当前位置:文档之家› 薄膜型超磁致伸缩微执行器的研究现状

薄膜型超磁致伸缩微执行器的研究现状

薄膜型超磁致伸缩微执行器的研究现状
薄膜型超磁致伸缩微执行器的研究现状

薄膜型超磁致伸缩微执行器的研究现状

摘要超磁致伸缩薄膜是一种性能优良的新型微驱动元件,在查阅大量文献的基础上,介绍了超磁致伸缩薄膜驱动的原理,综述了薄膜型超磁致伸缩微执行器的开发和最新研究成果,重点介绍了薄膜型超磁致伸缩微执行器在微流体控制系统中的应用,性超声微马达中的应用和在微小型行走机械中的应用,并对超磁致伸缩薄膜在微执行器中的发展提出了展望。

关键词超磁致伸缩微执行器薄膜

0引言

微型机电系统技术是一个新兴的技术领域,而微执行器又是复杂微机电系统的关键技术之一.常用的微执行器根据其驱动方式可分为压电式、静电式、外形记忆合金驱动等。压电式和静电式微执行器是目前应用较广泛的微执行器,它们具有精度高、不发热、响应速度较快等优点,但输出力小、驱动电压高等缺点也限制了它们的应用;而外形记忆合金虽然是已知的功能材料中变形量最大的,但它的响应速度较慢,且变形不连续,因而也限制了其应用。

超磁致伸缩材料是一种新型高效的磁—机械能转换材料,具有应变大、能量密度高、机电藕荷系数大、响应速度、输出力大等优点。从其诞生开始,便引起了工业界的重视,已广泛地应用于减震、阀门控制、微定位、机械传动机构、振动器、传感器及声纳系统等方面。

近年来,在磁致伸缩应用领域又出现了一个新的研究热点—超磁致伸缩薄膜的研究与应用。许多研究者采用溅射方法在非磁性基片上制备了稀土—过渡金属非晶薄膜,并对薄膜的结构和磁致伸缩特性进行了研究,发现磁致伸缩薄膜具有良好的软磁性能,磁晶各向异性值低,在室暖和低磁场下能产生很大的磁致伸缩应变。与通常的体磁致伸缩材料相比,超磁致伸缩薄膜的制造过程轻易和传统的半导体工艺联系起来,因而成本较低,并且由于薄膜中的二维磁弹性相互作用使超磁致伸缩材料又具有一些新的功能,这对于超磁致伸缩材料的实际应用具有重要意义.可以说,正是由于超磁致伸缩薄膜材料的种种优点,决定了其在微型执行器中有着不可估量的发展前景。目前,从事微型机电系统技术方面的研究人员已将目光纷纷投向这一新型的驱动方式。

1.薄膜型超磁致伸缩微执行器的原理

目前的薄膜型超磁致伸缩微执行器主要采用薄膜式和悬臂梁式。其基本的驱动原理是利用非磁性基片,采用闪蒸、离子束溅射、电离镀膜、直流溅射、射频磁控溅射等方法进行镀膜,在基片上形成具有磁致伸缩特性的薄膜材料,当有外加磁场时,

薄膜会产生变形,带动基片进行偏转和弯曲从而达到驱动目的。为了得到较大的变形,通常在基片的一侧镀上具有正磁致伸缩效应的薄膜材料,而在基片的另一侧镀上具有负磁致伸缩效应的薄膜材料。

基片厚为3μm,由商用的厚为5μm的聚酰亚胺薄膜用氧气进行反应性离子蚀刻而成,这种材料的弹性模量小,热稳定性高。基片上面用射频磁控溅射法镀上1μm的tb-fe

薄膜,下面为相同厚度的sm-fe薄膜。当在悬臂梁长度方向外加磁场时,产生正磁致伸缩的tb-fe薄膜便伸长,而产生负磁致伸缩的sm-fe薄膜会缩短,悬臂梁的未固定端便向下弯曲产生位移。当在横向加磁场时,悬臂梁则向上弯曲产生位移。这是一种典型的超磁致伸缩薄膜驱动方式,可以看出它具有以下优点:1)将具有正磁致伸缩效应和负磁致伸缩效应的材料结合在一起可得到较大的变形;2)可实现由外部磁场进行非接触式驱动;3)结构简单,便于制造。

薄膜型超磁致伸缩微执行器研究现状

1在流体控制系统中的应用

目前,对包括微管道、微阀、微流量计、微泵等元件的微流量控制系统的研究已成为微机械研究的热点之一。而薄膜型超磁致伸缩微执行器的出现,又为微流体元件的驱动

提供了一个新的方法。图3所示的是德国的e.quandt等人设计的一种悬臂梁式磁致伸缩微阀门,图3和分别为阀门关闭和开启时的示意图,图3为阀的a向截面图。

图3悬臂梁式磁致伸缩微型阀

当阀门关闭时,通道口与镀有磁致伸缩薄膜的基片紧紧相接,液体在连通的上下两个腔体中同时存在但并不能外流。当有外加磁场时,磁致伸缩薄膜发生形变从而使基片产生弯曲,这时通道口与基片相分离,液体便从上腔经过出口流出,经研究表明,当外磁场强度为30mt时阀门产生最大开口量,驱动磁场较以往设计的执行器大大减小。悬臂梁上镀层与非镀层的尺寸结构对变形有很大影响,通常采用有限元计算的方法得出其尺寸比。

此外,据道德国的材料研究所已将超磁致伸缩薄膜应用于微型泵的研究之中。这种泵当控制频率在2khz时最大流量为10μl/min,出口压力可达1mbar。

2性超声微马达中的应用

超磁致伸缩薄膜材料的应变大,频响快,滞后小且驱动场低,因此被应用于线性超声微马达中,其结构如图4所示。

图4线性超声微马达

超磁致伸缩薄膜线性超声微马达由晶向硅基片和具有正磁致伸缩效应的tbfe薄膜制成。tbfe薄膜厚13μm。当偏磁场大小为30mt,外加一频率约为750hz,大小为15mt的激励磁场时,这种线性马达的步进速度可达3mm/s。

3在微型行走机械中的应用

作为微驱动元件,应用于微小行走机械具有重大的意义,随着微型化的发展,行走机械的能源供给问题现在还没有有效的解决方法,并成为开发微小行走机械的难关。作为该能源供给问题的一个解决方法,便是利用非接触式驱动的超磁致伸缩微驱动元件。它的工作原理是,利用外加磁场与行走机械共振,来大幅度的提高机构的行走速度。图5所示为日本荒井贤一等人设计的微型行走机械的截面图。

图5微型行走机械截面图

他们在厚为7.5μm的聚酰亚胺基片上、下各镀一层1μm的分别具有正负磁致伸缩效应的超磁致伸缩薄膜。基片两端是倾斜的腿,用来支撑和行走。此微行走机械可向前或向后运动。当外加磁场为500oe,激励频率为70hz时,其向前行走的速度能达到65mm/s。该行走机械不仅可在管道中,而且还可在平面上、水中、天棚上行走。

