs什么的都行。 然后学make file文件,只要知道一点就行,这样就可以准备编程序了。 然后看看《C程序设计语言》K&R,这样呢,基本上就可以进行一般的编程了,顺便找本数据结构的书来看。 如果想学习UNIX/LINUX的编程,《APUE》绝对经典的教材,加深一下功底,学习《UNP》的第二卷。这样基本上系统方面的就可以掌握了。 然后再看Douglus E. Comer的《用TCP/IP进行网际互连》第一卷,学习一下网络的知识,再看《UNP》的第一卷,不仅学习网络编程,而且对系统编程的一些常用的技巧就很熟悉了,如果继续网络编程,建议看《TCP/IP进行网际互连》的第三卷,里面有很多关于应用

Linux网络设备驱动开发实验

实验三:Linux网络设备驱动开发实验 一、实验目的 读懂linux网络设备驱动程序例子,并且实际加载驱动程序,加载进操作系统以后,会随着上层应用程序的触发而执行相应动作,具体执行的动作可以通过代码进行改变。 ●读懂源码及makefile ●编译驱动程序 ●加载 ●多种形式触发动作 二、预备知识 熟悉linux驱动基本原理,能读懂简单的makefile。 三、实验预计时间 80-120分钟左右 四、驱动程序部分具体步骤 要求读懂一个最简单的驱动程序,在驱动程序的诸如“xxx_open”、“xxx_read”等标准接口里面加入打印语句。可参考多模式教学网上的驱动样例。 五、用于触发驱动动作的应用程序及命令 驱动程序就是以静态的标准接口库函数形式存在,网络设备驱动会受到两大类情况的触发,一种是linux里面的控制台里面的命令,另一种是套接口应用程序,首先要搞清都有哪些具体的命令和应用程序流程,应用程序参考多模式教学网的例子。 六、运行测试 提示:需要将驱动程序以dll加载进系统中,并且触发应用程序调用各种文件操作的接口函数,使得驱动有所动作,打印出相关信息。 1.编译驱动: cd /某某目录/vnetdev/ make clean make 2.加载驱动与打开网卡: insmod netdrv.ko

ifconfig vnet0 up 3.运行应用程序 ../raw 4.通过命令“修改网卡MTU”触发驱动执行动作: ifconfig vnet0 mtu 1222 5.显示内核打印: cat /var/log/messages 6.卸载: ifconfig vnet0 down rmmod netdrv.ko 7.修改代码中的某些函数中的打印信息,重新试验上述流程。 至此大家都应该真正理解和掌握了驱动程序-操作系统-应用程序的三者联动机制。 七、实验结果 由图可知能正常加载网卡驱动,并且能够打印调试信息。

Linux设备驱动程序学习(18)-USB 驱动程序(三)

Linux设备驱动程序学习(18)-USB 驱动程序(三) (2009-07-14 11:45) 分类:Linux设备驱动程序 USB urb (USB request block) 内核使用2.6.29.4 USB 设备驱动代码通过urb和所有的 USB 设备通讯。urb用 struct urb 结构描述(include/linux/usb.h )。 urb以一种异步的方式同一个特定USB设备的特定端点发送或接受数据。一个USB 设备驱动可根据驱动的需要,分配多个 urb 给一个端点或重用单个 urb 给多个不同的端点。设备中的每个端点都处理一个 urb 队列, 所以多个 urb 可在队列清空之前被发送到相同的端点。 一个 urb 的典型生命循环如下: (1)被创建; (2)被分配给一个特定 USB 设备的特定端点; (3)被提交给 USB 核心; (4)被 USB 核心提交给特定设备的特定 USB 主机控制器驱动; (5)被 USB 主机控制器驱动处理, 并传送到设备; (6)以上操作完成后,USB主机控制器驱动通知 USB 设备驱动。 urb 也可被提交它的驱动在任何时间取消;如果设备被移除,urb 可以被USB 核心取消。urb 被动态创建并包含一个内部引用计数,使它们可以在最后一个用户释放它们时被自动释放。 struct urb

