当前位置:文档之家› 锅炉水冷壁高温腐蚀运行工况的防腐模拟

锅炉水冷壁高温腐蚀运行工况的防腐模拟

锅炉水冷壁高温腐蚀运行工况的防腐模拟
锅炉水冷壁高温腐蚀运行工况的防腐模拟

第22卷第7期中国电机工程学报 Vol.22 No.7 Jul. 2002

2002年7月 Proceedings of the CSEE ?2002 Chin.Soc.for Elec.Eng. 文章编号:0258-8013 (2002) 07-0150-05

锅炉水冷壁高温腐蚀运行工况的防腐模拟

李敏, 丘纪华, 向军, 孙学信

(华中科技大学煤燃烧国家重点实验室,湖北武汉 430074)

AN ANTI-CORROSION SIMULATION FOR THE HIGH TEMPERATURE CORROSION ON BOILER WATER-W ALL DURING DIFFERENT OPERATION

LI Min, QIU Ji-hua, XIANG Jun, SUN Xue-xin

(State Key Laboratory of Coal Combustion,Huazhong Univversity of

Science & Technology,Wuhan 430074,China)

ABSTRACT: A high temperature corrosion in water-wall of a coal-fired boiler will cause a significant damage to the reliable and economical operation of the boiler. By using a computer to simulate the original operation conditions of a 300MW nation made boiler with its burners fitted up on two opposite lines and thus the cause of high temperature corrosion in water-wall of both sides is simulated and revealed. A method of leading the air along the wall is taken and shown it is a most effective way to prevent the water wall from high temperature corrosion.

KEY WORDS:water-wall of boiler;high temperature corrosion;computer simulation;anti-corrosion;air in the vicinity of wall

摘要:燃煤锅炉水冷壁高温腐蚀对电厂锅炉的安全经济运行存在巨大的危险性。该文利用计算机对国内某电厂对冲燃烧锅炉的原始运行工况进行模拟,分析其产生水冷壁高温腐蚀的原因,并提出了添加贴壁风的方法以解决其高温腐蚀的问题,模拟结果表明贴壁风法是解决水冷壁高温腐蚀的最经济、最有效的方法。

关键词:锅炉水冷壁;高温腐蚀;计算机模拟;防腐;贴壁风

中图分类号:TK223 文献标识码:A

1 引言 

水冷壁的高温腐蚀是一个极其复杂的物理化学过程,其影响因素有:煤质特性、管壁温度、高温火焰冲刷水冷壁管和水冷壁管附近的烟气成分等[1]。研究表明[2],只要水冷壁管上有结积物,而周围气氛和管壁温度又达到一定条件,那么任何型式、参数和容量的锅炉都会发生这种腐蚀。除煤质特性外,上述这些影响因素与锅炉的燃烧运行工况均有密切的关系。

研究与分析水冷壁高温腐蚀的问题主要是通过现场分析,即测试水冷壁管附近的烟气成分、分析腐蚀产物及焦渣样、测量烟气与管壁温度等,从中找出引起高温腐蚀的直接原因;此外,在实验室分析电厂所用煤的各种性能,如煤中含硫量、含氯量、煤的灰熔点、煤灰成分和煤粉细度等,从而对引起高温腐蚀的根源进行研究。上述两种方法虽然对分析水冷壁高温腐蚀问题比较有效,但也有其不足之处:试验困难、测量数据不完善、需耗费大量的人力、物力和财力等[3]。因此,可以适当辅以对锅炉燃烧过程的计算机模拟,来分析各种不同运行工况对腐蚀的影响,并结合现场试验和实验室分析,从而优化出防护水冷壁高温腐蚀的最优运行方式。本文以国内某电厂300MW锅炉为例,探讨了利用计算机模拟预示技术来分析锅炉水冷壁高温腐蚀的方法。

2 锅炉概况 

国内某电厂的300MW锅炉,其燃烧器采用对冲燃烧布置,前后墙各布置12只EI-DRB型双调风旋流燃烧器,锅炉及燃烧器布置见图1。该燃烧器的一次风不旋转,可调节内外二次风的风量比例、旋转方向和旋流强度。设计煤种为晋中贫煤,与现有运行煤种对比如表1所示。从表1可以看出,现有运行煤种煤质较差,它比设计煤种的硫分和灰分的含量都要高出30%以上,而发热量则要低近20%。

第7期李敏等:锅炉水冷壁高温腐蚀运行工况的防腐模拟 151

该炉于1993年底投产,投运两年后发现两侧墙的水冷壁表面腐蚀磨损较为严重。经过对现场的分析及研究,认为除煤质变化是导致此锅炉产生水冷壁高温腐蚀的一个原因外,另一个重要因素是该锅炉的燃烧器为前后墙对冲布置,运行中

图1 锅炉燃烧器示意图 

Fig.1 Schematic diagram of boiler burner

一次风风速较大,造成从前后墙喷出的一次风在炉膛中部对冲碰撞后煤粉气流冲向两侧水冷壁并燃烧,致使该处水冷壁受到高温腐蚀及磨损。形成上述现象的原因是一次风弯头太多,管径偏大,而减小一次风量又容易造成一次风管堵塞;二次风的叶片和挡板在运行时调节有限;运行煤的煤粉较粗(R90≈20%)等。

3 对锅炉防腐运行工况的计算机模拟 

3.1 锅炉原有运行工况的模拟结果及分析(工况1)本文计算所采用程序如文[4]。在对锅炉防腐运行工况的计算机模拟中,首先对锅炉现有运行工况进行了模拟,试图找出产生腐蚀的主要原因。为此模拟了一次风风速、内外二次风的风量和旋流强度等对锅炉水冷壁高温腐蚀有影响的因素的变化,也得到了与现场试验相似的结论,单靠调节燃烧器的各次风量难以根本解决问题。因此,进一步提出了安装贴壁风的办法来解决该炉的高温腐蚀及磨损问题,并进行了计算机模拟。用于模拟的具体运行工况见表2。

对锅炉原有运行工况进行计算机模拟的结果

表1 煤质分析 

Tab. 1 Analysis of coal quality

煤质分析/% C H O N S M A V FC Q net,ad (kJ/kg)

厂用混煤61.35 2.84 1.66 1.04 1.42 3.08 28.61 14.68 53.63 20247

设计煤种64.89 2.85 2.40 0.98 1.08 6.00 21.82 11.35 60.85 23874

表2 锅炉满负荷下进行计算机模拟的运行工况 

Tab. 2 Operation condition using for computer simulation under full load

工况

项目

1 2 3 4 5 6 7 8 9

一次风速度V1/(m?s-1) 36.4 29 20.7 29 29 29.0 29.0 29.0 29.0 三次风速度V3/(m?s-1) 30.0 30 30.0 30 30 30.0 30.0 30.0 30.0 贴壁风速度V′/(m?s-1) / / / / / 40.5 35.5 35.5 43.0 内外二次风比例4:6 4:6 4:6 3:7 5.5:4.5 4:6 4:6 4:6 4:6 内二次风旋流强度0.8 0.95 0.8 0.8 0.95 0.8 0.8 0.8 0.8 外二次风旋流强度 1.2 1.2 1.2 1.2 1.20 1.2 1.2 1.2 1.2 一次风率η1/% 29.8 21.5 15.4 21.5 21.5 21.5 21.5 21.5 21.5 二次风率η2 /% 53.2 61.5 67.6 61.5 61.5 58.5 57.5 57.5 57.5 三次风率η3 /% 12.3 12.3 12.3 12.3 12.3 12.3 12.3 12.3 12.3 贴壁风率η′ /% / / / / / 3.0 4.0 4.0 4.0 漏风率η″/% 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 贴壁风安装位置/ / / / / 前后墙前后墙两侧墙两侧墙贴壁风距四角距离/mm / / / / / 300 300 1000 1000 贴壁风喷口尺寸/mm / / / / / 50×800 50×1200 50×1200 50×1000

见图2 ~ 图5(图2中所显示的截面为下排燃烧器的中心截面,此处水冷壁的高温腐蚀最严重。其它图所显示的截面均同上)。

炉内速度场(图2)表明,由于燃烧器配风不合理,致使锅炉炉内空气动力场十分混乱,气流直接冲向两侧墙的现象十分显著。从煤粉颗粒运动轨迹(图3)中也能看出,煤粉颗粒从燃烧器中喷出后,就直接冲刷两侧墙。这样加剧了煤粉颗粒对侧墙水冷壁的磨损,促进了腐蚀。此外,煤粉颗粒在两侧墙水冷壁附近燃烧,消耗了大量的氧,导致两侧墙的中部存在很大的无氧区和低氧区(其氧浓度小于难产生腐蚀的氧浓度值2%[5]),如氧浓度场(图4)所示,而在还原性气氛下硫化物型高温腐蚀十分活跃。煤粉的燃烧还形成了两侧墙水冷壁