4其它

韩国汉城科技研究所的薄膜技术研究中心、韩国大学的材料与工程系以及美国俄亥俄州的cincinnati大学微电子传感器和mems中心联合开发研制出用超磁致伸缩薄膜驱动的微执行器原型。取得了较满足的结果。日本还有道将超磁致伸缩薄膜用于表面声波设备。在用压电材料做成的基片上镀上一层超磁致伸缩薄膜材料,表面声波在基片上传播并转换成输出电信号,波速和信号的延迟能够由外磁场控制产生变化。

从目前的薄膜型超磁致伸缩微执行器的研究来看,主要采用的是悬臂梁式和薄膜式,即将超磁致伸缩薄膜镀在非磁性的si、玻璃或聚酰亚胺基片上,利用外磁场变化使薄膜伸长或缩短从而带动基片产生弯曲变形。德国的e.quandt在原有研究的基础上设计了一种新型的复合层,它的结构分为两层:一层由非晶超磁致伸缩材料构成,另一层则由具有良好的软磁特性和很强的磁极化率材料构成,层与层之间进行磁耦合。在这样的复合层结构中,磁极化得到了增强,因而在低磁场下可产生大的磁致伸缩,这种复合层结构要比一般的薄膜更适用于低磁场的情况。

此外,国外还有将超磁致伸缩薄膜用于振动原子力和隧道扫描探针等高新技术之中。

3结束语

以上简要介绍了薄膜型超磁致伸缩执行器的开发和研究现状。未来的执行器正朝着小型化、集成化方向发展,其驱动元件也越来越多的由三维体材料向二维的薄膜材料发展。薄膜型超磁致伸缩微执行器在低场室温下的应变大,响应速度快,功率密度高并采用非接触式驱动,这对微执行器的发展将起到有力的推动作用。

参考文献

1e.dutrémoletdelacheisserie,k.mackay,j.betz,etal.frombulktofilmmagnetostri -

ctiveactuators.journalofalloysandcompounds,1998;275~277:685~691

2quanminsu,taesungkim,yunzheng,etal.thinfilmcompositeactuators.spie,19 95;2441:179~184

3mitsuhirowada,haru-hisauchida,yoshihitomatsumura,hirohisauchida,etal. prepa-rationoffilmsoffe2giantmagnetostrictivealloybyionbeamsputteringprocessa ndtheircharacterization.thinsolidfilms,1996;281~282:503~506

4k.i.arai,t.honda,andm.yamaguchi.microactuatorsusingmagnetostrictivethinfil-ms.日本应用磁学会志,1994;18:386~391

5takashihonda,nonmember,kenichiarai,etal.basicpropertiesofmagnetostricti veactuatorsusingtb-

feandsm-fethinfilms.ieicetrans.electron.,1997;e80-c:232~237

6t.honda,y.hayashi,m.yamaguchi,etal.fabricationofthin-filmactuatorsusingma -gnetostriction.日本应用磁学会志,1994;18:477~480

7t.hondaandk.i.arai.driving.principlesformagneticthin-filmcantilevers.日本应用磁学会志,1997;21:817~820

8e.quant,k.seemann.fabricationandsimulationofmagnetostrictivethin-filmactuat- ors.sensorsandactuators,1995;a50:105~109

9e.quandt.giantmagnetostrictivethinfilmmaterialsandapplications.journalofall-oys andcompounds,

1997;258:126~132

10t.hondaandk.i.arai.basicpropertiesofawalkingmicro-mechanismusingmag-neto strictivethinfilms.日本应用磁学会志,1996;20:537~540

11s.h.lim,s.h.han,h.j.kim,etal.prototypemicroactuatorsdrivenbymagnetostrict ivethinfilms.ieeetrans.magn.,1998;342042~2044

12h.uchida,m.wada,k.koike,etal.giantmagnetostrictivematerials:thinfilmfor mationandapplicationtomagneticsurfaceacousticwavedevices.journalofalloysand compounds,

1994;211~212:576~580

13e.quandt,a.ludwig,j.mencik,etal.giantmagnetostrictivetb/fe/femultilayers.jo urn-

alofalloysandcompounds,1997;258:133~137

14alejandrog.schrottandrobertj.vongutfeld.magneticarraysandtheirresonantfrequ enciesfortheproduction

ofbinarycodes.ieeetrans.magn.,1998;34:3765~3771

currentstudyongiantmagnetostrictivethinfilmmicroactuators

abstract:giantmagnetostictivethinfilmisanewtypeofactuatingcomponentswithhigh property.basedonmanyreferences,thearticleintroducestheactuatingprincipleofgiantmagnetostictivethinfilm,dicusses thelateresearchresultsofgiantmagnetostrictivethinfilmmicroactuators.emphasison theapplytomicrofluidcontrolsystem,linearultrasonicmicromotorandmicrowalking mechanism.putforwardtheprogressofgiantmagnetostictivethinf ilminmicroactuators.

keywords:giantmagnetostictive;microactuator;thinfilm

超磁致伸缩执行器

超磁致伸缩执行器 .1 超磁致伸缩材料的介绍 1.1 微机械的发展现状 随着科学技术研究向微小领域的深入,诞生了微W纳米科学与技术(Micro/Nano Science and Technology),以形状尺寸微小或操作尺度极小为特征的微机械已成为人们在微观领域认识和改造自然的一种高新技术。微机械是基于广泛的现代科学技术,并作为整个微/纳米科学技术的重要组成部分的一项崭新研究课题。其必须具备的基本要求是: ⑴体积小,精度高,重量轻; ⑵性能稳定,可靠性高; ⑶能耗低,灵敏度和工作效率高; ⑷多功能和智能化; ⑸适于大批量生产,制造成本低廉。 微机械发展很快,近几年,已成功开发出微驱动器、微传感器、微控制器等,并由这些不同的微机械器件集成许多具有精巧功能的集成机构IM(Integrated Mechansim)。相对完备的微电子机械系统MEMS逐渐形成,整个系统的尺寸可以缩小到几毫米甚至几百微米。如美国贝尔实验室开发出直径为400μm的齿轮,加州大学伯克利分校试制出直径为60μm的静电电机,直径为50μm的旋转关节,以及齿轮驱动的滑块和灵敏弹簧,美国斯坦福大学研制出直径20μm,长度150μm 的铰链连杆机构,210μm×100μm的滑块机构,转子直径200μm的静电电机和流量为20ml/min的液体泵,日本东京大学工业研究院研制成1cm3大小的爬坡微型机械装置。 我国许多高校和研究所也取得不少进展。如上海冶金研究所研制出直径为400μm的多晶硅齿轮、气动涡轮和微静电电机等。这些微型机械不少已有具体的应用。MEMS的研究和开发正得到世界各发达国家的广泛重视,尤其是集微机械、微电子等综合技术为一体的微机器人,由于其在工业、生物医学、军事和科研等领域的广泛应用前景而倍受青睐,随着智能