struct list_head urb_list;/* list head for use by the urb's * current owner */ struct list_head anchor_list;/* the URB may be anchored */ struct usb_anchor *anchor; struct usb_device *dev;/* 指向这个 urb 要发送的目标 struct usb_device 的指针,这个变量必须在这个 urb 被发送到 USB 核心之前被USB 驱动初始化.*/ struct usb_host_endpoint *ep;/* (internal) pointer to endpoint */ unsigned int pipe;/* 这个 urb 所要发送到的特定struct usb_device 的端点消息,这个变量必须在这个 urb 被发送到 USB 核心之前被 USB 驱动初始化.必须由下面的函数生成*/ int status;/*当 urb开始由 USB 核心处理或处理结束, 这个变量被设置为 urb 的当前状态. USB 驱动可安全访问这个变量的唯一时间是在 urb 结束处理例程函数中. 这个限制是为防止竞态. 对于等时 urb, 在这个变量中成功值(0)只表示这个 urb 是否已被去链. 为获得等时 urb 的详细状态, 应当检查 iso_frame_desc 变量. */ unsigned int transfer_flags;/* 传输设置*/ void*transfer_buffer;/* 指向用于发送数据到设备(OUT urb)或者从设备接收数据(IN urb)的缓冲区指针。为了主机控制器驱动正确访问这个缓冲, 它必须使用 kmalloc 调用来创建, 不是在堆栈或者静态内存中。对控制端点, 这个缓冲区用于数据中转*/ dma_addr_t transfer_dma;/* 用于以 DMA 方式传送数据到 USB 设备的缓冲区*/ int transfer_buffer_length;/* transfer_buffer 或者 transfer_dma 变量指向的缓冲区大小。如果这是 0, 传送缓冲没有被 USB 核心所使用。对于一个 OUT 端点, 如果这个端点大小比这个变量指定的值小, 对这个USB 设备的传输将被分成更小的块,以正确地传送数据。这种大的传送以连续的 USB 帧进行。在一个 urb 中提交一个大块数据, 并且使 USB 主机控制器去划分为更小的块, 比以连续地顺序发送小缓冲的速度快得多*/

linux设备驱动中常用函数

Linux2.6设备驱动常用的接口函数(一) ----字符设备 刚开始,学习linux驱动,觉得linux驱动很难,有字符设备,块设备,网络设备,针对每一种设备其接口函数,驱动的架构都不一样。这么多函数,要每一个的熟悉,那可多难啦!可后来发现linux驱动有很多规律可循,驱动的基本框架都差不多,再就是一些通用的模块。 基本的架构里包括:加载,卸载,常用的读写,打开,关闭,这是那种那基本的咯。利用这些基本的功能,当然无法实现一个系统。比方说:当多个执行单元对资源进行访问时,会引发竞态;当执行单元获取不到资源时,它是阻塞还是非阻塞?当突然间来了中断,该怎么办?还有内存管理,异步通知。而linux 针对这些问题提供了一系列的接口函数和模板框架。这样,在实际驱动设计中,根据具体的要求,选择不同的模块来实现其功能需求。 觉得能熟练理解,运用这些函数,是写号linux设备驱动的第一步。因为是设备驱动,是与最底层的设备打交道,就必须要熟悉底层设备的一些特性,例如字符设备,块设备等。系统提供的接口函数,功能模块就像是工具,能够根据不同的底层设备的的一些特性,选择不同的工具,方能在linux驱动中游刃有余。 最后就是调试,这可是最头疼的事。在调试过程中,总会遇到这样,那样的问题。怎样能更快,更好的发现并解决这些问题,就是一个人的道行咯!我个人觉得: 发现问题比解决问题更难! 时好时坏的东西,最纠结! 看得见的错误比看不见的错误好解决! 一:Fops结构体中函数: ①ssize_t (*read) (struct file *, char __user *, size_t, loff_t *); 用来从设备中获取数据. 在这个位置的一个空指针导致 read 系统调用以-EINVAL("Invalid argument") 失败. 一个非负返回值代表了成功读取的字节数( 返回值是一个 "signed size" 类型, 常常是目标平台本地的整数类型). ②ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *); 发送数据给设备. 如果 NULL, -EINVAL 返回给调用 write 系统调用的程序. 如果非负, 返回值代表成功写的字节数 ③loff_t (*llseek) (struct file *, loff_t, int); llseek 方法用作改变文件中的当前读/写位置, 并且新位置作为(正的)返回值. loff_t 参数是一个"long offset", 并且就算在 32位平台上也至少 64 位宽. 错误由一个负返回值指示. 如果这个函数指针是 NULL, seek 调用会以潜在地无法预知的方式修改 file 结构中的位置计数器( 在"file 结构" 一节中描述). ④int (*open) (struct inode *, struct file *);