152 中 国 电 机 工 程 学 报 第22卷

的高温,炉内温度场(图5)显示两侧

图2 炉内速度场 Fig. 2 Velocity distribution

图3 煤粉颗粒运动轨迹

Fig. 3 Movement of pulverized coal

图4 炉内氧浓度场

Fig. 4 Oxygen concentration distribution

图5 炉内温度场(K )

Fig. 5 Temperature distribution (K)

墙水冷壁 附近的温度约为1500~1600K ,这也进一步加剧了高温腐蚀。

通过对锅炉原有运行工况的模拟,发现锅炉产生高温腐蚀的主要原因是:锅炉原有配风不合理,一次风风速太大,致使锅炉炉内空气动力场十分混乱,同时煤粉颗粒直接冲刷两侧墙,进而在两侧墙水冷壁附近形成了高温和还原性气氛,为高温腐蚀的产生创造了十分有利的条件。现场试验也发现两侧墙水冷壁存在磨损、煤粉未燃烬、氧浓度很低、腐蚀性气体较多以及温度过高等现象,从而证明了

模拟的可行性。

3.2 对原有运行工况进行调整后的模拟结果及分析(工况2~5) 

由上述模拟情况可知,要解决此锅炉的高温腐蚀问题,必须首先调平锅炉配风。因此,在不改变锅炉原有结构的基础上,调整了锅炉的配风情况(如降低一次风的速度、改变内外二次风的风量之比)并相应进行了模拟。模拟结果表明:随着锅炉配风的调平,炉内煤粉燃烧的状况得到了适当的改善。降低一次风风速可以使冲向两侧墙的煤粉颗粒的动能减小,从而减少在侧墙附近燃烧的煤粉颗粒的数量,进而降低此处的高温,增加烟气中的含氧量,减轻煤粉颗粒对水冷壁的磨损,使此锅炉两侧墙水冷壁的高温腐蚀问题得到缓解,但不能彻底解决腐蚀问题。而且内外二次风风量的改变则基本上未影响到两侧墙水冷壁附近的速度场、温度场、氧浓度场以及颗粒运动轨迹等,所以不能切实减轻该锅炉的高温腐蚀。为此,又模拟了燃烧器的旋流强度的变化,以期获得较理想的结果,但所得到的模拟结果并不理想。因此必须考虑采用其它方法。

3.3 添加贴壁风后的模拟结果及分析(工况6~9) 

研究表明[6],添加贴壁风可以使冲刷水冷壁的气流中含氧量明显提高,消除大部分还原性气体和腐蚀性气体,同时也能降低水冷壁附近的温度,从而有效地阻止高温腐蚀现象的发生。这种解决高温腐蚀的方法在国内外不少电厂已有实践,结果表明十分有效。为此,考虑在该锅炉燃烧器标高位置上加装贴壁风。贴壁风由二次风箱引入,贴壁风喷口的位置,既可以选择在前后墙上,也可选择在左右两侧墙上。通过对贴壁风喷口的位置和尺寸、贴壁风风速以及贴壁风风量的大小等的模拟及分析所得到的模拟结果,得出该锅炉水冷壁高温腐蚀的较好解决办法是:在该炉的两侧墙水冷壁上加装贴壁风,每层贴壁风喷口的中

第7期 李 敏等: 锅炉水冷壁高温腐蚀运行工况的防腐模拟 153

心标高与每层燃烧器的中心标高一致,每层每侧墙布置2个贴壁风喷口,则三层燃烧器共布置12个贴壁风喷口,贴壁风喷入的方向与一次风的方向一致,贴壁风的喷口与前后墙的距离为1000mm (如图6所示),喷口尺寸为50×1200mm ,风速35.5m/s ,风量占总风量的4%。具体的模拟结果如下所述。

1— 贴壁风;2—燃烧器;→—贴壁风喷出方向

图6 贴壁风示意图 

Fig. 6 Schematic diagram of air along wall

从炉内速度场(图7)可以看出,炉内配风合理,因而炉内空气动力场较好。此外,由于两侧墙有贴壁风的保护,冲向两侧墙的气流变成了沿两侧墙平行流动。而且炉内煤粉颗粒轨迹(图8

)也表明贴壁风把冲向两侧墙的煤粉颗粒吹散了,这使得煤粉颗粒很难直接冲向两侧墙的水冷壁,大大减轻了煤粉颗粒对水冷壁的磨损。而且添加贴壁风的好处还有:① 阻止了还原性气氛的形成。氧浓度场(图9)显示两侧墙的氧浓度较高,均不小于5%;② 降低了两侧墙水冷壁附近的温度。炉内温度场(图10)显示,两侧墙水冷壁附近的温度约为1100~1200K ,比原始工况时低了近400K 。因此,破坏了高温腐蚀所需的高温条件和还原性气氛,从而能彻底解决该锅炉水冷壁的高温腐蚀问题。

图7 炉内速度场

Fig. 7 Velocity distribution

添加贴壁风后,由于加入的贴壁风的比例较小(见表2)

,故对锅炉的稳燃和燃尽率的影响不大。至于NO x 的排放,因为所添加的贴壁风是引出来的一股

二次风,可以认为是一种间接的空气分级方式,理论上有降低NO x 排放的作用。今后将作进一步研究。

图8 煤粉颗粒运动轨迹

Fig. 8 Movement of pulverized coal

图9 炉内氧浓度场 

Fig. 9 Oxygen concentration distribution

图10 炉内温度场(K ) 

Fig. 10 Temperature distribution (K )

贴壁风法基本是一次性投资,费用很低,技

术也不复杂,且可使锅炉效率提高,二、三个月就能回收投资[6]。这是解决水冷壁高温腐蚀的最

经济、最有效的方法之一。 4 结论 

本文对国内某电厂燃烧器对冲布置的300MW 锅炉的原始运行工况进行了模拟,分析了产生水冷

154 中国电机工程学报第22卷

壁高温腐蚀的原因,并且得到了与现场试验基本一致的结论,即一次风风速太大,从前后墙的燃烧器中喷出来,碰撞后冲向两侧墙水冷壁,导致煤粉在水冷壁附近燃烧,形成高温和还原性气氛,再加上煤粉颗粒冲刷水冷壁,使腐蚀和磨损不可避免。但是,单靠调节燃烧器的各次风量难以根本解决问题。为此,进一步提出了安装贴壁风的办法来解决该炉的高温腐蚀及磨损问题,并进行了计算机模拟。模拟结果表明贴壁风法是解决水冷壁高温腐蚀的经济、有效和可行的方法。

参考文献

[1] Kawahara, Y.,Kira, M..Corrosion prevention of waterwall tube by field

metal spraying in municipal waste incineration plants[J].Corrosion,1997,53(2):241-251.

[2] 陈学俊,陈听宽(Chen Xuejun,Chen Tingkuan).锅炉原理

(Principle of Boiler)[M].北京:机械工业出版社(Beijing:Mechanic Industry Press),1991.[3] 岑可法,樊建人(Cen Kefa,Fan Jianren).数值试验(CAT)在

大型电站锅炉设计及调试中应用的前景—(1)基础理论(The application prospects of computer aid testing(CAT)in furnace design and operation—(1)Basic theory)[J].浙江大学学报(Journal of Zhejiang University),1992,26(1):111-119.[4] 丘纪华,李佛金,孙学信(Qiu Jihua,Li Fojin,Sun Xuexin).应用

计算机模拟技术分析预测炉内煤粉燃烧过程(Prediction on pulverized coal combustion process in the boiler using computer simulation)[J].中国电机工程学报(Proceedings of the CSEE),1995,15(5):306-310.

[5] 撒应禄(Sa Yinglu).锅炉受热面外部过程(External Press of

Boiler Fireside)[M].北京:水利电力出版社(Beijing:Water Resource and Electric Power Press),1994.

[6] 何佩鏊,赵仲琥,秦裕琨(He Pei’ao,Zhao Zhonghu,Qin

Yukun).煤粉燃烧器设计及运行(Design and Operation of Pulverized Coal Burner)[M].北京:机械工业出版社(Beijing:Mechanical Industry Press),1987.