超磁致伸缩材料的应用现状

专题综述 文章编号:100320794(2006)0520725203 超磁致伸缩材料的应用现状 方紫剑,王传礼 (安徽理工大学,安徽淮南232001) 摘要:稀土超磁致伸缩材料作为一种新型功能材料具有应变大、响应速度快等优点。介绍了超磁致伸缩材料(G M M)及基本特性,且较全面地论述了超磁致伸缩材料2类执行器在各领域(特别是在液压元件和微型马达)中的应用及研究现状。 关键词:超磁致伸缩材料;液压元件;微型马达 中图号:TP39文献标识码:A Applications of G iant Magnetostrictive Material FANG Zi-jian,WANG Chu an-li (Anhui University of Science and T echnology,Huainan232001,China) Abstract:The giant magnetostrictive material(G M M)has the advantages of high strain and fast response.The giant magnetostrictive material and its basic characteristics are presented.The current researches on applica2 tions of tw o kinds of G MA in various fields(particularly in the field of hydraulic com ponents and micro-m o2 tors)are com prehensively introduced. K ey w ords:giant magnetostrictive material;hydraulic com ponent;micro-m otor 1 超磁致伸缩材料(G M M)的性能特点 G M M与压电材料(PZT)和传统磁致伸缩材料Ni、C o等相比,具有独特的性能:(1)在室温下的磁致伸缩应变大,是Ni的40~50倍,是PZT的5~8倍;(2)能量密度高,是Ni的400~500倍,是PZT的10~25倍;(3)响应速度快,一般在几十毫秒以下,甚至达到微秒级;(4)输出力大,负载能力强,可达到220~800N;(5)其磁极耦合系数大,电磁能机械能的转换效率高,一般可达72%;(6)居里点温度高,工作性能稳定。此外,声速低,约是Ni的1Π3,PZT的1Π2。鉴于G M M的上述优良特性,这种材料在许多领域中已引起人们的广泛重视。 2 物理效应与应用形式 2.1 超磁致伸缩材料的物理效应 (1)Joule效应 磁性体被外加磁场磁化时,其长度发生变化的现象,可用来制作磁致伸缩转换器。 (2)Villari效应 由于形状变化,致使其磁化强度发生变化的现象,可用于制作磁致伸缩传感器。 (3)ΔE效应 随磁场变化,杨氏模量也发生变化的现象,可用于声延迟线。 (4)Viedemann效应 在磁性体上施加适当的磁场,当有电流通过时磁性体发生扭曲变形的现象,可用于制作扭转马达等。 (5)AntiViedemann效应 当磁致伸缩材料沿轴向发生周向扭曲,同时沿轴向施加磁场,则沿周向出现交变磁化的现象,可用于扭转传感器。 (6)Jum p效应 当超磁致伸缩材料外加预应力时,磁致伸缩呈跃变式变化,磁导率也发生变化。 以上效应是超磁致伸缩材料的应用研究基础,利用这些效应可做成各种器件。 2.2 超磁致伸缩材料在工程中应用的2种形式 按照是否采用基片可将超磁致伸缩执行器 (G MA,G iant Magnetostrictive Actuator)分为2类: (1)直动型 直动型超磁致伸缩执行器一般使用超磁致伸缩棒(例如T erfenol-D),当作用在其上的磁场变化时产生形变,从而推动负载运动。 (2)薄膜型 这类执行器一般是采用在非磁性基片(通常是用一些半导体材料如Si制成)的上、下表面采用闪蒸、离子束溅射、电离镀膜、直流溅射、射频磁控溅射等方法分别镀上具有正(如:TbFe)、负(如:SmFe)磁致伸缩特性的薄膜制成,当在长度方向外加磁场时,产生正磁致伸缩的上表面薄膜伸长,而产生负磁致伸缩的下表面薄膜缩短,从而带动基片发生偏转。 3 两种G MA的应用现状 基于超磁致伸缩材料的微位移执行器具有大位移、强力、响应快、可靠性高、漂移量小、驱动电压低等优点,因而在液压元件、微型马达、声纳换能器等工程领域均显示出良好的应用前景。2种形式的G M M在工程中都有广泛的应用,本文着重介绍了2种形式的G M M在液压元件和微型马达中的应用。 3.1 直动型G MA的应用现状 目前,直动型超磁致伸缩执行器较多应用于微型泵、各种阀门、微型马达、声纳等产品中。 (1)微型泵 瑞典ABB公司用T erfenol-D为驱动元件设计了微型泵;日本用T erfenol-D制成了微型隔膜泵;英国SanT echnology公司的DariuszA.Bushko和James. H.G oldie用T erfenol-D棒制成了微型高压隔膜泵,其结构如图1,结合水力和电控装置,可实现强力、大行程的水力驱动,既可线性输出又可旋转输出,体积小且易于控制,其工作原理通过线圈驱动G M M 第27卷第5期2006年 5月 煤 矿 机 械 C oal Mine Machinery V ol127N o15 M ay.2006

超磁致伸缩驱动器

电子雕刻机雕刻头的使用及发展 发布:2008-9-6 10:29:08 来源:模具网编辑:佚名 摘要:介绍了电子雕刻机雕刻头的研究现状与发展。目前成熟应用的主要是电磁驱动式的,分为摆动式和直动式,具有雕刻频率高、雕刻质量好的特点;同时介绍了工作原理不同于电磁式雕刻头的电子束雕刻和激光雕刻,尤其激光雕刻,具有强大的发展潜力;以及正在研究和发展的压电陶瓷和超磁致伸缩驱动器,这些功能材料的应用研究为雕刻头的发展提供了很好的参考 方向。 关键词:雕刻头电磁驱动;激光雕刻;电子束雕刻;压电陶瓷;超磁致伸缩驱动器 凹版印刷以其印品墨层厚实、颜色鲜艳、饱和度高、印版耐印力高、印刷速度快等优点在图文出版和包装印刷领域内占据重要的地位。目前,电雕凹版因技术先进、成本低、制版质量高且稳定、适应范围广、利于环保等优点已在凹版制造中占主导地位,一直是近年来的主流雕刻方法。印版的好坏是决定印刷质量的一个关键因素,凹版电子雕刻效率的高低直接影响到整个凹版制版的进程。印版是电雕系统根据数字化的图文信息驱动雕刻头在版辊上雕刻网穴后处理而成,因此,雕刻头的驱动装置在整个制版过程中起着重要作用。从上个世纪60年代开始,此领域的科技人员不断探索,希望能提高电子凹版雕刻的效率及质量,雕刻效率及质量可以从多方面提高,提高电子雕刻机的雕刻频率是一种最有效最直接的途径。德国、美国、瑞土和日本在电子雕刻技术方面处领先地位,我国在这方面的研究基本为空白「5」。文中主要介绍了电子雕刻头的研究现状及发展方向。 1 电子机械雕刻 电子机械雕刻是由电·机械转换器驱动雕刻刀,在滚筒上雕刻出网穴的一种方法,其关键在于电·机械转换器的工作性能。 1.1 常用结构的原理及特点 一般而言,磁钢产生稳恒磁通,控制线圈产生控制磁通,二者差动叠加产生驱动衔铁运动的电磁力,带动衔铁运动。 1.2 转动式电磁铁 结构原理如图1所示「2」,磁钢在气隙中产生稳恒磁场,在控制线圈未加电时,通过装配时的调试,衔铁处于相对平衡位置;当控制线圈加电时,衔铁被极化,产生磁力拉动衔铁转动,图中显示了衔铁的一种极化方式。当控制线圈加以高频变化的电流或电压时,衔铁便产生高频摆动,带动雕刻刀进行雕刻工作。

