当前位置:文档之家› 显像管及其附属电路

显像管及其附属电路

显像管及其附属电路
显像管及其附属电路

茂名市技工学校

一体化教学教案(首页)

编号:QD—0707—03 版本号:A/0 流水号:

科目:彩色电视机原理与技能训练班级:共页

彩色显像管的灯丝(用H或F表示)电压为6.3V,由行输出变压器输出的脉冲电压供电,用指针式万用表测量时,为2.5~4v,灯丝电流约为300~900mA;加速极(也叫帘栅极) 电压为150—1 200V,常为180~420V,可通过加速极电位器来调整,加速极电压越高,显

2.显像管附属器件

显像管常见附属器件有偏转线圈、色纯和会聚组件,如图9-3所示。

偏转线圈由行偏转线圈和场偏转线圈组成,行偏转线圈在里面,场偏转线圈在外面。偏转线圈有上、下两组,彼此并联或串联,形状呈扬声器形,在线圈的外侧套一个磁环,起磁屏蔽作用,以减小自身磁场对外辐射和防止外磁场对它的干扰。场偏转线圈绕成环形,左右两组,分高阻抗和低阻抗两种。高阻抗场偏转线圈的电组为40~60Q,左右两组两线圈串联;低阻抗场偏转线圈的电组为6~20Q,左右两组两线圈并联,多用于集成电路的场输出

电路。

会聚组件由6个磁片环组成,NN相NN--N,分二极磁环(色纯度调节)、四极磁环、

图9—4会聚的调整原理

3.自动消磁电路

地磁场、周围杂散磁场以及电视机正常工作时在机内形成的磁场,会使显像管内部金属部件磁化,严重影响彩色显像管的色纯度和会聚,并产生异常色彩(或不规则的色斑

了消除显像管上可能出现的磁化现象,彩色电视机中都设置了自动消磁电路。普通彩色电视

消磁电阻(PTC)、与消磁线圈串联,消磁线圈安装在显像管防爆圈附近的锥体表面,而消磁电阻装在基板上。每开一次机都要对显像管消磁一次。消磁原理是:刚开机瞬间,

阻值很小,流过消磁线圈的电流很大(峰值达十几安),在消磁线圈周围产生较强的交变磁场对显像管消磁,由于电流的热效应,消磁电阻不断升温阻值逐渐增大,

直至减小到维持电流10mA左右,此时交变磁场也减到最小,至此消磁便告结束。还有使用

4.显像管附属电路

显像管附属电路包括显像管供电电路和末级视放电路两部分。显像管各电极的供电由行输出变压器提供。末级视放电路根据解码电路输出信号不同,

的是色差信号,末级视放电路就得完成基色矩阵和基色放大任务;

信号,末级视放电路需要完成的仅是基色放大任务。常见的末级视放电路如图

图9-9 TCL一21 16型彩色电视机末级视放电路原理图

H一灯丝;GND一接地;KR 红阴极;

图9-1 1 末级视放电路印制电路板图

二、课题实施

在实训指导教师指导下,学生进行按下面步骤测量数据。

1、根据实习报告表格测量数据

(1)用万用表测量低放关健点电阻。

根据下表,测量数据

第二章_半导体三极管及其基本电路(附答案)[1].

第二章半导体三极管及其基本电路 一、填空题 1、(2-1,中)当半导体三极管的正向偏置,反向偏置偏置时,三极管具有放大作用,即极电流能控制极电流。 2、(2-1,低)根据三极管的放大电路的输入回路与输出回路公共端的不同,可将三极管放大电路分为,,三种。 3、(2-1,低)三极管的特性曲线主要有曲线和曲线两种。 4、(2-1,中)三极管输入特性曲线指三极管集电极与发射极间所加电压V CE一定时,与之间的关系。 5、(2-1,低)为了使放大电路输出波形不失真,除需设置外,还需输入信号。 6、(2-1,中)为了保证不失真放大,放大电路必须设置静态工作点。对NPN管组成的基本共射放大电路,如果静态工作点太低,将会产生失真,应调R B,使其,则I B,这样可克服失真。 7、(2-1,低)共发射极放大电路电压放大倍数是与的比值。 8、(2-1,低)三极管的电流放大原理是电流的微小变化控制电流的较大变化。 9、(2-1,低)共射组态既有放大作用,又有放大作用。 10、(2-1,中)共基组态中,三极管的基极为公共端,极为输入端,极为输出端。 11、(2-1,难)某三极管3个电极电位分别为V E=1V,V B=1.7V,V C=1.2V。可判定该三极管是工作于 区的型的三极管。 12、(2-1,难)已知一放大电路中某三极管的三个管脚电位分别为①3.5V,②2.8 V,③5V,试判断: a.①脚是,②脚是,③脚是(e, b,c); b.管型是(NPN,PNP); c.材料是(硅,锗)。 13、(2-1,中)晶体三极管实现电流放大作用的外部条件是,电流分配关系是。 14、(2-1,低)温度升高对三极管各种参数的影响,最终将导致I C,静态工作点。 15、(2-1,低)一般情况下,晶体三极管的电流放大系数随温度的增加而,发射结的导通压降V BE 则随温度的增加而。 16、(2-1,低)画放大器交流通路时,和应作短路处理。 17、(2-2,低)在多级放大器里。前级是后级的,后级是前级的。 18、(2-2,低)多级放大器中每两个单级放大器之间的连接称为耦合。常用的耦合方式有:,,。 19、(2-2,中)输出端的零漂电压电压主要来自放大器静态电位的干扰变动,因此要抑制零漂,首先要抑制的零漂。目前抑制零漂比较有效的方法是采用。