linux驱动程序的编写

linux驱动程序的编写 一、实验目的 1.掌握linux驱动程序的编写方法 2.掌握驱动程序动态模块的调试方法 3.掌握驱动程序填加到内核的方法 二、实验内容 1. 学习linux驱动程序的编写流程 2. 学习驱动程序动态模块的调试方法 3. 学习驱动程序填加到内核的流程 三、实验设备 PentiumII以上的PC机,LINUX操作系统,EL-ARM860实验箱 四、linux的驱动程序的编写 嵌入式应用对成本和实时性比较敏感,而对linux的应用主要体现在对硬件的驱动程序的编写和上层应用程序的开发上。 嵌入式linux驱动程序的基本结构和标准Linux的结构基本一致,也支持模块化模式,所以,大部分驱动程序编成模块化形式,而且,要求可以在不同的体系结构上安装。linux是可以支持模块化模式的,但由于嵌入式应用是针对具体的应用,所以,一般不采用该模式,而是把驱动程序直接编译进内核之中。但是这种模式是调试驱动模块的极佳方法。 系统调用是操作系统内核和应用程序之间的接口,设备驱动程序是操作系统内核和机器硬件之间的接口。设备驱动程序为应用程序屏蔽了硬件的细节,这样在应用程序看来,硬件设备只是一个设备文件,应用程序可以像操作普通文件一样对硬件设备进行操作。同时,设备驱动程序是内核的一部分,它完成以下的功能:对设备初始化和释放;把数据从内核传送到硬件和从硬件读取数据;读取应用程序传送给设备文件的数据和回送应用程序请求的数据;检测和处理设备出现的错误。在linux操作系统下有字符设备和块设备,网络设备三类主要的设备文件类型。 字符设备和块设备的主要区别是:在对字符设备发出读写请求时,实际的硬件I/O一般就紧接着发生了;块设备利用一块系统内存作为缓冲区,当用户进程对设备请求满足用户要求时,就返回请求的数据。块设备是主要针对磁盘等慢速设备设计的,以免耗费过多的CPU时间来等待。 1 字符设备驱动结构 Linux字符设备驱动的关键数据结构是cdev和file_operations结构体。

《Linux设备驱动开发详解:基于最新的Linux 4.0内核》19. Linux电源管理系统架构和驱动

以下电子书来源于宋宝华《Linux设备驱动开发详解:基于最新的Linux 4.0内核》第19章《Linux电源管理系统架构和驱动》 本章导读 Linux在消费电子领域的应用已经铺天盖地,而对于消费电子产品而言,省电是一个重要的议题。 本章将介绍Linux设备树(Device Tree)的起源、结构和因为设备树而引起的驱动和BSP 变更。 19.1节阐述了Linux电源管理的总体架构。 19.2~19.8节分别论述了CPUFreq、CPUIdle、CPU热插拔以及底层的基础设施Regulator、OPP以及电源管理的调试工具PowerTop。 19.9节讲解了系统Suspend to RAM的过程以及设备驱动如何提供对Suspend to RAM的支持。 19.10节讲解了设备驱动的Runtime suspend。 本章是相对《Linux设备驱动开发详解(第2版)》全新的一章内容,也是Linux设备驱动工程师必备的知识体系。