磁致伸缩材料的设计和应用

磁致伸缩材料的设计和 应用 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

磁致伸缩材料的设计和应用 Olabi A Grunwald (都柏林城市大学机械制造自动化学院) 摘要:磁致伸缩效应是指材料在外加磁场条件下的变形。磁畴的旋转被认为是磁致伸缩效应改变长度的原因。磁畴旋转以及重新定位导致了材料结构的内部应变。结构内的应变导致了材料沿磁场方向的伸展(由于正向磁致伸缩效应)。在此伸展过程中,总体积基本保持不变,材料横截面积减小。总体积的改变很小,在正常运行条件下可以被忽略。增强磁场可以使越来越多的磁畴在磁场方向更为强烈和准确的重新定位。所有磁畴都沿磁场方向排列整齐即达到饱和状态。 本文将展示磁致伸缩效应的研究方法现状和其应用,诸如:大型作动器响应、标准Terfenol-D 作动器、基于Terfenol-D的直线马达(蜗杆驱动)、用于声纳换能器的Terfenol-D、用于无线旋转马达的Terfenol-D、基于Terfenol-D的电动液压作动器、无线型直线微型马达、磁致伸缩薄膜的应用、基于磁致伸缩效应的无接触扭矩传感器和其他应用。研究表明,磁致伸缩材料具有许多优良的特性,从而可以被用于许多先进设备。 关键词:磁致伸缩效应;作动器;传感器;Terfenol-D 1.前言 磁致伸缩效应是指材料在外加磁场条件下的变形。磁致伸缩效应于19世纪(1842年)被英国物理学家詹姆斯.焦耳发现。他观察到,一类铁磁类材料,如:铁,在磁场中会改变长度。焦耳事实上观察到的是具有负向磁致伸缩效应的材料,但从那时起,具有正向磁致伸缩效应的材料也被发现了。对于两类材料来说,磁致伸缩现象的原因是相似的。小磁畴的旋转被认为是磁致伸缩效应改变长度的原因。磁畴旋转以及重新定位导致了材料结构的内部应变。结构内的应变导致了材料沿磁场方向的伸展(由于正向磁致伸缩效应)。在此伸展过程中,总体积基本保持不变,材料横截面积减小。总体积的改变很小,在正常运行条件下可以被忽略。增强磁场

浅谈磁致伸缩材料

周文文41255020 计1201 浅谈磁致伸缩材料 摘要:这学期我学习了《智能材料与结构》这门课程。短短九周的时间,使我对智能材料的各个板块都有了广泛认识的同时,对于磁致伸缩材料这一方面也产生了很大的兴趣。本文主要对于磁致伸缩材料的定义、原理与应用进行详细的介绍,并简明扼要的讲述磁致伸缩材料的发展现状及趋势和超磁致伸缩的应用与前景。 关键词:磁致伸缩效应磁致伸缩材料应用超磁致伸缩 1、磁致伸缩效应及其历史 磁致伸缩是磁性材料由于磁化状态的改变,其尺寸在各方向发生变化。物质都具有热胀冷缩的现象。除了加热外,磁场和电场也会导致物体尺寸的伸长或缩短。铁磁性物质在外磁场作用下,其尺寸伸长或缩短,去掉外磁场后,其又恢复原来的长度,这种现象称为磁致伸缩现象(效应)。 1842年,英国物理学家詹姆斯.焦耳发现有一类铁磁类材料,如:铁,在磁场中会改变长度。焦耳事实上观察到的是具有负向磁致伸缩效应的材料,但从那时起,具有正向磁致伸缩效应的材料也被发现了。 磁致伸缩现象的是磁致伸缩效应改变长度的原因。磁畴旋转以及重新定位导致了材料结构的内部应变。结构内的应变导致了材料沿磁场方向的伸展(由于正向磁致伸缩效应)。在此伸展过程中,总体积基本保持不变,材料横截面积减小。总体积的改变很小,在正常运行条件下可以被忽略。增强磁场可以使越来越多的磁畴在磁场方向更为强烈和准确的重新定位。所有磁畴都沿磁场方向排列整齐即达到饱和状态。 图1中即为长度随磁场强度变化的理想化曲线。

H 2、磁致伸缩材料 材料、信息与能源称为现代人类文明的三大支柱,其中材料最为基础,国民经济的各部门和高技术领域的发展都不可避免地受到材料一特别是高性能材料发展的制约或推动。传统的电工材料一般是指电工设备中常用的具有一定电、磁性能的材料,按用途可分为4大类:绝缘材料、半导体材料、导体材料和磁性材料。但随着科学技术的迅猛发展,各种新型高性能材料不断涌现。为电工及相关行业的发展起到巨大的推动作用,应用领域也在不断拓宽,因此,把应用于电工产品的材料和以电、磁性能为特征的新功能材料均定义为电工材料,提出了新型高性能电工材料的概念,目前主要包括超导体材料、超磁致伸缩材料、磁性液体材料、电(磁 )流变液、乐电(铁电)材料和磁光材料等。这些材料因其具有优异的性能,给电工行业带来了新的活力,在军民两用高技术领域有着广泛的应用前景。 自从发现物质的磁致伸缩效应后,人们就一直想利用这一物理效应来制造有用的功能器件与设备。为此人们研究和发展了一系列磁致伸缩材料,主要有三大类:即:磁致伸缩的金属与合金,如镍(Ni)基合金(Ni, Ni-Co合金, Ni -Co-Cr合金)和铁基合金(如 F e-Ni合金, Fe-Al合金, Fe- Co-V 合金等)和铁氧体磁致伸缩材料,如 N i-Co和 Ni-Co-Cu铁氧体材料等。这两种称为传统磁致伸缩材料,其λ值(在20—80ppm之间)过小,它们没有得到推广应用,后来人们发现了电致伸缩材料,如( Pb, Zr,Ti)C03材料,(简称为 P ZT或称压电陶瓷材料),其电致伸缩系数比金属与合金的大约200~400ppm,它很快得到广泛应用;第三大类是近期发展的稀土金属间化合物磁致伸缩材料,例如以( Tb,Dy)Fe2化合物为基体的合金。 由于磁致伸缩材料在磁场作用下,其长度发生变化,可发生位移而做功或在交变磁场作用可发生反复伸张与缩短,从而产生振动或声波,这种材料可将电磁能(或电磁信息)转换成机械能或声能(或机械位移信息或声信息),相反也可以将机械能(或机械位移与信息)。转换成电磁能(或电磁信息),它是重要的能量与信息转换功能材料。