详解经典三极管基本放大电路

详解经典三极管基本放大电路 三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。分成NPN和PNP 两种。我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基本原理。 图1:三极管基本放大电路 下面的分析仅对于NPN型硅三极管。如上图所示,我们把从基极B流至发射极E的电流叫做基极电流Ib;把从集电极C流至发射极E的电流叫做集电极电流Ic。这两个电流的方向都是流出发射极的,所以发射极E上就用了一个箭头来表示电流的方向。三极管的放大作用就是:集电极电流受基极电流的控制(假设电源能够提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变化量的β倍,即电流变化被放大了β倍,所以我们把β叫做三极管的放大倍数(β一般远大于1,例如几十,几百)。如果我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic很大的变化。如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式U=R*I 可以算得,这电阻上电压就会发生很大的变化。我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。 三极管在实际的放大电路中使用时,还需要加合适的偏置电路。这有几个原因。首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必须在输入电压大到一定程度后才能产生(对于硅管,常取0.7V)。当基极与发射极之间的电压小于0.7V时,基极电流就可以认为是0。但实际中要放大的信号往往远比0.7V要小,如果不加偏置的话,这么小的信号就不足以引起基极电流的改变(因为小于0.7V时,基极电流都是0)。如果我们事先在三极管的基极上加上一个合适的电流(叫做偏置电流,上图中那个电阻Rb就是用来提供这个电流的,所以它被叫做基极偏置电阻),那么当一个小信号跟这个偏置电流叠加在一起时,小信号就会导致基极电流的变化,而基极电流的变化,就会被放大并在集电极上输出。另一个原因就是输出信号范围的要求,如果没有加偏置,那么只有对那些增加的信号放大,而对减小的信号无效(因为没有偏置时集电极电流为0,不能再减小了)。而加上偏置,事先让集电极有一定的电流,当输入的基极电流变小时,集电极电流就可以减小;当输入的基极电流增大时,集电极电流就增大。这样减小的信号和增大的信号都可以被放大了。 下面说说三极管的饱和情况。像上面那样的图,因为受到电阻Rc的限制(Rc是固定值,那么最大电流为U/Rc,其中U为电源电压),集电极电流是不能无限增加下去的。当基极电流的增大,不能使集电极电流继续增大时,三极管就进入了饱和状态。一般判断三极管是否饱和的准则是:Ib*β〉Ic。进入饱和状态之后,三极管的集电极跟发射极之间的电压将很小,可以理解为一个开关闭合了。这样我们就可以拿三极管来当作开关使用:当基极电流为0时,三极管集电极电流为0(这叫做三极管截止),相当于开关断开;当基极电流很大,以至于三极管饱和时,相当于开关闭合。如果三极管主要工作在截止和饱和状态,那么这样的三极管我们一般把它叫做开关管。 如果我们在上面这个图中,将电阻Rc换成一个灯泡,那么当基极电流为0时,集电极电流为0,灯泡灭。如果基极电流比较大时(大于流过灯泡的电流除以三极管的放大倍数β),三极管就饱和,相当于开关闭合,灯泡就亮了。由于控制电流只需要比灯泡电流的β分之一大一点就行了,所以就可以用一个小电流来控制一个大电流的通断。如果基极电流从0慢慢增加,那么灯泡的亮度也会随着增加(在三极管未饱和之前)。

三极管基本电路原理和检修

三极管基本电路原理和检修 三极管是三端、电流控制器件。较低的输入阻抗(发射结可等效为一只电阻,需有实实在在的电流流通,三极管才能导通,因而要求信号源有电流输出能力),挑信号源;较高的输出阻抗(挑负载,要求负载阻抗>>电路本身输出阻抗,输出电压降才能落实到负载上)。在Ic受控于Ib的受控区内,工作于可变电阻区,为线性放大器(模拟电路);在Ic不受Ib控制的开关区,为开关电路(数字电路)。 上文中Ic指三极管集电极电流;Ib指三极管基极电流。 1三极管基本工作原理 三极管是个简称,全称为晶体三体管,早期以锗材料制作的为多,因其热稳定性差漏电流(电磁噪声)大而被淘汰,现在应用的都是硅材料晶体三体管。随着电子技术的进步,由三极管分立元件构成的放大器、逻辑电路已近于绝迹,但做为执行电路的末级驱动器件,如直流继电器线圈和风扇的驱动、IGBT的末级驱动(此处三极管仅仅作为开关来应用,如控制风扇的运转、继电器的动作等)等,大部分电路仍然继续采用三极管器件。所以由三极管构成的线性放大器,已经无须多加关注,仅需关注其开关应用即可以了。其原因为,当一片四运放集成电路的价格与单只小功率三极管的价格相接近时,恐怕已经没有人再愿意用数只甚至更加庞大数量的三极管来搭接线性放大器了,从性价比、电路性能、体积等任何一点考虑,三极管都貌似是永远失掉了它的优势。 2电路示例1——原理分析 虽然如此,为了更好地理解由三极管为核心构成的放大或开关电路,我带领大家设计一款最基本的三极管偏置电路,由对此简易电路的分析,找到分析三极管电路原理的关键所在。 已知:供电电源电压Vcc=10V;三极管β=100; 要求:静态Ic=1mA;静态Vc(三极管集电极电压)=5V。可知这是一款简易单电源供电 1

阴极射线管历史

一百多年前,手艺高超的德国玻璃工人会制造一种能发出绿光的管子,有钱人家将它悬挂在客厅里做装饰品,以炫耀他们的富有。这种管子曾引起过很多科学家的兴趣,一位英国皇家学会会员化学家兼物理学家威廉?克鲁克斯 (William.Crookes)(左图)对这种能发光的管子着了迷,很想弄清楚这些光线究竟是什么,他做了一根两端封有电极 的玻璃管,将管内的空气抽出,使管内的空气十分稀薄,然后将高压加到 两块电极上,这时在两极中间出现一束跳动的光线, 这就是很多科学家潜心研究的稀薄气体中的放电现象。玻璃管内的空气越稀薄,越容易产生自激放电现象。但是,当玻璃 管内的空气稀薄到一定程度时,管内的光线反而渐渐消失,而在阴极的对面玻璃管壁上出现了绿色荧光。这种阴极发射出 来的射线,肉眼看不见,但能在玻璃管壁上产生辉光或荧光。科学家们称这个神秘的绿色荧光叫“阴极射线”,称这些发 光的管子叫“阴极射线管”,又称“克鲁克斯管”(右图)。 克鲁克斯为了搞清楚阴极射线究竟是什么,他制作了各种形状的阴极射线管,并进行了很多实验,其中有一个现象使他异常激动。他在1879年英国的一次物理学 讨论会上演示了他的这一最新发现(右图是他的阴极射线管的示意图)。玻璃管中是高度稀薄的空气,带负电的阴极产生阴极射线,一个用薄云母片制成的十字放在射线的途中,射线在阴极对面的玻璃管壁上出现了形状清晰的十字形,这是十字形云母片投下的影子。影子的形状证明了荧光是由于阴极沿直线发射出的某种东西引起的,而薄云母片把它们挡住了。这些都是在场的物理学家们早就知道的。就在这时,克鲁克斯爵士拿起一块马蹄形磁铁跨置在管子的中部,奇迹出现了,十字形的阴影发生了偏移!克鲁克斯爵士得意地说:“由此可见,阴极射线根本不是光线,而是一种带电的原子。否则,它们怎么会受到磁场的影响呢?”阴极射线不是光线而是带电粒子!在座的科学家们都震惊了。很多人将信将疑。 由此,对阴极射线的本质有了两种完全不同的概念,德国物理学家认为阴极射线像普通的光线一样是以太中的波动,以克鲁克斯为代表的在英国物理学家中流行另一种观点,认为阴极射线是由阴极发射的带负电的粒子所组成。 要判断两种理论究竟哪种正确,需要更多的实验研究,然而实验遇到了很大的困难。在那时,人们只限于观察玻璃管内的现象,因为阴极射线到达管壁就被停止了。若能将阴极射线引出放电管外,就可以更方便地进行观察和测量, 进一步研究在放电管内无法进行的实验。