第十九章Linux电源管理系统架构和驱动 1.Linux电源管理全局架构 Linux电源管理非常复杂,牵扯到系统级的待机、频率电压变换、系统空闲时的处理以及每个设备驱动对于系统待机的支持和每个设备的运行时电源管理,可以说和系统中的每个设备驱动都息息相关。 对于消费电子产品来说,电源管理相当重要。因此,这部分工作往往在开发周期中占据相当大的比重,图19.1呈现了Linux内核电源管理的整体架构。大体可以归纳为如下几类: 1.CPU在运行时根据系统负载进行动态电压和频率变换的CPUFreq 2.CPU在系统空闲时根据空闲的情况进行低功耗模式的CPUIdle 3.多核系统下CPU的热插拔支持 4.系统和设备对于延迟的特别需求而提出申请的PM QoS,它会作用于CPUIdle的具体 策略 5.设备驱动针对系统Suspend to RAM/Disk的一系列入口函数 6.SoC进入suspend状态、SDRAM自刷新的入口 7.设备的runtime(运行时)动态电源管理,根据使用情况动态开关设备 8.底层的时钟、稳压器、频率/电压表(OPP模块完成)支撑,各驱动子系统都可能用 到 图19.1 Linux电源管理系统架构 2.CPUFreq驱动 CPUFreq子系统位于drivers/cpufreq目录,负责进行运行过程中CPU频率和电压的动态

Linux驱动工程师成长之路

本人此刻还不是什么驱动工程师,连入门都谈不上,但我坚信在未来的3-5年我肯定能成为我想像中的人,因为我马上就要进入这一行工作了。写下这个日志来记录我是怎么最后成为我想像中的人才的,呵呵。 《Linux驱动工程师》这个东西是我在大二的时候看到有一篇讲如何学习嵌入式的,点击这里下载PDF,里面讲到嵌入式分为四层:硬件,驱动,系统,应用程序;还说linux驱动最难然后工资也最高就冲着他这句话我就决定我大学毕业的时候要去做这个linux驱动工程师,随后我就先后买了51单片机,ARM7,ARM9还有一大堆的视频教程准备来进行学习。我还跟我旁边那个哈工大哥们说:“我们学校像我这样的人很少,你们学校呢?”他说:“太少了,不过我们学校都是做这种板子卖的人比较多!”。行,你们牛!即使是买了这些东西,从大二到现在都快毕业了但感觉还是没有入门。回想一下我都学过什么啊:1:自己在ARM9上写bootloader(主要锻炼了三方面的知识:C语言应该写了有近万行的代码,ARM9的外设的基本操作方法如UART,LCD,TOUCH,SD,USB,ETHERNET...,makefile);2:移植和学习linux驱动。下面我说一下我学习Linux驱动的一个思路这也是我在面试的时候自我介绍中最重要的部分;1:硬件知识学习Linux驱动首先得了解这个驱动对应的硬件的一些基本原理和操作方法比如LCD你得了解它的场同步,行同步,像素时钟,一个像素的表示模式,还有就是这个LCD是怎么把图像显示在屏幕上的。如果是USB,SD卡就得了解相关协议。可以通过spec(协议)、datasheet来了解,这就是传说中的Linux驱动开发三件宝之二,还有一个就是linux相关源码。2:了解linux驱动框架linux下的每一类驱动差不多都是一个比较完善的子系统,比如FLASH的驱动它就属于MTD子系统从上到下分为四层:设备节点层,设备层,原始设备层,最下面的与具体硬件相关的硬件驱动层,通常要我们自己来实现就是最下面这个与具体硬件相关那部分代码。3:了解这个驱动的数据流。这个过程与第二个过程紧密相关,如果了解了驱动的框架差不多这个过程也算了解了。比如flash.在/dev/目录下有对应flash的字符设备文件和块设备文件,用户对这些文件进行读、写、ioctl操作,其间通过层层的函数调用最终将调用到最下面的硬件驱动层对硬件进行操作。了解这个过程我相信在调试驱动的时候是很有帮助。3:分析与硬件相关通常需要我们实现的那部分源代码。4:三板子上将驱动调试出来。每次调试都会出问题,但我买的板子提供的资料比较全调试过程中遇到的问题都比较浅显,即使是浅显的问题也要把它记录下来。(这个是我上次在华为面试的时候,那个人问我你调试驱动遇到过什么问题吗?你是如何解决的。当时我学习还没有到调试驱动这一步,所以那次面试也惨败收场)。 好像说了这么多,还没有进入正题《工作的选择》。在年前去了龙芯,实习2.8K,转正3.5k,环境还是不错,经理很好,头儿也很帅都是中科院的硕士。不过去了两周我就没去了身边的人都不太理解,我也一度有过后悔的时候,从龙芯出来应该是1月6号,也就是从那个时候开始我就没有再找工作,转而学习linux驱动。一直到上周日。上周日的晚上我就开始投简历一开始要找linux驱动,在智联里面输入linux驱动出来500来个职位,点开一看没有一个自己符合要求的,差不多都要3-5年经验本科,有时候好不容易有个实习的关键字在里面,一看要求硕士,严重打击了我的信心,哎不管了随便投,最后又投了一下嵌入式关键字的职位。最后就瞎申请,看看职位要求差不多就申请。周一来了,这周一共来了6个面试,创下了我求职以来的历史新高。周一下午面了一家感觉还不错不过到现在也没有给我一个通知,估计当时我要了4500把他给要跑了,这家是做测量的不是Linux驱动,差不多是把ARM当单片机用。周二上午一家也是要招linux驱动面了估计不到二分钟,他