超磁致伸缩材料

重庆科技学院磁性材料课程论文 论文题目:稀土超磁致伸缩材料的制备和应用指导老师:马毅龙 姓名:汪永红 学号:2009440547 年级:金属材料工程09级2班 成绩: 评语: 2012 年6月10 日

稀土超磁致伸缩材料的制备和应用 汪永红 (重庆科技学院冶金与材料工程学院,重庆401331) Fabrication and application of Rare Earth Giant Magneto-Stricfive Materials Wang Yong-hong (School of Metallurgy and Materials Engineering of Chongqing University of Science and Technology,Chongqing 401331,China) 摘要:稀土超磁致伸缩材料(Rare Earth Giant Magneto-Stricfive Materials)作为2l世纪一种最具有战略性的材料,其优良的特性和广泛的应用前景在国际范围内得到普遍重视,已成为磁致伸缩材料研究的重点。简要介绍了稀土超磁致伸缩材料的概念、制备方法及其应用,并指出了一些研究反方向。 关键词:稀土超磁致伸缩材料,制备,应用 Abstract:As a new strategic material in 21st century,RE-GMSM has been taken into account and become the keystone on magneto-strictive material studies because of i t s superior properties and extensive application prospects. A brief description of the conception,fabrication and applications of RE—GMSM was presented.Some suggestions for the development directions were also mentioned. Key Words:rare earth giant magneto-strictive materials;fabrication;application 1 前言 稀土超磁致伸缩材料(RE—GMM)主要是指稀土一铁系金属间化合物材料:铽镝铁(Tb-Dy-Fe) 磁致伸缩材料。这类材料具有比铁、镍等大得多的磁致伸缩值,磁致伸缩应变( =△I/I )比一般磁致伸缩材料高约100倍,因此被称为稀土超磁致伸缩材料[1]。 铁磁性晶体在外磁场中被磁化时,其长度尺寸及体积大小均发生变化,去掉外磁场后,其又恢复原来长度与体积的现象被称为磁致伸缩或磁致伸缩效应[2]。磁致伸缩可分为:线磁致伸缩和体积磁致伸缩[3]。当磁性体被磁化时,沿磁化方向伸长或缩短,称为线磁致伸缩。发生线磁致伸缩时,磁性体的体积几乎不变。当磁化未达到饱和时,主要是产生线磁致伸缩,磁致伸缩一般均指线磁致伸缩。磁性体磁化状态改变时,体积发生膨胀或收缩的现象则称为

[磁场]高频驱动超磁致伸缩致动器的磁场设计

高频驱动超磁致伸缩致动器的磁场设计 超磁致伸缩材料(UMM)主要是指以Fe2化合物为基体的合金。作为高效智能材料的典型代表之一,超磁致伸缩材料有着输出位移大、抗载能力强、磁机转换效率高以及响应速度快等性能优势,但是国内对超磁致伸缩致动器(UMA)的研究仍然存在以下几个方而问题:一是较多地集中在准静态或者低频域的范围内,对高频域内的研究较为薄弱;二是设计过程中,对于超磁致伸缩致动器的磁场多以轴线方向上磁场强度为检验和设计标准,不利于建立精确的三维空间磁场数值计算模型。针对上述问题,本文设计出一款用于高频的超磁致伸缩致动器,在ANSYS平台上建立了精确的励磁线圈空间磁场模型,对磁场均匀性,以及交流驱动磁场与静态偏置磁场进行了仿真与分析。 1.高频驱动的超磁致伸缩致动器设计 高频域下的UMA与工作于静态(准静态)的UMA存在异同。本文参考传统静态超磁致伸缩致动器的设计方法,同时考虑了交流电驱动引起的非线性因素,设计出高频驱动下小物理体积、大能量输出的超磁致伸缩致动器。 在合适的偏置磁场下,可使UMM棒工作于伸缩性能良好的线性区域。此时,当输入为交变磁场时,超磁致伸缩棒将会产生与交变磁场同频率的交变输出位移,使得UMM棒体发生位移振动的运动。偏置磁场下正弦信号、方波信号驱动磁场时UMM的振动输出原理图。 与传统的压电材料相比,超磁致伸缩材料具有优良的磁弹性能,其反应速度快,响应时间极短,可达6 -10 s,而且其能量密度高达14-25 m。为此,在高频率的驱动磁场下,将会产生极快的响应与极高的振动能量输出,充分发挥出超磁致伸缩材料优良的材料性能。 2高频UMA动态磁场有限元分析 2. 1静态驱动磁场分析 通过对激励线圈磁场模型的分析,掌握了螺线管内部磁场分布特性,为驱动线圈设计尺寸的选择与优化提供了理论基础。而在具体器件应用中,磁场的分布情况还与器件结构尺寸、漏磁情况及材料的磁导率有着密切关系,在超磁致伸缩致动器的磁场设计中,需要对这些因素进行综合考虑。如果采用理论磁场计算方案对UMM棒内部磁场进行计算,则必须要而对理论磁场数学建模难度过大的难题,可操作性不强。为此,采用基于场的有限元方法完成对超磁致伸缩致动器磁场的整体设计与分析。UMA的闭合磁路主要由底座、下导磁块、UMM棒、上导磁块、输出轴及壳体组成. 虽然UMM棒体为叠片式结构,但在静态电流驱动时不存在涡流影响,可视UMM棒为轴对称结构,忽略少量的不对称结构影响,UMA可以看作完全轴对称结构,在建模过程中采用轴对称建模方法,只需建立其轴对称截而即可模拟整个UMA的模型,使计算量大大降低。对所建立的模型进行网格划分、加载与求解。 从分析结果可见,驱动线圈所产生的大部分磁力线通过UMM棒,经过上导磁块、输出轴、外壁底座与下导磁块形成闭合回路。虽然输出轴与外壁之间存在少量间隙,但由于空气磁导