三极管放大电路设计,参数计算及静态工作点设置方法

三极管放大电路设计,参数计算及静态工作点设置方法 说一下掌握三极管放大电路计算的一些技巧 放大电路的核心元件是三极管,所以要对三极管要有一定的了解。用三极管构成的放大电路的种类较多,我们用常用的几种来解说一下(如图1)。图1是一共射的基本放大电路,一般我们对放大路要掌握些什么内容? (1)分析电路中各元件的作用; (2)解放大电路的放大原理; (3)能分析计算电路的静态工作点; (4)理解静态工作点的设置目的和方法。 以上四项中,最后一项较为重要。 图1中,C1,C2为耦合电容,耦合就是起信号的传递作用,电容器能将信号信号从前级耦合到后级,是因为电容两端的电压不能突变,在输入端输入交流信号后,因两端的电压不能突变因,输出端的电压会跟随输入端输入的交流信号一起变化,从而将信号从输入端耦合到输出端。但有一点要说明的是,电容两端的电压不能突变,但不是不能变。 R1、R2为三极管V1的直流偏置电阻,什么叫直流偏置?简单来说,做工要吃饭。要求三极管工作,必先要提供一定的工作条件,电子元件一定是要求有电能供应的了,否则就不叫电路了。 在电路的工作要求中,第一条件是要求要稳定,所以,电源一定要是直流电源,所以叫直流偏置。为什么是通过电阻来供电?电阻就象是供水系统中的水龙头,用调节电流大小的。所以,三极管的三种工作状态“:载止、饱和、放大”就由直流偏置决定,在图1中,也就是由R1、R2来决定了。首先,我们要知道如何判别三极管的三种工作状态,简单来说,判别工作于何种工作状态可以根据Uce的大小来判别,Uce接近于电源电压VCC,则三极管就工作于载止状态,载止状态就是说三极管基本上不工作,Ic电流较小(大约为零),所以R2由于没有电流流过,电压接近0V,所以Uce就接近于电源电压VCC。

(整理)三极管应用电路和基本放大电路.

三极管应用电路和基本放大电路 2G 郭标2005-11-29 三极管应用电路和基本放大电路 (1) 一、三极管三种基本组态 (2) 二、应用电路 (3) A、偏置使用 (3) B、放大电路应用 (5) 三、射频FET小信号放大器设计 (7) 1、基本概念: (7) 2、基于S-参数和圆图的分析方法 (8) 四、集成中小功率放大器 (9) 附1:容易发生自激的电路形式 (11) 附2 电路分析实例 (11)

一、三极管三种基本组态 共发 共集 共基 特点:共发-对电压电流都有放大,适合制做放大器 共集-电压跟随器 共基-电流继随器 直流工作点选取 交流小信号混和PI 型等效模型 e

二、应用电路 A 、偏置使用 1、有源滤波电路: R1 R2 特点:直流全通,交流对地呈高容性。 使用时可在b 和e 对地接大电容,增强滤波。 2、有源负载电路: Vcc 特点:直流负载很小,交流负载大,提高放大器的Rc 3、恒流源电路 独立电流源 镜像电流源 特点:较大的偏置电压变化,有较小的电流变化

4、电平控制与告警电路 特点:利用导通截至特性,控制电平可调整 5、电流补偿偏置电路 特点:补偿偏置三极管能够补偿放大管因长期工作时,gm变低导致的Ic变低而改变工作点。

特点:适用于设计低噪声、高增益、高稳定性、较低频的放大电路。选择特定的材料可以做到高频。 1、共发放大的形式: ☆发射级接电阻的: 电压放大倍数接近为Rc/Re ☆接有源负载的: 共发有源负载的作用:直流负载很小,交流负载大 以此提高Rc,增大电压放大倍数 电压和电流同时放大的形式只有共发。 2、cb和cc的放大器一般只作为辅助。电流接续和电压接续或隔离作用。 3、级联考虑: 差分放大一般在组合放大的第一级,目的不在提供增益,而是良好的输入性能,如共模抑制比,温度漂移等;(互补型)共集电路(前置隔离级)做为最后一级,可兼容不同负载。而中间级一般是为了取得较高的增益,所以采用(有源偏置的)共发放大器。 放大电路中采用恒流偏置电路提高稳定性。 互补型共集电路 互补型共集电路特点:作为隔离级,提高动态范围

三极管的作用:三极管放大电路原理

三极管的作用:三极管放大电路原理 一、放大电路的组成与各元件的作用 Rb和Rc:提供适合偏置--发射结正偏,集电结反偏。C1、C2是隔直(耦合)电容,隔直流通交流。 共射放大电路 Vs ,Rs:信号源电压与内阻; RL:负载电阻,将集电极电流的变化△ic转换为集电极与发射极间的电压变化△VCE 二、放大电路的基本工作原理

静态(Vi=0,假设工作在放大状态) 分析,又称直流分析,计算三极管的电流和极间电压值,应采用直流通路(电容开路)。 基极电流:IB=IBQ=(VCC-VBEQ)/Rb 集电极电流:IC=ICQ=βIBQ 集-射间电压:VCE=VCEQ=VCC-ICQRc 动态(vi≠0)分析:

放大电路对信号的放大作用是利用三极管的电流控制作用来实现,其实质上是一种能量转换器。 三、构成放大电路的基本原则 放大电路必须有合适的静态工作点:直流电源的极性与三极管的类型相配合,电阻的设置要与电源相配合,以确保器件工作在放大区。输入信号能有效地加到放大器件的输入端,使三极管输入端的电流或电压跟随输入信号成比例变化,经三极管放大后的输出信号(如 ic=β*ib)应能有效地转变为负载上的输出电压信号。 电压传输特性和静态工作点 一、单管放大电路的电压传输特性