收稿日期:2001-09-10。

作者简介:

李敏(1973-),男,博士研究生,主要从事煤的洁净燃烧技术和固体废弃物燃烧特性及污染物排放特性的研究。

(责任编辑贾瑞君)

锅炉水冷壁管向火侧腐蚀原因及改进措施(标准版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 锅炉水冷壁管向火侧腐蚀原因及 改进措施(标准版)

锅炉水冷壁管向火侧腐蚀原因及改进措施 (标准版) 导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 针对某电厂锅炉发生的水冷壁向火侧大面积腐蚀现象,对腐蚀管进行了宏观、微观检查,对外壁腐蚀产物进行了成分分析,确认了腐蚀成因,提出了提高炉内燃烧区的氧量、调整燃烧器及提高煤粉细度等可行的改进措施。 关键词〕电厂锅炉;水冷壁;向火侧;腐蚀 某电厂1号锅炉为亚临界、一次中间再热、自然循环汽包炉,采用固态排渣和平衡通风。前后墙水冷壁均为4×4排,锅炉设计最大连续出力为1189.96t/h,燃烧方式为对冲悬浮,共32只低NOX双调风旋流燃烧器(DRB)布置在前后墙,锅炉设计煤种为山西晋北烟煤。 在1号机组运行12万h后的大修中,发现锅炉水冷壁管向火侧存在严重的腐蚀。腐蚀区域位于锅炉左右侧墙,高度方向位于燃烧区域,水平方向在自后墙数第60~130根水冷壁管的范围内(侧墙水冷壁管共179根),愈靠近水冷壁中心,腐蚀愈为严重;至燃烧器上部的吹灰器

某公司机组水冷壁烟气腐蚀原因分析与建议

批准 审核 编写 (章)

项目名称:丰鹤发电#1机组水冷壁烟气腐蚀 原因分析和处理建议 工作时间:2009年10月28日~11月2日项目负责:王卫军 电力试验研究院:长鸣何俊峰 丰鹤发电:厚礼

摘要 2009年10月,#1机组投运后首次大修检查中,电厂首次发现水冷壁严重腐蚀减薄。电厂领导和化学等相关专业高度重视,立即联系通报情况,并于10月28日第一时间送样委托检查分析。电力试验研究院受托采用目视、体视镜检查,电镜、能谱以及X射线衍射分析等方法,对送检管样腐蚀防护状态进行检查分析,提出了相应结论和建议。工作中,电厂领导高度重视,有关专业大力协作支持,在此谨致意。 分析确认或认为:1)水冷壁受热面受到的是严重的高温还原性硫腐蚀,腐蚀产物为FeS,反应物的最初来源是煤中的硫化物。2)实际燃烧气氛主要呈还原性,是形成腐蚀的主要气氛条件。3)严重高温腐蚀与腐蚀层的高密度深入龟裂、分层结构和层状裂纹特点和层状剥落特性密切相关。 为此建议:1)将两台机组的燃烧均改为合适的连续氧化性气氛,当整体氧化性燃烧与低氮燃烧控制冲突时,可采取对腐蚀部位在附壁区形成局部富氧气氛的气氛控制改进设计,或进行表面喷涂防护;同时做好运行燃烧气氛监控。2)注意煤质(含硫量、钡、钙含量)和烟气(氯化物、氟化物)分析监控,必要时掺烧活性钙化合物。3)对两台机组均加强相应控制防止水冷壁管超温:(1)防止偏烧;(2)优化给水处理,降低水侧沉积率,防止水冷壁管超温。5)金属和锅炉专业评估#1机组水冷壁管强度、寿命和换管的必要性。继续加强检修中的化学、金属、锅炉检查监督,追踪检查分析。

目录 1 引言 (1) 2 样品简况和目视观察 (1) 3 管样断面检查 (1) 4 送检各样品的体视镜检查 (3) 5 送检各样品的电镜、能谱检查 (4) 6 典型样品的X射线衍射分析 (12) 7 综合分析 (12) 8 结论和建议 (14)

锅炉管道腐蚀的原因分析和建议

锅炉管道腐蚀的原因、分析及建议 ×××(××××××××××发电有限责任公司×××××× 044602) 摘要:四管爆漏是火力发电厂中常见、多发性故障,而管道的腐蚀常常中四管泄漏的重要原因。大部分管道腐蚀的初始阶段,其泄漏量和范围都不大,对于故障的部位不好确定和判断。一般要经过几天或更长时间泄漏程度才会逐渐增大,发展成为破坏性泄漏或爆管,严重威胁着火力发电厂的安全稳定运行,故本文对锅炉四管腐蚀的原因进行了分析并根据相应的原因提出了一些建议。 关键词:腐蚀、硫化物、氯化物 0 前言 腐蚀是火力发电厂中常见的故障。腐蚀的初始阶段,没有明显的现象或其泄漏量和范围都小,对于故障的部位不好确定和判断。一般要经过几天或更长时间泄漏程度才会逐渐增大,同时局部的泄漏会冲刷周围邻近的管壁,造成连锁性破坏,危及到整个锅炉运行的安全。1.腐蚀的原因 广义的腐蚀指材料与环境间发生的化学或电化学相互作用而导致材料功能受到损伤的现象。 狭义的腐蚀是指金属与环境间的物理-化学相互作用,使金属性能发生变化,导致金属,环境及其构成系功能受到损伤的现象。 1.1管内壁腐蚀:也称水汽侧腐蚀。 1.1.1溶解氧腐蚀。 1.1.2垢下腐蚀。 1.1.3碱腐蚀 1.1.4氢损伤。 1.1.5铜氨化合物腐蚀。 1.2烟气侧腐蚀。 1.2.1高温腐蚀。

1.2.2低温腐蚀。 1.3应力腐蚀,也称冲蚀。指管道受到腐蚀和拉(压)应力的综合效应。 3.设备发生腐蚀的理论原因分析 3.1管内壁腐蚀 3.1.1溶解氧腐蚀 由于Fe与O2、CO2之间存在电位差,形成无数个微小的腐蚀电池,Fe是电池中的阳极,溶解氧起阴极去极化作用,Fe比O2等的电位低而遭到腐蚀。 当pH值小于4或在强碱环境中,腐蚀加重,pH值介于4~13之间,金属表面形成致密的保护膜(氢氧化物),腐蚀速度减慢。腐蚀速度与溶解氧的浓度成正比,随着给水速度提高、锅炉热负荷增加、溶解氧腐蚀也随之加剧。 3.1.2垢下腐蚀 由于给水质量不良或结构缺陷防碍汽水流通,造成管道内壁结垢。垢下腐蚀介质浓度高,又处于停滞状态,会使管内壁发生严重的腐蚀,这种腐蚀与炉水的局部浓缩有关。如果补给水或因凝汽器泄漏(河水)使炉水含碳酸盐,其沉积物下局部浓缩的炉水(沉积着高浓度的OH-)pH值上升到13以上时发生碱对金属的腐蚀。如果凝汽器泄漏的是海水或含Cl-的天然水,水中的MgCl2、CaCl2将进入锅炉、产生强酸HCl,这样沉积物下浓缩的炉水(很高浓度的H+)pH值快速下降,而发生对金属的酸性腐蚀。 3.1.3碱腐蚀 游离碱会在多孔性沉积物和管内表面浓缩,浓缩的强碱会溶解金属保护膜而形成铁酸根与次铁酸根离子的混合物,当管壁表面局部碱浓度超过40%时,会释放出氢气,从而形成金属表面深而广的腐蚀,也称延性腐蚀。 3.1.4氢损伤(氢损伤实际就是酸性腐蚀) 一般情况下给水与管壁(Fe)发生反应生成H2和Fe3O4。 保护膜Fe3O4阻隔H2进入管壁金属而被炉水带走,当给水品质不佳或管内结垢会生成Fe2O3和FeO。 Fe2O3、FeO比较疏松、附着性很差,有利于H2向管壁金属的扩散,高温下晶界强度低,H2与钢中的碳和FeC反应生成CH4。