超磁致伸缩材料及其应用

超磁致伸缩材料及其应用 周全祥(2009级应用物理学) 摘要:超磁致伸缩材料(GMM)是一种在室温和低磁场条件下,就能产生很大磁致伸缩应变的新型功能材料,具有输出力大、能量密度高、机电耦合系数大、响应速度快、输出应变大等优点,在智能系统中具有广泛的应用前景,其力学响应行为涉及变形场、磁场、涡流场、温度场相互耦合问题,直接关系到智能系统的性能指标和可靠运行。目前人们已经设计并制造出各种智能结构和器件,如:主动减振装置、高精度线性马达、超磁致伸缩微泵、微阀门、微定位装置等等,使得磁致伸缩材料在众多的功能材料中备受瞩目。超磁致伸缩材料Terfenol-D与压电陶瓷材料相比具有更优越的性能。 关键字:超磁致伸缩材料,工作特性,制备工艺,非线性,换能器,制动器Abstract:Giant Magnetostrictive Materlal,GMM in abbreviatory,is one kind of new funetion materials and can give giant magnetostriction strains with temperature indoor and low magnetie field.It has good features such as giants trains,high force,high energy density,high mechanical-magnetic coupling coefficient,mierosecond response and so on.Magnetostrictive materials have an immeasurable applied prospect in smart devices.A considerable coupling effect among mechanical field,magnetic field,thermal field,electrical field is therefore being a relevant concern in the applications of magnetostrietive devices.Motivated by the need to promote a more efficient design process and higher performance achievement of development of materials,devices and system designs.GMM is a kind of new type of functional material,which has been used to design and fabricate many intelligent devices such as active vibration absorbers,linear motors,micro-pumps,micro-valves,and micro- positioners etc. Terfenol-D than piezoceramic material has more superior performance. Key words:giant magnetostrictive material,working chracteristic,preparation technique,nonlinear,transducer,displacement actuator

铽镝铁合金稀土超磁致伸缩材料(GMM)

铽镝铁合金稀土致伸缩材料(GMM) 铽镝铁合金是一种新型的稀土超磁致伸缩材料(GMM),因其诸多优良特性,在各行各业的新产品开发中具有广阔的应用前景,必将带来深远的影响力。 铽镝铁合金具有一系列优良的性能:磁致伸缩系数大大,比纯Ni大50倍,比PZT材料大5-25倍。磁致伸缩时产生的推力很大,直径约10mm的铽镝铁棒材,磁致伸缩时产生约200公斤的推力;能量密度高,其能量密度比Ni基合金大400~800倍,比PZT大14~30倍;能量转换效率(用机电祸合系数表示)高达70%,而Ni基合金仅有16%。PZT材料仅有0-60%;其曲线线性好,弹性模量随磁场而变化,可调控;响应速度快,达到10-6秒;频率特性好,可在低频率(几十至1000赫兹)下工作,工作频带宽;可在低场(几十至几百奥斯特)下工作;工作电压低,可在几伏至100伏电压下工作,可用电池驱动,而PZT的电极化电压在2kV/mm 以上,有电击穿危险;稳定性好,可靠性高,其磁致伸缩性能不随时间而变化,无疲劳,无过热失效问题。另外,与PZT陶瓷相比,超磁致伸缩材料在低场大功率传感器上也具有不可替代的地位。超磁致伸缩材料在声纳的水声换能器技术,电声换能器技术、海洋探测与开发技术、微位移驱动、减振与防振、减噪与防噪系统、智能机翼、机器人、自动化技术、燃油喷射技术、阀门、泵、波动采油等高技术领域有广泛的应用前景。 类似牌号:Terfenol-D,GMM,TbDyFe 目前铽镝铁合金在国内应用仍处于起步阶段,今有少数单位具有生产能力。A-ONE是目前国内可以供应铽镝铁合金产品最全的生产厂家之一。 苏州埃文特种合金可提供铽镝铁合金产品规格: 圆柱形,直径4~50mm,长度≤200mm 长方体:长宽2~35mm,高2~100mm 圆环:外径8~50mm,壁厚2~4mm,长度2~100mm 圆片:直径4~50mm,最小厚度1mm 方片(矩形片):最薄1mm 层叠片:直径10~50mm,长5~100mm,最小层叠厚度2mm 粉末:协商供应 品牌:A-ONE 供货能力:有长期稳定的批量生产能力,月产量可达80~120kg。 部分规格有库存现货。没有MOQ,只要有需求就可以供货。 铽镝铁合金作为一种新型的稀土超磁致伸缩材料,其室温下的磁致伸缩应变量(磁致伸缩系数)之大是以往任何场致伸缩材料所无法比拟的。它比传统的镍钴(Ni-Co)等磁致伸缩合金的应变量大几十倍,是电致伸缩材料的五倍以上。可高效地实现电能转换成机械能,传输出巨大的能量。在10-5~10-6秒的极短时间内,精密、稳定地形成与磁场静、动态特性相匹配的无滞后型响应。其响应稳定,速度敏捷,使铽镝铁合金作为驱动元件的机械系统反应滞后时间显着降低,这也是铽镝铁合金元件在交变磁场中快速产生伸缩应变响应的重要特性,从而使它在工业的科技开发中作为执行元件、控制元件、敏感元件得到了越来越广泛的应用 稀土超磁致伸缩材料在声学领域的应用成果之一,是平板扬声器技术。平板扬声器(Flat panel technology)具有优异的频响特性和音质,可以产生360度的声场,几乎穿越任何平面,开辟了设计各种新型扬声器的可能性。 把稀土超磁致伸缩材料元件用于微位移机构,可以快速、精确、稳定地控制复杂的位移运动。

超磁致伸缩材料及其应用

超磁致伸缩材料及其应用 13新能源(01)班 张梦煌 1305201026 超磁致伸缩材料(GMM)是一种在室温和低磁场条件下,就能产生很大磁致伸缩应变的新型功能材料,具有输出力大、能量密度高、机电耦合系数大、响应速度快、输出应变大等优点,在智能系统中具有广泛的应用前景,其力学响应行为涉及变形场、磁场、涡流场、温度场相互耦合问题,直接关系到智能系统的性能指标和可靠运行。目前人们已经设计并制造出各种智能结构和器件,如:主动减振装置、高精度线性马达、超磁致伸缩微泵、微阀门、微定位装置等等,使得磁致伸缩材料在众多的功能材料中备受瞩目。超磁致伸缩材料Terfenol-D与压电陶瓷材料相比具有更优越的性能。 超磁致伸缩材料(giant magnetostrietive material,简写为GMM)是A.E.Clark 等人于70年代发现的,是一种新型的功能材料,它能有效地实现电能与机械能的相互转换。由于具有应变值大、电能一机械能转换效率高、能量传输密度大、高响应速度等特点,该材料已引起广泛的注意,并逐步开始应用于声纳、超声器件、微位移控制、机器人、流体器件中。表1.1给出了电磁场,变形场和温度场之间能量转换的不同效应。形状记忆合金和压电陶瓷都已在航空航天结构中被用于控制和制动。形状记忆合金非常适合用在高冲程量、低带宽的领域中,例如旋翼叶片的飞行追踪。而压电陶瓷适用于低冲程量、高带宽的情形,例如被安置在直升飞机的后缘襟翼上以降低较高的谐波振动。 磁致伸缩材料可以提供机械能和磁能之间的转化,其带宽在30KHz左右,低于电致伸缩材料和压电陶瓷,但高于形状记忆合金。在过去的几年中,能产生大于0.001应变的磁致仲缩材料受到广泛的关注,这主要是因为这种材料非常适合应用在一些需要较大驱动力和较小位移的领域,如可变形表面,主动振动控制和精确制造等等,在商业应用中也可以产生巨大的经济效益。磁致伸缩器件由于其独特的功能优势在许多危险工作条件和高温环境下性能出众,并且能够在低频磁场下调节应力和位移。相对于电致伸缩材料和压电陶瓷,磁致伸缩材料的优势