图解分析法:

输出回路方程: 输出特性曲线: AB段:截止区,对应于输出特性曲线中iB<0的部分。 BCDEFG段:放大区 GHI段:饱和区 作为放大应用时:Q点应置于E处(放大区中心)。若Q点设置C处,易引起载止失真。若Q点设置F处,易引起饱和失真。 用于开关控制场合:工作在截止区和饱和区上。 二、单管放大电路静态工作点(公式法计算)

教案-----电路中的基本物理量

教案-----电路中的基本物理量

教案电路中的基本物理量 教学目的: 知识目标: (1)熟悉基本电路的组成和作用 (2)理解电压、电流、电动势的概念 (3)掌握电压、电流方向的判别 (4)理解电阻的定义和作用 技能目标: 熟识万用表测量电压、电流、电位的方法教学重点、难点: 教学重点:电压、电流、电位、电动势、电阻概念的理解 教学难点:(1)电压、电流方向的判别 (2)电动势概念的理解 课型:讲练结合 教学分析: 本次课先由一个手电筒电路引入电路的组成和作用,通过对电流、电压、电动势的实际测试,根据测试的结果来体验分析电流、电压、电位、电动势的存在和方向。再辅以理论讲解来阐明电流、电压、电动势的概念及电流、电压参考方向的应用和电流、电压实际方向的判别。 复习、提问: (1)手电筒电路是怎么工作的? (2)你认为电压、电流有方向吗?什么情况下有方向呢? 教学过程:

一、电路的组成和作用 导入:(先在黑板上画一手电筒电路的示意图如1(a)) (c) 图1 手电筒电路手电筒大家都很熟悉,由电池、开关、灯泡、导线四部分组成。电池给灯泡供电,但只有在开关闭合的前提下,才会发亮。所以电池相当于电源,灯泡是供电的对象,称为负载,开关决定着灯亮与灭,所以开关便是控制元件,导线连接整个电路,使其为一闭合回路。电源、负载、控制元件、回路为组成电路的四要素。所以手电筒电路的电路模型如图1(c)。 1、电路组成的四要素: (1)电源(2)负载(3)控制元件(4)回路 2、电路的作用: (1)能量的传输和转换。如手电筒电路,灯泡发光,电池能转换为光能和热能。 (2)信号的传递和处理。如扩音机电路,如图(b),放大器用来放大电信号,而后传 递到扬声器,把电信号还原为语言或音乐, 实现“声-电-声”的放大、传输和转换作用。

荫罩式彩色显像管

荫罩式彩色显像管 ——德国人弗莱西(Fleshsig )1938年提出,是目前占主导地位的彩色显像管.(注:还有所谓穿透式) 荫罩式彩管组成: 电子枪、偏转系统、三色组荧光屏以及荫罩、管壳五部分组成。 彩管壳采用全玻璃结构,玻壳高真空(10-4—10-5Pa ),20000V 以上高 压下,电子束轰击荧光屏会产生软X 射线(波长大于1埃,比透视用的硬X 射线对人体伤害更大),于是在玻璃配方中掺入重金属,加大对软x 射线的吸收。 荫罩是彩管中特有的极为重要的组件,是显像管的选色机构;同时制管过程中荫罩还起涂屏曝光的投影模板作用。 荫罩式彩色显像管有三大类: 三枪三束彩色显像管——美国无线电公司(RCA ),1950年 单枪三束彩色显像管——日本索尼公司,1968年 自会聚彩色像管——美国无线电公司,1972年 1 三枪三束彩色显像管 三枪三束荫罩管中,红绿蓝三基色点呈品字形(组成一个象素)均匀交替排列在整个荧光屏上.每个色点很小,只有几微米到十几微米,数目达100万颗以上,在荧光粉间隙涂以石墨,以提高对比度(黑底技术)。 三枪三束荫罩管中,电子枪发出三个呈品字形排列电子束,它们能同时通过荫罩上同一小孔,并分别打在各自荧光粉点上。 2)单枪三束栅网彩管 单枪三束栅网彩管是荫罩管的改进型。 荧光粉层:三种基色光粉竖条按RGB 次序交替排列而成. 栅网薄钢片:缝隙取代了孔状荫罩板,三电子束正好在缝隙处交叉,且出射后打在各自的色条上. 单电子枪: 三个灯丝、阴极与控制极水 平放置,其余电极共用,发射出的三束电子束 共用同一个电子枪聚焦。这种结构使得电子束 的会聚调整较简单,亮度大大提高,还可缩小 显像管颈尺寸,促进彩电小型化。但彩色重现 较为粗糙。 3) 自会聚彩色像管 自会聚彩色显像管是近年彩管的主流,是 在三枪三束管和单枪三束管的基础上产生的. 精密直列式电子枪:三个电子枪排列在一平线上,彼此间距很小, 因而会聚象差也很小。三枪三束彩色显像管

彩色电视机显像管及其显色原理

彩色电视机显像管及显像其原理 缤纷的电视机所带来的多彩世界,让人们对它着迷,可他的神奇魔力是怎样施展的?让科学告诉你。在此浅谈一下电视机的灵魂部件——显像管,以及它的“魔粉”——磷光体。 首先,明确电脑的“脸”,显示器,显示器是属于电脑的I/O设备,即输入输出设备。它可以分为CRT、LCD等多种。①它是一种将一定的电子文件通过特定的传输设备显示到屏幕上再反射到人眼的显示工具。CRT 是一种使用阴极射线管(Cathode Ray Tube)的显示器,阴极射线管主要有五部分组成:电子枪(Electron Gun),偏转线圈(Deflection coils),荫罩(Shadow mask),荧光粉层(Phosphor)及玻璃外壳。它是目前应用最广泛的显示器之一,CRT纯平显示器具有可视角度大、无坏点、色彩还原度高、色度均匀、可调节的多分辨率模式、响应时间极短等LCD显示器难以超过的优点,而且现在的CRT显示器价格要比LCD显示器便宜不少。 现在讨论其灵魂显像管,它是判断显示器好坏的重要标准,它也是近几年技术变革最大的环节,②按电视机配套功能分有:显像管和投射式显像管;按荧光屏显示颜色分有:黑白显像管和彩色显像管;按荧光屏大小(对角线尺寸)分有:9、12.14.17、18、20、22in;按显像管的偏转角分为70°、90°、100°、110°、114°等;按显像管屏幕表面形状分:球面圆角、平面直角。按屏幕面矩形长高尺寸分5∶3.5∶4.16∶9;按照显像管表面平坦度的不同可分为球面管、平面直角管、柱面管、纯平管。 显示黑白图像的显像管(简称黑白管)。黑白管的主要组成部分是玻壳、电子枪和荧光屏。在玻壳的管颈上还装有偏转线圈。玻壳内保持真空。电子枪发射一个被调制的电子束,经聚焦、偏转后打到荧光屏上显示出发光的图像。这个被调制电子束的扫描,与发送端摄像管靶面上电子束的扫描同步, ①百度百科,显示器 ②百度百科,显像管