锅炉垢下腐蚀机理

垢下腐蚀简介 1、定义 垢下腐蚀under-deposit corrosion:金属表面沉积物产生的腐蚀 2、腐蚀机理 一种特殊的局部腐蚀形态,其机理是由于受设备几何形状和腐蚀产物、沉积物的影响,使得介质在金属表面的流动和电介质的扩散受到限制,造成被阻塞的的空腔内介质化学成分与整体介质有很大差别,空腔内介质pH值发生较大变化,形成阻塞电池腐蚀(Occude cell corrosion),尖端的电极电位下降,造成电池腐蚀。按其腐蚀原理可分为酸性腐蚀和碱性腐蚀两种,通常循环冷却系统的垢下腐蚀为酸性腐蚀。 结垢是指在冷却水中所含成垢组分在水侧金属表面的结垢过程,污垢是包括水垢在内的固形物的集合体。常见的污垢物有:泥渣及粉尘砂粒,腐蚀产物,天然有机物群生物群体,一般有碎屑、氧化铝、磷酸铝、磷酸铁和污垢的沉积,冷却塔的污垢来自于以下几个方面:①来自补充水的污垢。②来自空气污垢。③来自系统本身的污垢。 微生物是一些细小多为肉眼看不见的生物,微生物的种类有细菌、藻类、真菌和原生动物,微生物在冷却水系统中大量繁殖,会使冷却水颜色变黑,发生恶臭。破坏环境,同时会形成大量粘泥使冷却塔的冷却效率降低,使效率迅速降低的水头损失增加,沉积在金属表面的菌类,会引起严重的垢下腐蚀所有这些总是导致冷却水系统不能长期安全运转影响生产,造成经济损失。因此,微生物危害与水垢腐蚀对冷却水的危害是一样的重要三者比较起来控制微生物的危害应是首要的。冷却水的微生物有以下种类:有真菌、硫酸菌、还原菌、自养菌、异样菌、硫细菌、铁细菌、硝化菌、藻类,藻类是低级的绿色植物,没有要茎叶的分化固然又叫原植体植物,藻类与菌类的主要区别在于具有色素体的色素,能进行光合作用。制造营养物质是光合自养型生物,在循环冷却水系统,常出现的有蓝绿藻、绿藻、硅藻三大类,在循环冷却水池,冷却塔受光照的部分生长繁殖枯死的藻类进入循环冷却系统成为沉积物的一种成份,金属的垢下腐蚀是由于其本身电化学腐蚀存在自催化作用,酸腐蚀是氢的去极化作用(2H++2e→H2),腐蚀产物主要是可溶性盐,这些盐类的水解使介质的酸性进一步增强,加速了金属的腐

论锅炉受热面高温腐蚀

论锅炉受热面高温腐蚀 论锅炉受热面的高温腐蚀 【摘要】主要介绍了电站锅炉受热面的高温腐蚀机理、危害、类型、影响高温腐蚀的因素,并提出了防止或减轻受热面高温腐蚀的措施。 【关键词】受热面高温腐蚀机理影响因素防止措施 目前在高参数、大容量火电机组中,锅炉受热面的高温腐蚀问题已很普遍且迫切需要解决。因发生高温腐蚀导致受热面管件损坏严重而被迫停机的事故屡见不鲜。受热面的高温腐蚀已经成为燃煤锅炉机组安全稳定运行的一大隐患。在锅炉的设计及运行调整中如稍有不慎则高温腐蚀便很容易发生,腐蚀使得受热面承压部件的管壁变薄,严重时会使受热面管子在短时间内爆管,导致锅炉漏泄而被迫停机或事故跳机。可见其迫害程度非常之大,在运行中必须避免受热面的高温腐蚀。 1 高温腐蚀的形成机理 所谓高温腐蚀是指在煤粉锅炉高温火焰及高温烟气区,过热器和再热器管子及其悬挂件产生的外部腐蚀。锅炉受热面的高温腐蚀是一个复杂的物理化学过程。与其他有关煤的反应机理一样,由于煤自身的复杂性以及迄今对它的认识有限,这类机理都是粗糙的和带有推理性的,在结论的定量上也都具有相当宽的范围。高温腐蚀多发生在燃烧器区域的水冷壁、高温过热器、高温再热器,亦即受热面管壁金属温度超越一定界限的部位。从对高温腐蚀的现象及调查研究结果表明,这种腐蚀都是因壁面与积灰层间的一层液相物反应 而产生的。污染后的受热面会受到灰渣和烟气的复杂的化学反应。高温过热器与高温再热器多布置于烟温高于700-800?的烟道内,管子的外表面积灰由内层、外层两部分组成,内层灰密实,与管子黏结牢固,不易清除;外层灰松散,容易清除。

低熔灰在炉膛内高温烟气区已成为气态,随着烟气流向烟道。由于高温过热器及高温再热器区域的烟温较高,低熔灰若不接触温度较低的受热面则不会凝固,若接到温度较低的受热面就会凝固在受热面上,形成黏结灰层。灰层形成后,表面温度随灰层厚度的增加而增加。此后,一些中、高熔灰粒也被黏附在黏性灰层中。这种积灰在高温烟气中的氧化硫气体的长期作用下,形成白色的硫酸盐密实灰层,这个过程称为烧结。随着灰层厚度的增加,其外表面温度继续升高,低熔灰的黏结结束。但是中熔灰和高熔灰在密实灰层表面还进行着动态沉积,形成松散而且多孔的外层灰。内层灰的坚实程度随着时间的增长而增大,时间越长,灰层越坚实。 对于黏结灰层固形物进行化学分析和x衍射分析,结果都表明其主要构成是碱-三硫酸铁的络合物。它在538-704?温度范围内呈熔融状态。从关于碱-三硫酸铁络合物与铁的反应特性资料可知,在与碱-三硫酸铁络合物紧密黏结的奥氏体钢或铁素体钢之间都会产生对铁的腐蚀反应。与铁素体钢的这种反应,其速度是随着温度的升高而增大的;奥氏体钢的腐蚀速度与温度关系则成半铃形。从实验室的腐蚀失重试验结果也表明在相当于炉内条件下,合成硫酸盐具有相同的铃形腐蚀速度曲线,也表明这个硫酸盐络合物是受热面 高温腐蚀的根本原因。由此可以得出产生高温腐蚀的机理是:因煤灰的选择性沉积,使碱与氧化铁在积灰层中的浓度远比在煤灰中高。碱-三硫酸铁是这些选择性沉积物中与烟气中的so3反应生成的。碱与氧化铁在沉积之初很可能是粉末状的物料,随着温度的升高而呈熔融或半熔融状态。碱在管壁表面的聚积也可能是出于外层熔融物料的迁移。图示也表明了,积灰层中钾、钠含量比的重要性。钠络合物在图示的温度范围内都是干的;而钾络合物从625?开始就产生黏结;1:1钾络合物在约550?时就开始呈熔融状态,非但开始呈熔融状态的温度低,其温度范围也宽(如图1)。 煤灰在受热面上的沉积并致腐蚀的大致步骤如下:

锅炉水冷壁管向火侧腐蚀原因及改进措施

编号:AQ-JS-00493 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 锅炉水冷壁管向火侧腐蚀原因 及改进措施 Causes of fire side corrosion of boiler water wall tubes and improvement measures

锅炉水冷壁管向火侧腐蚀原因及改 进措施 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 针对某电厂锅炉发生的水冷壁向火侧大面积腐蚀现象,对腐蚀管进行了宏观、微观检查,对外壁腐蚀产物进行了成分分析,确认了腐蚀成因,提出了提高炉内燃烧区的氧量、调整燃烧器及提高煤粉细度等可行的改进措施。 关键词〕电厂锅炉;水冷壁;向火侧;腐蚀 某电厂1号锅炉为亚临界、一次中间再热、自然循环汽包炉,采用固态排渣和平衡通风。前后墙水冷壁均为4×4排,锅炉设计最大连续出力为1189.96t/h,燃烧方式为对冲悬浮,共32只低NOX 双调风旋流燃烧器(DRB)布置在前后墙,锅炉设计煤种为山西晋北烟煤。 在1号机组运行12万h后的大修中,发现锅炉水冷壁管向火侧

存在严重的腐蚀。腐蚀区域位于锅炉左右侧墙,高度方向位于燃烧区域,水平方向在自后墙数第60~130根水冷壁管的范围内(侧墙水冷壁管共179根),愈靠近水冷壁中心,腐蚀愈为严重;至燃烧器上部的吹灰器层,水冷壁管的腐蚀明显减轻,前后墙燃烧器周围无腐蚀,燃烧器下部及冷灰斗区域也未发现有腐蚀现象。为了查明水冷壁管向火侧腐蚀原因,对典型的腐蚀管段采取割管,进行失效分析;在查明腐蚀原因的基础上,寻求改进措施。 1腐蚀区域的宏观检查 该电厂水冷壁管选用SA213T2钢,其规格尺寸为57.2mm×6.35mm,10头内螺纹管。图1为腐蚀后水冷壁管屏断面照片;图2为两根割管管壁减薄的宏观照片。图2中1号样的向火侧在焊接鳍片和管壁金属相交处形成明显的深弧形减薄条带;2号样的向火侧全范围减薄,最薄处也位于与鳍片邻近部位,测其壁厚为2.6mm。对1,2号样宏观检验,在外壁均未观察到由于磨损作用而留下的犁削条纹或点坑、切片等痕迹,表明管壁的减薄主要是腐蚀作用的结果。