电致、磁致伸缩材料功能及应用

二谈电致、磁致伸缩材料功能及应用 一、电致伸缩材料 在外电场作用下电介质所产生的与场强二次方成正比的应变,称为电致伸缩。这种效应是由电场中电介质的极化所引起,并可以发生在所有的电介质中。其特征是应变的正负与外电场方向无关。在压电体中(见压电性),外电场还可以引起另一种类型的应变;其大小与场强成比例,当外场反向时应变正负亦反号。后者是压电效应的逆效应,不是电致伸缩。外电场所引起的压电体的总应变为逆压电效应与电致伸缩效应之和。对于非压电体,外电场只引起电致伸缩应变。电介质在电场作用下发生弹性形变的现象。是压电效应的逆效应。因电介质分子在电场中发生极化,沿电场方向排列的分子相互吸引而引起。当场强大小发生周期性变化时,能引起材料沿电场方向发生振动。若在电介质材料(如钛酸钡等)两端所加交变电压的频率与材料的固有频率相同时,材料将发生共振。 (1)电致伸缩效应与压电效应 电致伸缩效应也是一种基本的机—电耦合效应,但是对它的实研究开展得较迟,因为电致伸缩是个二次效应,通常由其产生的形变非常小,给实验带来了困难,因此人们对它不太熟悉。 众所周知,电介质晶体在外电场作用下应变与电场的一般关系式 =?+??式中,第一项表示逆压电效应;d为压电系为: S d E M E E 数,第二项表示电致伸缩效应;M为电极伸缩系数,它是由电场诱导极化而引起的形变与电场平方成正比。逆压电效应仅在无对称中心晶

体中才有;而电致伸缩效应则为所有电介质晶体都有,不过一般说来它是很微弱的。压电单晶如石英、罗息盐等它们的压电系数比电致伸缩系数大几个数量级,结果在低于IMV/m的电场作用下只看到第一项的作用,即表现为压电效应。 在一般铁电陶瓷中,电致伸缩系数比压电系数大,在没有极化前虽然单个晶粒具有自发极化但它们总体不表现净的压电性。在极化过程中净的极化强度被冻结(即剩余极化)并产生一个很强的内电场,如BaTIO。陶瓷净的剩余极化产生一个27MV/m的内电场,这样高的内电场起了电致伸缩效应的偏压作用,因此极化后陶瓷在弱外电场作用下产生宏观线性压电效应。一般铁电陶瓷的电场与应变曲线呈蝴蝶形而不表现出电致伸缩效应的二次方曲线。如图1所示。 但是,只要有这样一些铁电陶瓷室温刚好高于它的居里点,不具有自发极化、没有压电性,介电常数又很高在外电场作用下能被强烈地感应极化伴随产生相当大的形变,就有可能表现出纯的大电致伸缩效应呈现出抛物线形的电场—应变曲线。

超磁致伸缩致动器优化设计与特性测试

超磁致伸缩致动器优化设计与特性测试 崔旭,何忠波,李冬伟,李玉龙,薛光明 (军械工程学院一系,河北石家庄050003) 来稿日期:2012-03-10 基金项目:总装备部“十二五”装备预先研究资助项目(51312060404) 作者简介:崔旭,(1987-),男,硕士研究生,研究方向为车辆机电液控制与自动化技术;何忠波,(1968-),男,副教授,研究方向为车辆机电液控制与自动化技术 1引言 铁磁材料因外磁场作用而磁化时,其长度及体积均发生变化的现象称为磁致伸缩效应。1974年,一些科研人员发现三元稀土合金Tb1-xDyxFe2在时磁致伸缩率达到峰值,因该合金在常温下具有很高的磁致伸缩应变,故被称为超磁致伸缩材料(Giant Magnetostrictive Material ,GMM ),材料具有响应快、应变大、输出力大等优异性能,在主动隔振、精密加工、流体控制等领域具有深远的应用前景[1]。 超磁致伸缩致动器(Giant Magnetostrictive Actuator ,GMA )是以GMM 为核心的基本机械能输出器件。 在GMA 中,GMM 产生磁致伸缩应变的能量全部来自于线圈的励磁磁场,励磁线圈的电磁转换特性成为评价GMM 器件好坏的重要指标,励磁线圈的体积也是影响GMM 器件整体尺寸的主要因素,同时励磁线圈能耗所转化成的热量也是GMM 器件发热的重要来源之一,但线圈的材料参数、结构参数等多种因素共同影响着磁场强度的分布,所以线圈设计一直是超磁致伸缩器件设计的重点和难点[2] 。 2致动器及线圈基本结构 2.1GMM 基本特性 实践证明,国产超磁致伸缩材料在10MPa 的预压应力下具有较高的电机转换特性, 准8×100mm 的GMM 棒在10MPa 预压应力下的应变曲线,如图1所示。磁场强度为(10~50)kA/m 范围内,磁致伸缩应变与磁场强度基本呈线性关系,且斜率最大。 磁致伸缩应变λ(p p m ) 15001000 500 磁场强度H (kA/m ) 40 80120 160 图1磁致伸缩材料应变曲线Fig.1Strain Curve of GMM 当为GMM 施加连续的交变磁场时,GMM 在正-反磁场作用 摘 要:设计了超磁致伸缩致动器(GMA ),对线圈尺寸及绕线进行了优化设计,并测试了超磁致伸缩致动器的静、动态特 性。 在分析超磁致伸缩材料特性的基础上设计了GMA 基本结构,并确定了偏置磁场的加载方式。研究了线圈尺寸参数对线圈轴线上磁场分布和线圈的电-磁转换效率两方面的影响,优化设计了线圈的尺寸;提出了线圈功耗表达式并分析了绕线直径对功耗的影响,择优选取了绕线。实验表明GMA 具有较好的静态、动态特性,且GMA 工作特性与设计参数相吻合,证明了线圈优化设计的合理性。 关键词:超磁致伸缩致动器;线圈;优化设计;特性测试中图分类号: TH12;TM923.62文献标识码:A 文章编号:1001-3997(2013)01-0032-03 Design and Characteristic Test of I Giant Magnetostrictive Actuator CUI Xu ,HE Zhong-bo ,LI Dong-wei ,LI Yu-long ,XUE Guang-ming (NO.1Department ,Ordance Engineering College ,Hebei Shijiazhuang 050003,China ) Abstract :The designment of giant magnetostrictive actuator and the optimization of its solenoid coil and enameled wire are presented and the static characteristic and dynamic characteristic of GMA is tested here.The structure of GMA is designed based on the analysis of GMM features and the method of producing bias magnetic field is determined.The magnetic field distribution along the axis and electro-magnetic conversion efficiency are studied when the size parameter are varied ,from which the solenoid coil parameter is optimally designed.The model of solenoid coil ’s power consumption is set up to determine the enameled wire parameter.The result of experiment incarnates fine static and dynamic characteristic of GMA and consistency between design parameter and experimental value , which shows the rationality of the optimal design.Key Words :Giant Magnetostrictive Actuator ;Solenoid Coil ;Optimal Design ;Test of Characteristic Machinery Design &Manufacture 机械设计与制造 第1期2013年1月 32