彩色显像管与黑白显像管的重大区别

彩色显像管与黑白显像管的重大区别。 一、三枪三束自会聚彩色显像管 1. 自会聚管的电子枪 白会聚管采用精密一体化一字形三枪三束电子枪,如图所示。 2. 自会聚管的荫罩板 (1)荫罩板与荫罩孔 荫罩板指安装在电子枪与荧光屏之间的一块刻有数十万个小孔的薄钢板。荫罩板中刻有的小孔称为荫罩孔。 (2)荫罩板的作用 当三个电子束能在荫罩孔准确会聚时,它们就会击中各自对应的荧光粉,发出红、绿、蓝三色光,所以称荫罩板为彩色显像管中的造色机构,如图所示。 (a)(b)(3)特点 由图(b)可知,自会聚彩色显像管采用的是槽形荫罩板,它的优点是可使荫罩板和显示屏间的距离缩小到仅4mm,而且由于采用了沟槽状的栅栏结构大大提高了电子束的通透效率,缩小了点距,使显示的画面更加鲜艳。 3. 自会聚管的荧光屏 (1)自会聚彩色显像管荧光屏的构成 (2)点距 点距是指显像管两个最接近的同色荧光点(条)之间的直线距离,它的单位为mm(毫米),点距越小越好。以14寸显示器为例加以说明。 4. 自会聚管的偏转线圈和会聚磁铁组合件 二、单枪三束“特丽龙”彩色显像管

其结构如图所示。此种显像管由于其独特的设计和优点,使其在各类彩色电视机中占有很大的比例。 1. 单枪三束管的电子枪 (1)结构 一个电子枪,三个独立的阴极,按一字形水平排列,同时发出三注电子束,中间为绿束,两侧为红、蓝束。 (2)特点 三注电子束处于同一平面,只要在一个方向上调节两侧的红、蓝电子束,即可实现会聚,使会聚电路简化;只有一个电子枪,管颈有效口径较大,可获得较大直径的电子透镜,使电子束密度高,有利于提高荧光屏幕的亮度。 2. 单枪三束管的荫罩板 (1)结构 采用垂直栅条形状的荫罩板和垂直相间的条纹状荧光粉条,所以单枪三束管又可称为栅网管。栅网式的荫罩板上面是一些细小的长栅格,显像点呈现垂直条状。 (2)特点 其优点是消除了纵向点距,使电子通透率高,可达到更高的亮度和对比度,使色彩更加鲜艳饱满。 缺点是由于在荫罩板上的金属丝没有横向的连接,无法保证整个屏幕的稳定性,栅条的振动有可能导致画面的颤抖,需采用两条水平金属线来固定栅条的位置。 3. 单枪三束管的荧光屏 近期的彩管都呈现出向平板显示方向发展。屏幕越来越平,其四角为方角,尺寸越来越大。 三、彩色显像管的典型工作条件 结合表引导学生分析自会聚彩色显像管的典型工作电压。

阴极射线管

二、扭曲向列型液晶显示(TN-LCD ) 1. 工作原理 白底黑字显示——正显示 黑底白字显示——负显示 扭曲向列液晶产生旋光特性必须满足以下条件: 2/λ>>??n d 其中△n 是液晶材料的折射率各向异性,d 是液晶盒的间距,λ为入射光波长,一般的TN-LCD 液晶盒取d=10μm 。 2. TN-LCD 的电光特性 阈值电压V th ——透射率为器件最大透射率的90%(常白型)或10%(常黑型)所对应的电压有效值,V th 是和液晶材料有关的参数,对于TN-LCD ,大约在1—2V 之间。 饱和电压V sat ——透射率为器件最大透射率的10%(常白型)或90%

(常黑型)所对应的电压有效值。 陡度γ——th sat V V =γ γ决定器件的多路驱动能力和灰度性能。 陡度越大,多路驱动能力越强,但灰度性能下降,反之亦然。 1 0.80.60.2 0.4 10 T T LCD 的对比度是在恒定环境照明条件下显示部分亮态与暗态的亮度之比,由于偏离显示板法线方向不同角度入射到液晶盒的光,遇到不同的液晶分子排列形态,造成有效光学延迟量的不同;因此不同视角下对比度就不同,甚至可能出现暗态的透射率超过亮态透射率的情况,即出现对比度反转。 液晶器件电光效应的瞬态响应特性通常用三个常数表征:延迟时间 d τ,定义为加上电压后透光率达到最大值10%时的时间;上升时间r τ,定 义为透光率从10%增加到90%所用的时间;下降时间f τ,定义为透光率从90%下降到10%所用的时间。目前普通TN-LCD 的响应时间在80ms 左右。

相对透光率 0.11.00.9 电压V S 3. TN-LCD 的驱动 LCD 的驱动有如下一些特点: (1)为防止施加直流电压使液晶材料发生电化学反应从而造成性能不可逆的劣化,缩短使用寿命,必须用交流驱动,同时应减小交流驱动波形不对称产生的直流成分; (2)驱动电源频率低于数千赫兹时,在很宽的频率范围内LCD 的透光率只与驱动电压有效值有关而与电压波形无关; (3)驱动时LCD 像素是一个无极性的容性负载。 TN-LCD 液晶显示的电极:段型电极、矩阵型电极 TN-LCD 驱动方式:静态驱动、矩阵寻址驱动 静态驱动——在需要显示的时间里分别同时给所需显示的段电极加上驱动电压,直到不需要显示的时刻为止。静态驱动的对比度较高,但使用的驱动元器件较多,因此只用于电极数量不多的段式显示。 矩阵寻址驱动——TN-LCD 的矩阵寻址驱动实际上是一种简单矩阵(或无源矩阵)驱动方式,即把TN-LCD 的上下基板上的ITO 电极做成条状图形,并互相正交,行、列电极交叉点为显示单元,称为像素。按时间顺序逐一给各行电极施加选通电压,即扫描电压,选到某一行时各列