工业锅炉局部腐蚀分析和预防腐蚀关键技术

工业锅炉局部腐蚀分析和预防腐蚀关键技术 摘要:在多年的锅炉检验过程中,发现快装锅炉的腐蚀部位有一定的规律性:即发生在锅炉的特定区域内、其腐蚀形态多以凹坑、斑点状出现;其腐蚀原因除了与锅炉水质状况有关外,还与锅炉的运行方式、锅炉结构和维护保养等因素有关。 关键词:工业锅炉局部腐蚀预防 1、腐蚀的机理 腐蚀分为化学腐蚀和电化学腐蚀两大类,化学腐蚀一般无电流产生,而电化学腐蚀则伴有电流产生。对锅炉受压元件来说,水侧以电化学腐蚀为主,火侧或烟气侧以化学腐蚀为主。氧腐蚀实际上是一种电化学腐蚀,其主要原因是铁和氧形成两个电极,组成腐蚀电池。因为铁的电极电位比氧的电极电位低,所以在铁氧腐蚀电池中,铁是阳极遭到腐蚀, 铁在这里失去电子(氧化)以铁离子的形式转入水中,其反应如下:Fe→Fe2++2e氧在阴极,进行还原反应如下:O2+2H2O+4e→4OH-在这里,溶解氧起阴极去极化作用,而去极化作用的强弱与含氧量有关。所以,要减轻锅炉的氧腐蚀,必须尽可能地降低给水中溶解氧的含量。 2、锅筒水位线附近的腐蚀 2.1 腐蚀特点 锅筒水位线附近的腐蚀,是指在锅筒内水位线上下约100mm内,沿锅筒的内表面纵向分布的斑点状腐蚀。这种点蚀形状似水滴,腐蚀深度不大,但所占面积大,分布较为密集。其腐蚀程度虽然对锅筒强度影响不大,但是在锅炉水位波动范围内存在着温度交变应力,会促使腐蚀加剧,如果任其发展下去将导致锅筒强度降低,危及安全运行。 该区域之所以容易发生腐蚀,原因可能有三:第一,与给水未除氧有关。第二,可能是运行方式和操作不当造成的。经验证明,产生这种腐蚀的锅炉差不多都是间断运行的锅炉。这些锅炉运行方式和操作的特点是:在临时停炉或夜间压火时,保持较高的水位,随着停炉冷却,锅内压力迅速下降并很快降到零,甚至产生负压,使空气侵入锅内。当锅炉开始运行时,又不注意或无法赶走侵入锅内的空气,随着压力的上升,空气中的氧溶入锅水中,促进了氧腐蚀的发生。第三,可能是煮炉方法不当。煮炉的主要目的是通过煮炉在金属表面形成一层耐腐蚀的保护膜。煮炉用的药剂一般采用氢氧化钠(NaOH)和磷酸三钠(Na3PO4·12H2O)或碳酸钠(Na2CO3)。在煮炉过程中,金属表面形成保护膜主要是靠磷酸三钠;氢氧化钠在煮炉中的作用是与油脂起皂化作用,生成的泡沫性物质可以除去锅内油污,中和金属表面酸性以利形成保护膜。同时利用水的沸腾和自然循环以及降压排污的冲刷作用,使浮锈及部分氧化皮与金属本体脱离。如果在煮炉时只用了氢氧化钠,未用磷酸三钠,那么在金属壁面形成保护膜的效果差,而且如果煮炉时各个环节控制不好,锅筒内壁铁锈、氧化皮是不容易煮掉的,这就为锅炉腐蚀创造了有利的条件。 2.2 预防措施 对于这种腐蚀的预防,在给水未除氧的情况下可采取以下几种措施: (1)改进操作方式。临时停炉时,在维持较高水位的同时尽量维持一定的压力,防止外界空气侵入锅内;锅炉运行时要开启空气阀,待空气阀冒汽,锅炉压力达到

水冷壁管高温腐蚀的机理

1 高温腐蚀是炉内高温烟气与金属壁面相互作用的一个复杂的物理化学过程,按其机理通常可分为三大类:硫化物(FeS2、H2S)型腐蚀、焦硫酸盐型腐蚀和氯化物型腐蚀。多年研究表明,水冷壁管发生高温腐蚀的区域是有规律的:通常多在燃烧高温区,即局部热负荷较高,管壁温度也较高的区域,如燃烧器区附近,其余区域的高温腐蚀明显减弱或根本不发生高温腐蚀;发生高温腐蚀的管子向火侧正面的腐蚀速度最快,管壁减薄量最大,背火侧则不发生高温腐蚀。 2 影响高温腐蚀的主要原因 2.1火焰冲墙和还原性气氛的存在是造成水冷壁高温腐蚀的主要原因 对切圆燃烧锅炉,当燃烧切圆直径过大、火焰中心未形成切圆或燃烧切圆偏移时,炉内空气动力场倾斜,燃烧器区域出现火焰冲墙和还原性气氛,从而发生高温腐蚀。 2.1.1高温火焰直接冲刷水冷壁 当含有较大煤粉浓度的高温火焰直接冲刷水冷壁管时,将大大加剧高温腐蚀的发生。其一,高温辐射热可加速硫酸盐的分解,加快腐蚀速度;其二,火焰中含有未燃尽的煤粉,在水冷壁附近缺氧燃烧,产生还原性气体;其三,未燃尽的煤粉颗粒随烟气冲刷水冷壁管时,磨损将加速水冷壁管上保护膜的破坏,加快金属管壁高温腐蚀的过程。 2.1.2存在还原性气体 由于着火延迟,未燃尽的煤粉在水冷壁附近进一步燃烧时,发生化学不完全燃烧,形成缺氧区,使炉膛壁面附近处于含有还原性气体(CO、H2)和腐蚀性气体(H2S)的烟气成分之中,没有完全燃烧的游离硫和硫化物与金属管壁发生反应,引起管壁高温腐蚀。 研究表明,烟气中CO浓度越大,高温腐蚀就越严重;H2S的浓度大于0.01%时,就会对钢材产生强烈的腐蚀作用;而当含氧量大于2%时,基本上不会发生高温腐蚀[1]。 2.2燃煤品质差是水冷壁高温腐蚀的必要条件 燃煤中硫、碱金属及其氧化物含量越大,腐蚀性介质浓度越大,出现高温腐蚀的可能性就越大。高硫煤产生的大量H2S、SO2、SO3、原子硫[S]不仅破坏管壁的Fe2O3保护膜,还侵蚀管子表面,致使金属管壁不断减薄,最终导致爆管事故。 燃用不易引燃的无烟煤和贫煤时,因着火点温度相对较高,燃烧困难,容易产生不完全燃烧,并使火焰脱长,在金属壁面附近形成还原性气氛,增加对管壁的腐蚀性。 煤粉的颗粒越大,也就越不易燃尽,比较容易形成还原性气氛,产生高温腐蚀。同时,颗粒越大,对壁面的磨损也越严重,破坏了水冷壁管外氧化保护膜,使烟气中腐蚀介质直接与管壁金属发生反应,使腐蚀加剧。 2.3过高的水冷壁管壁温度促进了水冷壁高温腐蚀的发生 研究表明,H2S等腐蚀性介质的腐蚀性在300℃以上逐步增强,即温度每升高50℃,腐蚀程度将增加一倍。对于亚临界大型电站锅炉,燃烧器区域的水冷壁管内汽水温度约在350℃左右,烟气侧水冷壁管温度多在420℃左右,正处于金属发生强烈高温腐蚀的温度范围之内。同时,管子局部壁面温度过高,易使具有腐蚀性的低熔点化合物粘附在金属表面,促进了管壁高温腐蚀的发生。 2.4运行因素的影响 当锅炉负荷发生变化时,若运行不当(如火嘴投停不当),就容易引起燃烧不稳定,产生还原性气氛,或造成烟气冲墙,继而发生高温腐蚀。因此,运行不当也是引起高温腐蚀的一个主要因素。 3高温腐蚀的防护措施