磁致伸缩材料在功能材料中的应用

磁致伸缩材料在功能材料中的应用 摘要:磁致伸缩材料是一种重要的功能材料,当改变外磁场时磁致伸缩材料的长度及体积均会发生变化,反之当材料发生变形或受力时材料内部的磁场也会随之发生变化。它具有电磁能和机械能相互转换的功能,是声呐换能器的重要材料,在大桥桥梁减震、油井探测、海洋探测与开发、高精度数字机床、微位移传感器、高保真音响等方面有着广泛的用途。 关键字:磁致伸缩材料,功能材料 1.特性 磁致伸缩材料(图1)的重要特点是具有磁致伸缩效应——即磁体在外磁场中被磁化时,其长度及体积均发生变化的现象[1],它由焦尔发现,所以又称焦尔效应。稍后,维拉里又发现了磁致伸缩的逆效应,即铁磁体在发生变形或受到应力的作用时会引起材料磁场发生变化的现象,这种现象也称为铁磁体的压磁现象。磁致伸缩效应可分为线磁致伸缩和体积磁致伸缩,其中长度的变化称为线性磁致伸缩,体积的变化称为体积磁致伸缩。在绝大部分磁性体中,体积磁致伸缩很小,实际的用途也很少,因此大量的研究工作和磁致伸缩材料的应用主要集中在线磁致伸缩领域,因而通常讨论的磁致伸缩是指线磁致伸缩。使用材料长度的变化量与原长度的比值λ,也就是磁致伸缩系数来表示磁致伸缩量的大小,它的单位是ppm(10-6),即百万分之一,伸缩范围通常为几十到几千ppm。磁致伸缩量虽然用肉眼无法观察到,但却在换能器和传感器上有着强大的用途。图2是磁致伸缩示意图。 图1 磁致伸缩材料 图2 磁致伸缩示意图 2.分类 自从发现物质的磁致伸缩效应后,人们就一直想利用这一物理效应来制造有用的功能器件与设备。为此人们研究和发展了一系列磁致伸缩材料,主要有三大类:(1)传统磁致伸缩材料,包括磁致伸缩的镍基合金、铁基合金和铁氧体,其磁致伸缩系数λ值较小,使得它们没有得到推广应用;(2)20世纪末发展的以Tb-Dy-Fe和SmFe材料为代表的稀土金属间化合物超磁

超磁致伸缩材料及其应用研究_李松涛

超磁致伸缩材料及其应用研究 * 李松涛 孟凡斌 刘何燕 陈贵峰 沈 俊 李养贤 (河北工业大学材料科学与工程学院 天津 300130) 摘 要 稀土超磁致伸缩材料是一种新型稀土功能材料.文章概述了超磁致伸缩材料(GMM )的研究历史;对比了一种实用的超磁致伸缩材料(Terfenol -D )和压电陶瓷材料(PZT )的性能;阐述了超磁致伸缩材料当前在以下两个方面取得的研究进展:(1)关于工艺方法的研究:包括直拉法、区熔法、布里奇曼法和粉末烧结、粘结等方法;(2)关于材料组分的研究:包括对Fe 原子的替代研究以及开发轻稀土超磁致伸缩材料的研究.文章最后叙述了超磁致伸缩材料的应用领域,以及发展我国稀土超磁致伸缩材料的意义.关键词 超磁致伸缩,稀土金属间化合物 Giant magnetostrictive materials and their application LI Song -Tao MENG Fan -Bin LI U He -Yan CHEN Gui -Feng SHEN Jun LI Yang -Xian (Scho o l o f M ate rial Sci enc e &Engi nee rin g ,He bei Uni ver sit y of Tech no lo gy ,Tian jin 300130,C hin a ) Abstract Rar e -earth giant magnetostrictive materials (GMM )are a type of ne w functional mater ials .A br ief de -scription is given of the histor y of giant magnetostrictive materials ;and their char acteristics are compared with those of piezoelectr ic mater ials .Curr ent research developments are descr ibed ,in particular :(1)fabrication technology ,in -cludingthe Czochraski ,FSZ ,Bridgman ,po wder -sintering and powder -bonding methods ;(2)c omposition studies of GMM ,including the substitution for Fe in RFe 2and exploitation of light rare -earth GMM .Applications and the impor -tance of GMM researc h in China are r eviewed . Key words giant magnetostr iction ,rar e -earth -transition inter metallics * 国家自然科学基金(批准号:50271023)和教育部科学重点 (批准号:02017)资助项目 2004-03-23收到初稿,2004-06-07修回 通讯联系人.E -mail :ad mat @js mail .h eb ut .edu .cn 1 磁致伸缩效应简介 1842年,焦耳(Joule )发现沿轴向磁化的铁棒,长度会发生变化,这种现象称为磁致伸缩效应,又称为焦耳效应[1],从广义讲包括顺磁体、抗磁体、铁磁体以及亚铁磁体在内的所有磁性材料都具有磁致伸缩性质.但是顺磁体、抗磁体材料的磁致伸缩值很小,实际应用价值不大;而对于部分铁磁性及亚铁磁性材料,磁致伸缩值较大,数量级可以达到103ppm ,具有很高的实用价值,引起研究人员的重视. 磁致伸缩材料的应用主要涉及到以下几种效应: (1)磁致伸缩效应(焦耳效应):材料在磁化状态改变时,自身尺寸发生相应变化的一种现象.磁致伸缩有线磁致伸缩(长度变化)和体磁致伸缩 (体积变化)之分,其中线磁致伸缩效应明显,用途广,故一般提到的磁致伸缩都是指线磁致伸缩. (2)磁致伸缩的逆效应(Villari 效应):对铁磁体材料施加压力或张力(拉力),材料在长度发生变化的同时,内部的磁化状态也随之改变的现象.(3)威德曼效应(Wiedemann )效应:在被磁化了的铁磁体棒材中通电流时,棒材沿轴向发生扭曲的现象. (4)威德曼效应的逆效应(Matteucci 效应):将铁磁体棒材绕轴扭转,并沿棒材的轴向施加交变磁场时,沿棒材的圆周方向会产生交变磁场的现象.

相关主题
文本预览
相关文档 最新文档