关于制止彩色显像管彩色电视机不正当价格竞争的试行办法

国家计委、信息产业部印发 关于制止彩色显像管、彩色电视机不正当价格竞争的试行办法的通知 99/03/15 国家计委讯国家计委、信息产业部印发 关于制止彩色显像管、彩色电视机不正当价格竞争的试行办法的通知 各省、自治区、直辖市及计划单列市物价局(委员会),电子工业主管部门:为了制止彩色显像管、彩色电视机行业的不正当价格竞争行为,维护正常的市场竞争秩序,国家计委、信息产业部制定了《关于制止彩色显像管、彩色电视机不正当价格竞争的试行办法》(以下简称《办法》),现印发给你们,请认真贯彻执行,并就有关事项通知如下: 一、近几年来,由于产品供过于求,市场竞争日趋激烈,彩色电视机价格大幅度下降。在降价竞争中,一些彩色电视机、彩色显像管生产企业以低于生产成本的价格进行销售,扰乱了正常的价格秩序,损害了其他经营者和消费者的合法权益。各地价格、电子主管部门要会同计划、经贸等有关部门,加强领导,密切配合,共同做好《办法》的贯彻实施工作。 二、遵照国务院领导同志的指示精神,国家计委、信息产业部决定,将彩色显像管和彩色电视机作为1999年制止低价倾销、依法规范市场秩序的重点品种。各地要加强监督检查,检查的主要内容是:彩色显像管、彩色电视机生产企业的出厂价格是否低于其生产成本,经销企业的销售价格是否低于其进货成本;是否采取折扣、补贴、多给数量等手段低价销售;是否采取使用走私进口原材料和零配件、降低性能指标、以次充好、虚报成本等手段低价销售。 三、彩色显像管和彩色电视机生产企业要严格执行《办法》的各项规定,自觉规范价格行为,据实、准确记录与核定生产成本及进货成本,严禁少摊费用,虚置成本。同时要对有无不正当价格竞争行为进行自查自纠,并积极向价格主管部门举报不正当价格竞争行为。 四、各地在贯彻实施《办法》和监督检查过程中存在的问题,请及时报告国家计委和信息产业部。 附件:关于制止彩色显像管、彩色电视机不正当价格竞争的试行办法附件关于制止彩色显像管、彩色电视机不正当价格竞争的试行办法

初中物理基本物理量、公式及常数

初中物理基本物理量、公式及常数一、基本物理量:

二、常用公式: 三、常用数据:

四、初中物理单位换算: 4,初中物理易错点 一、测量 ⒈长度L:主单位:米;测量工具:刻度尺;测量时要估读到最小刻度的下一位;光年的单位是长度单位。 ⒉时间t:主单位:秒;测量工具:钟表;实验室中用停表。1时=3600秒,1秒=1000毫秒。 ⒊质量m:物体中所含物质的多少叫质量。主单位:千克;测量工具:秤;实验室用托盘天平。 二、机械运动 ⒈机械运动:物体位置发生变化的运动。 参照物:判断一个物体运动必须选取另一个物体作标准,这个被选作标准的物体叫参照物。 ⒉匀速直线运动: ①比较运动快慢的两种方法:a 比较在相等时间里通过的路程。b 比较通过相等路程所需的时间。 ②公式:1米/秒=3.6千米/时。 三、力 ⒈力F:力是物体对物体的作用。物体间力的作用总是相互的。 力的单位:牛顿(N)。测量力的仪器:测力器;实验室使用弹簧秤。 力的作用效果:使物体发生形变或使物体的运动状态发生改变。 物体运动状态改变是指物体的速度大小或运动方向改变。

⒉力的三要素:力的大小、方向、作用点叫做力的三要素。 力的图示,要作标度;力的示意图,不作标度。 ⒊重力G:由于地球吸引而使物体受到的力。方向:竖直向下。 重力和质量关系:G=mg m=G/g g=9.8牛/千克。读法:9.8牛每千克,表示质量为1千克物体所受重力为9.8牛。 重心:重力的作用点叫做物体的重心。规则物体的重心在物体的几何中心。 ⒋二力平衡条件:作用在同一物体;两力大小相等,方向相反;作用在一直线上。物体在二力平衡下,可以静止,也可以作匀速直线运动。 物体的平衡状态是指物体处于静止或匀速直线运动状态。处于平衡状态的物体所受外力的合力为零。 ⒌同一直线二力合成:方向相同:合力F=F1+F2 ;合力方向与F1、F2方向相同;方向相反:合力F=F1-F2,合力方向与大的力方向相同。 ⒍相同条件下,滚动摩擦力比滑动摩擦力小得多。 滑动摩擦力与正压力,接触面材料性质和粗糙程度有关。【滑动摩擦、滚动摩擦、静摩擦】 7.牛顿第一定律也称为惯性定律其内容是:一切物体在不受外力作用时,总保持静止或匀速直线运动状态。惯性:物体具有保持原来的静止或匀速直线运动状态的性质叫做惯性。 四、密度 ⒈密度ρ:某种物质单位体积的质量,密度是物质的一种特性。 公式:m=ρV 国际单位:千克/米3 ,常用单位:克/厘米3, 关系:1克/厘米3=1×103千克/米3;ρ水=1×103千克/米3; 读法:103千克每立方米,表示1立方米水的质量为103千克。 ⒉密度测定:用托盘天平测质量,量筒测固体或液体的体积。 面积单位换算: 1厘米2=1×10-4米2, 1毫米2=1×10-6米2。 五、压强 ⒈压强P:物体单位面积上受到的压力叫做压强。 压力F:垂直作用在物体表面上的力,单位:牛(N)。 压力产生的效果用压强大小表示,跟压力大小、受力面积大小有关。 压强单位:牛/米2;专门名称:帕斯卡(Pa) 公式:F=PS 【S:受力面积,两物体接触的公共部分;单位:米2。】 改变压强大小方法:①减小压力或增大受力面积,可以减小压强;②增大压力或减小受力面积,可以增大压强。 ⒉液体内部压强:【测量液体内部压强:使用液体压强计(U型管压强计)。】 产生原因:由于液体有重力,对容器底产生压强;由于液体流动性,对器壁产生压强。 规律:①同一深度处,各个方向上压强大小相等②深度越大,压强也越大③不同液体同一深度处,液体密度大的,压强也大。[深度h,液面到液体某点的竖直高度。] 公式:P=ρgh h:单位:米;ρ:千克/米3;g=9.8牛/千克。 ⒊大气压强:大气受到重力作用产生压强,证明大气压存在且很大的是马德堡半