锅炉水冷壁高温腐蚀原因分析及预防措施

锅炉水冷壁高温腐蚀原因分析及预防措施 发表时间:2019-11-18T13:31:35.660Z 来源:《中国电业》2019年14期作者:侯启聪 [导读] 对大唐鲁北电厂2×330MW机组锅炉水冷壁产生高温腐蚀的原因进行分析。 摘要:对大唐鲁北电厂2×330MW机组锅炉水冷壁产生高温腐蚀的原因进行分析,认为其主要是主燃烧器区二次风和一次风配比不合理,造成风粉脱离,含粉气流贴壁冲刷,在水冷壁区域形成局部还原性气氛所致。文章针对锅炉水冷壁高温腐蚀的原因及预防措施,进行简要的剖析研究。 关键词:锅炉;水冷壁;高温腐蚀;燃烧 鲁北电厂330MW锅炉是采用美国燃烧工程公司(CE)的引进技术设计和制造的。锅炉为亚临界参数、一次中间再热、自然循环汽包炉,采用平衡通风、四角切圆燃烧方式,。锅炉以最大连续负荷(即BMCR工况)为设计参数,锅炉的最大连续蒸发量为1020t/h;机组电负荷为330MW(即TRL工况)时,锅炉的额定蒸发量为969t/h。 锅炉设计燃料为烟煤,收到基硫0.41%,校核煤种收到基硫0.6%。 1高温腐蚀的现象及原理 机组停备水冷壁防磨防爆检查发现,腐蚀严重的区域大都位于燃烧器喷出后射流的中下游。腐蚀区域的水冷壁表面一般呈黑褐色,外层松软、内层坚硬,剥落坚硬层后,垢状物与水冷壁管结合面处层蓝色。腐蚀区域大多水冷壁表面不清洁,有较多的灰沾污。大唐鲁北电厂1、2号炉水冷壁发现腐蚀区域水冷壁表面有未燃尽的煤粉附着,再往里有较多的黄色硫化物。 通过收集资料汇总发现,近几年山东省相继有多台电厂锅炉发生严重的水冷壁高温腐蚀,如黄台电厂8号炉(1000t/h)、华能德州电厂1-4号炉(1000t/h)、南定电厂1、2号炉(410t/h)、潍坊电厂1、2号炉(1000t/h)、青岛电厂1、2号炉(1000t/h)等,腐蚀最严重的锅炉水冷壁最小壁厚仅1.3mm,腐蚀速度2mm/a。上述各台锅炉发生高温腐蚀的区域基本相近,都在燃烧器出口射流中下游区域,高度在燃烧器中心线附近,且管子向火侧的正面点腐蚀速度最快。水冷壁发生高温腐蚀后,壁厚减薄,强度降低,容易造成爆管泄漏,影响锅炉安全运行。有腐蚀物分析基本可确定,大唐鲁北1号炉水冷壁高温腐蚀属于硫化物型高温腐蚀。这种腐蚀主要是由煤中的黄铁矿硫造成的。 2水冷壁高温腐蚀原因分析 2.1煤种问题 煤种是造成高温腐蚀的主要原因之一。煤中的硫和硫化物是形成腐蚀物质的基础,而煤的燃烧特性则直接影响贴壁还原性气氛的生成。 对发生高温腐蚀的锅炉所燃用煤质统计分析表明,大部分锅炉燃煤的含硫量均在1.2%以上,有些甚至高达3%。高含硫量使煤在燃烧中产生更多的腐蚀性,加速水冷壁腐蚀。根据山东省锅炉高温腐蚀情况普查结果,发生严重高温腐蚀的多为1000t/h以上高参数、大容量锅炉,中小型锅炉较少出现高温腐蚀。南定电厂1、2号炉均为410t/h锅炉,但也出现严重高温腐蚀,这其中有燃烧器结构布置方面的原因,但更重要的是煤质。 2.2炉内燃烧风粉分离 这是四角切圆燃烧锅炉普遍存在的问题。目前四角切圆燃烧锅炉普遍采用集束射流着火方式,一二次风间隔布置并以同一角度平行射向炉内。理想的着火应是一次风喷出后不久即被动量较大的二次风所卷吸,射流轨迹变弯,形成转弯的扇形面,并卷吸周围高温烟气,形成着火区,着火后的一次风被卷入二次风射流中燃烧。由于一次风射流混入动量大的二次风中,使火炬射流刚性加强,不易受干扰,从而在整个燃烧器区域内形成一个燃料与空气强烈混合的、稳定燃烧的旋转火炬。 但炉内实际燃烧过程并非如此。为保证稳定燃烧,一次风出口风速通常控制比较低(20—25m/s),而二次风速一般在40—50m/s之间,从而一二风的射流刚性相差较大。一二次风射流喷出燃烧器后由于受到上游邻角气流的挤压作用及左右两侧不同补气条件的影响,使气流向背火侧水冷壁偏转,此时刚性较弱的一次风射流比二次风偏转更大角度,从而使一二次风分离。一二次风的刚性相差越大,这种分离现象越明显。由于部分一次风射流偏离二次风,煤粉在缺氧状态下燃烧,在射流中下游水冷壁附近形成还原性气氛,这是引发高温腐蚀的一个重要原因。 2.3运行调整方面 2.3.1配风状况差 锅炉二次风门普遍采用气动执行机构控制,由于种种原因风门控制大都较乱,加上锅炉一二次风配比不合理,炉内配风状况很差。这也是造成一二次风混合不完全,煤粉着火和燃尽差,煤粉贴壁燃烧的原因之一。 2.3.2燃烧配风状况差 部分锅炉设备由于辅机设备问题,造成满负荷工况供风不足。如潍坊电厂1、2号炉由于排烟温度低,空预器积灰严重,阻力增大,造成送、引风机出力不足,满负荷运行时炉膛出口氧量不足1%(设计值为4%),远远不能满足锅炉正常燃烧要求。由于总风量不足,使燃烧器区域的缺氧燃烧状况更加严重,对预防高温腐蚀非常不利。 通过以上分析,认为鲁北1号炉高温腐蚀的主要原因是:锅炉长期高负荷、大煤量运行工况下,主燃烧器区二次风和一次风配比不合理,一次风粉射流在炉内上升过程中,受到刚性较强的二次风射流的挤压和下游二次风射流的牵引,造成风粉脱离,含粉气流贴壁冲刷,在水冷壁区域形成局部还原性气氛。而给煤量大大偏离设计值造成的入炉煤粉浓度加大,以及含硫量的增高加剧了腐蚀的速度。 3预防高温腐蚀的措施方法 造成高温腐蚀的主要原因是煤质、设备、运行三个方面。从目前情况看,要改变煤种非常困难,依靠燃烧调整来预防高温腐蚀也有一定难度且效果不理想,因此,只有通过设备改造来预防高温腐蚀才是最根本有效的方法。 3.1侧边风技术 所谓侧边风就是在高温腐蚀区域的上游水冷壁或在高温腐蚀区域水冷壁上安装喷口,向炉膛内通入空气。采用侧边风的主要目的是改变水冷壁高温腐蚀区域的还原性气氛,增加局部含氧量。一般情况下以二次风作为侧边风的风源。根据侧边风结构及布置方式又分为贴壁型和射流型2种。贴壁型侧边风一般采用在水冷壁鳍片上开孔的方式,开孔位置在高温腐蚀区域内,依据腐蚀面积大小决定开孔数目的多少。二次风有小孔进入炉膛后,受炉内烟气运动影响,很快偏转附着于水冷壁管上,在高温腐蚀区域水冷壁表面形成一层空气保护膜。贴

锅炉水冷壁高温腐蚀原因及预防措施

锅炉水冷壁高温腐蚀原因及预防措施 文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

水冷壁高温腐蚀的原因分析及预防措施 我厂#2炉在本次B 级检修中发现水冷壁存在高温腐蚀现象,高温腐蚀区域大约在D 层燃烧器与 层燃烧器之间, 在这一区域水冷壁高温腐蚀后,壁厚明显减薄,最薄处仅有5mm, 因而强度降低,极易造成水冷壁爆管和泄漏,危及锅炉安全运行。 针对水冷壁高温腐蚀问题,生产部、调度部、运行分场进行了多次分析和探讨,认为我厂水冷壁高温腐蚀的原因大致有以下几个原因: 1、我厂燃煤为山西贫煤,该煤种含硫及硫化物较多,高含硫量使煤在燃烧中产生较多的腐蚀性物质,直接导致水冷壁的高温腐蚀。同时,由于近年来煤炭市场供求关系的转换,煤质难以得到保证,由于煤质较杂多变,运行中往往引起煤粉变相,着火点推迟,燃烧速度低等一系列问题。 2、我厂锅炉为亚临界锅炉,饱和水温约为360 ℃,水泠壁温度可达400℃,在该条件下管壁被氧化,使受热面外表形成一层Fe 2O 3和极细的灰粒污染 层,在高温火焰的作用下,灰分中的碱土金属氧化物(Na 2O 、K 2O )升华,靠扩散 作用到达管壁并冷凝在壁面上,与周围烟气中的SO 3化合生成硫酸盐。管壁上的硫 酸盐与飞灰中的Fe 2O 3及烟气中的SO 3作用,生成复合硫酸盐,复合硫酸盐在 550℃-710 ℃范围内呈液态,液态的复合硫酸盐对管壁有极强的腐蚀作用。 3、我厂入炉煤粉长期偏向,造成煤粉直接冲刷水冷壁,在水冷壁附近区域造成还原性气氧,导致高温腐蚀。 4、我厂为四角切圆燃烧锅炉。当一、二次风射流喷出燃烧器后由于受到上游邻角气流的挤压作用及左右两侧不同补气条件的影响,使气流向背火侧水冷壁