Linux设备驱动程序学习(20)-内存映射和DMA-基本概念

Linux设备驱动程序学习(20)-内存映射和DMA-基本概念 (2011-09-25 15:47) 标签: 虚拟内存设备驱动程序Linux技术分类:Linux设备驱动程序 这部分主要研究 Linux 内存管理的基础知识, 重点在于对设备驱动有用的技术. 因为许多驱动编程需要一些对于虚拟内存(VM)子系统原理的理解。 而这些知识主要分为三个部分: 1、 mmap系统调用的实现原理:它允许设备内存直接映射到一个用户进程地址 空间. 这样做对一些设备来说可显著地提高性能. 2、与mmap的功能相反的应用原理:内核态代码如何跨过边界直接存取用户空间的内存页. 虽然较少驱动需要这个能力. 但是了解如何映射用户空间内存到内 核(使用 get_user_pages)会有用. 3、直接内存存取( DMA ) I/O 操作, 它提供给外设对系统内存的直接存取. 但所有这些技术需要理解 Linux 内存管理的基本原理, 因此我将先学习VM子 系统的基本原理. 一、Linux的内存管理 这里重点是 Linux 内存管理实现的主要特点,而不是描述操作系统的内存管理理论。Linux虚拟内存管理非常的复杂,要写可以写一本书:《深入理解Linux 虚拟内存管理》。学习驱动无须如此深入, 但是对它的工作原理的基本了解是必要的. 解了必要的背景知识后,才可以学习内核管理内存的数据结构. Linux是一个虚拟内存系统(但是在没有MMU的CPU中跑的ucLinux除外), 意味着在内核启动了MMU 之后所有使用的地址不直接对应于硬件使用的物理地址,这些地址(称之为虚拟地址)都经过了MMU转换为物理地址之后再从CPU的内存总线中发出,读取/写入数据. 这样 VM 就引入了一个间接层, 它是许多操作成为可能: 1、系统中运行的程序可以分配远多于物理内存的内存空间,即便单个进程都可拥有一个大于系统的物理内存的虚拟地址空间. 2、虚拟内存也允许程序对进程的地址空间运用多种技巧, 包括映射程序的内存到设备内存.等等~~~ 1、地址类型 Linux 系统处理几种类型的地址, 每个有它自己的含义: 用户虚拟地址:User virtual addresses,用户程序见到的常规地址. 用户地址在长度上是 32 位或者 64 位, 依赖底层的硬件结构, 并且每个进程有它自己 的虚拟地址空间.