三极管作为开关电路的设计及应用

第一节基本三极管开关基本电路设计 三极管除了可以当做交流信号放大器之外,也可以做为开关之用。严格说起来,三极管与一般的机械接点式开关在动作上并不完全相同,但是它却具有一 些机械式开关所没有的特点。图1所示,即为三极管电子开关的基本电路图。由下图可知,负载电阻被直接跨接于三极管的集电极与电源之间,而位居三极 管主电流的回路上, Vcc R ID R D 2 图1基本的三极管开关 输入电压Vin则控制三极管开关的开启(open)与闭合(closed)动作,当三极管呈开启状态时,负载电流便被阻断,反之,当三极管呈闭合状态时,电流便可以流通。详细的说,当Vin为低电压时,由于基极没有电流,因此集电极亦无电流,致使连接于集电极端的负载亦没有电流,而相当于开关的开启,此时三 极管乃胜作于截止(cut off)区。 同理,当Vin为高电压时,由于有基极电流流动,因此使集电极流过更大的放大电流,因此负载回路便被导通,而相当于开关的闭合,此时三极管乃胜作于饱和区(saturation)。838 电子一、三极管开关电路的分析设计 由于对硅三极管而言,其基射极接面之正向偏压值约为0.6伏特,因此欲使三极管截止,Vin必须低于0.6伏特,以使三极管的基极电流为零。通常在设计时,为了可以更确定三极管必处于截止状态起见,往往使Vin值低于0.3伏特。(838电子资源)当然输入电压愈接近零伏特便愈能保证三极管开关必处于截止状态。欲将电流传送到负载上,则三极管的集电极与射极必须短路,就像机械 开关的闭合动作一样。欲如此就必须使Vin达到够高的准位,以驱动三极管使其进入饱和工作区工作,三极管呈饱和状态时,集电极电流相当大,几乎使得整 个电源电压Vcc均跨在负载电阻上,如此则VcE便接近于0,而使三极管的集电极和射极几乎呈短路。在理想状况下,根据奥姆定律三极管呈饱和时,其集 电极电流应该为:

从大批彩色显像管中随机

概率与统计作业(18)
班级
学号
姓名
1. 从大批彩色显像管中随机抽取 100 只,其平均寿命为 10000 小时,可以认为显像管的寿命 X 服 从正态分布.已知均方差σ = 40 小时,在置信度 0.95 下求出这批显像管平均寿命的置信区间. 2. 设随机地调查26年投资的年利润率(%),得样本标准差 S = 15(%) ,设投资的年利润率 X 服从
正态分布,求它的方差的区间估计(置信度为 0.95). 从一批钉子中抽取 16 枚,测得其长度为(单位:厘 米)2.14, 2.10, 2.13, 2.15, 2.13, 2.12, 2.13, 2.10, 2.15, 2.12, 2.14, 2.10, 2.13, 2.11, 2.14, 2.11.设钉子的长度
X 服从正态分布,试求总体均值 μ 的置信度为 0.90 的置信区间.
3. 生产一个零件所需时间( 单位:秒) X ~ N ( μ , σ ) , 观察 25 个零件的生产时间得
2
x = 5.5 , s = 1.73 .试求 μ 和σ 2 的置信区间.

4. 产品的某一指标 X ~ N ( μ , σ ) , 已知σ = 0.04 ,μ 未知.现从这批产品中抽取 n 只对该指 标进行测定,问 n 需要多大,才能以 95%的可靠性保证 μ 的置信区间长度不大于 0.01?
2
5.
2 A
设 A 和 B 两批导线是用不同工艺生产的,今随机地从每批导线中抽取 5 根测量其电阻,算得
2 s = 1.07 × 10 ?7 , s B = 5.3 × 10 ?6 ,若 A 批导线的电阻服从 N ( μ1 , σ 12 ) , B 批导线的电阻服从 2 2 N ( μ 2 , σ 2 ) ,求σ 12 σ 2 的置信度为 0.90 的置信区间.
6 从甲乙两个蓄电池厂的产品中分别抽取 6 个产品,测得蓄电池的容量(A.h)如下: 甲厂 140 , 138 , 143 , 141 , 144 , 137; 乙厂 135 , 140 , 142 , 136 , 138 , 140 设蓄电池的容量服从正态分布,且方差相等,求两个工厂生产的蓄电池的容量均值差的 95%置信区间.

实验二 三极管基本放大电路

实验二三极管基本放大电路 一、实验目的 学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。 掌握放大器电压放大倍数、及最大不失真输出电压的测试方法。 熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 共射放大电路既有电流放大,又有电压放大,故常用于小信号的放大。改变电路的静态工作点,可调节电路的电压放大倍数。而电路工作点的调整,主要是通过改变电路参数来实现,负载电阻R L的变化不影响电路的静态工作点,只改变电路的电压放大倍数。该电路输入电阻居中,输出电阻高,适用于多级放大电路的中间级。 静态工作点是否合适,对放大器的性能和输出波形都有很大影响。如工作点偏高,放大器在加入交流信号以后易产生饱和失真,此时V0的负半周将被削底;如工作点偏低易产生截止失真,即V0的正半周被缩顶(一般截止失真不如饱和失真明显)。这些情况都不符合不失真放大的要求。所以在选定工作点以后还必须进行动态调试,即在放大器的输入端加入一不定期的V i,检查输出电压V0的大小和波形是否满足要求。如不满足,则应调节静态工作点的位置。工作点偏高或偏低不是绝对的,应该是相对信号的幅度而言,如信号幅度很小,即使工作点较高或较低也不一定会出现失真。所以确切地说,产生波形失真是信号幅度与静态工作点设置配合不当所致。 图2-1 基本放大电路实验图 三、实验内容与步骤 1.调整静态工作点:按图连线,然后接通12V电源,调节信号发生器的频率和幅值调切旋 钮,使之输出f=1000Hz,Ui=10mV的低频交流信号,然后调节电路图中Rp1和Rp2使放大器输出波形幅值最大,又不失真。 2.去掉输入信号(最好使输入端交流短路),测量静态工作点(Ic,U ce,U be) 3.测量电压放大倍数:重新输入信号,在波形不失真的条件下用交流毫伏表测量下述二种 情况下的U0值,此时的U0和U i相位相反。 4.测量幅频频特性曲线:保持输入信号的幅度不变,改变信号源频率f,按照下面的的频率 要求逐点测出相应的输出电压U0,记入下表,并且画出幅频特性曲线。