锅炉水冷壁高温腐蚀

大型锅炉水冷壁高温腐蚀 调研报告 上海锅炉厂有限公司 二○○二年三月十五日 目录 1.前言 (2) 2.产生高温腐蚀的机理和条件 (2) 3.高温腐蚀发生在大型贫煤锅炉上的主要原因 (3) 4.大型锅炉水冷壁高温腐蚀的部位及预防措施 (5) 5.水平浓淡分离燃烧技术在防止高温腐蚀方面的应用 (7) 6.石洞口电厂#3、#4炉改造情况 (11) 7.大型锅炉炉内水冷壁发生高温腐蚀的判据 (14) 8.结论 (15) 1.前言 我国许多地方的电厂,不少燃用无烟煤、贫煤、劣质烟煤的大型锅炉投运后,炉内水冷壁都不同程度的存在高温腐蚀。这种情况,无论是在我国上海、哈尔滨、东方三大锅炉厂自行设计制造的锅炉,还是在国外日本三菱、法国斯坦因、英国巴布科克、加拿大巴威等公司设计制造的锅炉,其燃烧器高温区域,水冷壁都有高温腐蚀现象发生,而且遍及各种炉型。以水循环方式分,有自然循环、控制循环和直流锅炉;以燃烧方式分,有四角切圆、前后墙对冲和W型火焰燃烧器等许多典型设计。通过调研,我们发现水冷壁管壁腐蚀速度一般为0.8~1.5mm/104h,腐蚀后的管壁减薄

形貌较多,一般是分层减薄,而管壁向火侧减薄较快。 2.产生高温腐蚀的机理和条件 在燃煤锅炉中,高温腐蚀分三种类型:硫酸盐型、氯化物型和硫化物型。硫酸盐型腐蚀主要发生高温受热面上;氯化物型腐蚀主要发生在大型锅炉燃烧器高温区域的水冷壁管上;硫化物型腐蚀主要发生在大型锅炉水冷壁管上。水冷壁的高温腐蚀通常是由这三种类型腐蚀复合作用的结果。 硫酸盐型高温腐蚀的形成:在炉内高温下,煤中的NaCl中的Na+易挥发,除一部分被熔融的硅酸盐捕捉外,有一部分与烟气中的SO3发生反应,形成Na2SO4;另一部分是易于挥发性的硅酸盐,与挥发出的钠发生置换反应,而释放出来的钾,与SO3化合,生成K2SO4。而碱金属硫酸盐(Na2SO4、K2SO4)有粘性,且露点低。当碱金属硫酸盐沉积到受热面的管壁后会再吸收SO3,并与Fe2O3、Al2O3作用生成焦硫酸盐(Na·K)2S2O7。这样一来,受热面上熔融的硫酸盐(M2SO4)吸收SO3并在Fe2O3、Al2O3作用下,生成复合硫酸盐(Na·K)(Fe·Al)SO4,随着复合硫酸盐的沉积,其熔点降低,表面温升升高。当表面温升升高到熔点,管壁表面的Fe2O3氧化保护膜被复合硫酸盐破坏,使管壁继续腐蚀。另外,附着层中的焦硫酸盐(Na·K)2S2O7。由于熔点低,更容易与Fe2O3发生反应,生成(Na·K)3Fe(SO4)3,即形成反应速度更快的熔盐型腐蚀。 氯化物型腐蚀的形成:在炉内高温下,原煤中的NaCl中的易与H2O、SO2、SO3反应,生成硫酸盐(Na2SO4)和HCl气体。同时凝结在水冷壁上的NaCl也会和硫酸盐发生反应,生成HCl气体,因此,沉积层中的HCl浓度要比烟气中的大得多,致使受热面管壁表面的Fe2O3氧化保护膜

锅炉腐蚀原因及预防

锅炉腐蚀原因及预防 锅炉腐蚀原因分析 1、锅内氧腐蚀形貌特征分析 a.腐蚀部位一般位于水位线附近; b.一般为点状的高于金属表面的包状物,外表面为黄褐色到砖红色不等,包状物内多为黑色粉状物,含有一定水份; c.去除包状物后金属表面为一圆状深坑; d.锅炉一般有带水停用的现象。 2、锅内溶解氧腐蚀成因分析 a.锅内氧腐蚀属于电化学腐蚀,锅水是一种电介质,由于水位线附近锅水溶解氧的浓度较高,形成了腐蚀电池; b.腐蚀电池是指:不同金属的电偶腐蚀电池、浓差腐蚀电池、温差腐蚀电池,金属化学成份的不均匀、金相组织的不均匀、应力大小的不同、表面损伤情况或保护膜的破坏等可形成腐蚀电池; c.钢材等在各自盐类溶液中不能产生平衡电位(电位平衡了腐蚀就停止了),即容易发生腐蚀(锌铜金不易腐蚀)。 锅内溶解氧腐蚀的预防 a.定期煮炉,清除金属表面的腐蚀产物,并在金属表面形成完整的保护膜; b.运行时保持锅水碱度和ph值符合要求(可以选择给水加氨,使给水ph值符合水、汽质量要求,以减缓氧腐蚀); c.给水除氧或锅内加药除氧; d.减少锅水中氯离子含量; e.加强停炉保养,长期停炉宜用干法保养(烘干或吹干后密封,放置除湿剂,将水汽接管用盲板全部隔断);短期停炉宜用湿法保养(充氮或采用防护药品除氧)或热保养法(保持炉温、保持锅内蒸汽压力大于大气压,防止空气侵入);临时停炉时宜用充水带压保养(加温后去火,将水加满并保持一定压力, 防止外界空气侵入)。 3、管内壁腐蚀

3.1.1溶解氧腐蚀 由于Fe与02. C02之间存在电位差,形成无数个微小的腐蚀电池, Fe是电池中的阳极,溶解氧起刚极去极化作用,Fe 比02等的电位低而遭到腐蚀。 当pH值小于4或在强碱环境中,腐蚀加重,pH 值介于4^13之间,金属表面形成致密的保护膜(氢氧化物),腐蚀速度减慢。腐蚀速度与溶解氧的浓度成正比,随若给水速度提高、锅炉热负荷增加、溶解氧腐蚀也随之加剧。 3.1.2垢下腐蚀 由于给水质量不良或结构缺陷防碍汽水流通,造成管道内璧结垢。垢下腐蚀介质浓度高,又处于停滞状态,会使管内壁发生严重的腐蚀,这种腐蚀与炉水的局部浓縮有关。如果补给水或因凝汽器泄漏(河水)使炉水含碳酸盐,其沉积物下局部浓縮的炉水(沉积着高浓度的0H-)pH值上升到13以上时发生碱对金属的腐蚀。如果凝汽器泄漏的是海水或含C1-的天然水,水中的MgCl2. CaC12 将进入锅炉、产生强酸HC1.这样沉积物下浓缩的炉水( 很高浓度的时) pH值快速下降,而发生对金属的酸性腐蚀。 3.1.3碱腐蚀 游离碱会在多孔性沉积物和管内表面浓缩,浓缩的强碱会溶解金属保护膜而形成铁酸根与次铁酸根离子的混合物,当管壁表而局部碱浓度超过40%时,会释放出氢气,从而形成金属表面深而广的腐蚀,也称延性腐蚀。 3.1.4氢损伤(氢损伤实际就是酸性腐蚀) 一般情况下给水与管壁(Fe)发生反应生成H2和Fe301.保护膜Fe304阻隔H2进入管壁金属而被炉水带走,当给水品质不佳或管内结垢会生成Fe203和Fe0. Fe203. Fe0比较疏松、附着性很差,有利于H2向管壁金属的扩散,高温下品界强度低, H2与钢中的碳和FeC反应生成CH4. 管壁金属脱碳,CH4 积聚在晶界上的浓度不斷升高,形成局部高压以致应力集中,晶界断裂,产生微裂纹并发展成网络,导致金属强度严重降低,使金属变脆而断裂。