从零开始搭建Linux驱动开发环境

参考: 韦东山视频第10课第一节内核启动流程分析之编译体验 第11课第三节构建根文件系统之busybox 第11课第四节构建根文件系统之构建根文件系统韦东山书籍《嵌入式linux应用开发完全手册》 其他《linux设备驱动程序》第三版 平台: JZ2440、mini2440或TQ2440 交叉网线和miniUSB PC机(windows系统和Vmware下的ubuntu12.04) 一、交叉编译环境的选型 具体的安装交叉编译工具,网上很多资料都有,我的那篇《arm-linux- gcc交叉环境相关知识》也有介绍,这里我只是想提示大家:构建跟文件系统中所用到的lib库一定要是本系统Ubuntu中的交叉编译环境arm-linux- gcc中的。即如果电脑ubuntu中的交叉编译环境为arm-linux-

二、主机、开发板和虚拟机要三者互通 w IP v2.0》一文中有详细的操作步骤,不再赘述。 linux 2.6.22.6_jz2440.patch组合而来,具体操作: 1. 解压缩内核和其补丁包 tar xjvf linux-2.6.22.6.tar.bz2 # 解压内核 tar xjvf linux-2.6.22.6_jz2440.tar.bz2 # 解压补丁

cd linux_2.6.22.6 patch –p1 < ../linux-2.6.22.6_jz2440.patch 3. 配置 在内核目录下执行make 2410_defconfig生成配置菜单,至于怎么配置,《嵌入式linux应用开发完全手册》有详细介绍。 4. 生成uImage make uImage 四、移植busybox 在我们的根文件系统中的/bin和/sbin目录下有各种命令的应用程序,而这些程序在嵌入式系统中都是通过busybox来构建的,每一个命令实际上都是一个指向bu sybox的链接,busybox通过传入的参数来决定进行何种命令操作。 1)配置busybox 解压busybox-1.7.0,然后进入该目录,使用make menuconfig进行配置。这里我们这配置两项 一是在编译选项选择动态库编译,当然你也可以选择静态,不过那样构建的根文件系统会比动态编译的的大。 ->Busybox Settings ->Build Options

Linux网络设备驱动

嵌入式培训专家
Linux网络设备驱动
主讲:宋宝华
https://www.doczj.com/doc/c69277137.html,

华清远见
今天的内容
vLinux网络设备驱动架构 vLinux网络设备驱动数据流程
? NON-NAPI模式数据接收流程 ? NAPI模式数据接收流程 ? 数据发送流程
vLinux网络协议栈的实现
? TCP/UDP/IP/MAC各层数据传递 ? 网络系统调用与socket

华清远见
Linux网络设备驱动架构

华清远见
net_device
struct net_device_ops { int (*ndo_open)(struct net_device *dev); int (*ndo_start_xmit) (struct sk_buff *skb, struct net_device *dev); int (*ndo_set_mac_address)(struct net_device *dev, void *addr); int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); void (*ndo_tx_timeout) (struct net_device *dev); ... }
struct net_device { struct net_device_stats stats; const struct net_device_ops *netdev_ops; const struct ethtool_ops *ethtool_ops; ... }
struct ethtool_ops { int (*get_settings)(struct net_device *, struct ethtool_cmd *); int (*set_settings)(struct net_device *, struct ethtool_cmd *); void (*get_drvinfo)(struct net_device *, struct ethtool_drvinfo *); int (*get_regs_len)(struct net_device *); ... }