三极管常用应用电路

三极管常用电路 1.三极管偏置电路_固定偏置电路 如上图为三极管常用电路中的固定偏置电路:Rb的作用是用来控制晶体管的基极电路Ib,Ib称为偏流,Rb称为偏流电阻或偏置电阻.改变Rb的值,就可以改变Ib的大小.图中Rb 固定,称为固定偏置电阻. 这种电路简单,使用元件少,但是由于晶体管的热稳定性差,尽管偏置电阻Rb固定,当温度升高时,晶体管的Iceo急剧增加,使Ie也增加,导致晶体管工作点发生变化.所以只有在温度变化不大,温度稳定性不高的场合才用固定偏置电路 2.三极管偏置电路_电压负反馈偏置电路 如上图为三极管常用电路中的电压负反馈偏置电路:晶体管的基极偏置电阻接于集电极. 这个电路好象与固定偏置电路在形式上没有多大差别,然而正是这一点,恰恰起到了自动补偿工作点漂移的效果.从图中可见,当温度升高时,Ic增大,那么Ic上的压降也要增大,使得Uce下降,通过Rb,必然Ib也随之减小,Ib的减小导致Ic的减小,从而稳定了Ic,保证了

Uce基本不变. 这个过程,称为负反馈过程,这个电路就是电压负反馈偏置电路. 2.三极管偏置电路_分压式电流负反馈偏置电路 如上图为三极管常用电路中的分压式电流负反馈偏置电路:这个电路通过发射极回路串入电阻Re和基极回路由电阻R1,R2的分压关系固定基极电位以稳定工作点,称为分压式电流负反馈偏置电路.下面分析工作点稳定过程. 当温度升高,Iceo增大使Ic增加.Ie也随之增加.这时发射极电阻Re上的压降Ue=Ie*Re 也随之升高.由于基极电位Ub是固定的,晶体管发射结Ube=Ub-Ue,所以Ube必然减小,从而使Ib减小,Ic和Ie也就减小了. 这个过程与电压负反馈类似,都能起到稳定工作点的目的.但是,这个电路的反馈是Ue=Ie*Re,取决于输出电流,与输出电压无关,所以称电流负反馈. 在这个电路中,上,下基极偏置电阻R1,R2的阻值适当小些,使基极电位Ub主要由它们的分压值决定.发射极上的反馈电阻Re越大,负反馈越深,稳定性越好.不过Re太大,在电源电压不变的情况下,会使Uce下降,影响放大,所以Re要选得适当. 如果输入交流信号,也会在Re上引起压降,降低了放大器的放大倍数,为了避免这一点,Re 两端并联了一个电容Ce,起交流旁路作用. 这种电路稳定性好,所以应用很广泛. 一、采用仪表放大器还是差分放大器 尽管仪表放大器和差分放大器有很多共性,但设计过程的第一步应当是选择使用何种类型的放大器。

三极管及放大电路基础教案设计

第2章三极管及放大电路基础 【课题】 2.1 三极管 【教学目的】 1.掌握三极管结构特点、类型和电路符号。 2.了解三极管的电流分配关系及电流放大作用。 3.理解三极管的三种工作状态的特点,并会判断三极管所处的工作状态。 4.理解三极管的主要参数的含义。 【教学重点】 1.三极管结构特点、类型和电路符号。 2.三极管的电流分配关系及电流放大作用。 3.三极管的三种工作状态及特点。 【教学难点】 1.三极管的电流分配关系和对电流放大作用的理解。 2.三极管工作在放大状态时的条件。 3.三极管的主要参数的含义。 【教学参考学时】 2学时 【教学方法】 讲授法、分组讨论法 【教学过程】 一、引入新课 搭建一个简单的三极管基本放大电路,通过对放大电路输入信号及输出信号的测试,引导学生认识三极管,并知道三极管能放大信号,为后续的学习打下基础。 二、讲授新课 2.1.1 三极管的基本结构 三极管是在一块半导体基片上制作出两个相距很近的PN结构成的。 两个PN结把整块半导体基片分成三部分,中间部分是基区,两侧部分分别是发射区和集电区,排列方式有NPN和PNP两种, 2.1.2 三极管的电流放大特性 三极管能以基极电流微小的变化量来控制集电极电流较大的变化量,这就是三极管的电

流放大特性。 要使三极管具有放大作用,必须给管子的发射结加正偏电压,集电结加反偏电压。 三极管三个电极的电流(基极电流B I 、集电极电流C I 、发射极电流E I )之间的关系为: C B E I I I +=、B C I I = --β、B C I I ??=β 2.1.3 三极管的特性曲线 三极管外部各极电流与极间电压之间的关系曲线,称为三极管的特性曲线,又称伏安特性曲线。 1. 输入特性曲线 输入特性曲线是指当集-射极之间的电压CE V 为定值时,输入回路中的基极电流B I 与加在基-射极间的电压BE V 之间的关系曲线。 三极管的输入特性曲线与二极管的正向伏安特性曲线相似,也存在一段死区。 2. 输出特性曲线 输出特性曲线是指当基极电流B I 为定值时,输出电路中集电极电流C I 与集-射极间的电压CE V 之间的关系曲线。B I 不同,对应的输出特性曲线也不同。 截止区:0=B I 曲线以下的区域。此时,发射结处于反偏或零偏状态,集电结处于反偏状态,三极管没有电流放大作用,相当于一个开关处于断开状态。 饱和区:曲线上升和弯曲部分的区域。此时,发射结和集电结均处于正偏状态,三极管没有电流放大作用,相当于一个开关处于闭合状态。 放大区:曲线中接近水平部分的区域。此时,发射结正偏,集电结反偏。三极管具有电流放大作用。 2.1.4 三极管的主要参数 1. 性能参数:电流放大系数- -β、β,集电极-基极反向饱和电流CBO I ,集电极-发射极反向饱和电流CEO I 。 2. 极限参数:集电极最大允许电流CM I 、集电极-发射极反向击穿电压CEO BR V )(、集电极最大允许耗散功率CM P 。

相关主题
文本预览
相关文档 最新文档