锅炉受热面高温腐蚀原因分析及防范措施

锅炉受热面高温腐蚀原因分析及防范措施 Cause Analysis and Protective Measues to High-temperature Corrosion On Heating Surface of Boiler 张翠青 (内蒙古达拉特发电厂,内蒙古达拉特 014000) [摘要]达拉特发电厂B&WB-1025/18.44-M型锅炉在九八及九九年#1、#2炉大修期间,检查发现两台炉A、B两侧水冷壁烟气侧、屏式过热器迎火侧、高温过热器迎火侧存在大面积腐蚀,根据腐蚀部位、形态和产物进行分析,锅炉受热面的腐蚀属于高温腐蚀,其原因主要与炉膛结构、煤、灰、烟气特性及运行调整有关,并提出了防范调整措施。 [关键词] 锅炉受热面;高温腐蚀;机理原因分析;防范措施

达拉特发电厂#1~#4炉是北京B&WB公司设计制造的B&WB-1025/18.4-M型亚临界自然循环固态排渣煤粉炉。锅炉采用前后墙对冲燃烧方式。设计煤种为东胜、神木地区长焰煤。在九八及九九年#1、#2炉大修期间,检查发现两台炉A、B两侧水冷壁烟气侧、屏式过热器迎火侧、高温过热器迎火侧存在大面积腐蚀,两台炉腐蚀的产物、形状及部位相似。腐蚀区域水冷壁在标高16~38米之间及屏式过热器、高温过热器沿管排高度,腐蚀深度在0.4~1.0mm之间,最深处达1.7mm,腐蚀面积达500平方米左右。腐蚀给机组安全运行带来严重隐患。 1.腐蚀机理原因 1.1锅炉炉膛结构 锅炉炉膛结构设计参数见下表: 高40%多,同时上排燃烧器至屏过下边缘高度值比推荐范围的下限还低1.8米,这就导致燃烧器布置过于集中、燃烧器区域局部热负荷偏大、该区域内燃烧温度过高,实测炉膛温度达1370~1430℃。燃烧温度偏高直接导致水冷壁管壁温度过高,理论计算该区域水冷壁表面温度为452℃。大量的试验研究表明当水冷壁管壁温度大于400℃以后,就会产生明显的高温腐蚀。 1.2 煤、灰、烟气因素 蒙达公司实际燃煤是东胜、神木煤田的长焰煤和不粘结煤的混煤。:燃煤中碱性氧化物含量较高,灰中钠、钾盐类含量高,平均值达3.85%,含硫量偏高。 1.3 运行调整不当 为了分析运行调整因素对腐蚀的影响,在A、B侧水冷壁标高20、25、28米处安装了三排烟气取样点,每排三个,共18个。分析烟气成分后发现,燃用含硫量高的煤种时,由于燃烧配风调整不合理,省煤器后氧量偏大(实侧值 气体,加剧了高温腐蚀的产生与发展。 4.35%),导致燃烧过程中生成大量的SO 2 2.腐蚀类型 所取垢样中,硫酸酐及三氧化二铁的含量最高,具有融盐型腐蚀的特征,属于融盐型高温腐蚀。从近表层腐蚀产物的分析结果看,S和Fe元素含量最高,具有硫化物型腐蚀特征,说明存在较严重的硫化物型腐蚀。因此,达拉特发电厂的锅炉高温腐蚀是以融盐型腐蚀为主并有硫化物腐蚀的复合型腐蚀。 3.防止受热面高温腐蚀的措施 2.1.采用低氧燃烧技术组 由于供给锅炉燃烧室空气量的减少,因此燃烧后烟气体积减小,排烟温度下 的百分数和过量空气百分数之间降,锅炉效率提高。燃油和煤中的硫转化为SO 3 的转化明显下降。的关系是,随着过量空气百分数的降低,燃料中的硫转化为SO 3

电站锅炉水冷壁管腐蚀检测

电站锅炉水冷壁管腐蚀检测 刘凯厦门涡流检测技术研究所福建厦门361004 王维东徐州电力试验中心江苏徐州221009 朱伟明安徽淮南平发电有限公司安徽淮南232089 李林华电攀枝花发电公司四川攀枝花617066 摘要:锅炉是电站重要设备,其水冷壁管内腐蚀和裂纹造成爆裂致使停炉等严重事故,一直是困扰业界之难题。本文介绍新发展的低频电磁技术能够从管道外壁快速探测管内壁缺陷,并已在多个电厂成功运用。 关键词:水冷壁管;缺陷;低频电磁 Inspection of Waterwall Tube Defects for Power Plants LIU Kai Xiamen Eddy Current NDT Testing Institute 361004, China WANG Weidong Xuzhou Electric Power Research Institute 221009,China ZHU Weiming Pingwei Eleectric Power Co. 232089,China LI Lin China Hua Dian Panzhihua Power Co. 617066, China Abstract: This paper introduces a system using a scanner moved along the tube wall to scan from OD for defects inside the tube, primarily on the fireside. Typical defects found on these waterwall tubes are hydrogen damage, caustic gouging, etc. This system is based on low frequency electromagnetic technology. The tubes are not required to be cleaned to the level necessary for UT thinkness testing. This new system is fast, accurate, cost effective and field proven for power plants. Keywords: Boiler waterwall; Defect; Wallthickness; Low frequency electromagnetic 锅炉是热电厂最重要的生产设备,其炉内水冷壁管在长期服役中受到烟气、煤灰和火焰等侵蚀,极易出现磨损、腐蚀,造成管壁局部减薄,在管内高压、高温蒸汽的作用下,最终产生管体爆裂泄漏等严重事故。锅炉出现泄漏与一般管道出现泄漏不同,无法在继续生产运行中进行维修,往往要停机抢修,其经济损失巨大,因而各电厂对有效减少和避免锅炉管爆漏都非常重视,加强水冷壁管的在役运行材质的监测和检查具有十分重要的现实意义。 1. 水冷壁管内壁腐蚀机理 造成水冷壁管管壁减薄的原因主要有外壁烟灰吹蚀和内壁垢下腐蚀。前者出现在管外

锅炉水冷壁管结垢原因分析及处理措施

#31机组锅炉水冷壁管结垢原因分析及处理措施 一、水冷壁管结垢腐蚀检查 从表一可知:1)结垢量最大在标16m,24-30m结垢量基本接近,都大于结垢量300克/米2,水冷壁管垢量已经超过DL/T 794-2001《火力发电厂锅炉化学清洗导则》的清洗要求,应进行化学清洗。2)水冷壁管去垢后点蚀现象不明显,发现一根水冷壁管盐酸酸洗去垢后,水冷壁管镀铜明显,根据经验,在水冷壁管垢量超标同时有铜垢的情况,很容易导致因超温爆管事故的发生。3)垢量测定的结果表明,各炉墙向火侧的垢量很高,且垢量很不均匀。结垢速率与热负荷有直接的关系,一般结垢速率高的地方,热负荷就高,结垢速率的巨大差别表明水冷壁管的热负荷不均匀。 二、#31炉水冷壁管垢样成分分析

从表二垢成分分析结果表明:1)垢主要成分为铁的氧化物,水冷壁氧化铁垢沉积主要是由于铁的腐蚀沉积而致。腐蚀原因主要由于机组保养、机组启动期间水质差、正常运行期间因凝汽器腐蚀泄漏、锅炉运行燃烧调整及排污控制等原因引起的。2)垢成分中硅、磷、钙、硫酸根含量也较大,说明凝汽器泄漏而导致凝结水、给水和炉水变差,只有加大磷酸盐处理形成水渣通过排污才能保证炉水水质合格。磷、钙的沉积表明锅炉排污的及时性不够。 三、正常运行水质分析

不能完全真实反映水汽质量。 四、#31机组启动初期水质报告 五、#31机组凝结水水质异常情况 1、2009年2月凝结水导电率有56次大于0.30us/cm ,合格率为6.67%。判断凝结器可能有泄漏。2月6日#31机组停运,凝结器查漏堵漏2根。 2、2009年3月份凝结水导电率有86次大于0.30us/cm ,合格率为70.03%。 3、2009年4月份凝结水导电率有21次大于0.30us/cm ,合格率为93.91%。 4、2010年6月13日#31机组停运,凝汽器查漏堵漏甲侧2根。 5、2010年7月30日#31机组启动初期并网8小时后,凝结水、给水仍有硬度在2umol/L ,20小时后硬度为0 umol/L。硬度合格率为95.26%。凝结水导电率11次超标(大于0.30us/cm),导电率的合格率为95.69% 6、2011年7月 9日#31机组启动初期,凝结水、给水有硬度,连续超标14小时。 7、2011年8月23日~9月1日#31机组运行期间,凝结水导电率上涨并超过0.30us/cm,超标71次,合格率为62.43%.

相关主题
文本预览
相关文档 最新文档