Linux设备驱动程序简介

第一章Linux设备驱动程序简介 Linux Kernel 系统架构图 一、驱动程序的特点 ?是应用和硬件设备之间的一个软件层。 ?这个软件层一般在内核中实现 ?设备驱动程序的作用在于提供机制,而不是提供策略,编写访问硬件的内核代码时不要给用户强加任何策略 o机制:驱动程序能实现什么功能。 o策略:用户如何使用这些功能。 二、设备驱动分类和内核模块 ?设备驱动类型。Linux 系统将设备驱动分成三种类型 o字符设备 o块设备 o网络设备 ?内核模块:内核模块是内核提供的一种可以动态加载功能单元来扩展内核功能的机制,类似于软件中的插件机制。这种功能单元叫内核模块。 ?通常为每个驱动创建一个不同的模块,而不在一个模块中实现多个设备驱动,从而实现良好的伸缩性和扩展性。 三、字符设备 ?字符设备是个能够象字节流<比如文件)一样访问的设备,由字符设备驱动程序来实现这种特性。通过/dev下的字符设备文件来访问。字符设备驱动程序通常至少需要实现 open、close、read 和 write 等系统调用 所对应的对该硬件进行操作的功能函数。 ?应用程序调用system call<系统调用),例如:read、write,将会导致操作系统执行上层功能组件的代码,这些代码会处理内核的一些内部 事务,为操作硬件做好准备,然后就会调用驱动程序中实现的对硬件进 行物理操作的函数,从而完成对硬件的驱动,然后返回操作系统上层功 能组件的代码,做好内核内部的善后事务,最后返回应用程序。 ?由于应用程序必须使用/dev目录下的设备文件<参见open调用的第1个参数),所以该设备文件必须事先创建。谁创建设备文件呢? ?大多数字符设备是个只能顺序访问的数据通道,不能前后移动访问指针,这点和文件不同。比如串口驱动,只能顺序的读写设备。然而,也 存在和数据区或者文件特性类似的字符设备,访问它们时可前后移动访

linux驱动基础试题

L i n u x驱动基础试题(时间:1个小时) 一、选择题(每题4分,共40分,包括单选和多选,多选、少选均不得分) 1.Linux系统中将设备进行分类管理,下列设备中(ACD)属于字符设备,(BC)属于块设备 [A]键盘[B]硬盘[C]闪存设备[D]帧缓存设备[E]网卡 2.Linux系统中,内核以(D)区分设备 [A]设备节点名[B]设备节点号[C]设备名称[D]设备号 3.Linux系统中设备节点可以创建在(A) [A]/dev目录下[B]根目录下[C]/tmp目录下[E]以上都可以 4.Linux驱动程序运行在(A) [A]内核空间[B]用户空间[C]用户空间和内核空间 5.Linux系统中设备驱动程序是以模块形式组织的,编译驱动时可以用哪种方式编译(AB) [A]静态编译进内核[B]动态编译 6.内核中,设备的主设备号用(B)位来表示,次设备号用(D)位来表示 [A]8[B]12[C]16[D]20[E]24[F]32 7.Linux系统中哪些种类的设备有设备节点(BD) [A]定时器[B]字符设备[C]块设备[D]网络设备 8.通常情况下,kmalloc函数能分配的最大内存是(C) [A]4K[B]64K[C]128K[D]4M 9.能保证物理空间上连续的内存分配函数是(AB) [A]__get_free_pages[B]kmalloc[C]vmalloc[D]malloc 10.Linux系统中通过add_timer添加的timer是(A) [A]一次的[B]循环的[C]以上两种都可以 二、简答题(每题6分,共60分) 系统中以模块方式组织设备驱动程序,请列举在一个模块程序中必不可少的组成部分。(可以写个Helloworld模块的程序) 2.请从定义、性质、操作方式等方面对比说明字符设备和块设备。 3.请列举Linux设备驱动程序中,程序延缓执行的机制。 4.简述Linux设备驱动中使用中断的步骤。 5.简述信号量和自旋锁的异同和使用时的注意事项。 6.简述命令mknod/dev/zeroc15的做用和命令各个部分的含义,并写出创建一个块设备节点的命令。 7.简述命令insmod,rmmod,lsmod的功能。 8.驱动程序中采用动态申请设备号的,我们如何得到对应设备的设备号? 9.简述设备驱动程序和普通应用程序的异同点。 10.简述mmap机制的作用和使用mmap的好处。

相关主题
文本预览
相关文档 最新文档